
Constraint Processing CSPs

Constraint Processing

(Version of 27 September 2004)

Constraint Satisfaction Problems (CSPs)

Variables: X1, X2, . . . , Xn

Domains of the variables: D1, D2, . . . , Dn

Constraints on the variables:
examples: X1 6= X3

3 ·X1 + 4 ·X2 ≤ X4

What is a solution?

• An assignment to each variable of a value from its domain,

• . . . such that all the constraints are satisfied.

Objective

• Find a solution.

• Find all the solutions.

• Find an optimal solution,
according to some cost expression on the variables.

c© P. Flener/IT Dept/Uppsala Univ. AD1, FP, PK II CSP.1

Constraint Processing CSPs

Applications

• Scheduling

• Planning

• Design

• Transport

• Logistics

• Molecular Biology

• Games

• Puzzles

• . . .

Solving Methods

• Ad hoc programs

• Search programs

• Artificial intelligence techniques

• Mathematical programming

• Constraint programming

Complexity

• Generally the problems are NP-complete . . .

• . . . with exponential complexity

c© P. Flener/IT Dept/Uppsala Univ. AD1, FP, PK II CSP.2

Constraint Processing CSPs

Example: The n-Queens Problem

The Problem

How to place n queens on an n× n chessboard
such that no queen is threatened?

A Solution for n=5

3

1

2

4

5

1 2 3 4 5

Number of candidate solutions:
(
n2

n

)

Can we do better than that?!

c© P. Flener/IT Dept/Uppsala Univ. AD1, FP, PK II CSP.3

Constraint Processing CSPs

The n-Queens Problem as a CSP

3

1

2

4

5

X1 X2 X3 X4 X5

Variables: X1, X2, . . . , Xn (one variable for each column)

Domains of the variables: Di = {1, 2, . . . , n} (the rows)

Constraints on the variables:

• No two queens are in the same column:
this is impossible by the choice of the variables!

• No two queens are in the same row:

Xi 6= Xj, for each i 6= j

• No two queens are in the same diagonal:

| Xi −Xj | 6= | i− j |, for each i 6= j

Number of candidate solutions: nn

Can we do better than that?!

c© P. Flener/IT Dept/Uppsala Univ. AD1, FP, PK II CSP.4

Constraint Processing CSPs

First Approach: Exhaustive Enumeration

• Generation of possible values of the variables.

• Test of the constraints.

Strategy

nk1

n

1

rnrk+1 ...

where rk+1, . . . , rn are the rows for the queens in the
columns k + 1, . . . , n (the “already filled” part).

Question: Where to place a queen in column k
such that it is compatible with rk+1, . . . , rn?

c© P. Flener/IT Dept/Uppsala Univ. AD1, FP, PK II CSP.5

Constraint Processing CSPs

Specifications

function placeQueens n : int→ unit
PRE: n > 0
POST: true
SIDEEFFECTS: display of a solution to the nqueens problem, if one exists;

otherwise, display of a message saying there is no solution.

n1 k

n

1

rnrk+1 ...

SufRows

function queens n k SufRows : int→ int→ int list→ (int list ∗ bool)
PRE: 0≤ k≤ n > 0;

SufRows has rows of the queens in the columns k+1, . . . , n.
POST: (Rows, success), with Rows = PreRows @ SufRows,

where PreRows has rows of the queens in the columns 1, . . . , k
that are mutually compatible as well as compatible with SufRows;
if such rows exist, then success is true;
otherwise, success is false, and Rows is undetermined.

c© P. Flener/IT Dept/Uppsala Univ. AD1, FP, PK II CSP.6

Constraint Processing CSPs

nk1

n

1

rnrk+1 ...

SufRows

minK

function qAux n k minK SufRows : int→ int→ int→ int list→ (int list ∗ bool)
Same as for queens, but the queen in column k must be in a row≥ minK.

rnrk+1 ...

SufRows

nk

n

1

minK

function newQueen n minK SufRows : int→ int→ int list→ (int ∗ bool)
Same as for qAux, but placement of a single queen in front of SufRows.

c© P. Flener/IT Dept/Uppsala Univ. AD1, FP, PK II CSP.7

Constraint Processing CSPs

rnrk+1 ...

SufRows

nk

n

1

r

function compK r SufRows : int→ int list→ bool
PRE: SufRows has rows of the queens in the columns k+1, . . . , n.
POST: true iff a queen in row r and column k is compatible with SufRows.

d

r1

r2

function compatible r1 r2 d : int→ int→ int→ bool
PRE: r1, r2, d > 0
POST: true iff queens in rows r1 and r2, but d columns apart, are compatible.

c© P. Flener/IT Dept/Uppsala Univ. AD1, FP, PK II CSP.8

Constraint Processing CSPs

SML Program (queens.sml)

fun compatible r1 r2 d = r1 <> r2 andalso abs(r1−r2) <> d
fun compK r SufRows =

let fun compKaux r d [] = true
| compKaux r d (h::t) =

(compatible r h d) andalso (compKaux r (d+1) t)
in compKaux r 1 SufRows
end

fun newQueen n minK SufRows =
if minK > n then (0,false)
else if compK minK SufRows then (minK,true)

else newQueen n (minK+1) SufRows
fun queens n k SufRows =

let fun qAux n k minK SufRows =
if minK > n then ([],false)
else

let val (rowK,success) = newQueen n minK SufRows
in if not success then ([],false)

else
let val (Rows,hurray) = queens n (k−1) (rowK::SufRows)
in if hurray then (Rows,true)

else qAux n k (rowK+1) SufRows
end

end
in if k=0 then (SufRows,true)

else qAux n k 1 SufRows
end

c© P. Flener/IT Dept/Uppsala Univ. AD1, FP, PK II CSP.9

Constraint Processing CSPs

fun printList [] = print "\n"
| printList (x::xs) = (print (Int.toString x) ; print " " ; printList xs)

fun placeQueens n =
let val (Rows,success) = queens n n []
in if success then (print "Solution: " ; printList Rows)

else print "No solutions... \n"
end

Analysis

• Exploration of many possibilities.

• Very late detection of deadends.

• Exponential complexity.

c© P. Flener/IT Dept/Uppsala Univ. AD1, FP, PK II CSP.10

Constraint Processing CSPs

Second Approach: Domain Reduction

Strategy

Maintain for each variable Xi the domain Di

containing the values (row numbers) that are still possible
for the queen in column i.

nk1

n

1

rnrk+1 ...

SufRows
D1 Dk

doms

...
...

Search effort:
for instance, for n = 10:
only 4, 066 (¿ 1010) backtracks to find all the 724 solutions!

Can we do better than that?!
Yes, by exploiting the symmetries of the chessboard!

c© P. Flener/IT Dept/Uppsala Univ. AD1, FP, PK II CSP.11

Constraint Processing CSPs

Specification

nk1

n

1

rnrk+1 ...

SufRows
D1 Dk

doms

...
...

function qDom k SufRows Doms : int→ int list→ int list list→ (int list ∗ bool)
PRE: SufRows has rows of the queens in the columns k+1, . . . , n ;

Doms = [Dk, . . . , D1], where Di has the row numbers
that are compatible with SufRows for a queen in column i.

POST: (Rows, success), with Rows = PreRows @ SufRows,
where PreRows has rows from Doms of the queens in the columns 1, . . . , k
that are mutually compatible as well as compatible with SufRows;
if such rows exist, then success is true;
otherwise, success is false, and Rows is undetermined.

SML Program

• Extension of the auxiliary problems of the first approach.

• Integration of the domains: see the (on-line) code.

c© P. Flener/IT Dept/Uppsala Univ. AD1, FP, PK II CSP.12

