Constraint Processing

(Version of 27 September 2004)

Constraint Satisfaction Problems (CSPs)

Variables: $X_{1}, X_{2}, \ldots, X_{n}$
Domains of the variables: $D_{1}, D_{2}, \ldots, D_{n}$
Constraints on the variables:
examples: $X_{1} \neq X_{3}$

$$
3 \cdot X_{1}+4 \cdot X_{2} \leq X_{4}
$$

What is a solution?

- An assignment to each variable of a value from its domain,
- ...such that all the constraints are satisfied.

Objective

- Find a solution.
- Find all the solutions.
- Find an optimal solution, according to some cost expression on the variables.

Applications

- Scheduling
- Planning
- Design
- Transport
- Logistics
- Molecular Biology
- Games
- Puzzles
- ...

Solving Methods

- Ad hoc programs
- Search programs
- Artificial intelligence techniques
- Mathematical programming
- Constraint programming

Complexity

- Generally the problems are NP-complete ...
- ... with exponential complexity

Example: The n-Queens Problem

The Problem

How to place n queens on an $n \times n$ chessboard such that no queen is threatened?

A Solution for $n=5$

Number of candidate solutions: $\binom{n^{2}}{n}$
Can we do better than that?!

The n-Queens Problem as a CSP

5					
4					
3					
2					
1					
	X1	X2	X3	X4	X5

Variables: $X_{1}, X_{2}, \ldots, X_{n}$ (one variable for each column)
Domains of the variables: $D_{i}=\{1,2, \ldots, n\}$ (the rows)
Constraints on the variables:

- No two queens are in the same column: this is impossible by the choice of the variables!
- No two queens are in the same row:

$$
X_{i} \neq X_{j}, \text { for each } i \neq j
$$

- No two queens are in the same diagonal:

$$
\left|X_{i}-X_{j}\right| \neq|i-j| \text {, for each } i \neq j
$$

Number of candidate solutions: n^{n}
Can we do better than that?!

First Approach: Exhaustive Enumeration

- Generation of possible values of the variables.
- Test of the constraints.

Strategy

where r_{k+1}, \ldots, r_{n} are the rows for the queens in the columns $k+1, \ldots, n$ (the "already filled" part).

Question: Where to place a queen in column k such that it is compatible with r_{k+1}, \ldots, r_{n} ?

Specifications

function placeQueens $\mathrm{n}:$ int \longrightarrow unit
PRE: $\mathrm{n}>0$
POST: true
SIDE-EFFECTS: display of a solution to the n-queens problem, if one exists; otherwise, display of a message saying there is no solution.

function queens nk SufRows : int \rightarrow int \rightarrow int list \rightarrow (int list $*$ bool) PRE: $0 \leq \mathrm{k} \leq \mathrm{n}>0$;

SufRows has rows of the queens in the columns $k+1, \ldots, n$.
POST: (Rows, success), with Rows = PreRows @ SufRows, where PreRows has rows of the queens in the columns $1, \ldots, k$ that are mutually compatible as well as compatible with SufRows;
if such rows exist, then success is true;
otherwise, success is false, and Rows is undetermined.

function qAux nk minK SufRows : int \rightarrow int \rightarrow int \rightarrow int list \rightarrow (int list $*$ bool) Same as for queens, but the queen in column k must be in a row \geq minK.

function newQueen n minK SufRows : int \rightarrow int \rightarrow int list \rightarrow (int $*$ bool) Same as for qAux, but placement of a single queen in front of SufRows.

function compK r SufRows : int \rightarrow int list \rightarrow bool
PRE: SufRows has rows of the queens in the columns $k+1, \ldots, n$.
POST: true iff a queen in row r and column k is compatible with SufRows.

function compatible $\mathrm{r} 1 \mathrm{r} 2 \mathrm{~d}:$ int \rightarrow int \rightarrow int \rightarrow bool
PRE: r1, r2, d>0
POST: true iff queens in rows r1 and r2, but d columns apart, are compatible.

SML Program (queens.sml)
fun compatible r1 r2 d = r1 <> r2 andalso abs(r1-r2) <> d fun compK r SufRows =
let fun compKaux r d [] = true
| compKaux rd (h::t) = (compatible r h d) andalso (compKaux r (d+1) t)
in compKaux $r 1$ SufRows
end
fun newQueen n minK SufRows =
if minK $>\mathrm{n}$ then (0 ,false)
else if compK minK SufRows then (minK,true)
else newQueen n (minK+1) SufRows
fun queens $\mathrm{n} k$ SufRows $=$
let fun qAux n k minK SufRows = if minK $>\mathrm{n}$ then ([],false)
else
let val (rowK,success) = newQueen n minK SufRows
in if not success then ([],false)
else
let val (Rows,hurray) = queens $\mathrm{n}(\mathrm{k}-1)$ (rowK::SufRows) in if hurray then (Rows,true)
else qAux n k (rowK+1) SufRows
end
end
in if $k=0$ then (SufRows,true)
else qAux n k 1 SufRows
end
fun printList [] = print " $\backslash \mathrm{n}$ "
| printList (x::xs) = (print (Int.toString x) ; print " " ; printList xs)
fun placeQueens $\mathrm{n}=$
let val (Rows,success) = queens n n []
in if success then (print "Solution: " ; printList Rows) else print "No solutions... \n" end

Analysis

- Exploration of many possibilities.
- Very late detection of deadends.
- Exponential complexity.

Second Approach: Domain Reduction

Strategy

Maintain for each variable X_{i} the domain D_{i}
containing the values (row numbers) that are still possible for the queen in column i.

Search effort:
for instance, for $n=10$:
only $4,066\left(\ll 10^{10}\right)$ backtracks to find all the 724 solutions!

Can we do better than that?!
Yes, by exploiting the symmetries of the chessboard!

Specification

SufRows doms
function qDom k SufRows Doms : int \rightarrow int list \rightarrow int list list \rightarrow (int list $*$ bool)
PRE: SufRows has rows of the queens in the columns $k+1, \ldots, n$;
Doms $=\left[\mathrm{D}_{k}, \ldots, \mathrm{D}_{1}\right]$, where D_{i} has the row numbers
that are compatible with SufRows for a queen in column i.
POST: (Rows, success), with Rows = PreRows @ SufRows,
where PreRows has rows from Doms of the queens in the columns $1, \ldots, k$ that are mutually compatible as well as compatible with SufRows; if such rows exist, then success is true; otherwise, success is false, and Rows is undetermined.

SML Program

- Extension of the auxiliary problems of the first approach.
- Integration of the domains: see the (on-line) code.

