
Name: Page 1 of 7

Uppsala University
MN Functional Programming
Period 2, Autumn 2003
Exam 2
Tuesday 13 January 2004, from 08:00 to 13:00

Global Instructions
Read these instructions, as well as the actual questions, very carefullybefore attempting to solve the problems.

Especially pay attention tostressed words (in boldface). The questions have been engineered to have many

short and elegant answers.If you get into some lengthy or difficult reasoning, you are probably on the wrong

track and might benefit from re-reading the question.

This question set is double-sided.To the extent possible, write your answers into the gaps. The provided

space is really sufficient each time.Write your name ontoevery sheet.This is an exam withclosed books and

notes.An English-Swedish dictionary may be available at the front desk.Normally, the instructor will come

and answer questions between 10:00 and 11:00.

To save time, program in anon-defensive style. Provide a specification (at least the names of the argument

components, a signature, a pre-condition, a post-condition involving all the names of the argument components,

anduseful examples) forevery function you construct.Each specificationmust be suitable for justifying your

function or for constructing another function.Provide a justification outline (the chosen variant) forevery

recursive function you construct.You neednot provide any other justifications, but the given onesmust

correspond to your function.For instance, each clause shouldnot be redundant with previous clauses.Failure

to provide such a specification or justification outline for at least one function of a sub-question will result in

zero points for that entire sub-question, even if the function is actually correct.If you cannot comply with a

requirement of a sub-question, such as the presence or absence of recursion, the indicated variant, or the number

of new functions, thenexplicitly lift that requirement and proceed without it.

You mayonly use the directives and functions of thestandard library of SML. Do not use higher-order

functions,except where explicitly requested.The instructor’s solutions to the questions only involve = , < ,

>, + , - , ∗, :: , abstype…with…end , as , fn , fun , hd , if…then…else , int , infix ,

let…in…end , list , nil , of , rec , and val . Exact SML syntax is not required.Layout is

unimportant, but please be considerate.

Unless otherwise posted, the instructor isonly interested in correct SML functions.Any attempts at efficient

functions are purely at your own risk, namely the risk of missing out on correctness or of losing time.

The 4 credit points for this exam are awarded if your exam points are in the interval

[50%,100%]. Furthermore, avery-good (VG) pass grade is earned for the interval [85%,100%], while agood

(G) pass grade is earned for the interval [50%,84%]. Otherwise, an “underkänd” (U) fail grade is earned.

For official use (do not write below this line):

Q1 Q2 Q3 Exam

/ 18 / 14 / 48 / 80

Name: Page 2 of 7

Question 1 Methodology and Recursion (18 points)
A segment of a list is a prefix of a suffix of that list.

For example, the lists [], [4,5], and [2,1,4,5,3] are segments of [2,1,4,5,3].

A plateau of a list is a segment thereof with all-equal elements but different previous and next elements, if any.

For example, the list [2,2] is a plateau of [4,2,2,3,3,3,1], but its segments [2,2,3] and [2] are not plateaus thereof.

The compression of a list L is a list of (xi,ci) pairs, such that the ith plateau of L has ci elements equal to xi.

For example, the compression of [4,2,2,2,2,3,3,3,4,4] is [(4,1),(2,4),(3,3),(4,2)].

Using the concept names above, answer the following sub-questions.

a. Specify a function compress returning the compression of an arbitrary list.

function compress L

sig:

pre:

post:

ex: compress [4,2,2,2,2,3,3,3,4,4] = [(4,1),(2,4),(3,3),(4,2)]

b. Construct a first SML function for compress. Use recursion. Use the indicated variant. Use no new

functions.

fun

variant: the number of elements of L

c. Construct another SML function for compress. Use recursion. Use the indicated variant. Use at

most one new function (the space for it is provided on the next page).

fun

variant: the number of plateaus of L

(2 points)

(5 points)

(11 points)

Name: Page 3 of 7

If you needed a new function, then give amostgeneral specification and construct it here:

function

sig:

pre:

post:

ex:

fun

variant:

Question 2 Specification of a nat ADT (14 points)
A prime number is a positive integer having exactly one positive divisor other than 1.

Given a positive integern such thatn > 1, its prime factorisation is n rewritten as a product of prime numbers.

For example, 2 = 2,3 = 3, 4 = 2· 2 = 22, 5 = 5, 6 = 2· 3, 7 = 7, 8 = 2· 2 · 2 = 23, 9 = 3· 3 = 32, 10 = 2· 5,

11 = 11, 12 = 2· 2 · 3 = 22 · 3, etc.

A positive integern such thatn > 1 can thus be rewritten as a productp1
a1 · ⋅⋅⋅ · pq

aq

where thepi are prime numbers — called theprime factors of n —and the powersai are positive integers.

Additionally, we arbitrarily define the prime factorisation of 0 to be 01, and the one of 1 to be 11, although 0

and1 are not prime numbers, so thatevery natural number (non-negative integer) has a prime factorisation.

The prime factorisation of any natural number isunique.

Without reading Question 3, specify the following functions for an SML abstract datatype (ADT) — called

nat — for natural numbers (that is, non-negative integers):

d. The function intToNat converts a non-negative integer into a natural number.

function intToNat i

sig:

pre:

post:

e. The function natToInt converts a natural number into an integer.

function natToInt n

sig:

pre:

post:

(2 points)

(2 points)

Name: Page 4 of 7

f. The function primeFactors returns the non-decreasing list of integer prime factors of a natural number.

function primeFactors n

sig:

pre:

post:

ex: primeFactors (intToNat 12) = [2,2,3]

g. The infix function plus, which returns the sum of two natural numbers.

function a plus b

sig:

pre:

post:

ex:

h. The infix function times returns the product of two natural numbers that are larger than 1.

function a times b

sig:

pre:

post:

ex:

Question 3 Realisation of the nat ADT (48 points)
Realise the nat ADT, using a representation that is based on the prime factorisation. The natural number

with the prime factorisation p1
a1 · ⋅⋅⋅ · pq

aq is to be represented by PF [(p1,a1),...,(pq,aq)]. The

representation invariant is that the prime factors are strictly increasing from left to right across the list, which

must be non-empty, and that all the powers are positive. Answer the following sub-questions.

i. Declare the realisation of the nat ADT.

abstype nat =

with (∗ here comes the code of the other sub-questions ∗) end

j. Realise the intToNat function. Assume there are SML functions for the following two specifications:

function candidates i

sig: int → int list

pre: i > 1

post: the candidate prime factors of i, in increasing order

ex: candidates 10 = [2,3,5,7] ; candidates 11 = [2,3,5,7,11]

function divGen i j

sig: int → int → int ∗ int

pre: j > 1

post: (q,d) where q is maximal such that jq divides i, and d = i / jq

ex: divGen 40 2 = (3,5) ; divGen 9 2 = (0,9)

(3 points)

(3 points)

(4 points)

(2 points)

(11 points)

Name: Page 5 of 7

Indeed, 40 = 23 · 5 and 9 = 20 · 9. Note that the first component of divGen i j is 0 if and only if

i is not divisible by j. Use at most one new function. Use no recursion for intToNat. Use the idea

of reducing the given integer by successively trying all its candidate prime factors, in increasing order.

ex: intToNat 180 = PF [(2,2),(3,2),(5,1)]

fun intToNat

If you needed a new function, then specify it and construct it here:

function

sig:

pre:

post:

ex:

fun

variant:

k. Realise the natToInt function. Use recursion. Use no new functions, not even exponentiation.

ex: natToInt (PF [(2,2),(3,2),(5,1)]) = 180

fun natToInt

variant:

Is this SML function tail-recursive or not? Why / Why not?

(15 points)

Name: Page 6 of 7

If not, then specify a descending generalisation (which introduces an accumulator) of natToInt and

construct a tail-recursive SML function for it here:

function

sig:

pre:

post:

ex:

fun

variant:

Non-recursively re-realise the natToInt function. Use only the generalisation that you have specified.

fun

l. Realise the primeFactors function. Use recursion. Use no new functions.

val rec primeFactors =

variant:

Is this function tail-recursive or not? Why / Why not?

If not, can we apply the descending generalisation (accumulator-introduction) technique to specify a

generalisation that can be implemented using tail-recursion? Why / Why not?

m. Realise the plus function. Use no recursion. Use no new functions other than from the ADT.

ex: PF [(2,2),(3,1)] plus PF [(3,1),(5,1)] = PF [(3,3)]

infix plus

fun

(7 points)

(1 point)

Name: Page 7 of 7

n. Realise the times function. Use no recursion for times. Examine and use only the new function

mmm below, which works on prime-factor lists without the PF value constructor.

ex: PF [(2,2),(3,1)] times PF [(3,1),(5,1)] = PF [(2,2),(3,2),(5,1)]

infix times

fun

function mmm a b

sig:

pre:

post:

ex: mmm [(2,2),(3,1)] [(3,1),(5,1)] = [(2,2),(3,2),(5,1)]

fun mmm

variant:

You may draw pictures or take scratch notes from here on!

(12 points)

