FUNCTIONAL PROGRAMMING

Maths & Natural Sciences (MN)
programme at Uppsala University, Sweden

Course Notes by
Pierre Flener, PhD, docent,
IT Dept, Uppsala University, Sweden

Based on the notes of
Prof. Yves Deville,
Université catholique de Louvain, Belgium

© P. Flener/IT Dept/Uppsala Univ. FP 1.1

Ch.1: Introduction 1.1. Objectives

Chapter 1: Introduction

(Version of 24 September 2004)

1.1. Objectives

Introduction to the fundamental principles and
methodologies of functional programming,
using the programming language Standard ML
(SML, or simply ML) as the teaching medium.

Theoretical focus, with many examples, on:

e Algorithms and data structures (how?)
e Programming methodology:

— Importance of specifications (what?)

— Importance of justifications (why?)

— Importance of other documentation

— Importance of rigour, explicitness, and elegance

e Complexity of algorithms

Some further practice of programming (in ML) is acquired
through assignments, which are to be:

1. Prepared at home
2.'Tried on the computer in labs under assistant supervision

3. Graded by an assistant

© P. Flener/IT Dept/Uppsala Univ. FP 1.2

Ch.1: Introduction 1.2. Functions

1.2. Functions

A function f is a correspondence between two sets of values:

A B

f: A-->B

To each element a of the set A,
the function f associates at most one value of the set B

Notations

fla)=b : f associates the value b of B to the element a of A

fla) = L (or f(a) is undefined): f associates no value to a

© P. Flener/IT Dept/Uppsala Univ. FP 1.3

Ch.1: Introduction 1.2. Functions

Total functions and partial functions

Let f: A— B be a function:
e f is a total tunction if f is defined for every element of A

e f is a partial function if f is not total

Definition of functions

Definition by extension
Give the graph of the function: (ai,b1) (ag, bo)

Example: function double:

(1,2) (2,4) (3,6) (4,8) ...

Definition by intension (note the ‘s’!)
Define the function by a rule describing its graph

Example: function double:

double(n) = 2 * n

© P. Flener/IT Dept/Uppsala Univ. FP 1.4

Ch.1: Introduction

1.2. Functions

Expressions
5+ 7
5 —5
+ 12
3*~4 +7
4 = -~
*
3
7

Definition of new functions

relative_error (x,y) = abs(x-y)/y

y abs

© P. Flener/IT Dept/Uppsala Univ. FP

1.5

Ch.1: Introduction 1.8. Functional programming languages

1.3. Functional programming languages

Fundamental principles

e [ixecution by evaluation of expressions
e Declaration of functions
e Application of functions

e Recursion

Existing functional programming languages

e Lisp (Mc Carthy, 1962), Scheme

e I'P (J. Backus, 1978)

e Miranda (D. Turner, 1986)

e Haskell (P. Hudack, 1990)

e LCF, ML (Meta Language) (Edinburgh, 1977)
e CAML (France, 1990)

e SML (Standard ML) (1990)

© P. Flener/IT Dept/Uppsala Univ. FP 1.6

