Chapter 4
Linear Structures: Lists

(Version of 24 September 2004)

1. Lists ... 4.2

2. Basic operations .. 4.4

3. Constructors and pattern matching 4.5

4. Polymorphism ... 4.8

5. Simple operations on lists 4.11

6. Application: polynomials 4.16

7. Tail recursion ... 4.21
4.1. Lists

Definition

A list is an element collection with the following properties:

- Homogeneity: all elements are of the same type
- Variability: the number of elements is arbitrary
- Multiplicity: an element may appear several times in a list
- Extensionality: all elements must be explicitly given
- Linearity: the internal structure is linear

In ML, the word ‘list’ refers to the concrete realisation of the abstract datatype ‘linear list’ (see Chapter 6), using the (unary, postfix) type constructor list

Examples of ML lists

- [18, 12, ^5, 3+7] is an integer list (this type is denoted int list)
- [2.0, 5.3 / 3.7, Math.sqrt 27.3] is a real-number list (real list)
- ["Pierre", "Esra"] is a list of strings (string list)
- [(1,"A"),(2,"B")]] is a list of integer-string couples ((int * string) list)
- [[4,5], [8], [12,^3,0]] is a list of integer lists (int list list)
- [even, odd] is a list of int → bool functions ((int → bool) list)
- [12, 34.5] is not a list
The empty list

The empty list is denoted [] or [] or nil

What is the type of the empty list?!

The empty list must be of the type int list and real list and string list and int list list and (int → bool) list and . . .

The solution is that [] is a polymorphic value: it belongs to several types!

Type expressions

We use type variables to express polymorphic types:

The type of [] is α list
where α is a type variable, denoting an arbitrary type

In ML, type variables are written ‘a ‘b . . .

- [];
 val ‘a it = [] : ‘a list
4.2. Basic operations

- `null [] ;`
 `val it = true : bool`

- `hd [1,2,3] ;`
 `val it = 1 : int`

- `tl [1,2,3] ;`
 `val it = [2,3] : int list`

- `tl [1] ;`
 `val it = [] : int list`

- `tl [] ;`
 `! Uncaught exception: Empty`

- `3 :: [8,2] ;`
 `val it = [3,8,2] : int list`

- `3 :: [] ;`
 `val it = [3] : int list`

 `!`
 `! Type clash: expression of type int`
 `! cannot have type int list`

- `3 :: 8 ;`
 `! 3 :: 8 ;`
 `!`
 `! Type clash: expression of type int`
 `! cannot have type int list`
4.3. Constructors and pattern matching

The expression \([3,8]\) is syntactic sugar for \(3 :: (8 :: [])\)

The symbol :: is *not* an ML function, but a *value constructor*:

- *Composition* of a new object from its parts
- *Decomposition* of an object into its parts

Only constructors can be used in patterns

Another value constructor for lists is []

One can indifferently use the *aggregated form* \([3,8,5]\)
and the *constructed form* \(3 :: 8 :: 5 :: []\)
as they represent the same object!

\[-1 :: 2 :: [] = [1,2] ;
val it = true : bool\]

In ML, the symbol :: is thus a value constructor that is:

- binary
- infix
- *right*-associating: for instance, \(3 :: 8 :: []\) is \(3 :: (8 :: [])\)
- of the functional type \(\alpha * \alpha\ list \rightarrow \alpha\ list\)
Pattern matching

Use pattern matching for:

- Decomposing an object into its parts
- Accessing the parts of a constructed object

- \[\text{val } (x::xs) = [3,8,5] ;\]
 \[
 \text{val } x = 3 : \text{int}
 \]
 \[
 \text{val } xs = [8,5] : \text{int list}
 \]

- \[\text{val } (x::xs) = [3] ;\]
 \[
 \text{val } x = 3 : \text{int}
 \]
 \[
 \text{val } xs = [] : \text{int list}
 \]

- \[\text{val } (x::xs) = [] ;\]
 \[
 ! \text{ Uncaught exception: Bind}
 \]

Example: concatenating two lists (append.sml)

\[
\text{fun } \text{append } [] \text{ ys } = \text{ ys}
\]
\[
| \quad \text{append } (x::xs) \text{ ys } = \quad x :: (\text{append } xs \text{ ys})
\]

- The two lines of this function declaration are called \textit{clauses}
- A list concatenation function is actually predefined in ML, namely as the (binary, infix, right-associating) operator \texttt{@}

- The patterns \texttt{[]} and \texttt{(x::xs)} are mutually exclusive
- The pattern \texttt{[x]} is equivalent to \texttt{(x::[])}
Lists vs. tuples

Tuples: example \((3, 8.0, 5)\)
- Fixed size
- Heterogeneous (components of possibly different types)
- Direct access to the components via the \(#i\) selectors

Lists: example \([3, 8, 5]\)
- Arbitrary length
- Homogenous (elements of the same type)
- Access to the parts via pattern matching with \texttt{hd} and \texttt{tl}
 that is: sequential access to the elements

Constructed form vs. aggregated form

The aggregated form of lists is mostly used for:
- Arguments
- Results (when displayed by ML)
 - \([3,4,5] \ @ \ [6,7] ;\)
 \[
 \text{val it} = [3, 4, 5, 6, 7] : \text{int list}
 \]

The constructed form is mostly used in function declarations:
- Decomposition of a list by pattern matching
- Composition of a list
4.4. Polymorphism

function \texttt{hd} \ X \\
\textbf{TYPE:} \(\alpha \) list \(\rightarrow \ \alpha \) \\
\textbf{PRE:} \(X \) is not the empty list \\
\textbf{POST:} the head of \(X \) \\

definition \\
\texttt{fun} \ hd \ [\] = \text{error} "hd: empty list" \\
| \ hd \ (x\::\::xs) = x \\
| \hd [1,2] \\
| \quad \text{val it = 1 : int} \\
| \hd [\text{true, false, true}] \\
| \quad \text{val it = true : bool} \\

function \texttt{first} \ (a,b) \\
\textbf{TYPE:} \(\alpha \times \beta \rightarrow \alpha \) \\
\textbf{PRE:} (none) \\
\textbf{POST:} the first component of the pair \((a,b) \) \\

definition \\
\texttt{fun} \ first \ (a,b) = a \\
| \ first \ ([4,5], \text{true}) \\
| \quad \text{val it = \([4,5] : \text{int list}\) } \\
| \ first \ (\text{hd}, 3.5) \\
| \quad \text{val it = \(\text{fn} : 'a \text{ list} \rightarrow 'a\) } \\

The functions \texttt{hd} and \texttt{first} can be used with arguments of varying types, without changing their names or declarations: *polymorphism*
The type of our error function

It must be possible to use error in any situation: the type of its result is thus some type variable, say α

function error msg
TYPE: string \rightarrow α
PRE, POST: (none)
SIDE-EFFECT: displays msg to the screen and halts the execution

The type of = (equality)

Example: membership of an object in a list (member.sml)

function member v X
TYPE (tentatively): α \rightarrow α list \rightarrow bool
PRE: (none)
POST: true if v is an element of X
false otherwise

fun member v [] = false
| member v (x::xs) = (v=x) orelse member v xs

The member function is polymorphic:

- It can be used with objects where α is the type int, real, bool, (int \times bool), int list, . . .

- It cannot be used with objects where α is the type (int \rightarrow int), (int \rightarrow bool), (real \rightarrow real), . . . because the equality test between two functions is not computable!
The polymorphism of member must be restricted to the types for which the equality test is computable, that is to the types of objects without functions.

These equality types are denoted by variables of the form $\alpha = \beta \ldots$, or `$a \ b \ldots$ in ML.

```
function member v X
TYPE: $\alpha = \rightarrow \alpha = \text{list} \rightarrow \text{bool}$
PRE: (none)
POST: true if $v$ is an element of $X$
     false otherwise

function $x = y$
TYPE: $\alpha = * \alpha = \rightarrow \text{bool}$
PRE: (none)
POST: true if $x = y$
     false otherwise

function $x <> y$
TYPE: $\alpha = * \alpha = \rightarrow \text{bool}$
PRE: (none)
POST: true if $x \neq y$
     false otherwise
```

Example:

```
  fun member ... ;
  val '"a member = fn : '"a -> '"a list -> bool
```
4.5. Simple operations on lists

Reversal of a list (reverse.sml)

Specification

function reverse X
TYPE: \(\alpha \) list \(\rightarrow \) \(\alpha \) list
PRE: (none)
POST: the reverse list of \(X \)

Construction with the length of \(X \) as variant

Base case: \(X \) is \([\] \): return \([\] \)

General case: \(X \) is of the form \((x::xs) \): return \(\text{reverse } xs \) @ \([x]\)

ML program

fun reverse [] = []
| reverse (x::xs) = reverse xs @ [x]

The list reversal function is actually predefined, as \texttt{rev}
General schema

For most of the simple operations on lists, the form of the constructed ML program will be:

\[
\textbf{fun } f \ [\] \ldots = \ldots \\
\quad | \ f \ (x::xs) \ldots = \ldots (f \ xs) \ldots
\]

Length of a list (length.sml)

function length X
TYPE: \(\alpha\) list \(\rightarrow\) int
PRE: (none)
POST: the number of elements of \(X\)

fun length [] = 0
\quad | length (x::xs) = 1 + length xs

The length function is actually predefined in ML

Product of the elements of a list (prod.sml)

function prod X
TYPE: int list \(\rightarrow\) int
PRE: (none)
POST: the product of the elements of \(X\)

fun prod [] = 1
\quad | prod (x::xs) = x * prod xs
List generator (fromTo.sml)

function fromTo i j
TYPE: int → int → int list
PRE: (none)
POST: [] if i > j
 [i, i+1, ..., j] otherwise

Construction with the length of the interval i...j as variant

fun fromTo i j =
 if i > j then []
 else i :: fromTo (i+1) j

The fromTo and prod functions now allow the non-recursive computation of factorials:

fun fact n =
 if n < 0 then error "fact: negative argument"
 else prod (fromTo 1 n)
Selections

First elements (take.sml)

function take (X,k)
TYPE: \(\alpha \) list * int \rightarrow \(\alpha \) list
PRE: (none)
POST: [] if \(k \leq 0 \)
\(X \) if \(k > \text{length}(X) \)
the list of the first \(k \) elements of \(X \), otherwise

fun take ([],k) = []
 | take (x::xs,k) =
 if \(k <= 0 \) then []
 else x :: take (xs,k-1)

Last elements (drop.sml)

function drop (X,k)
TYPE: \(\alpha \) list * int \rightarrow \(\alpha \) list
PRE: (none)
POST: [] if \(k > \text{length}(X) \)
\(X \) if \(k \leq 0 \)
the list \(X \) without its first \(k \) elements, otherwise

fun drop ([],k) = []
 | drop (x::xs,k) =
 if \(k <= 0 \) then x::xs
 else drop (xs,k-1)
Last element (last.sml)

function last X

TYPE: \(\alpha \) list \(\rightarrow \alpha \)

PRE: X is not empty

POST: the last element of X

fun last [] = error "last: empty list"

| last (x::[]) = x |
| last (x::xs) = last xs |

The complexity is \(O(\text{length}(X)) \)

k\(^{th}\) Element (element.sml)

function element k X

TYPE: int \(\rightarrow \alpha \) list \(\rightarrow \alpha \)

PRE: \(0 < k \leq \text{length}(X) \)

POST: the element at position k of X

fun element k [] = error "element: pre-condition violated"

| element 1 (x::xs) = x |
| element k (x::xs) = (* k <> 1 *) |

if k <= 0 then error "element: pre-condition violated"
else (* k > 1 *) element (k−1) xs

Note the necessity of defensive programming in the general case
4.6. Application: polynomials

A simple representation of polynomials

Example: the polynomial $2x^4 + 5x^3 + x^2 + 3$
can be represented by the list $[3,0,1,5,2]$

In general: the list $[a_0, a_1, \ldots, a_n]$ with $a_n \neq 0$
represents the polynomial

$$P_n(x) = a_n x^n + \cdots + a_1 x + a_0$$

We assume integer coefficients and natural-number powers

Definition of the poly type

```plaintext
type poly = int list
```

- `poly` is a type
- `poly` is another way of naming the `int list` type:
 see Chapter 5 of this course
- `poly` and `int list` can be used interchangeably
Operations on polynomials

Evaluation of a polynomial (poly.sml)

function evalPoly P v
TYPE: poly → int → int
PRE: (none)
POST: P(v)

Hörner schema:
\[P_n(v) = a_n v^n + \cdots + a_1 v + a_0 \]
\[P_n(v) = (a_n v^{n-1} + \cdots + a_1) v + a_0 \]
\[P_n(v) = ((a_n v + a_{n-1}) v + \cdots + a_1) v + a_0 \]

fun evalPoly [] v = 0
| evalPoly (a::p) v = (evalPoly p v) * v + a

Addition of polynomials (poly.sml)

function addPoly P1 P2
TYPE: poly → poly → poly
PRE: (none)
POST: P1 + P2

fun addPoly p1 [] = p1
| addPoly [] p2 = p2
| addPoly (a::p1) (b::p2) = (a+b) :: (addPoly p1 p2)

Complexity: \(O(n) \), with \(n \) the min. of the degrees of \(P_1, P_2 \)
Sparse polynomials

What if a lot of coefficients are zero?!
Example: $3x^{27} + 4x^5 + 3x^2$

In the preceding representation:

- High memory consumption
- High run time of the operations (many evaluation steps)

We need a better representation!

Representation of sparse polynomials

Example: the polynomial $3x^{27} + 4x^5 + 3x^2$
can be represented by the list $[(2,3), (5,4), (27,3)]$

In general: the list $[(k_1, c_1), \ldots, (k_m, c_m)]$
with: $c_i \neq 0$ for $1 \leq i \leq m$
$k_i \geq 0$ for $1 \leq i \leq m$
$k_i < k_{i+1}$ for $1 \leq i < m$
represents the polynomial $c_m x^{k_m} + \cdots + c_1 x^{k_1}$

Hence the new ML type:

```
type poly = (int * int) list
```
Operations on (sparse) polynomials

Evaluation of a (sparse) polynomial (polySparse.sml)

function evalPoly: the same specification!

Observation:
\[3v^{27} + 4v^5 + 3v^2 = (3v^{25} + 4v^3)v^2 + 3v^2 \]
\[c_mv^{k_m} + \cdots + c_2v^{k_2} + c_1v^{k_1} = (c_mv^{k_m-k_1} + \cdots + c_2v^{k_2-k_1})v^{k_1} + c_1v^{k_1} \]

Specification of a generalised problem:

function evalPolyAux P v k

TYPE: poly \rightarrow int \rightarrow int \rightarrow int

PRE: P represents \(c_mx^{k_m} + \cdots + c_1x^{k_1} \)
\[k_1 \geq k \]

POST: \(c_mv^{k_m-k} + \cdots + c_1v^{k_1-k} \), that is \(P(v)/v^k \)

fun expo x n = if n=0 then 1 else x * (expo x (n-1))

local

 fun evalPolyAux [] v k = 0
 | evalPolyAux ((k1,c1)::q) v k =
 let val vexp = expo v (k1-k)
 in (evalPolyAux q v k1) * vexp + c1 * vexp
 end

 in

 fun evalPoly P v = evalPolyAux P v 0

end
Exercises

• Realise the function adding two sparse polynomials
• Realise the function multiplying two sparse polynomials

Summary: an abstract datatype for polynomials

1. Definition of a new class of objects: the polynomials
2. Specification of abstract operations on these objects: creation, evaluation, addition, . . .
3. Choice of a concrete representation in ML (two alternatives were studied here)
4. Implementation of the operations
4.7. Tail recursion and iteration

Length of a list, revisited (length.sml)

```sml
defun length X
    TYPE: α list → int
    PRE: (none)
    POST: the number of elements of X

| length [ ] = 0 |
| length (x::xs) = 1 + length xs |

Time complexity: one traversal of the list

length [5,8,4,3]
→ 1 + length [8,4,3]
→ 1 + (1 + length [4,3])
→ 1 + (1 + (1 + length [3]))
→ 1 + (1 + (1 + (1 + length [ ])))
→ 1 + (1 + (1 + (1 + 0)))
→ 1 + (1 + (1 + 1))
→ 1 + (1 + 2)
→ 1 + 3
→ 4
```

The recursive call of `length` is nested in an expression: during the evaluation, all the terms of the sum are stored, hence the memory consumption for expressions & bindings is proportional to the length of the list!
Now take the following ML program:

```ml
fun lengthAux [ ] acc = acc
  | lengthAux (x::xs) acc = lengthAux xs (acc+1)
```

```ml
lengthAux [5,8,4,3] 0
⇝ lengthAux [8,4,3] (0+1)
⇝ lengthAux [8,4,3] 1
⇝ lengthAux [4,3] (1+1)
⇝ lengthAux [4,3] 2
⇝ lengthAux [3] (2+1)
⇝ lengthAux [3] 3
⇝ lengthAux [ ] (3+1)
⇝ lengthAux [ ] 4
⇝ 4
```

- **Tail recursion**: recursion is the outermost operation
- Space complexity: *constant* memory consumption for expressions & bindings
- Time complexity: (still) one traversal of the list
- The recursive call “behaves” like *iteration* (see: imperative programming)

One can prove that \(\text{lengthAux X acc} = \text{acc} + \text{length(X)} \)
This equality is the post-condition of the \text{lengthAux} function!
Questions

• How to obtain a tail-recursive program?
• What is the specification of such a program?
• How to write a program for the initial specification?

By descending generalisation of the initial specification!

Important: This technique of tail-recursion introduction is not the only way of generalising a specification!

Specification of the generalised problem

function lengthAux X acc
TYPE: α list \rightarrow int \rightarrow int
PRE: (none)
POST: acc $+ \ length(X)$

Program for the initial problem

fun length X = lengthAux X 0
Factorial, revisited \((\text{fact.sml})\)

\begin{verbatim}
function factAux n acc
 TYPE: int → int → int
 PRE: n ≥ 0
 POST: acc * n!

local
 fun factAux 0 acc = acc
 | factAux n acc = factAux (n-1) (n*acc)
in
 fun fact n =
 if n < 0 then error "fact: negative argument"
 else factAux n 1
end
\end{verbatim}

Exercises

- Specify and construct a tail-recursive program for \texttt{expo}
- Specify and construct a tail-recursive program for \texttt{reverse}
 With the program on page 4.11, for a list of length \(n\), \(n + 1\) evaluation steps build an expression of \(n\) calls to \texttt{@}; this expression requires \(\frac{n(n+1)}{2}\) evaluation steps, hence the overall \textit{time} complexity is \(O(n^2)\)
- Specify and construct a tail-recursive program for \texttt{fib}
 There are \(10^9\) evaluations of base cases for \texttt{fib 44}, and \textit{very} large expressions are built during its evaluation