~

Greedy Algorithms I

(Version of 21 November 2005)
There are many problems where an optimal solution is sought.
There are many choices to be explored at each solution step.

One approach is to always make the choice that currently seems
to give the highest gain, that is to be as greedy as possible

and make a locally optimal choice in the hope

that the remaining unique subproblem

leads to a globally optimal solution.

For many problems, a greedy algorithm gives an optimal solution,

/

but not for all problems.

© P.

Flener/IT Dept/Uppsala Univ. AD1, FP, PK II — Greedy Algorithms 1

Example of a Greedy Algorithm'

Coin change problem:

To give change of n units, given a set of denominations,

what is the minimum number of coins to use?

Example:
7=2+ 24+ 2+ 1, hence four coins are needed.

Greedy algorithm:
Always give a coin of the largest possible denomination

and then repeat on the remaining amount due.

_ /

© P. Flener/IT Dept/Uppsala Univ. AD1, FP, PK II — Greedy Algorithms 2

/ Specification and SML Code' \

FUNCTION change Denominations n

TYPE: int list — int — int

PRE: Denominations is sorted by decreasing values and has 1;
n and all values in Denominations are natural numbers
POST: an ideally minimal number of coins, with values in

Denominations, necessary to give change for an amount of n units

fun change Ds x =
if x = 0 then O
else if (List.hd Ds) <= x then
1 + change Ds (x - List.hd Ds)
else change (List.tl Ds) x

\Question: What is a variant for this function? /

© P. Flener/IT Dept/Uppsala Univ. AD1, FP, PK II — Greedy Algorithms 3

/ When Does it Work?' \

- change [10,5,2,1] 13 ;

val it = 3 : int

- change [5,4,3,1] 7 ;

val it = 3 : int

But the second answer is not the optimal one,

since we can also use a two-coin combination, because 7 = 4 + 3.

The denominations 4 and 3 leapfrog over 5, that is4+3 =7 > 5.

Leapfrogging may imply the need for more coins on some problems.

With the currency used in Sweden, there is no leapfrogging.
For such currencies, the given function is optimal: for them, we can
add a no-leapfrogging pre-condition and rephrase the post-condition

Q‘co “the minimum number of coins, ...”. /

© P. Flener/IT Dept/Uppsala Univ. AD1, FP, PK II — Greedy Algorithms 4

Suppose we want to store compactly a file of 100000 characters
(which normally takes 100000 - 8 = 800000 bits),
with the following frequencies of characters:

a b C d e f
Frequency 45% 13% 12% 16% 9% 5%

Inefficient code: Suppose we use three bits for each character:

a b C d e f

Frequency 45% 13% 12% 16% 9% 5%
Codeword 000 001 010 011 100 101

Ql order to store the file, we would then need 300000 bits.

/ Example: Huffman Data-Compression Codes' \

/

© P. Flener/IT Dept/Uppsala Univ. AD1, FP, PK II — Greedy Algorithms 5

Variable-Length Codes I

But suppose we use the following wvariable-length code instead:

a b C d e f

Frequency 45% 13% 12% 16% 9% 5%
Codeword 0 101 100 111 1101 1100

The string ‘bed’ is then coded as ‘1011101111,

and there is no ambiguity, since no codeword is a prefix of another.

In order to store the file of 100,000 characters, we would now need

(0.45-140.13-34-0.12-:3+0.16-3+0.09-4+0.05-4)-100000 = 224000 bits.
@Vings of 20% to 90% are typical with this technique. /

© P. Flener/IT Dept/Uppsala Univ. AD1, FP, PK II — Greedy Algorithms 6

4)

Prefix Codes and their Representation'

e A code is an assignment of messages (characters, strings,

commands to do things, ...) to sequences of bits.
e In a prefix(-free) code, no codeword is a prefix of another.
e A prefix code can be decoded unambiguously.
e Prefix codes achieve optimal data compression among all codes.
e A Huffman code is an optimal prefix code.

e A prefix code can be represented as a labelled binary tree:
label each left branch 0 and each right branch 1.
To decode a word, move down the appropriate branches

\ until reaching a leaf with a character. /

© P. Flener/IT Dept/Uppsala Univ. AD1, FP, PK II — Greedy Algorithms 7

a4b

c:12

_

b:13

POl

f:5

d:16

e9

/

© P. Flener/IT Dept/Uppsala Univ.

AD1, FP, PK II — Greedy Algorithms 8

/ SML Representation of Huffman Codes' \

datatype huffTree = Leaf of int * char
| Node of int * huffTree * huffTree
REPRESENTATION CONVENTION:
— a Huffman tree for character c of frequency f
is represented by Leaf(f,c);
- a Huffman tree with total frequency f, left subtree L,
and right subtree R is represented by Node(f,L,R),
and the edge to L is implicitly labelled with the bit O
while the edge to R is implicitly labelled with the bit 1
REPRESENTATION INVARIANT: for Node(f,L,R):
- the root frequency of L is at most the root freq. of R

- f is the sum of the root frequencies of L and R

\\f?n freq (Leaf(f,_)) = f | freq (Node(f,_,_)) = f 4///

© P. Flener/IT Dept/Uppsala Univ. AD1, FP, PK II — Greedy Algorithms 9

///f Using a hdinrflea{)l \\\

Maintain a min-priority queue, as a min-heap, with the

Huffman trees as items and the frequencies at their roots as keys.

structure huffTreeOrder : totalOrder =
struct
type t = huffTree
fun eq(x,y) = (freq x) = (freq y)
fun 1t(x,y) = (freq x) < (freq y)
fun leq(x,y) = (freq x) <= (freq y)
end

structure huffTreeHeap = leftistHeap(huffTreeOrder)

\A leftist heap is another way of implementing heaps: see the prograny

© P. Flener/IT Dept/Uppsala Univ. AD1, FP, PK II — Greedy Algorithms 10

/ Constructing the Heap' \

fun listToHeap [] = huffTreeHeap.empty
| listToHeap ((f,c)::xs) =
huffTreeHeap.insert (Leaf(f,c), (listToHeap xs))

Merging Two Huffman Trees'

(x PRE: freq tl1 <= freq t2 *)
fun mergeHuffTree tl t2 = Node((freq t1)+(freq t2),t1,t2)

Note that the given pre-condition saves an if ...then ...else

in the mergeHuffTree function itself. Even some calling functions

\\f?n(hasozseetﬁmacollapseHeap:ﬁnmjjon.beknvfbrzulexanuﬂe. 4///

© P. Flener/IT Dept/Uppsala Univ. AD1, FP, PK II — Greedy Algorithms 11

Constructing the Huffman Code'

Merge the 2 Huffman trees with the smallest frequencies at the root,

until only one Huffman tree is left.

Help function to extract the tree with the smallest root frequency:

fun extractMin h =
(huffTreeHeap.findMin h, huffTreeHeap.deleteMin h)

Exercise: Implement this function better
and add it to the leftistHeap functor.

_ /

© P. Flener/IT Dept/Uppsala Univ. AD1, FP, PK II — Greedy Algorithms 12

Constructing the Huffman Code (base) I

If the heap, which is non-empty by pre-condition,

has only one element, then return that heap:

fun collapseHeap h =
let
val (min,h’) = extractMin h
in
if (huffTreeHeap.isEmpty h’) then
h

_ /

© P. Flener/IT Dept/Uppsala Univ. AD1, FP, PK II — Greedy Algorithms 13

else

\\\¥ end

let

in

end

/ Constructing the Huffman Code (step) I

If the heap has at least two elements,
then delete its two smallest elements,

insert their merger into the heap, and recurse:

val (nextmin,h’’) = extractMin h’

val newlree = mergeHuffTree min nextmin

~

val h’’’ = huffTreeHeap.insert(newTree,h’’)

collapseHeap h’’’

/

© P. Flener/IT Dept/Uppsala Univ.

AD1, FP, PK II — Greedy Algorithms 14

/Top—Level Function to Construct a Huffman Code\ I

Given a character-frequency list, which is non-empty by
pre-condition, construct a Huffman code:

fun makeHuffTree freqlist =
let
val initialHeap = listToHeap freqlist
val collapsedHeap = collapseHeap initialHeap
in
huffTreeHeap.findMin collapsedHeap
end
val testFreq = [(16,#"d"), (9,#"e"), (5,#"f"),
(45,#"a"), (13,#"b"), (12,#"c")]

\\iil huffTree = makeHuffTree testFreq 41//

© P. Flener/IT Dept/Uppsala Univ. AD1, FP, PK II — Greedy Algorithms 15

Huffman’s Algorithm I \

Huffman’s algorithm is another example of a greedy algorithm.
It takes O(n lg n) time for a set of n characters.

Proving that it actually gives the optimal code is another matter.

Greedy Algorithms I

Greedy algorithms are efficient.

In some cases, they actually construct an optimal solution.

Even when they do not construct an optimal solution,

their solution can be used as a starting point

to actually construct an optimal solution. /

© P.

Flener/IT Dept/Uppsala Univ. AD1, FP, PK II — Greedy Algorithms 16

