Chapter 4

Linear Structures: Lists

(Version of 24 September 2004)

1. Lists 4.2
2. Basic operations 4.4
3. Constructors and pattern matching 4.5
4. Polymorphism 4.8
5. Simple operations on lists 4.11
6. Application: polynomials 4.16
7. Tail recursion 4.21

4.1. Lists

Definition

A list is an element collection with the following properties:

- Homogeneity: all elements are of the same type
- Variability: the number of elements is arbitrary
- Multiplicity: an element may appear several times in a list
- Extensionality: all elements must be explicitly given
- Linearity: the internal structure is linear

In ML, the word 'list' refers to the concrete realisation of the abstract datatype 'linear list' (see Chapter 6), using the (unary, postfix) type constructor list

Examples of ML lists

- $[18,12, \sim 5,3+7]$ is an integer list (this type is denoted int list)
- [2.0, 5.3/3.7, Math.sqrt 27.3] is a real-number list (real list)
- ["Pierre", "Esra"] is a list of strings (string list)
- [(1,"A"), (2,"B")] is a list of integer-string couples ((int $*$ string) list)
- [[4,5], [8], [12, 3,0$]$] is a list of integer lists (int list list)
- [even, odd] is a list of int \rightarrow bool functions ((int \rightarrow bool) list)
- $[12,34.5]$ is not a list

The empty list
The empty list is denoted [] or [] or nil

What is the type of the empty list?!

The empty list must be of the type int list and real list and string list and int list list and (int \rightarrow bool) list and \ldots

The solution is that [] is a polymorphic value: it belongs to several types!

Type expressions
We use type variables to express polymorphic types:

The type of [] is α list where α is a type variable, denoting an arbitrary type

In ML, type variables are written 'a 'b ...

- [];
val 'a it = [] : 'a list

4.2. Basic operations

- null [];
val it $=$ true : boor
- hd [1,2,3] ;
val it = 1 : int
- tl $[1,2,3]$; val it $=[2,3]$: int list
- tl [1] ; val it = [] : int list
- tl []; ! Uncaught exception: Empty
- 3 :: $[8,2]$; val it $=[3,8,2]$: int list
- $3::$ []; val it $=[3]$: int list
- $[3]::[8,2]$; ! [3] :: [8,2] ;
! Type clash: expression of type int
! cannot have type int list
- 3 :: 8 ;
! 3 :: 8 ;
! Type clash: expression of type int cannot have type int list

4.3. Constructors and pattern matching

The expression $[3,8]$ is syntactic sugar for $3::(8::$ [])
The symbol :: is not an ML function, but a value constructor:

- Composition of a new object from its parts
- Decomposition of an object into its parts

Only constructors can be used in patterns Another value constructor for lists is []

One can indifferently use the aggregated form $[3,8,5]$ and the constructed form $3:: 8$:: $5::$ [] as they represent the same object!

$$
\begin{aligned}
& -\quad 1:: 2 \text { :: [] = [1,2] ; } \\
& \text { val it = true : bool }
\end{aligned}
$$

In ML, the symbol :: is thus a value constructor that is:

- binary
- infix
- right-associating: for instance, $3:: 8$: [] is $3::$ ($8::$ [])
- of the functional type $\alpha * \alpha$ list $\rightarrow \alpha$ list

Pattern matching

Use pattern matching for:

- Decomposing an object into its parts
- Accessing the parts of a constructed object
- val (x::xs) $=[3,8,5]$; val $x=3$: int val $x s=[8,5]$: int list
- val (x::xs) $=[3]$;
val $x=3$: int val xs = [] : int list
- val (x::xs) = []; ! Uncaught exception: Bind

Example: concatenating two lists (append.sml)
fun append [] ys = ys
| append (x::xs) ys $=\mathrm{x}::$ (append xs ys)

- The two lines of this function declaration are called clauses
- A list concatenation function is actually predefined in ML, namely as the (binary, infix, right-associating) operator @
- The patterns [] and (x::xs) are mutually exclusive
- The pattern $[x]$ is equivalent to ($x:[$ [$]$)

Lists vs. tuples
Tuples: example ($3,8.0,5>8$)

- Fixed size
- Heterogeneous (components of possibly different types)
- Direct access to the components via the \#i selectors

Lists: example $[3,8,5]$

- Arbitrary length
- Homogenous (elements of the same type)
- Access to the parts via pattern matching with hd and tl that is: sequential access to the elements

Constructed form vs. aggregated form
The aggregated form of lists is mostly used for:

- Arguments
- Results (when displayed by ML)
- [3,4,5] @ [6,7];
val it $=[3,4,5,6,7]$: int list

The constructed form is mostly used in function declarations:

- Decomposition of a list by pattern matching
- Composition of a list

4.4. Polymorphism

function hd X
TYPE: α list $\rightarrow \alpha$
PRE: X is not the empty list
POST: the head of X
fun hd [] = error "hd: empty list"
I hd ($\mathrm{x}: \mathrm{:xs}$) $=\mathrm{x}$

- hd [1,2] ;
val it = 1 : int
- hd [true,false,true] ;
val it = true : bool
function first (a, b)
TYPE: $\alpha * \beta \rightarrow \alpha$
PRE: (none)
POST: the first component of the pair (a, b)
fun first $(a, b)=a$
- first ([4,5], true) ;
val it $=[4,5]$: int list
- first (hd, 3.5) ;
val it = fn : 'a list -> 'a

The functions hd and first can be used with arguments of varying types, without changing their names or declarations: polymorphism

The type of our error function
It must be possible to use error in any situation:
the type of its result is thus some type variable, say α
function error msg
TYPE: string $\rightarrow \alpha$
PRE, POST: (none)
SIDE-EFFECT: displays msg to the screen and halts the execution

The type of $=$ (equality)
Example: membership of an object in a list (member.sml)
function member $\vee \mathrm{X}$
TYPE (tentatively): $\alpha \rightarrow \alpha$ list \rightarrow bool
PRE: (none)
POST: true if v is an element of X
false otherwise
fun member v [] = false
| member $v(x:: x s)=(v=x)$ orelse member $v x s$
The member function is polymorphic:

- It can be used with objects where α is the type int, real, bool, (int * bool), int list, . . .
- It cannot be used with objects where α is the type (int \rightarrow int), (int \rightarrow bool), (real \rightarrow real), \ldots because the equality test between two functions is not computable!

The polymorphism of member must be restricted to the types for which the equality test is computable, that is to the types of objects without functions

These equality types are denoted by variables of the form $\alpha^{=} \beta^{=} \ldots$, or "a "b ... in ML
function member $v \mathrm{X}$
TYPE: $\alpha^{=} \rightarrow \alpha^{=}$list \rightarrow bool
PRE: (none)
POST: true if v is an element of X
false otherwise
function $\mathrm{x}=\mathrm{y}$
TYPE: $\alpha^{=} * \alpha^{=} \rightarrow$ bool
PRE: (none)
POST: true if $x=y$
false otherwise
function $\mathrm{x}<>\mathrm{y}$
TYPE: $\alpha^{=} * \alpha^{=} \rightarrow$ bool
PRE: (none)
POST: true if $x \neq y$
false otherwise

Example:

- fun member...;
val ''a member $=$ fn : ''a -> ''a list -> bool

4.5. Simple operations on lists

Reversal of a list (reverse.sml)

Specification

function reverse X
TYPE: α list $\rightarrow \alpha$ list
PRE: (none)
POST: the reverse list of X

Construction with the length of X as variant
Base case: X is []: return []

General case: X is of the form (x::xs) : return reverse $\mathrm{xs} @[\mathrm{x}]$

ML program

fun reverse [] = []
| reverse (x::xs) = reverse xs @ $[x]$

The list reversal function is actually predefined, as rev

General schema

For most of the simple operations on lists, the form of the constructed ML program will be:

```
fun f[]... = ...
    | f (x::xs) ... = .. (f xs) ...
```

Length of a list (length.sml)
function length X
TYPE: α list \rightarrow int
PRE: (none)
POST: the number of elements of X
fun length [] = 0
| length (x::xs) $=1+$ length $x s$
The length function is actually predefined in ML

Product of the elements of a list (prod.sml)
function prod X
TYPE: int list \rightarrow int
PRE: (none)
POST: the product of the elements of X
fun $\operatorname{prod}[]=1$
| $\operatorname{prod}(x:: x s)=x * \operatorname{prod} x s$

List generator (fromTo.sml)

function fromTo ij
TYPE: int \rightarrow int \rightarrow int list
PRE: (none)
POST: [] if i > j
$[i, i+1, \ldots, j]$ otherwise

Construction with the length of the interval i...j as variant fun fromTo $\mathrm{i} \mathrm{j}=$ if i > j then [] else i :: fromTo (i+1) j

The fromTo and prod functions now allow the non-recursive computation of factorials:
fun fact $\mathrm{n}=$
if $\mathrm{n}<0$ then error "fact: negative argument" else prod (fromTo 1 n)

Selections

First elements (take.sml)
function take (X, k)
TYPE: α list $*$ int $\rightarrow \alpha$ list
PRE: (none)
POST: [] if $k \leq 0$
X if $k>\operatorname{length}(X)$
the list of the first k elements of X, otherwise
fun take ([],k) = []
I take ($\mathrm{x}: \mathrm{:xs}, \mathrm{k}$) $=$
if k < 0 then []
else x :: take (xs,k-1)
Last elements (drop.sml)
function drop (X, k)
TYPE: α list $*$ int $\rightarrow \alpha$ list
PRE: (none)
POST: [] if $k>\operatorname{length}(X)$
X if $k \leq 0$
the list X without its first k elements, otherwise
fun $\operatorname{drop}([], k)=[]$
| drop (x::xs,k) =
if k <= 0 then $x:: x s$
else drop (xs,k-1)

Last element (last.sml)

function last X
TYPE: α list $\rightarrow \alpha$
PRE: X is not empty
POST: the last element of X
fun last [] = error "last: empty list"
| last ($\mathrm{x}: \mathrm{:}$ []) $=\mathrm{x}$
| last (x::xs) = last xs
The complexity is $O(\operatorname{length}(\mathrm{X}))$
$k^{\text {th }}$ Element (element.sml)
function element kX
TYPE: int $\rightarrow \alpha$ list $\rightarrow \alpha$
PRE: $0<k \leq \operatorname{length}(\mathrm{X})$
POST: the element at position k of X
fun element k [] = error "element: pre-condition violated"
| element 1 (x::xs) $=x$
| element $\mathrm{k}(\mathrm{x}:: \mathrm{xs})=(* \mathrm{k}<>1 *)$
if $\mathrm{k}<=0$ then error "element: pre-condition violated" else ($* \mathrm{k}>1 *$) element ($\mathrm{k}-1$) xs

Note the necessity of defensive programming in the general case

4.6. Application: polynomials

A simple representation of polynomials
Example: the polynomial $2 x^{4}+5 x^{3}+x^{2}+3$
can be represented by the list $[3,0,1,5,2]$

In general: the list $\left[a_{0}, a_{1}, \ldots, a_{n}\right]$ with $a_{n} \neq 0$ represents the polynomial

$$
P_{n}(x)=a_{n} x^{n}+\cdots+a_{1} x+a_{0}
$$

We assume integer coefficients and natural-number powers

Definition of the poly type type poly $=$ int list

- poly is a type
- poly is another way of naming the int list type: see Chapter 5 of this course
- poly and int list can be used interchangeably

Operations on polynomials

Evaluation of a polynomial (poly.sml)
function evalPoly P v
TYPE: poly \rightarrow int \rightarrow int
PRE: (none)
POST: P(v)
Hörner schema:

$$
\begin{aligned}
& P_{n}(v)=a_{n} v^{n}+\cdots+a_{1} v+a_{0} \\
& P_{n}(v)=\left(a_{n} v^{n-1}+\cdots+a_{1}\right) v+a_{0} \\
& P_{n}(v)=\left(\left(a_{n} v+a_{n-1}\right) v+\cdots+a_{1}\right) v+a_{0}
\end{aligned}
$$

fun evalPoly [] $\mathrm{v}=0$
। evalPoly (a::p) $v=($ evalPoly $p v) * v+a$

Addition of polynomials (poly.sml)
function addPoly P1 P2
TYPE: poly \rightarrow poly \rightarrow poly
PRE: (none)
POST: P1 + P2
fun addPoly p 1 [] = p1
addPoly [] p2 = p2
addPoly (a::p1) (b::p2) = (a+b) :: (addPoly p1 p2)
Complexity: $O(n)$, with n the min. of the degrees of P1, P2

Sparse polynomials

What if a lot of coefficients are zero?!
Example: $3 x^{27}+4 x^{5}+3 x^{2}$
In the preceding representation:

- High memory consumption
- High run time of the operations (many evaluation steps)

We need a better representation!

Representation of sparse polynomials

Example: the polynomial $3 x^{27}+4 x^{5}+3 x^{2}$
can be represented by the list [(2,3), $(5,4),(27,3)]$
In general: the list $\left[\left(k_{1}, c_{1}\right), \ldots,\left(k_{m}, c_{m}\right)\right]$
with: $\quad c_{i} \neq 0$ for $1 \leq i \leq m$

$$
k_{i} \geq 0 \quad \text { for } 1 \leq i \leq m
$$

$$
k_{i}<k_{i+1} \quad \text { for } 1 \leq i<m
$$

represents the polynomial

$$
c_{m} x^{k_{m}}+\cdots+c_{1} x^{k_{1}}
$$

Hence the new ML type:

$$
\text { type poly }=\text { (int } * \text { int) list }
$$

Operations on (sparse) polynomials

Evaluation of a (sparse) polynomial (polySparse.sml) function evalPoly: the same specification!

Observation:

$$
\begin{gathered}
3 v^{27}+4 v^{5}+3 v^{2}=\left(3 v^{25}+4 v^{3}\right) v^{2}+3 v^{2} \\
c_{m} v^{k_{m}}+\cdots+c_{2} v^{k_{2}}+c_{1} v^{k_{1}}=\left(c_{m} v^{k_{m}-k_{1}}+\cdots+c_{2} v^{k_{2}-k_{1}}\right) v^{k_{1}}+c_{1} v^{k_{1}}
\end{gathered}
$$

Specification of a generalised problem:
function evalPolyAux $P \vee k$
TYPE: poly \rightarrow int \rightarrow int \rightarrow int
PRE: P represents $c_{m} x^{k_{m}}+\cdots+c_{1} x^{k_{1}}$

$$
k_{1} \geq k
$$

POST: $c_{m} v^{k_{m}-k}+\cdots+c_{1} v^{k_{1}-k}$, that is $P(v) / v^{k}$
fun $\operatorname{expo} \times \mathrm{n}=$ if $\mathrm{n}=0$ then 1 else $\mathrm{x} *(\operatorname{expo} \times(\mathrm{n}-1))$
local
fun evalPolyAux [] v k = 0
| evalPolyAux ((k1,c1)::q) $\mathrm{q} k=$
let val vexp $=\operatorname{expo} v(k 1-k)$
in (evalPolyAux q $\mathrm{vk1}$) $* \operatorname{vexp}+\mathrm{c} 1 * \operatorname{vexp}$
end
in
fun evalPoly $P \vee=$ evalPolyAux $P \vee 0$
end

Exercises

- Realise the function adding two sparse polynomials
- Realise the function multiplying two sparse polynomials

Summary: an abstract datatype for polynomials

1. Definition of a new class of objects: the polynomials
2. Specification of abstract operations on these objects: creation, evaluation, addition, ...
3. Choice of a concrete representation in ML (two alternatives were studied here)
4. Implementation of the operations

4.7. Tail recursion and iteration

Length of a list, revisited (length.sml)

function length X
TYPE: α list \rightarrow int
PRE: (none)
POST: the number of elements of X

fun length [] = 0

| length (x::xs) $=1+$ length $x s$
Time complexity: one traversal of the list
length $[5,8,4,3$]
$\sim 1+$ length $[8,4,3]$
$\leadsto 1+(1+$ length $[4,3])$
$\leadsto 1+(1+(1+$ length [3]) $)$
$\leadsto 1+(1+(1+(1+$ length []$)))$
$\leadsto 1+(1+(1+(1+0)))$
$\leadsto 1+(1+(1+1))$
$\leadsto 1+(1+2)$
$\leadsto 1+3$
~ 4
The recursive call of length is nested in an expression: during the evaluation, all the terms of the sum are stored, hence the memory consumption for expressions \& bindings is proportional to the length of the list!

Now take the following ML program:
fun lengthAux [] acc = acc
| lengthAux ($\mathrm{x}:: \mathrm{xs}$) acc = lengthAux xs (acc+1)
lengthAux $[5,8,4,3] 0$
\leadsto lengthAux $[8,4,3](0+1)$
\leadsto lengthAux $[8,4,3] 1$
\sim lengthAux $[4,3](1+1)$
\sim lengthAux $[4,3] 2$
\sim lengthAux [3] (2+1)
\leadsto lengthAux [3] 3
\sim lengthAux [] (3+1)
\leadsto lengthAux [] 4
~ 4

- Tail recursion: recursion is the outermost operation
- Space complexity: constant memory consumption for expressions \& bindings
- Time complexity: (still) one traversal of the list
- The recursive call "behaves" like iteration (see: imperative programming)

One can prove that lengthAux X acc $=\operatorname{acc}+\operatorname{length}(X)$ This equality is the post-condition of the lengthAux function!

Questions

- How to obtain a tail-recursive program?
- What is the specification of such a program?
- How to write a program for the initial specification?

By descending generalisation of the initial specification!

Important: This technique of tail-recursion introduction is not the only way of generalising a specification!

Specification of the generalised problem
function lengthAux X acc
TYPE: α list \rightarrow int \rightarrow int
PRE: (none)
POST: acc + length(X)

Program for the initial problem
fun length $X=$ lengthAux $X 0$

Factorial, revisited (fact.sml)

function factAux n acc
TYPE: int \rightarrow int \rightarrow int
PRE: $\mathrm{n} \geq 0$
POST: acc * n!

local

```
fun factAux 0 acc = acc
    | factAux n acc = factAux (n-1) (n*acc)
```

in
fun fact $\mathrm{n}=$ if $\mathrm{n}<0$ then error "fact: negative argument" else factAux n 1
end

Exercises

- Specify and construct a tail-recursive program for expo
- Specify and construct a tail-recursive program for reverse With the program on page 4.11, for a list of length n, $n+1$ evaluation steps build an expression of n calls to @; this expression requires $\frac{n(n+1)}{2}$ evaluation steps, hence the overall time complexity is $O\left(n^{2}\right)$
- Specify and construct a tail-recursive program for fib There are 10^{9} evaluations of base cases for fib 44, and very large expressions are built during its evaluation

