
Ch.4: Linear Structures: Lists Plan

Chapter 4

Linear Structures: Lists

(Version of 24 September 2004)

1. Lists . 4.2

2. Basic operations . 4.4

3. Constructors and pattern matching 4.5

4. Polymorphism . 4.8

5. Simple operations on lists . 4.11

6. Application: polynomials . 4.16

7. Tail recursion . 4.21

c© P. Flener/IT Dept/Uppsala Univ. FP 4.1

Ch.4: Linear Structures: Lists 4.1. Lists

4.1. Lists

Definition

A list is an element collection with the following properties:

• Homogeneity: all elements are of the same type

• Variability: the number of elements is arbitrary

• Multiplicity: an element may appear several times in a list

• Extensionality: all elements must be explicitly given

• Linearity: the internal structure is linear

In ML, the word ‘list’ refers to the concrete realisation
of the abstract datatype ‘linear list’ (see Chapter 6),
using the (unary, postfix) type constructor list

Examples of ML lists

• [18, 12, �5, 3+7] is an integer list (this type is denoted int list)

• [2.0, 5.3 / 3.7, Math.sqrt 27.3] is a real-number list (real list)

• ["Pierre", "Esra"] is a list of strings (string list)

• [(1,"A"), (2,"B")] is a list of integer-string couples ((int ∗ string) list)

• [[4,5], [8], [12,�3,0]] is a list of integer lists (int list list)

• [even, odd] is a list of int→ bool functions ((int→ bool) list)

• [12, 34.5] is not a list

c© P. Flener/IT Dept/Uppsala Univ. FP 4.2

Ch.4: Linear Structures: Lists 4.1. Lists

The empty list

The empty list is denoted [] or [] or nil

What is the type of the empty list?!

The empty list must be of the type int list and real list
and string list and int list list and (int→ bool) list and . . .

The solution is that [] is a polymorphic value:
it belongs to several types!

Type expressions

We use type variables to express polymorphic types :

The type of [] is α list
where α is a type variable, denoting an arbitrary type

In ML, type variables are written 'a 'b . . .

- [] ;
val ’a it = [] : ’a list

c© P. Flener/IT Dept/Uppsala Univ. FP 4.3

Ch.4: Linear Structures: Lists 4.2. Basic operations

4.2. Basic operations
- null [] ;

val it = true : bool

- hd [1,2,3] ;
val it = 1 : int

- tl [1,2,3] ;
val it = [2,3] : int list

- tl [1] ;
val it = [] : int list

- tl [] ;
! Uncaught exception: Empty

- 3 :: [8,2] ;
val it = [3,8,2] : int list

- 3 :: [] ;
val it = [3] : int list

- [3] :: [8,2] ;
! [3] :: [8,2] ;

! ˆ

! Type clash: expression of type int

! cannot have type int list

- 3 :: 8 ;
! 3 :: 8 ;

! ˆ

! Type clash: expression of type int

! cannot have type int list

c© P. Flener/IT Dept/Uppsala Univ. FP 4.4

Ch.4: Linear Structures: Lists 4.3. Constructors and pattern matching

4.3. Constructors and pattern matching

The expression [3,8] is syntactic sugar for 3 :: (8 :: [])

The symbol :: is not an ML function,
but a value constructor :

• Composition of a new object from its parts

• Decomposition of an object into its parts

Only constructors can be used in patterns
Another value constructor for lists is []

One can indifferently use the aggregated form [3,8,5]
and the constructed form 3 :: 8 :: 5 :: []
as they represent the same object!

- 1 :: 2 :: [] = [1,2] ;
val it = true : bool

In ML, the symbol :: is thus a value constructor that is:

• binary

• infix

• right -associating: for instance, 3 :: 8 :: [] is 3 :: (8 :: [])

• of the functional type α ∗ α list→ α list

c© P. Flener/IT Dept/Uppsala Univ. FP 4.5

Ch.4: Linear Structures: Lists 4.3. Constructors and pattern matching

Pattern matching

Use pattern matching for:

• Decomposing an object into its parts

• Accessing the parts of a constructed object

- val (x::xs) = [3,8,5] ;
val x = 3 : int

val xs = [8,5] : int list

- val (x::xs) = [3] ;
val x = 3 : int

val xs = [] : int list

- val (x::xs) = [] ;
! Uncaught exception: Bind

Example: concatenating two lists (append.sml)

fun append [] ys = ys
| append (x::xs) ys = x :: (append xs ys)

• The two lines of this function declaration are called clauses

• A list concatenation function is actually predefined in ML,
namely as the (binary, infix, right-associating) operator @

• The patterns [] and (x::xs) are mutually exclusive

• The pattern [x] is equivalent to (x::[])

c© P. Flener/IT Dept/Uppsala Univ. FP 4.6

Ch.4: Linear Structures: Lists 4.3. Constructors and pattern matching

Lists vs. tuples

Tuples: example (3, 8.0, 5>8)
• Fixed size

• Heterogeneous (components of possibly different types)

• Direct access to the components via the #i selectors

Lists: example [3, 8, 5]
• Arbitrary length

• Homogenous (elements of the same type)

• Access to the parts via pattern matching with hd and tl
that is: sequential access to the elements

Constructed form vs. aggregated form

The aggregated form of lists is mostly used for:

• Arguments

• Results (when displayed by ML)

- [3,4,5] @ [6,7] ;
val it = [3,4,5,6,7] : int list

The constructed form is mostly used in function
declarations:

• Decomposition of a list by pattern matching

• Composition of a list

c© P. Flener/IT Dept/Uppsala Univ. FP 4.7

Ch.4: Linear Structures: Lists 4.4. Polymorphism

4.4. Polymorphism
function hd X
TYPE: α list → α
PRE: X is not the empty list
POST: the head of X

fun hd [] = error "hd: empty list"
| hd (x::xs) = x

- hd [1,2] ;
val it = 1 : int

- hd [true,false,true] ;
val it = true : bool

function �rst (a,b)
TYPE: α ∗ β → α
PRE: (none)
POST: the �rst component of the pair (a,b)

fun �rst (a,b) = a

- �rst ([4,5], true) ;
val it = [4,5] : int list

- �rst (hd, 3.5) ;
val it = fn : ’a list -> ’a

The functions hd and �rst can be used with arguments of
varying types, without changing their names or declarations:
polymorphism

c© P. Flener/IT Dept/Uppsala Univ. FP 4.8

Ch.4: Linear Structures: Lists 4.4. Polymorphism

The type of our error function

It must be possible to use error in any situation:
the type of its result is thus some type variable, say α

function error msg
TYPE: string → α
PRE, POST: (none)
SIDEEFFECT: displays msg to the screen and halts the execution

The type of = (equality)

Example: membership of an object in a list (member.sml)

function member v X
TYPE (tentatively): α → α list → bool
PRE: (none)
POST: true if v is an element of X

false otherwise

fun member v [] = false
| member v (x::xs) = (v=x) orelse member v xs

The member function is polymorphic:

• It can be used with objects
where α is the type int, real, bool, (int ∗ bool), int list, . . .

• It cannot be used with objects
where α is the type (int→ int), (int→ bool), (real→ real), . . .
because the equality test between two functions
is not computable!

c© P. Flener/IT Dept/Uppsala Univ. FP 4.9

Ch.4: Linear Structures: Lists 4.4. Polymorphism

The polymorphism of member must be restricted
to the types for which the equality test is computable,
that is to the types of objects without functions

These equality types are denoted by variables
of the form α= β= . . . , or ´´a ´´b . . . in ML

function member v X
TYPE: α= → α= list→ bool
PRE: (none)
POST: true if v is an element of X

false otherwise

function x = y
TYPE: α= ∗ α= → bool
PRE: (none)
POST: true if x = y

false otherwise

function x <> y
TYPE: α= ∗ α= → bool
PRE: (none)
POST: true if x 6= y

false otherwise

Example:

- fun member . . . ;
val ’’a member = fn : ’’a -> ’’a list -> bool

c© P. Flener/IT Dept/Uppsala Univ. FP 4.10

Ch.4: Linear Structures: Lists 4.5. Simple operations on lists

4.5. Simple operations on lists

Reversal of a list (reverse.sml)

Specification

function reverse X
TYPE: α list → α list
PRE: (none)
POST: the reverse list of X

Construction with the length of X as variant

Base case: X is [] : return []

General case: X is of the form (x::xs) : return reverse xs @ [x]

ML program

fun reverse [] = []
| reverse (x::xs) = reverse xs @ [x]

The list reversal function is actually predefined, as rev

c© P. Flener/IT Dept/Uppsala Univ. FP 4.11

Ch.4: Linear Structures: Lists 4.5. Simple operations on lists

General schema

For most of the simple operations on lists,
the form of the constructed ML program will be:

fun f [] . . . = . . .
| f (x::xs) . . . = . . . (f xs) . . .

Length of a list (length.sml)

function length X
TYPE: α list → int
PRE: (none)
POST: the number of elements of X

fun length [] = 0
| length (x::xs) = 1 + length xs

The length function is actually predefined in ML

Product of the elements of a list (prod.sml)

function prod X
TYPE: int list → int
PRE: (none)
POST: the product of the elements of X

fun prod [] = 1
| prod (x::xs) = x ∗ prod xs

c© P. Flener/IT Dept/Uppsala Univ. FP 4.12

Ch.4: Linear Structures: Lists 4.5. Simple operations on lists

List generator (fromTo.sml)

function fromTo i j
TYPE: int → int → int list
PRE: (none)
POST: [] if i > j

[i , i+1 , . . . , j] otherwise

Construction with the length of the interval i...j as variant

fun fromTo i j =
if i > j then []
else i :: fromTo (i+1) j

The fromTo and prod functions now allow the
non-recursive computation of factorials:

fun fact n =
if n < 0 then error "fact: negative argument"
else prod (fromTo 1 n)

c© P. Flener/IT Dept/Uppsala Univ. FP 4.13

Ch.4: Linear Structures: Lists 4.5. Simple operations on lists

Selections

First elements (take.sml)

function take (X,k)
TYPE: α list ∗ int → α list
PRE: (none)
POST: [] if k ≤ 0

X if k > length(X)
the list of the �rst k elements of X, otherwise

fun take ([],k) = []
| take (x::xs,k) =

if k <= 0 then []
else x :: take (xs,k1)

Last elements (drop.sml)

function drop (X,k)
TYPE: α list ∗ int → α list
PRE: (none)
POST: [] if k > length(X)

X if k ≤ 0
the list X without its �rst k elements, otherwise

fun drop ([],k) = []
| drop (x::xs,k) =

if k <= 0 then x::xs
else drop (xs,k1)

c© P. Flener/IT Dept/Uppsala Univ. FP 4.14

Ch.4: Linear Structures: Lists 4.5. Simple operations on lists

Last element (last.sml)

function last X
TYPE: α list → α
PRE: X is not empty
POST: the last element of X

fun last [] = error "last: empty list"
| last (x::[]) = x
| last (x::xs) = last xs

The complexity is O(length(X))

kth Element (element.sml)

function element k X
TYPE: int → α list → α
PRE: 0 < k ≤ length(X)
POST: the element at position k of X

fun element k [] = error "element: precondition violated"
| element 1 (x::xs) = x
| element k (x::xs) = (∗ k <> 1 ∗)

if k <= 0 then error "element: precondition violated"
else (∗ k > 1 ∗) element (k−1) xs

Note the necessity of defensive programming
in the general case

c© P. Flener/IT Dept/Uppsala Univ. FP 4.15

Ch.4: Linear Structures: Lists 4.6. Application: polynomials

4.6. Application: polynomials

A simple representation of polynomials

Example: the polynomial 2x4 + 5x3 + x2 + 3
can be represented by the list [3,0,1,5,2]

In general: the list [a0, a1, . . . , an] with an 6= 0
represents the polynomial

Pn(x) = anx
n + · · · + a1x + a0

We assume integer coefficients and natural-number powers

Definition of the poly type

type poly = int list

• poly is a type

• poly is another way of naming the int list type:
see Chapter 5 of this course

• poly and int list can be used interchangeably

c© P. Flener/IT Dept/Uppsala Univ. FP 4.16

Ch.4: Linear Structures: Lists 4.6. Application: polynomials

Operations on polynomials

Evaluation of a polynomial (poly.sml)

function evalPoly P v
TYPE: poly → int → int
PRE: (none)
POST: P(v)

Hörner schema:

Pn(v) = anv
n + · · · + a1v + a0

Pn(v) = (anv
n−1 + · · · + a1)v + a0

Pn(v) = ((anv + an−1)v + · · · + a1)v + a0

fun evalPoly [] v = 0
| evalPoly (a::p) v = (evalPoly p v) ∗ v + a

Addition of polynomials (poly.sml)

function addPoly P1 P2
TYPE: poly → poly → poly
PRE: (none)
POST: P1 + P2

fun addPoly p1 [] = p1
| addPoly [] p2 = p2
| addPoly (a::p1) (b::p2) = (a+b) :: (addPoly p1 p2)

Complexity: O(n), with n the min. of the degrees of P1, P2

c© P. Flener/IT Dept/Uppsala Univ. FP 4.17

Ch.4: Linear Structures: Lists 4.6. Application: polynomials

Sparse polynomials

What if a lot of coefficients are zero?!
Example: 3x27 + 4x5 + 3x2

In the preceding representation:

• High memory consumption

• High run time of the operations (many evaluation steps)

We need a better representation!

Representation of sparse polynomials

Example: the polynomial 3x27 + 4x5 + 3x2

can be represented by the list [(2,3), (5,4), (27,3)]

In general: the list [(k1, c1), . . . , (km, cm)]
with: ci 6= 0 for 1 ≤ i ≤ m

ki ≥ 0 for 1 ≤ i ≤ m
ki < ki+1 for 1 ≤ i < m

represents the polynomial

cmxkm + · · · + c1x
k1

Hence the new ML type:

type poly = (int ∗ int) list

c© P. Flener/IT Dept/Uppsala Univ. FP 4.18

Ch.4: Linear Structures: Lists 4.6. Application: polynomials

Operations on (sparse) polynomials

Evaluation of a (sparse) polynomial (polySparse.sml)

function evalPoly: the same specification!

Observation:

3v27 + 4v5 + 3v2 = (3v25 + 4v3)v2 + 3v2

cmvkm+· · ·+c2v
k2+c1v

k1 = (cmvkm−k1+· · ·+c2v
k2−k1)vk1+c1v

k1

Specification of a generalised problem:

function evalPolyAux P v k
TYPE: poly → int → int → int
PRE: P represents cmxkm + · · · + c1x

k1

k1 ≥ k
POST: cmvkm−k + · · · + c1v

k1−k, that is P (v)/vk

fun expo x n = if n=0 then 1 else x ∗ (expo x (n1))
local

fun evalPolyAux [] v k = 0
| evalPolyAux ((k1,c1)::q) v k =

let val vexp = expo v (k1−k)
in (evalPolyAux q v k1) ∗ vexp + c1 ∗ vexp
end

in
fun evalPoly P v = evalPolyAux P v 0

end

c© P. Flener/IT Dept/Uppsala Univ. FP 4.19

Ch.4: Linear Structures: Lists 4.6. Application: polynomials

Exercises

• Realise the function adding two sparse polynomials

• Realise the function multiplying two sparse polynomials

Summary: an abstract datatype for polynomials

1.Definition of a new class of objects: the polynomials

2.Specification of abstract operations on these objects:
creation, evaluation, addition, . . .

3.Choice of a concrete representation in ML
(two alternatives were studied here)

4. Implementation of the operations

c© P. Flener/IT Dept/Uppsala Univ. FP 4.20

Ch.4: Linear Structures: Lists 4.7. Tail recursion and iteration

4.7. Tail recursion and iteration

Length of a list, revisited (length.sml)

function length X
TYPE: α list → int
PRE: (none)
POST: the number of elements of X

fun length [] = 0
| length (x::xs) = 1 + length xs

Time complexity: one traversal of the list

length [5,8,4,3]
; 1 + length [8,4,3]
; 1 + (1 + length [4,3])
; 1 + (1 + (1 + length [3]))
; 1 + (1 + (1 + (1 + length [])))
; 1 + (1 + (1 + (1 + 0)))
; 1 + (1 + (1 + 1))
; 1 + (1 + 2)
; 1 + 3
; 4

The recursive call of length is nested in an expression:
during the evaluation, all the terms of the sum are stored,
hence the memory consumption for expressions & bindings
is proportional to the length of the list!

c© P. Flener/IT Dept/Uppsala Univ. FP 4.21

Ch.4: Linear Structures: Lists 4.7. Tail recursion and iteration

Now take the following ML program:

fun lengthAux [] acc = acc
| lengthAux (x::xs) acc = lengthAux xs (acc+1)

lengthAux [5,8,4,3] 0
; lengthAux [8,4,3] (0+1)
; lengthAux [8,4,3] 1
; lengthAux [4,3] (1+1)
; lengthAux [4,3] 2
; lengthAux [3] (2+1)
; lengthAux [3] 3
; lengthAux [] (3+1)
; lengthAux [] 4
; 4

• Tail recursion: recursion is the outermost operation

• Space complexity: constant memory consumption
for expressions & bindings

• Time complexity: (still) one traversal of the list

• The recursive call “behaves” like iteration
(see: imperative programming)

One can prove that lengthAux X acc = acc + length(X)
This equality is the post-condition of the lengthAux function!

c© P. Flener/IT Dept/Uppsala Univ. FP 4.22

Ch.4: Linear Structures: Lists 4.7. Tail recursion and iteration

Questions

• How to obtain a tail-recursive program?

• What is the specification of such a program?

• How to write a program for the initial specification?

By descending generalisation of the initial specification!

Important: This technique of tail-recursion introduction is
not the only way of generalising a specification!

Specification of the generalised problem

function lengthAux X acc
TYPE: α list → int → int
PRE: (none)
POST: acc + length(X)

Program for the initial problem

fun length X = lengthAux X 0

c© P. Flener/IT Dept/Uppsala Univ. FP 4.23

Ch.4: Linear Structures: Lists 4.7. Tail recursion and iteration

Factorial, revisited (fact.sml)

function factAux n acc
TYPE: int → int → int
PRE: n ≥ 0
POST: acc ∗ n!
local

fun factAux 0 acc = acc
| factAux n acc = factAux (n−1) (n∗acc)

in
fun fact n =

if n < 0 then error "fact: negative argument"
else factAux n 1

end

Exercises

• Specify and construct a tail-recursive program for expo

• Specify and construct a tail-recursive program for reverse
With the program on page 4.11, for a list of length n,
n + 1 evaluation steps build an expression of n calls to @;
this expression requires n(n+1)

2 evaluation steps,
hence the overall time complexity is O(n2)

• Specify and construct a tail-recursive program for �b
There are 109 evaluations of base cases for �b 44, and
very large expressions are built during its evaluation

c© P. Flener/IT Dept/Uppsala Univ. FP 4.24

