Greedy Algorithms

(Version of 21 November 2005)

- There are many problems where an optimal solution is sought.
- There are many choices to be explored at each solution step.
- One approach is to always make the choice that currently seems to give the highest gain, that is to be as greedy as possible and make a locally optimal choice in the hope that the remaining unique subproblem leads to a globally optimal solution.
- For many problems, a greedy algorithm gives an optimal solution, but not for all problems.

Example of a Greedy Algorithm

Coin change problem:
To give change of n units, given a set of denominations, what is the minimum number of coins to use?

Example:

$7=2+2+2+1$, hence four coins are needed.
Greedy algorithm:
Always give a coin of the largest possible denomination and then repeat on the remaining amount due.

Specification and SML Code

FUNCTION change Denominations n
TYPE: int list \rightarrow int \rightarrow int
PRE: Denominations is sorted by decreasing values and has 1 ;
n and all values in Denominations are natural numbers
POST: an ideally minimal number of coins, with values in
Denominations, necessary to give change for an amount of n units
fun change Ds $\mathrm{x}=$
if $\mathrm{x}=0$ then 0
else if (List.hd Ds) <= x then
1 + change Ds (x - List.hd Ds)
else change (List.tl Ds) x
Question: What is a variant for this function?

When Does it Work?

- change [10,5,2,1] 13 ;
val it = 3 : int
- change [5,4,3,1] 7 ;
val it = 3 : int
But the second answer is not the optimal one,
since we can also use a two-coin combination, because $7=4+3$.
The denominations 4 and 3 leapfrog over 5 , that is $4+3=7 \geq 5$.
Leapfrogging may imply the need for more coins on some problems.
With the currency used in Sweden, there is no leapfrogging.
For such currencies, the given function is optimal: for them, we can add a no-leapfrogging pre-condition and rephrase the post-condition into "the minimum number of coins, ...".

Example: Huffman Data-Compression Codes

Suppose we want to store compactly a file of 100000 characters (which normally takes $100000 \cdot 8=800000$ bits), with the following frequencies of characters:

	a	b	c	d	e	f
Frequency	45%	13%	12%	16%	9%	5%

Inefficient code: Suppose we use three bits for each character:

	a	b	c	d	e	f
Frequency	45%	13%	12%	16%	9%	5%
Codeword	000	001	010	011	100	101

In order to store the file, we would then need 300000 bits.

Variable-Length Codes

But suppose we use the following variable-length code instead:

	a	b	c	d	e	f
Frequency	45%	13%	12%	16%	9%	5%
Codeword	0	101	100	111	1101	1100

The string 'bed' is then coded as '1011101111', and there is no ambiguity, since no codeword is a prefix of another. In order to store the file of 100,000 characters, we would now need $(0.45 \cdot 1+0.13 \cdot 3+0.12 \cdot 3+0.16 \cdot 3+0.09 \cdot 4+0.05 \cdot 4) \cdot 100000=224000$ bits. Savings of 20% to 90% are typical with this technique.

Prefix Codes and their Representation

- A code is an assignment of messages (characters, strings, commands to do things, ...) to sequences of bits.
- In a prefix (-free) code, no codeword is a prefix of another.
- A prefix code can be decoded unambiguously.
- Prefix codes achieve optimal data compression among all codes.
- A Huffman code is an optimal prefix code.
- A prefix code can be represented as a labelled binary tree: label each left branch 0 and each right branch 1. To decode a word, move down the appropriate branches until reaching a leaf with a character.

(C) P. Flener/IT Dept/Uppsala Univ.

AD1, FP, PK II - Greedy Algorithms 8

SML Representation of Huffman Codes

datatype huffTree $=$ Leaf of int * char
| Node of int * huffTree * huffTree
REPRESENTATION CONVENTION:

- a Huffman tree for character c of frequency f is represented by Leaf (f,c);
- a Huffman tree with total frequency f, left subtree L, and right subtree R is represented by Node (f,L,R), and the edge to L is implicitly labelled with the bit 0 while the edge to R is implicitly labelled with the bit 1 REPRESENTATION INVARIANT: for Node(f,L,R):
- the root frequency of L is at most the root freq. of R
- f is the sum of the root frequencies of L and R
fun freq (Leaf (f,_)) = f \mid freq (Node(f,_,_)) = f

Using a Min-Heap

Maintain a min-priority queue, as a min-heap, with the Huffman trees as items and the frequencies at their roots as keys. structure huffTreeOrder : totalOrder = struct

```
        type t = huffTree
        fun eq(x,y) = (freq x) = (freq y)
        fun lt(x,y) = (freq x) < (freq y)
        fun leq(x,y) = (freq x) <= (freq y)
```

 end
 structure huffTreeHeap = leftistHeap(huffTreeOrder)

A leftist heap is another way of implementing heaps: see the program.

Constructing the Heap

```
fun listToHeap [] = huffTreeHeap.empty
    | listToHeap ((f,c)::xs) =
        huffTreeHeap.insert (Leaf(f,c), (listToHeap xs))
```


Merging Two Huffman Trees

(* PRE: freq t1 <= freq t2 *)
fun mergeHuffTree t1 t2 $=\operatorname{Node((freq~t1)+(freq~t2),~t1,~t2)~}$
Note that the given pre-condition saves an if . . .then . . .else ... in the mergeHuffTree function itself. Even some calling functions can do so: see the collapseHeap function below for an example.

Constructing the Huffman Code

Merge the 2 Huffman trees with the smallest frequencies at the root, until only one Huffman tree is left.

Help function to extract the tree with the smallest root frequency:
fun extractMin $\mathrm{h}=$
(huffTreeHeap.findMin h, huffTreeHeap.deleteMin h)
Exercise: Implement this function better
and add it to the leftistHeap functor.

Constructing the Huffman Code (base)

If the heap, which is non-empty by pre-condition, has only one element, then return that heap:
fun collapseHeap $\mathrm{h}=$ let
val (min,h') = extractMin h in
if (huffTreeHeap.isEmpty h') then h

Constructing the Huffman Code (step)

If the heap has at least two elements, then delete its two smallest elements, insert their merger into the heap, and recurse:

```
            else
                let
            in
            collapseHeap h','
            end
end
```

 val (nextmin,h'') = extractMin \(h\) '
 val newTree \(=\) mergeHuffTree min nextmin
 val h',' = huffTreeHeap.insert(newTree,h'')

Top-Level Function to Construct a Huffman Code

Given a character-frequency list, which is non-empty by pre-condition, construct a Huffman code:

```
fun makeHuffTree freqList =
```

 let
 val initialHeap = listToHeap freqList
 val collapsedHeap = collapseHeap initialHeap
 in
 huffTreeHeap.findMin collapsedHeap
 end
 val testFreq = [(16,\#"d"), (9,\#"e"), (5,\#"f"),
(45,\#"a"), (13,\#"b"), (12,\#"c")]
val huffTree $=$ makeHuffTree testFreq

Huffman's Algorithm

- Huffman's algorithm is another example of a greedy algorithm.
- It takes $O(n \lg n)$ time for a set of n characters.
- Proving that it actually gives the optimal code is another matter.

Greedy Algorithms

- Greedy algorithms are efficient.
- In some cases, they actually construct an optimal solution.
- Even when they do not construct an optimal solution, their solution can be used as a starting point to actually construct an optimal solution.

