Global Instructions

Read these instructions, as well as the actual questions, very carefully before attempting to solve the problems. Especially pay attention to stressed words (in boldface). The questions have been engineered to have many short and elegant answers. If you get into some lengthy or difficult reasoning, you are probably on the wrong track and might benefit from re-reading the question.

This question set is double-sided. To the extent possible, write your answers into the gaps. The provided space is really sufficient each time. Write your name onto every sheet. This is an exam with closed books and notes. An English-Swedish dictionary may be available at the front desk. Normally, the instructor will come and answer questions between 10:00 and 11:00.

To save time, program in a non-defensive style. Provide a specification (at least the names of the argument components, a signature, a pre-condition, a post-condition involving all the names of the argument components, and useful examples) for every function you construct. Each specification must be suitable for justifying your function or for constructing another function. Provide a justification outline (the chosen variant) for every recursive function you construct. You need not provide any other justifications, but the given ones must correspond to your function. For instance, each clause should not be redundant with previous clauses. Failure to provide such a specification or justification outline for at least one function of a sub-question will result in zero points for that entire sub-question, even if the function is actually correct. If you cannot comply with a requirement of a sub-question, such as the presence or absence of recursion, the indicated variant, or the number of new functions, then explicitly lift that requirement and proceed without it.

You may only use the directives and functions of the standard library of SML. Do not use higher-order functions, except where explicitly requested. The instructor’s solutions to the questions only involve =, <, >, +, -, *, ::, abstype...with...end, as, fn, fun, hd, if...then...else, int, infix, let...in...end, list, nil, of, rec, and val. Exact SML syntax is not required. Layout is unimportant, but please be considerate.

Unless otherwise posted, the instructor is only interested in correct SML functions. Any attempts at efficient functions are purely at your own risk, namely the risk of missing out on correctness or of losing time.

The 4 credit points for this exam are awarded if your exam points are in the interval [50%,100%]. Furthermore, a very-good (VG) pass grade is earned for the interval [85%,100%], while a good (G) pass grade is earned for the interval [50%,84%]. Otherwise, an "underkänd" (U) fail grade is earned.
Question 1 Methodology and Recursion (18 points)

A segment of a list is a prefix of a suffix of that list. For example, the lists [], [4,5], and [2,1,4,5,3] are segments of [2,1,4,5,3].

A plateau of a list is a segment thereof with all-equal elements but different previous and next elements, if any. For example, the list [2,2] is a plateau of [4,2,2,3,3,3,1], but its segments [2,2,3] and [2] are not plateaus thereof.

The compression of a list L is a list of (x_i,c_i) pairs, such that the ith plateau of L has c_i elements equal to x_i. For example, the compression of [4,2,2,2,3,3,4,4] is [(4,1),(2,4),(3,3),(4,2)].

Using the concept names above, answer the following sub-questions.

(2 points)
a. Specify a function `compress` returning the compression of an arbitrary list.

```
function compress L
sig:
pre:            
post: ex: compress [4,2,2,2,3,3,4,4] = [(4,1),(2,4),(3,3),(4,2)]
```

(5 points)
b. Construct a first SML function for `compress`. Use recursion. Use the indicated variant. Use no new functions.

```
fun variant: the number of elements of L
```

(11 points)
c. Construct another SML function for `compress`. Use recursion. Use the indicated variant. Use at most one new function (the space for it is provided on the next page).

```
fun variant: the number of plateaus of L
```
If you needed a new function, then give a **most general** specification and construct it here:

```sml
function
sig:
pre:
post:

ex:
fun
```

Question 2 Specification of a `nat` ADT (14 points)

A **prime number** is a positive integer having exactly one positive divisor other than 1.

Given a positive integer \(n \) such that \(n > 1 \), its **prime factorisation** is \(n \) rewritten as a product of prime numbers.

For example, \(2 = 2 \), \(3 = 3 \), \(4 = 2 \cdot 2 = 2^2 \), \(5 = 5 \), \(6 = 2 \cdot 3 \), \(7 = 7 \), \(8 = 2 \cdot 2 \cdot 2 = 2^3 \), \(9 = 3 \cdot 3 = 3^2 \), \(10 = 2 \cdot 5 \), \(11 = 11 \), \(12 = 2 \cdot 2 \cdot 3 = 2^2 \cdot 3 \), etc.

A positive integer \(n \) such that \(n > 1 \) can thus be rewritten as a product \(p_1^{a_1} \cdot \ldots \cdot p_q^{a_q} \)

where the \(p_i \) are prime numbers — called the **prime factors** of \(n \) — and the powers \(a_i \) are positive integers.

Additionally, we arbitrarily define the prime factorisation of 0 to be \(0^1 \), and the one of 1 to be \(1^1 \), although 0 and 1 are not prime numbers, so that **every** natural number (non-negative integer) has a prime factorisation.

The prime factorisation of any natural number is **unique**.

Without reading Question 3, specify the following functions for an SML abstract datatype (ADT) — called `nat` — for natural numbers (that is, non-negative integers):

(2 points)
d. The function `intToNat` converts a non-negative integer into a natural number.

```sml
function intToNat i
  sig:
  pre:
  post:
```

(2 points)
e. The function `natToInt` converts a natural number into an integer.

```sml
function natToInt n
  sig:
  pre:
  post:
```
f. The function primeFactors returns the non-decreasing list of integer prime factors of a natural number.

 function primeFactors n
 sig:
 pre:
 post:
 ex: primeFactors (intToNat 12) = [2,2,3]

(3 points)

(3 points)

(4 points)

Question 3 Realisation of the nat ADT (48 points)

Realise the nat ADT, using a representation that is based on the prime factorisation. The natural number with the prime factorisation $p_1^{a_1} \cdot \cdots \cdot p_q^{a_q}$ is to be represented by $\text{PF } [(p_1, a_1), \ldots, (p_q, a_q)]$. The representation invariant is that the prime factors are strictly increasing from left to right across the list, which must be non-empty, and that all the powers are positive. Answer the following sub-questions.

(2 points)
i. Declare the realisation of the nat ADT.

 abstype nat =
 with (* here comes the code of the other sub-questions *) end

(11 points)
j. Realise the intToNat function. Assume there are SML functions for the following two specifications:

 function candidates i
 sig: int -> int list
 pre: i > 1
 post: the candidate prime factors of i, in increasing order

 function divGen i j
 sig: int -> int -> int * int
 pre: j > 1
 post: (q,d) where q is maximal such that j^q divides i, and d = i / j^q
 ex: divGen 40 2 = (3,5) ; divGen 9 2 = (0,9)
Indeed, $40 = 2^3 \cdot 5$ and $9 = 2^0 \cdot 9$. Note that the first component of $\text{divGen} \ i \ j$ is 0 if and only if i is not divisible by j. Use at most one new function. Use no recursion for intToNat. Use the idea of reducing the given integer by successively trying all its candidate prime factors, in increasing order.

$\text{ex: } \text{intToNat} \ 180 = \text{PF} \ [(2,2),(3,2),(5,1)]$

$\text{fun } \text{intToNat}$

If you needed a new function, then specify it and construct it here:

function

sig:

pre:

post:

ex:

fun

variant:

(15 points) k. Realise the natToInt function. Use recursion. Use no new functions, not even exponentiation.

$\text{ex: } \text{natToInt} \ (\text{PF} \ [(2,2),(3,2),(5,1)]) = 180$

$\text{fun } \text{natToInt}$

variant:

Is this SML function tail-recursive or not? Why / Why not?
If not, then specify a descending generalisation (which introduces an accumulator) of `natToInt` and construct a tail-recursive SML function for it here:

```sml
function
sig:
pre:
pst:
ex:
fun

variant:
Non-recursively re-realise the `natToInt` function. Use only the generalisation that you have specified.

fun
```

(7 points)
1. Realise the `primeFactors` function. Use recursion. Use no new functions.

```sml
val rec primeFactors =
```

variant:
Is this function tail-recursive or not? Why / Why not?

If not, can we apply the descending generalisation (accumulator-introduction) technique to specify a generalisation that can be implemented using tail-recursion? Why / Why not?

(1 point)
m. Realise the `plus` function. Use no recursion. Use no new functions other than from the ADT.

```sml
ex: PF [(2,2),(3,1)] plus PF [(3,1),(5,1)] = PF [(3,3)]  
infex plus 
fun
```
n. Realise the \texttt{times} function. Use \textbf{no} recursion for \texttt{times}. Examine and use \textbf{only} the new function \texttt{mmm} below, which works on prime-factor lists without the \texttt{PF} value constructor.

\texttt{ex: PF [(2,2),(3,1)] times PF [(3,1),(5,1)] = PF [(2,2),(3,2),(5,1)]}

\textbf{infix} \texttt{times}

\textbf{fun}

\begin{verbatim}
function mmm a b
 sig:
 pre:
 post:

ex: mmm [(2,2),(3,1)] [(3,1),(5,1)] = [(2,2),(3,2),(5,1)]

fun mmm

\end{verbatim}

\textbf{variant:}

\hline

You may draw pictures or take scratch notes from here on!