
'

&

$

%

Greedy Algorithms

(Version of 21 November 2005)

• There are many problems where an optimal solution is sought.

• There are many choices to be explored at each solution step.

• One approach is to always make the choice that currently seems
to give the highest gain, that is to be as greedy as possible
and make a locally optimal choice in the hope
that the remaining unique subproblem
leads to a globally optimal solution.

• For many problems, a greedy algorithm gives an optimal solution,
but not for all problems.

c© P. Flener/IT Dept/Uppsala Univ. AD1, FP, PK II – Greedy Algorithms 1



'

&

$

%

Example of a Greedy Algorithm

Coin change problem:
To give change of n units, given a set of denominations,
what is the minimum number of coins to use?

Example:
7 = 2 + 2 + 2 + 1, hence four coins are needed.

Greedy algorithm:
Always give a coin of the largest possible denomination
and then repeat on the remaining amount due.

c© P. Flener/IT Dept/Uppsala Univ. AD1, FP, PK II – Greedy Algorithms 2



'

&

$

%

Specification and SML Code

FUNCTION change Denominations n

TYPE: int list → int → int

PRE: Denominations is sorted by decreasing values and has 1;
n and all values in Denominations are natural numbers
POST: an ideally minimal number of coins, with values in
Denominations, necessary to give change for an amount of n units

fun change Ds x =

if x = 0 then 0

else if (List.hd Ds) <= x then

1 + change Ds (x - List.hd Ds)

else change (List.tl Ds) x

Question: What is a variant for this function?

c© P. Flener/IT Dept/Uppsala Univ. AD1, FP, PK II – Greedy Algorithms 3



'

&

$

%

When Does it Work?

- change [10,5,2,1] 13 ;

val it = 3 : int

- change [5,4,3,1] 7 ;

val it = 3 : int

But the second answer is not the optimal one,
since we can also use a two-coin combination, because 7 = 4 + 3.

The denominations 4 and 3 leapfrog over 5, that is 4 + 3 = 7 ≥ 5.
Leapfrogging may imply the need for more coins on some problems.

With the currency used in Sweden, there is no leapfrogging.
For such currencies, the given function is optimal: for them, we can
add a no-leapfrogging pre-condition and rephrase the post-condition
into “the minimum number of coins, . . . ”.

c© P. Flener/IT Dept/Uppsala Univ. AD1, FP, PK II – Greedy Algorithms 4



'

&

$

%

Example: Huffman Data-Compression Codes

Suppose we want to store compactly a file of 100000 characters
(which normally takes 100000 · 8 = 800000 bits),
with the following frequencies of characters:

a b c d e f

Frequency 45% 13% 12% 16% 9% 5%

Inefficient code: Suppose we use three bits for each character:

a b c d e f

Frequency 45% 13% 12% 16% 9% 5%

Codeword 000 001 010 011 100 101

In order to store the file, we would then need 300000 bits.

c© P. Flener/IT Dept/Uppsala Univ. AD1, FP, PK II – Greedy Algorithms 5



'

&

$

%

Variable-Length Codes

But suppose we use the following variable-length code instead:

a b c d e f

Frequency 45% 13% 12% 16% 9% 5%

Codeword 0 101 100 111 1101 1100

The string ‘bed’ is then coded as ‘1011101111’,
and there is no ambiguity, since no codeword is a prefix of another.

In order to store the file of 100,000 characters, we would now need

(0.45·1+0.13·3+0.12·3+0.16·3+0.09·4+0.05·4)·100000 = 224000 bits.

Savings of 20% to 90% are typical with this technique.

c© P. Flener/IT Dept/Uppsala Univ. AD1, FP, PK II – Greedy Algorithms 6



'

&

$

%

Prefix Codes and their Representation

• A code is an assignment of messages (characters, strings,
commands to do things, . . . ) to sequences of bits.

• In a prefix (-free) code, no codeword is a prefix of another.

• A prefix code can be decoded unambiguously.

• Prefix codes achieve optimal data compression among all codes.

• A Huffman code is an optimal prefix code.

• A prefix code can be represented as a labelled binary tree:
label each left branch 0 and each right branch 1.
To decode a word, move down the appropriate branches
until reaching a leaf with a character.

c© P. Flener/IT Dept/Uppsala Univ. AD1, FP, PK II – Greedy Algorithms 7



'

&

$

%

b:13
d:16

f:5 e:9

0
1

0
1

0 1
0

1

0 1

a:45

100

25 30

14

55

c:12

c© P. Flener/IT Dept/Uppsala Univ. AD1, FP, PK II – Greedy Algorithms 8



'

&

$

%

SML Representation of Huffman Codes

datatype huffTree = Leaf of int * char

| Node of int * huffTree * huffTree

REPRESENTATION CONVENTION:

- a Huffman tree for character c of frequency f

is represented by Leaf(f,c);

- a Huffman tree with total frequency f, left subtree L,

and right subtree R is represented by Node(f,L,R),

and the edge to L is implicitly labelled with the bit 0

while the edge to R is implicitly labelled with the bit 1

REPRESENTATION INVARIANT: for Node(f,L,R):

- the root frequency of L is at most the root freq. of R

- f is the sum of the root frequencies of L and R

fun freq (Leaf(f,_)) = f | freq (Node(f,_,_)) = f

c© P. Flener/IT Dept/Uppsala Univ. AD1, FP, PK II – Greedy Algorithms 9



'

&

$

%

Using a Min-Heap

Maintain a min-priority queue, as a min-heap, with the
Huffman trees as items and the frequencies at their roots as keys.

structure huffTreeOrder : totalOrder =

struct

type t = huffTree

fun eq(x,y) = (freq x) = (freq y)

fun lt(x,y) = (freq x) < (freq y)

fun leq(x,y) = (freq x) <= (freq y)

end

structure huffTreeHeap = leftistHeap(huffTreeOrder)

A leftist heap is another way of implementing heaps: see the program.

c© P. Flener/IT Dept/Uppsala Univ. AD1, FP, PK II – Greedy Algorithms 10



'

&

$

%

Constructing the Heap

fun listToHeap [] = huffTreeHeap.empty

| listToHeap ((f,c)::xs) =

huffTreeHeap.insert (Leaf(f,c), (listToHeap xs))

Merging Two Huffman Trees

(* PRE: freq t1 <= freq t2 *)

fun mergeHuffTree t1 t2 = Node((freq t1)+(freq t2),t1,t2)

Note that the given pre-condition saves an if ...then ...else ...

in the mergeHuffTree function itself. Even some calling functions
can do so: see the collapseHeap function below for an example.

c© P. Flener/IT Dept/Uppsala Univ. AD1, FP, PK II – Greedy Algorithms 11



'

&

$

%

Constructing the Huffman Code

Merge the 2 Huffman trees with the smallest frequencies at the root,
until only one Huffman tree is left.

Help function to extract the tree with the smallest root frequency:

fun extractMin h =

(huffTreeHeap.findMin h, huffTreeHeap.deleteMin h)

Exercise: Implement this function better
and add it to the leftistHeap functor.

c© P. Flener/IT Dept/Uppsala Univ. AD1, FP, PK II – Greedy Algorithms 12



'

&

$

%

Constructing the Huffman Code (base)

If the heap, which is non-empty by pre-condition,
has only one element, then return that heap:

fun collapseHeap h =

let

val (min,h’) = extractMin h

in

if (huffTreeHeap.isEmpty h’) then

h

c© P. Flener/IT Dept/Uppsala Univ. AD1, FP, PK II – Greedy Algorithms 13



'

&

$

%

Constructing the Huffman Code (step)

If the heap has at least two elements,
then delete its two smallest elements,
insert their merger into the heap, and recurse:

else

let

val (nextmin,h’’) = extractMin h’

val newTree = mergeHuffTree min nextmin

val h’’’ = huffTreeHeap.insert(newTree,h’’)

in

collapseHeap h’’’

end

end

c© P. Flener/IT Dept/Uppsala Univ. AD1, FP, PK II – Greedy Algorithms 14



'

&

$

%

Top-Level Function to Construct a Huffman Code

Given a character-frequency list, which is non-empty by
pre-condition, construct a Huffman code:

fun makeHuffTree freqList =

let

val initialHeap = listToHeap freqList

val collapsedHeap = collapseHeap initialHeap

in

huffTreeHeap.findMin collapsedHeap

end

val testFreq = [(16,#"d"), (9,#"e"), (5,#"f"),

(45,#"a"), (13,#"b"), (12,#"c")]

val huffTree = makeHuffTree testFreq

c© P. Flener/IT Dept/Uppsala Univ. AD1, FP, PK II – Greedy Algorithms 15



'

&

$

%

Huffman’s Algorithm

• Huffman’s algorithm is another example of a greedy algorithm.

• It takes O(n lg n) time for a set of n characters.

• Proving that it actually gives the optimal code is another matter.

Greedy Algorithms

• Greedy algorithms are efficient.

• In some cases, they actually construct an optimal solution.

• Even when they do not construct an optimal solution,
their solution can be used as a starting point
to actually construct an optimal solution.

c© P. Flener/IT Dept/Uppsala Univ. AD1, FP, PK II – Greedy Algorithms 16


