Chapter 7
Higher-Order Functions

(Version of 27 September 2004)

1. Introductory examples 7.2

2. Functional arguments 7.5

3. Functional abstract datatypes 7.7

4. Higher-order functions on lists, etc. 7.9

5. Functional tables 7.13

6. Lazy evaluation 7.15

7. Strict and non-strict functions 7.19
7.1. Introductory examples

Re-read the slides of §2.5 on anonymous functions and of §2.9 on currying

Example 1: numerical integration

Computation of $\int_a^b f(x) \, dx$ by the trapezoidal rule:

\[
h = \frac{(b - a)}{n} = h \times \frac{f(a) + f(a+h)}{2}
\]
Specification

function integrate \((f, a, b, n)\)

TYPE: \((\text{real} \rightarrow \text{real}) \times \text{real} \times \text{real} \times \text{int} \rightarrow \text{real}\)

PRE: (none)

POST: \(\int_a^b f(x) \, dx\), using the trapezoidal rule with \(n\) intervals

Program (integrate.sml)

fun integrate (f,a,b,n) =
 if n <= 0 orelse b <= a
 then 0.0
 else let val h = (b-a) / real n
 in h * (f(a) + f(a+h)) / 2.0 + integrate (f,a+h,b,n-1)
 end

- fun cube x:real = x * x * x ;
 val cube = fn : real -> real
- integrate (cube , 0.0 , 2.0 , 10) ;
 val it = 4.04 : real
- integrate ((fn x => x * x * x) , 0.0 , 2.0 , 1000) ;
 val it = 4.000004 : real
Example 2: image sum

Specification

function sumFct f n
TYPE: (int → int) → int → int
PRE: $n \geq 0$
POST: $f(0) + f(1) + \cdots + f(n)$

Program (sumImage.sml)

fun sumFct f 0 = f 0
 | sumFct f n = sumFct f (n-1) + f n

- sumFct (fn x => x * x) 3 ;
 val it = 14 : int

Remarks

Higher-order functions manipulate other functions:
• This is hard to do in an imperative programming language
• This is a very powerful mechanism
7.2. Functional arguments

Example 1: sorting (mergeSort.sml)

```haskell
function sort X
TYPE: int list → int list
PRE: (none)
POST: a non-decreasingly sorted permutation of X

Question: How to sort a list of elements of type α?
Answer: By adding a functional argument, namely a comparison operator for elements of type α!

function sort order X
TYPE: (α * α → bool) → α list → α list
PRE: (none)
POST: a permutation of X that is ‘non-decreasingly’ sorted according to order

fun sort order [ ] = [ ]
| sort order [x] = [x]
| sort order xs =
    let
      fun merge [ ] M = M
      | merge L [ ] = L
      | merge (L as x::xs) (M as y::ys) =
          if order (x,y) then x::merge xs M else y::merge L ys
      val (ys,zs) = split xs
    in merge (ys,zs) (sort order ys) (sort order zs) end

- sort (op >) [5.1, 3.4, 7.4, 0.3, 4.0];
  val it = [7.4, 5.1, 4.0, 3.4, 0.3] : real list
```

© P. Flener/IT Dept/Uppsala Univ. FP 7.5
Example 2: binary search trees (bsTree1.sml)

Realisation of binary search trees by the bsTree ADT of slide 6.29: limitation to keys of type integer

The introduction of a functional argument (say less) of type \(\alpha = \ast \alpha = \to \text{bool} \) enables the realisation of this ADT with keys of type \(\alpha = \) via

```
datatype ("a,'b) bsTree =
        Void | Bst of ("a * 'b) * ("a,'b) bsTree * ("a,'b) bsTree
```

For instance:

```
fun exists_less k Void = false
    | exists_less k (Bt((key,s),L,R)) =
        if k = key then true
        else if less (k,key) then exists_less k L
        else (* k ‘>’ key *) exists_less k R
```

Exercise

- Specify and realise the retrieve, insert, and delete functions by introducing a functional argument less
7.3. Functional abstract datatypes

Consider again the previous specification:

function exists less k T
TYPE: \((\alpha= \ast \alpha= \rightarrow \text{bool}) \rightarrow \alpha= \rightarrow (\alpha=, \beta) \text{bsTree} \rightarrow \text{bool}\)
PRE: (none)
POST: true if T contains a node with key k under order less
 false otherwise

- The functional argument less must be passed at each call
- The less order is not global to the binary search tree

Generic abstract datatypes (bsTree2.sml)

Introduction of a functional argument of type

\(\alpha= \ast \alpha= \rightarrow \text{bool}\)

into the declaration of an ordBsTree datatype:

datatype ("a","b") bsTree =
 Void | Bst of ("a " "b") \ast ("a","b") bsTree \ast ("a","b") bsTree
type "a ordering = "a " "a \rightarrow \text{bool}
datatype ("a","b") ordBsTree = OrdBsTree of "a ordering \ast ("a","b") bsTree
fun emptyOrdBsTree less = OrdBsTree (less, Void)
fun exists k (OrdBsTree (less, t)) =
 let fun existsAux Void = false
 | existsAux (Bst((key, s), L, R)) =
 if k = key then true
 else if less (k, key) then existsAux L
 else (k > key) existsAux R
 in existsAux t
end

fun insert (k, sat) (OrdBsTree (less, t)) = ...

...

- val t1 = insert (1, "FP") (emptyOrdBsTree (op <=));
 val t1 = OrdBsTree (fn, Bst((1, "FP"), Void, Void)) :
 (int, string) ordBsTree

- val OrdBsTree (less, t) = t1;
 val less = fn : int ordering
 val t = Bst((1, "FP"), Void, Void) : (int, string) bsTree

- val test1 = exists 1 t1;
 val test1 = true : bool

- val test2 = exists 2 t1;
 val test2 = false : bool
7.4. Higher-order functions on lists, etc.

The map function \((\text{map.sml})\)

\[
\text{function map } \, f \, \text{ L} \\
\text{TYPE: } (\alpha \rightarrow \beta) \rightarrow \alpha \text{ list } \rightarrow \beta \text{ list} \\
\text{PRE: } (\text{none}) \\
\text{POST: } [f(a_1), f(a_2), \ldots, f(a_n)] \text{ for L} = [a_1, a_2, \ldots, a_n]
\]

\[
\begin{align*}
\text{fun} &\quad \text{map } f \,\, \text{[] = []} \\
&\quad \mid \text{map } f \,\, (a::As) = f \, a :: \text{map } f \, As
\end{align*}
\]

There is a superfluous passing of \(f\) at each recursive call, so:

\[
\begin{align*}
\text{fun} &\quad \text{map } f \,\, L = \\
&\quad \text{let fun } \text{mapAux } \,\, \text{[] = []} \\
&\quad \quad \mid \text{mapAux } (a::As) = f \, a :: \text{mapAux } As \\
&\quad \text{in } \text{mapAux } L \\
&\quad \text{end}
\end{align*}
\]

- \[
\text{fun} \quad \text{square } x = x \times x ; \\
\text{val square = fn : } \text{int } \rightarrow \text{ int}
\]

- \[
\text{map } \text{square } [1,2,3] ; \\
\text{val it} = [1,4,9] : \text{ int list}
\]

- \[
\text{map } (\text{fn } x \Rightarrow x \times x) \, [1,2,3] ; \\
\text{val it} = [1,4,9] : \text{ int list}
\]

- \[
\text{map } (\text{fn } x \Rightarrow \text{ if } x < 0 \text{ then } 0 \text{ else } x) \, [1,2,3,4,2] ; \\
\text{val it} = [0,2,0,4,2] : \text{ int list}
\]
The reduce function (reduce.sml)

```ml
function reduce \( f \) \( L \)

**TYPE:** \((\alpha \times \alpha \rightarrow \alpha) \rightarrow \alpha \ \text{list} \rightarrow \alpha\)

**PRE:** \( L \) is non-empty

**POST:** \( a_1 f a_2 f \cdots a_{n-1} f a_n \) for \( L = [a_1, a_2, \ldots, a_n] \),

where \( f \) is here used in an infix, right-associating way

```ml
fun reduce f [] = error "reduce: empty list"
| reduce f [a] = a
| reduce f (a::As) = f (a, reduce f As)

Example 1

```ml
- reduce (op +) [1,2,3] ;
  val it = 6 : int
```

Example 2

```ml
fun mystery n =
  reduce (fn (a,b) => a andalso b) (map (fn x => n mod x <> 0)
  (fromTo 2 (n-1)))
```

Example 3

Computation of \(\sum_{1 \leq i \leq n} \sqrt{i} \) via functional composition:

```ml
infix 3 o
fun (f o g) x = f (g x)
fun sumSqrt n = reduce (op +) (map (Math.sqrt o real) (fromTo 1 n))
```
Example 4

```haskell
fun max xs = reduce (fn (x:real,y) => if x > y then x else y) xs
```

Higher-order functions often enable non-recursive programs

Example 5

Let \(L = [a_1, a_2, \ldots, a_n] \) be a list of at least two real numbers;

the variance of \(L \) is:

\[
\frac{\left(\sum_{1 \leq i \leq n} a_i^2 \right)}{n-1} - \frac{\left(\sum_{1 \leq i \leq n} a_i \right)^2}{n(n-1)}
\]

```haskell
fun variance xs =
  let val n = length xs
  in if n <= 1 then error "variance: insufficient amount of data"
  else (reduce (op +) (map square xs)) / (real (n-1))
  - square (reduce (op +) xs) / (real (n * (n-1))) end
```

The foldr function

```haskell
function foldr \( f \) e L
TYPE: \((\alpha \times \beta \rightarrow \beta) \rightarrow \beta \rightarrow \alpha \text{ list} \rightarrow \beta\)
PRE: (none)
POST: \( a_1 f a_2 f \ldots a_{n-1} f a_n f e \) for \( L = [a_1, a_2, \ldots, a_n] \),
  where \( f \) is here used in an infix, right-associating way
```

Examples

```
foldr (op +) 0 [a_1, \ldots, a_n] \text{ computes } a_1 + \cdots + a_n + 0, \text{ for } n \geq 0
```

```
fun length xs = foldr (fn (x,n) => n+1) 0 xs
```
The filter function (filter.sml)

```
function filter p L
TYPE: (α → bool) → α list → α list
PRE: (none)
POST: the list of elements of L for which p is true

fun filter p [ ] = [ ]
| filter p (x::xs) =
  if p x then x :: filter p xs
  else filter p xs
```

Example

- filter (fn x => x > 0) [1,2,0,~4,3] ;
 val it = [2,3] : int list

The mapbTree function (mapbTree.sml)

```
function mapbTree f t
TYPE: (α → β) → α bTree → β bTree
PRE: (none)
POST: the binary tree t where each node i has been replaced by f(i)

fun mapbTree f Void = Void
| mapbTree f (Bt(r,L,R)) =
  Bt(f r, mapbTree f L, mapbTree f R)
```
7.5. Functional tables

A table t of elements with keys of type α and satellite data of type β can be seen as a function

$$t : \alpha \rightarrow \beta$$

We can thus represent tables by ML functions!

Inserting an element into a table gives a new function: let v be the table t plus the pair (k, sat):

- $v(i) = t(i)$ for $i \neq k$
- $v(k) = sat$

The original satellite data for k, if any, thus still exist, in t!

Program (fctTable.sml)

- `val emptyTable = (fn i => error "retrieve: non-existing element") ; val emptyTable = fn : 'a -> 'b`
- `fun insert (k,sat) t = (fn i => if i <> k then t i else sat) ; val insert = fn : ''a * 'b -> (''a -> 'b) -> ''a -> 'b`
- `val t1 = insert ("Mats",1968) emptyTable ; val t1 = fn : string -> int`
- `val t2 = insert ("Sten",1937) t1 ; val t2 = fn : string -> int`
- `t2 "Mats" ; val it = 1968 : int`
Reduction

\[
\begin{align*}
t2 & \ "Mats" \\
\rightarrow & \ (fn \ i \Rightarrow \ if \ i \leftrightarrow \ "Sten" \ then \ t1 \ i \ else \ 1937) \ "Mats" \\
\rightarrow & \ if \ "Mats" \leftrightarrow \ "Sten" \ then \ t1 \ "Mats" \ else \ 1937 \\
\rightarrow & \ t1 \ "Mats" \\
\rightarrow & \ (fn \ i \Rightarrow \ if \ i \leftrightarrow \ "Mats" \ then \ emptyTable \ i \ else \ 1968) \ "Mats" \\
\rightarrow & \ if \ "Mats" \leftrightarrow \ "Mats" \ then \ emptyTable \ "Mats" \ else \ 1968 \\
\rightarrow & \ 1968
\end{align*}
\]

Assessment

- We can extend a functional table, but not shrink it
- The retrieval cost of elements is high
7.6. Lazy evaluation

Example

\[
\begin{align*}
\text{fun} & \quad \text{mult} \ x \ y = \\
& \quad \text{if} \ x = 0 \ \text{then} \ 0 \\
& \quad \text{else} \ x \times y
\end{align*}
\]

Eager evaluation

\[
\begin{align*}
\text{mult} \ (1-1) \ (3 \div 0) \\
\leadsto & \quad (\text{fn} \ x \Rightarrow (\text{fn} \ y \Rightarrow \text{if} \ x = 0 \ \text{then} \ 0 \ \text{else} \ x \times y)) \ (1-1) \ (3 \div 0) \\
\leadsto & \quad (\text{fn} \ x \Rightarrow (\text{fn} \ y \Rightarrow \text{if} \ x = 0 \ \text{then} \ 0 \ \text{else} \ x \times y)) \ 0 \ (3 \div 0) \\
\leadsto & \quad (\text{fn} \ y \Rightarrow \text{if} \ 0 = 0 \ \text{then} \ 0 \ \text{else} \ 0 \times y) \ (3 \div 0) \\
\leadsto & \quad (\text{fn} \ y \Rightarrow \text{if} \ 0 = 0 \ \text{then} \ 0 \ \text{else} \ 0 \times y) \ \text{error} \\
\leadsto & \quad \text{error}
\end{align*}
\]

- Value passing, eager evaluation
- Reduce as much as possible before applying the function
Lazy evaluation

\[\text{mult} \ (1-1) \ (3 \ \text{div} \ 0) \]
\[\leadsto \ (\text{fn} \ x \Rightarrow (\text{fn} \ y \Rightarrow \text{if} \ x = 0 \ \text{then} \ 0 \ \text{else} \ x \ * \ y)) \ \ (1-1) \ (3 \ \text{div} \ 0) \]
\[\leadsto \ (\text{fn} \ y \Rightarrow \text{if} \ (1-1) = 0 \ \text{then} \ 0 \ \text{else} \ (1-1) \ * \ y) \ \ (3 \ \text{div} \ 0) \]
\[\leadsto \ \text{if} \ (1-1) = 0 \ \text{then} \ 0 \ \text{else} \ (1-1) \ * \ (3 \ \text{div} \ 0) \]
\[\leadsto \ 0 \]

- Argument evaluation \textit{as late as possible} (possibly never)
- Evaluation \textit{only when indispensable} for a reduction
- Each argument is evaluated \textit{at most once}
- Lazy evaluation does \textit{not} exist as such in Standard ML, except for the primitives \texttt{if then else}, \texttt{andalso}, \texttt{orelse}, \texttt{case of}, and pattern matching
- There \textit{are} lazy ML implementations (LML)

\textbf{Properties}

- If the eager evaluation of expression \(e \) gives \(n_1 \) and the lazy evaluation of \(e \) gives \(n_2 \) then \(n_1 = n_2 \)
- If the lazy evaluation of \(e \) gives \(\bot \) (\text{undefined}) then the eager evaluation of \(e \) gives \(\bot \)

Lazy evaluation gives a result \textit{more often}
An ML approximation of lazy evaluation

Approximation of lazy evaluation with functional arguments

Principles

An actual parameter \(a \) of type \(\alpha \) must be ‘packaged’ into a function, say \((\text{fn}() \Rightarrow a)\) of type \(\text{unit} \rightarrow \alpha\)

Thus, the parameter \(a \) will \textit{not} be evaluated before the call, because the reduced form of \((\text{fn}() \Rightarrow a)\) is \((\text{fn}() \Rightarrow a)\) itself
Hence there will be fewer execution errors!

When \textit{declaring} a function, if one wants a formal parameter \(p \) to be “lazy”, one now has to write \(p() \) instead

Example (lazyMult.sml)

\[
\text{fun lazyMult } x \ y = \\
\quad \text{if } x() = 0 \text{ then } 0 \\
\quad \text{else } x() \ast y()
\]

The type of \texttt{lazymult} is \((\text{unit} \rightarrow \text{int}) \rightarrow (\text{unit} \rightarrow \text{int}) \rightarrow \text{int}\)

\[
\begin{align*}
\text{lazyMult } (\text{fn } () \Rightarrow 1 - 1) & (\text{fn } () \Rightarrow 3 \text{ div } 0) ; \\
\text{val it = 0 : int}
\end{align*}
\]
Reduction

\[\text{lazyMult } \quad (\text{fn } () \Rightarrow 1 - 1) \ (\text{fn } () \Rightarrow 3 \ \text{div} \ 0) \]

\[\leadsto (\text{fn } \ x \Rightarrow (\text{fn } \ y \Rightarrow \text{if } \ x() = 0 \ \text{then} \ 0 \ \\
\quad \text{else } x() \ast y())) \ (\text{fn } () \Rightarrow 1 - 1) \ (\text{fn } () \Rightarrow 3 \ \text{div} \ 0) \]

\[\leadsto (\text{fn } \ y \Rightarrow \text{if } (\text{fn } () \Rightarrow 1 - 1)() = 0 \ \text{then} \ 0 \ \\
\quad \text{else } (\text{fn } () \Rightarrow 1 - 1)() \ast y()) \ (\text{fn } () \Rightarrow 3 \ \text{div} \ 0) \]

\[\leadsto \text{if } (\text{fn } () \Rightarrow 1 - 1)() = 0 \ \text{then} \ 0 \ \\
\quad \text{else } (\text{fn } () \Rightarrow 1 - 1)() \ast (\text{fn } () \Rightarrow 3 \ \text{div} \ 0)() \]

\[\leadsto \text{if } 0 = 0 \ \text{then} \ 0 \ \text{else } (\text{fn } () \Rightarrow 1 - 1)() \ast (\text{fn } () \Rightarrow 3 \ \text{div} \ 0)() \]

\[\leadsto 0 \]

The repeated evaluation of an argument is possible: this is not really lazy evaluation
Consider two functions:

\[h : A \rightarrow B \]
\[g : B \rightarrow C \]

Reminder: \(h(a) = \perp \) denotes that \(h \) is not defined on \(a \)

The addition of the new mathematical object \(\perp \) enables a rigorous formalisation of the behaviour of functions

If \(h(a) = \perp \), then what is the value of \(g(h(a)) \)?

Definition

A function \(g \) is **strict** iff \(g(\perp) = \perp \)

Strict functions in ML

```ml
fun fact 0 = 1
| fact n = n * fact (n-1)
```

\(\forall x \in \text{int}: \) \text{fact} \(x = x! \) for \(x \geq 0 \)
\[\text{fact} \ x = \perp \text{ for } x < 0 \]
\[\text{fact} \ \perp = \perp \]

The \text{fact} function is thus strict
fun add x y = x + y
-
 add 1 2 ;
 val it = 3 : int
-
 add 1 (fact ~2) ;
 ... non-termination ...

∀x, y ∈ int: add x y = x + y
 add ⊥ y = ⊥
 add x ⊥ = ⊥

The add function is thus strict

Value passing means one can only declare strict functions!

Non-strict functions in ML

Only some primitives of ML are non-strict:
-
 if true then 1 else fact ~2 ;
 val it = 1 : int

These non-strict primitives are necessary:

if b = 0 then error "error: division by 0"
 else a div b

Lazy evaluation and non-strict functions

Lazy evaluation enables us to declare non-strict functions:

fun g x = 5

Value passing: g (fact ~2) = ⊥ (g(⊥) = ⊥)
Lazy evaluation: g (fact ~2) = 5 (g(⊥) ≠ ⊥)