(Particular Cases of the) Master Theorem

Pierre Flener, Ruslan Fomkin, and Justin Pearson

March 19, 2007

Suppose the recursive case of a recurrence is of the form

$$
T(n)=a \cdot T\left(\frac{n}{b}\right)+f(n)
$$

meaning that there are $a>0$ recursive calls, each over an input that is $b>0$ times smaller than the original input, whereas dividing the input and combining the outputs of the recursive calls take a total of $\Theta(f(n))$ time. The following table gives closed forms for some common cases of this recurrence:

$a=1$	$b=2$	$f(n)=\Theta(1)$	$T(n)=\Theta(\log n)$
$a=1$	$b=2$	$f(n)=\Theta(n \log n)$	$T(n)=\Theta(n \log n)$
$a=1$	$b=2$	$f(n)=\Theta\left(n^{k}\right)$, with $k>0$	$T(n)=\Theta\left(n^{k}\right)$
$a=2$	$b=2$	$f(n)=\Theta(1)$	$T(n)=\Theta(n)$
$a=2$	$b=2$	$f(n)=\Theta(\log n)$	$T(n)=\Theta(n)$
$a=2$	$b=2$	$f(n)=\Theta(n)$	$T(n)=\Theta(n \log n)$
$a=2$	$b=2$	$f(n)=\Theta\left(n^{k}\right)$, with $k>1$	$T(n)=\Theta\left(n^{k}\right)$

The general case and its mathematics are explained in [1], for instance.

References

[1] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction to Algorithms (second edition). The MIT Press, 2001. See http://mitpress.mit.edu/algorithms/.

