Name: Page 1 of 7

Uppsala University

MN Functional Programming

Period 2, Autumn 2003

Exam 2

Tuesday 13 January 2004, from 08:00 to 13:00

Global I nstructions

Read these instructions, as well as the actual questems;arefullybefor e attempting to sok the problems.
Especially pay attention teiressed words (in boldéce). The questions & been engineered tovgamary
short and elgant answerslf you get into some lengghor difficult reasoning, you are probably on the wrong
track and might benefit from re-reading the question.

This question set is double-sidetb the atent possible, write your answers into thepsg. The pravided
space is really sfi€ient each time Write your name ontevery sheet. This is an gam withclosed books and
notes. An English-Swedish dictionary may beadable at the front desiiNormally, the instructor will come
and answer questions between 10:00 and 11:00.

To save time, program in aon-defensive style. Provide a specification (at least the names of tgeraent
components, a signature, a pre-condition, a post-conditrolving all the names of thegument components,
anduseful examples) forevery function you constructEach specificatiomust be suitable for justifying your
function or for constructing another functioRrovide a justification outline (the choseariant) forevery
recursive function you constructYou neednot provide ary other justifications, it the gven onesmust
correspond to your functiorf-or instance, each clause shontd be redundant with pvéous clausesFailure
to provide such a specification or justification outline for at least one function of a sub-question will result in
zero points for that entire sub-questiovere if the function is actually correckf you cannot comply with a
requirement of a sub-question, such as the presence or absence of recursion, the iadarateat the number
of new functions, therexplicitly lift that requirement and proceed without it.

You mayonly use the directes and functions of thgandard library of SML. Do not use higheorder
functions,except where eplicitly requested.The instructos solutions to the questions onlyaive =, <,
> +,-, 0O , abstype...with...end , as, fn , fun , hd, if...then...else , int , infix
let...in...end , list , nil , of , rec , and val . Exact SML syntax is not required.ayout is
unimportant, bit please be considerate.

Unless otherwise posted, the instructarily interested in correct SML functiongny attempts at étient
functions are purely at youmnm risk, namely the risk of missing out on correctness or of losing time.

The 4 credit points for this xam are warded if your ®am points are in the inteak
[50%,100%)]. Furthermore, aery-good(VG) pass grade is earned for the inté¢{85%,100%], while good
(G) pass grade is earned for the iné{80%,84%]. Otherwise, anutnderkénd (U) fail grade is earned.

For official use (do not write belothis line):

Q1 Q2 Q3 Exam
/18 /14 /48 /80

Name: Page 2 of 7

Question 1 Methodology and Recursion (18 points)

A segment of alist isaprefix of asuffix of that list.
For example, thelists([], [4,5], and [2,1,4,5,3] are segments of [2,1,4,5,3].
A plateau of alist isasegment thereof with all-equal elements but different previous and next elements, if any.
For example, thelist [2,2] isaplateau of [4,2,2,3,3,3,1], but its segments [2,2,3] and [2] are not plateaus thereof.
The compression of alist L isalist of (x;,c;) pairs, such that the ith plateau of L has ¢; elements equal to ;.
For example, the compression of [4,2,2,2,2,3,3,3,4,4] is[(4,1),(2,4),(3,3),(4,2)].
Using the concept names above, answer the following sub-questions.
(2 paints) a. Specify afunction conpr ess returning the compression of an arbitrary list.
function conpress L
si g:
pre:
post :
ex: conpress [4,2,2,2,2,3,3,3,4,4 =1(4,1),(2,4),(3,3),(4,2)]
(5 points) b. Construct afirst SML function for conpr ess. Userecursion. Usetheindicated variant. Use no new
functions.

fun

variant: the nunber of elenents of L
(11 points) c. Construct another SML function for conpress. Use recursion. Use the indicated variant. Use at
most one new function (the space for it is provided on the next page).

fun

vari ant: the nunber of plateaus of L

Name: Page 3 of 7

If you needed a nefunction, then gie amost general specification and construct it here:
function
sig:
pre:

post :

ex:

fun

vari ant:

Question 2 Specification of anat ADT (14 points)

A prime numbeis a positie intager haing exactly one positie divisor other than 1.

Given a positie integern such thah > 1, its prime factorisations n rewritten as a product of prime numbers.
For example, 2=23=3,4=2.2=2,5=5,6=2-3,7=7,8=2.2-2=2°,9=3-3=%, 10=2-5,
11=11,12=2.2-3=2-3, etc.

A positive integern such thah > 1 can thus be reritten as a producp;®. - I} p,*

where thep; are prime numbers — called theme factos of n —and the pwersa, are positre integers.

Additionally, we arbitrarily define the primadtorisation of 0 to belpand the one of 1 to bé,lalthough 0
and1 are not prime numbers, so teaery natural number (non-getive integer) has a primeattorisation.
The prime &ctorisation of annatural number ignique.
Without reading Question 3, specify the feliag functions for an SML abstract datatype (ADT) — called
nat — for natural numbers (that is, nongaéve integers):
(2 points) d. The functioni nt ToNat corverts a non-ngative integer into a natural numher
function intToNat i
si g:
pre:
post :
(2 points) e. The function nat Tol nt corverts a natural number into an igés
function natTolnt n
si g:
pre:

post :

Name: Page 4 of 7

f. Thefunctionpri meFact or s returnsthe non-decreasing list of integer prime factors of anatural number.

(3 points)
function prineFactors n
sig:
pre:
post :
ex: primeFactors (intToNat 12) = [2, 2, 3]
(3 points) g. Theinfix function pl us, which returns the sum of two natural numbers.
function a plus b
sig:
pre:
post :
ex:
(4 points) h. Theinfix function ti nmes returnsthe product of two natural numbers that are larger than 1.
function a tines b
sig:
pre:
post :
ex:
Question 3 Realisation of the nat ADT (48 points)
Redlisethe nat ADT, using arepresentation that is based on the prime factorisation. The natural number
with the prime factorisation p;®1 - I p,® is to be represented by PF [(py, a7), ..., (Pg ag)]. The
representation invariant isthat the prime factors are strictly increasing from left to right across the list, which
must be non-empty, and that all the powers are positive. Answer the following sub-questions.
(2 points) i. Declaretheredisation of the nat ADT.
abstype nat =
with (O here cones the code of the other sub-questions [end
(11 points) j- Redisethe i nt ToNat function. Assumethereare SML functionsfor the following two specifications:

function candi dates i

sig: int - int list

pre: i >1

post: the candidate prine factors of i, in increasing order

ex: candidates 10 =[2,3,5,7] ; candidates 11 =[2,3,5,7,11]
function divGen i j

sig: int -~ int - int Oint

pre: j > 1

post: (qg,d) where q is maximal such that j9 divides i, and d =i / ¢
ex: divGen 40 2 = (3,5) ; divGen 9 2 = (0,9)

Name: Page5 of 7

Indeed, 40=23.5 and 9=29.9. Note that the first component of di vGen i j is O if andonly if
i isnotdivisibleby j. Useat most onenew function. Usenorecursionfor i nt ToNat . Usetheidea
of reducing the given integer by successively trying all its candidate prime factors, in increasing order.
ex: intToNat 180 = PF [(2,2),(3,2),(5,1)]
fun int ToNat

If you needed a new function, then specify it and construct it here:
function
sig:
pre:

post :

ex:

fun

vari ant:
(15 points) k. Redisethe nat Tol nt function. Userecursion. Use no new functions, not even exponentiation.
ex: natTolnt (PF [(2,2),(3,2),(5,1)]) = 180

fun nat Tol nt

vari ant:

Isthis SML function tail-recursive or not? Why / Why not?

Name: Page 6 of 7

If not, then specify a descending generalisation (which introduces an accumulator) of nat Tol nt and
construct atail-recur sive SML function for it here:

function

sig:

pre:

post :

ex:

fun

vari ant:
Non-recursively re-reglisethe nat Tol nt function. Use only the generalisation that you have specified.
fun
(7 points) I. Redlisethe pri meFact ors function. Userecursion. Use no new functions.

val rec prinmeFactors =

vari ant:

Isthis function tail-recursive or not? Why / Why not?

If not, can we apply the descending generalisation (accumulator-introduction) technique to specify a

generalisation that can be implemented using tail-recursion? Why / Why not?

(1 point) m. Realisethe pl us function. Useno recursion. Use no new functions other than from the ADT.
ex: PF[(2,2),(3,1)] plus PF[(3,1),(5,1)] = PF[(83,3)]
i nfix plus

fun

Name: Page 7 of 7

(12 points) n. Redisethe times function. Use no recursion for ti mes. Examine and use only the new function
nmm below, which works on prime-factor lists without the PF value constructor.
ex: PF[(2,2),(3,1)] times PF [(3,1),(5,1)] =PF[(2,2),(3,2),(5,1)]
infix tinmes

fun

function mma b
sig:
pre:

post :

ex: mmm [(2,2),(3,1)] [(31).(51)] =1[(2,2),(3,2),(51)]

fun mmm

vari ant:

You may draw pictures or take scratch notes from here on!

