Pumping Lemma for CFLs

In any sufficiently long string in a CFL, it is possible to find at most two short, nearby substrings that we can "pump" i times in tandem, for any integer i, and the resulting string will still be in that language.

Pumping lemma for CFLs: Let L be a CFL. Then there exists a constant n such that if $z \in$ L with $|z| \geq n$, then we can write $z=u v w x y$, subject to the following conditions:

1. $|v w x| \leq n$.
2. $v x \neq \epsilon$.
3. For all $i \geq 0$, we have $u v^{i} w x^{i} y \in L$.

Informal Proof

If the string z is sufficiently long, then the parse tree produced by z has a variable symbol that is repeated on a path from the root to a leaf. Suppose $A_{i}=A_{j}$, such that the overall parse tree has yield $z=u v w x y$, the subtree for root A_{j} has yield w, and the subtree for root A_{i} has yield $v w x$.

We can replace the subtree for root A_{i} with the subtree for root A_{j}, giving a tree with yield uwy (corresponding to the case $i=0$), which also belongs to L.

We can replace the subtree for root A_{j} with the subtree for root A_{i}, giving a tree with yield $u v^{2} w x^{2} y$ (corresponding to the case $i=2$), which also belongs to L.

Etc.

Examples

While CFLs can match two sub-strings for (in) equality of length, they cannot match three such sub-strings.

Example 1: Consider $L=\left\{0^{m} 1^{m} 2^{m} \mid m \geq 1\right\}$.
Pick n of the pumping lemma. Pick $z=0^{n} 1^{n} 2^{n}$. Break z into uvwxy, with $|v w x| \leq n$ and $v x \neq \epsilon$. Hence $v w x$ cannot involve both 0 s and 2 s , since the last 0 and the first 2 are at least $n+1$ positions apart. There are two cases:

- $v w x$ has no 2 s . Then $v x$ has only Os and 1s. Then uwy, which would have to be in L, has $n 2 \mathrm{~s}$, but fewer than $n 0 \mathrm{~s}$ or 1 s .
- $v w x$ has no Os. Analogous.

Hence L is not a CFL.

Examples (continued)

CFLs cannot match two pairs of sub-strings of equal lengths if the pairs interleave.

Example 2: Consider $L=\left\{0^{i} 1^{j} 2^{i} 3^{j} \mid i, j \geq 1\right\}$.
Pick n of the pumping lemma. Pick $z=0^{n} 1^{n} 2^{n} 3^{n}$. Break z into uvwxy, with $|v w x| \leq n$ and $v x \neq \epsilon$. Then vwx contains one or two different symbols. In both cases, the string uwy cannot be in L.

CFLs cannot match two sub-strings of arbitrary length over an alphabet of at least two symbols.

Example 3: Consider $L=\left\{w w \mid w \in\{0,1\}^{*}\right\}$.
Pick n of the pumping lemma. Pick $z=0^{n} 1^{n} 0^{n} 1^{n}$. In all cases, the string uwy cannot be in L.

