Topic 14: Propagation ${ }^{1}$
 (Version of 6th November 2020)

Pierre Flener

Optimisation Group
Department of Information Technology
Uppsala University
Sweden

Course 1DL441:
Combinatorial Optimisation and Constraint Programming, whose part 1 is Course 1DL451: Modelling for Combinatorial Optimisation
${ }^{1}$ Based partly on material by Christian Schulte

Outline

Intuition

Example 1

Example 2
Example 3
Algorithms
Reminders of
Discrete Mathematics
Solving: Overview

Propagator for a

Constraint
Fixpoint of Mutiple Propagators

1. Intuition

Example 1
Example 2
Example 3
2. Algorithms

Reminders of Discrete Mathematics
Solving: Overview
Propagator for a Constraint
Fixpoint of Multiple Propagators

Outline

Intuition

Example 1
Example 2
Example 3
Algorithms
Reminders of
Discrete Mathematics
Solving: Overview
Propagator for a
Constraint
Fixpoint of Multiple Propagators

1. Intuition

Example 1 Example 2 Example 3
2. Algorithms

Reminders of Discrete Mathematics
Solving: Overview
Propagator for a Constraint
Fixpoint of Multiple Propagators

Outline

Intuition

Example 1

Example 2
Example 3
Algorithms
Reminders of
Discrete Mathematics
Solving: Overview
Propagator for a
Constraint
Fixpoint of Multiple Propagators

1. Intuition

Example 1
Example 2
Example 3
2. Algorithms

Reminders of Discrete Mathematics
Solving: Overview
Propagator for a Constraint
Fixpoint of Multiple Propagators

Intuition

Example (Agricultural experiment design, AED)

	plot1	plot2	plot3	plot4	plot5	plot6	plot7
barley	\checkmark	\checkmark	\checkmark	-	-	-	-
corn	\checkmark	-	-	\checkmark	\checkmark	-	-
millet	\checkmark	-	-	-	-	\checkmark	\checkmark
oats	-	\checkmark	-	\checkmark	-	\checkmark	-
rye	-	\checkmark	-	-	\checkmark	-	\checkmark
spelt	-	-	\checkmark	\checkmark	-	-	\checkmark
wheat	-	-	\checkmark	-	\checkmark	\checkmark	-

Constraints to be satisfied:
1 Equal growth load: Every plot grows 3 grains.
2 Equal sample size: Every grain is grown in 3 plots.
3 Balance: Every grain pair is grown in 1 common plot. Instance: 7 plots, 7 grains, 3 grains/plot, 3 plots/grain, balance 1.

General term: balanced incomplete block design (BIBD).

UPPSALA UNIVERSITET

Intuition

Example (Agricultural experiment design, AED)

	plot1	plot2	plot3	plot4	plot5	plot6	plot7
barley	1	1	1	0	0	0	0
corn	1	0	0	1	1	0	0
millet	1	0	0	0	0	1	1
oats	0	1	0	1	0	1	0
rye	0	1	0	0	1	0	1
spelt	0	0	1	1	0	0	1
wheat	0	0	1	0	1	1	0

Constraints to be satisfied:
1 Equal growth load: Every plot grows 3 grains.
2 Equal sample size: Every grain is grown in 3 plots.
3 Balance: Every grain pair is grown in 1 common plot. Instance: 7 plots, 7 grains, 3 grains/plot, 3 plots/grain, balance 1.

General term: balanced incomplete block design (BIBD).

In a BIBD, the plots are blocks and the grains are varieties:

Example (BIBD integer model: $\checkmark \rightsquigarrow 1$ and $-\rightsquigarrow 0$)

Intuition

Example 1

Example 2

Example 3
Algorithms

Reminders of

 Discrete Mathemalics Solving: Overview Propagator for a Constraint```
-3 enum Varieties; enum Blocks;
-2 int: blockSize; int: sampleSize; int: balance;
-1 array[Varieties,Blocks] of var 0..1: BIBD;
0 solve satisfy;
1 constraint forall(b in Blocks)
 (blockSize = count(BIBD[..,b], 1));
2 constraint forall(v in Varieties)
 (sampleSize = count(BIBD[v,..], 1));
3 constraint forall(v, w in Varieties where v < w)
 (balance = count([BIBD[v,b]*BIBD[w,b] | b in Blocks], 1));
```


## Example (Instance data for our AED)

```
-3 Varieties = {barley,...,wheat}; Blocks = {plot1,...,plot7};
```

-2 blockSize $=3$; sampleSize $=3$; balance $=1$;

## Store after filling the first four rows

Intuition
Example 1

Example 2

Example 3
Algorithms
Reminders of Discrete Mathematics
Solving: Overview Propagator for a Constraint

## Example (BIBD integer model)

| barley corn millet oats rye spelt wheat | plot1 | plot2 | plot3 | plot4 | plot5 | plot6 | plot7 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\checkmark$ | $\checkmark$ | $\checkmark$ | - | - | - | - |
|  | $\checkmark$ | - | - | $\checkmark$ | $\checkmark$ | - | - |
|  | $\checkmark$ | - | - | - | - | $\checkmark$ | $\checkmark$ |
|  | - | $\checkmark$ | - | $\checkmark$ | - | $\checkmark$ | - |
|  | ? |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |

## Store after filling the first four rows

## Example (BIBD integer model)

| barley corn millet oats rye spelt wheat | plot1 | plot2 | plot3 | plot4 | plot5 | plot6 | plot7 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\checkmark$ | $\checkmark$ | $\checkmark$ | - | - | - | - |
|  | $\checkmark$ | - | - | $\checkmark$ | $\checkmark$ | - | - |
|  | $\checkmark$ | - | - | - | - | $\checkmark$ | $\checkmark$ |
|  | - | $\checkmark$ | - | $\checkmark$ | - | $\checkmark$ | - |
|  | ? |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |

But plot1 cannot grow rye as that would violate the first constraint (every plot grows 3 grains).

## Store after filling the first four rows

## Example (BIBD integer model)

| barley corn millet oats rye spelt wheat | plot1 | plot2 | plot3 | plot4 | plot5 | plot6 | plot7 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\checkmark$ | $\checkmark$ | $\checkmark$ | - | - | - | - |
|  | $\checkmark$ | - | - | $\checkmark$ | $\checkmark$ | - | - |
|  | $\checkmark$ | - | - | - | - | $\checkmark$ | $\checkmark$ |
|  | - | $\checkmark$ | - | $\checkmark$ | - | $\checkmark$ | - |
|  | - |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |

But plot1 cannot grow rye as that would violate the first constraint (every plot grows 3 grains).

## Store after filling the first four rows

Intuition
Example 1
Example 2
Example 3
Algorithms
Reminders of Discrete Mathematics
Solving: Overview Propagator for a Constraint

## Example (BIBD integer model)

| barley corn | plot1 | plot2 | plot3 | plot4 | plot5 | plot6 | plot7 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\checkmark$ | $\checkmark$ | $\checkmark$ | - | - | - | - |
|  | $\checkmark$ | - | - | $\checkmark$ | $\checkmark$ | - | - |
| millet | $\checkmark$ | - | - | - | - | $\checkmark$ | $\checkmark$ |
| oats | - | $\checkmark$ | - | $\checkmark$ | - | $\checkmark$ | - |
| rye | - |  |  |  |  |  |  |
| spelt |  |  |  |  |  |  |  |
| wheat |  |  |  |  |  |  |  |

But plot1 cannot grow rye as that would violate the first constraint (every plot grows 3 grains). Actually, plot1 cannot grow oats, spelt, or wheat either, for the same reason, and this was already propagated when trying the search guess that plot1 grow millet!

## Store after filling the first four rows

## Example (BIBD integer model)

| barley corn millet oats rye spelt wheat | plot1 | plot2 | plot3 | plot4 | plot5 | plot6 | plot7 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\checkmark$ | $\checkmark$ | $\checkmark$ | - | - | - | - |
|  | $\checkmark$ | - | - | $\checkmark$ | $\checkmark$ | - | - |
|  | $\checkmark$ | - | - | - | - | $\checkmark$ | $\checkmark$ |
|  | - | $\checkmark$ | - | $\checkmark$ | - | $\checkmark$ | - |
|  | - |  |  |  |  |  |  |
|  | - |  |  |  |  |  |  |
|  | - |  |  |  |  |  |  |

But plot1 cannot grow rye as that would violate the first constraint (every plot grows 3 grains). Actually, plot1 cannot grow oats, spelt, or wheat either, for the same reason, and this was already propagated when trying the search guess that plot1 grow millet!

## Continuing ...

## Example (BIBD integer model)

## Intuition

Example 1
Example 2
Example 3
Algorithms
Reminders of Discrete Mathemaics
Solving: Overview
Propagator for a
Constraint

## Fixpoint of Multiple

 Propagators| barley corn millet oats rye spelt wheat | plot1 | plot2 | plot3 | plot4 | plot5 | plot6 | plot7 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\checkmark$ | $\checkmark$ | $\checkmark$ | - | - | - | - |
|  | $\checkmark$ | - | - | $\checkmark$ | $\checkmark$ | - | - |
|  | $\checkmark$ | - | - | - | - | $\checkmark$ | $\checkmark$ |
|  | - | $\checkmark$ | - | $\checkmark$ | - | $\checkmark$ | - |
|  | - | ? |  |  |  |  |  |
|  | - |  |  |  |  |  |  |
|  | - |  |  |  |  |  |  |

## Continuing an -

Intuition
Example 1

Example 2

Example 3
Algorithms
Reminders of Discrete Mathematics Solving: Overview Propagator for a Constraint

## Example (BIBD integer model)

| barley corn millet oats rye spelt wheat | plot1 | plot2 | plot3 | plot4 | plot5 | plot6 | plot7 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\checkmark$ | $\checkmark$ | $\checkmark$ | - | - | - | - |
|  | $\checkmark$ | - | - | $\checkmark$ | $\checkmark$ | - | - |
|  | $\checkmark$ | - | - | - | - | $\checkmark$ | $\checkmark$ |
|  | - | $\checkmark$ | - | $\checkmark$ | - | $\checkmark$ | - |
|  | - | ? |  |  |  |  |  |
|  | - |  |  |  |  |  |  |
|  | - |  |  |  |  |  |  |

Guess: Let plot2 grow rye. Strategy: $\boldsymbol{\checkmark}$ guesses first.

## Continuing an -

Intuition
Example 1

Example 2

Example 3
Algorithms
Reminders of Discrete Mathematics Solving: Overview Propagator for a Constraint

## Fixpoint of Multiple

 Propagators
## Example (BIBD integer model)

| barley corn millet oats rye spelt wheat | plot1 | plot2 | plot3 | plot4 | plot5 | plot6 | plot7 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\checkmark$ | $\checkmark$ | $\checkmark$ | - | - | - | - |
|  | $\checkmark$ | - | - | $\checkmark$ | $\checkmark$ | - | - |
|  | $\checkmark$ | - | - | - | - | $\checkmark$ | $\checkmark$ |
|  | - | $\checkmark$ | - | $\checkmark$ | - | $\checkmark$ | - |
|  | - | $\checkmark$ |  |  |  |  |  |
|  | - |  |  |  |  |  |  |
|  | - |  |  |  |  |  |  |

Guess: Let plot2 grow rye. Strategy: $\boldsymbol{\checkmark}$ guesses first.

## Continuing ...

## Intuition

Example 1

Example 2

Example 3
Algorithms
Reminders of Discrete Mathematics
Solving: Overview Propagator for a Constraint

## Fixpoint of Multiple

 PropagatorsExample (BIBD integer model)

| barley corn millet oats rye spelt wheat | plot1 | plot2 | plot3 | plot4 | plot5 | plot6 | plot7 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\checkmark$ | $\checkmark$ | $\checkmark$ | - | - | - | - |
|  | $\checkmark$ | - | - | $\checkmark$ | $\checkmark$ | - | - |
|  | $\checkmark$ | - | - | - | - | $\checkmark$ | $\checkmark$ |
|  | - | $\checkmark$ | - | $\checkmark$ | - | $\checkmark$ | - |
|  | - | $\checkmark$ |  |  |  |  |  |
|  | - |  |  |  |  |  |  |
|  | - |  |  |  |  |  |  |

Propagation: plot2 cannot grow spelt and wheat as otherwise the first constraint (every plot grows 3 grains) would be violated for plot2.

## Continuing ...

## Intuition

Example 1

Example 2

Example 3
Algorithms
Reminders of Discrete Mathematics
Solving: Overview Propagator for a Constraint

Example (BIBD integer model)

| barley corn | plot1 | plot2 | plot3 | plot4 | plot5 | plot6 | plot7 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\checkmark$ | $\checkmark$ | $\checkmark$ | - | - | - | - |
|  | $\checkmark$ | - | - | $\checkmark$ | $\checkmark$ | - | - |
| millet | $\checkmark$ | - | - | - | - | $\checkmark$ | $\checkmark$ |
| oats | - | $\checkmark$ | - | $\checkmark$ | - | $\checkmark$ | - |
| rye | - | $\checkmark$ |  |  |  |  |  |
| spelt | - | - |  |  |  |  |  |
| wheat | - | - |  |  |  |  |  |

Propagation: plot2 cannot grow spelt and wheat as otherwise the first constraint (every plot grows 3 grains) would be violated for plot2.

## Continuing ...

## Intuition

Example 1

Example 2

Example 3
Algorithms
Reminders of Discrete Mathematics
Solving: Overview Propagator for a Constraint

Example (BIBD integer model)

| barley corn | plot1 | plot2 | plot3 | plot4 | plot5 | plot6 | plot7 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\checkmark$ | $\checkmark$ | $\checkmark$ | - | - | - | - |
|  | $\checkmark$ | - | - | $\checkmark$ | $\checkmark$ | - | - |
| millet | $\checkmark$ | - | - | - | - | $\checkmark$ | $\checkmark$ |
| oats | - | $\checkmark$ | - | $\checkmark$ | - | $\checkmark$ | - |
| rye | - | $\checkmark$ |  |  |  |  |  |
| spelt | - | - |  |  |  |  |  |
| wheat | - | - |  |  |  |  |  |

Propagation: plot3, plot4, and plot6 cannot grow rye as otherwise the third constraint (every grain pair is grown in 1 common plot) would be violated.

## Continuing ...

## Intuition

Example 1

Example 2

Example 3
Algorithms
Reminders of Discrete Mathematics
Solving: Overview Propagator for a Constraint

Example (BIBD integer model)

|  | plot1 | plot2 | plot3 | plot4 | plot5 | plot6 | plot7 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| barley | $\checkmark$ | $\checkmark$ | $\checkmark$ | - | - | - | - |
| corn | $\checkmark$ | - | - | $\checkmark$ | $\checkmark$ | - | - |
| millet | $\checkmark$ | - | - | - | - | $\checkmark$ | $\checkmark$ |
| oats | - | $\checkmark$ | - | $\checkmark$ | - | $\checkmark$ | - |
| rye | - | $\checkmark$ | - | - |  | - |  |
| spelt | - | - |  |  |  |  |  |
| wheat | - | - |  |  |  |  |  |

Propagation: plot3, plot4, and plot6 cannot grow rye as otherwise the third constraint (every grain pair is grown in 1 common plot) would be violated.

## Continuing ...

## Intuition

Example 1

Example 2

Example 3
Algorithms
Reminders of Discrete Mathematics
Solving: Overview Propagator for a Constraint

## Example (BIBD integer model)

| barley corn millet oats rye spelt wheat | plot1 | plot2 | plot3 | plot4 | plot5 | plot6 | plot7 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\checkmark$ | $\checkmark$ | $\checkmark$ | - | - | - | - |
|  | $\checkmark$ | - | - | $\checkmark$ | $\checkmark$ | - | - |
|  | $\checkmark$ | - | - | - | - | $\checkmark$ | $\checkmark$ |
|  | - | $\checkmark$ | - | $\checkmark$ | - | $\checkmark$ | - |
|  | - | $\checkmark$ | - | - |  | - |  |
|  | - | - |  |  |  |  |  |
|  | - | - |  |  |  |  |  |

Propagation: plot5 and plot7 must grow rye as otherwise the second constraint (every grain is grown in 3 plots) would be violated for rye.

## Continuing ...

## Intuition

Example 1

Example 2

Example 3
Algorithms
Reminders of Discrete Mathematics
Solving: Overview Propagator for a Constraint

## Example (BIBD integer model)

| barley corn millet oats rye spelt wheat | plot1 | plot2 | plot3 | plot4 | plot5 | plot6 | plot7 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\checkmark$ | $\checkmark$ | $\checkmark$ | - | - | - | - |
|  | $\checkmark$ | - | - | $\checkmark$ | $\checkmark$ | - | - |
|  | $\checkmark$ | - | - | - | - | $\checkmark$ | $\checkmark$ |
|  | - | $\checkmark$ | - | $\checkmark$ | - | $\checkmark$ | - |
|  | - | $\checkmark$ | - | - | $\checkmark$ | - | $\checkmark$ |
|  | - | - |  |  |  |  |  |
|  | - | - |  |  |  |  |  |

Propagation: plot5 and plot7 must grow rye as otherwise the second constraint (every grain is grown in 3 plots) would be violated for rye.

## Continuing ...

## Intuition

Example 1

Example 2

Example 3
Algorithms
Reminders of Discrete Mathematics
Solving: Overview Propagator for a Constraint

## Example (BIBD integer model)

| barley corn | plot1 | plot2 | plot3 | plot4 | plot5 | plot6 | plot7 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\checkmark$ | $\checkmark$ | $\checkmark$ | - | - | - | - |
|  | $\checkmark$ | - | - | $\checkmark$ | $\checkmark$ | - | - |
| millet oats | $\checkmark$ | - | - | - | - | $\checkmark$ | $\checkmark$ |
|  | - | $\checkmark$ | - | $\checkmark$ | - | $\checkmark$ | - |
| $\begin{gathered} \text { rye } \\ \text { spelt } \\ \text { wheat } \end{gathered}$ | - | $\checkmark$ | - | - | $\checkmark$ | - | $\checkmark$ |
|  | - | - |  |  |  |  |  |
|  | - | - |  |  |  |  |  |

Propagation: plot3 must grow spelt and wheat as otherwise the first constraint (every plot grows 3 grains) would be violated for plot3.

## Continuing ...

## Intuition

Example 1

Example 2

Example 3
Algorithms
Reminders of Discrete Mathematics
Solving: Overview Propagator for a Constraint

## Example (BIBD integer model)

| barley corn | plot1 | plot2 | plot3 | plot4 | plot5 | plot6 | plot7 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\checkmark$ | $\checkmark$ | $\checkmark$ | - | - | - | - |
|  | $\checkmark$ | - | - | $\checkmark$ | $\checkmark$ | - | - |
| millet oats | $\checkmark$ | - | - | - | - | $\checkmark$ | $\checkmark$ |
|  | - | $\checkmark$ | - | $\checkmark$ | - | $\checkmark$ | - |
| rye spelt wheat | - | $\checkmark$ | - | - | $\checkmark$ | - | $\checkmark$ |
|  | - | - | $\checkmark$ |  |  |  |  |
|  | - | - | $\checkmark$ |  |  |  |  |

Propagation: plot3 must grow spelt and wheat as otherwise the first constraint (every plot grows 3 grains) would be violated for plot3.

## Continuing =...

Intuition
Example 1

Example 2

Example 3
Algorithms
Reminders of Discrete Mathemaics
Solving: Overview Propagator for a
Constraint

## Fixpoint of Multiple

 Propagators
## Example (BIBD integer model)

| barley corn | plot1 | plot2 | plot3 | plot4 | plot5 | plot6 | plot7 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\checkmark$ | $\checkmark$ | $\checkmark$ | - | - | - | - |
|  | $\checkmark$ | - | - | $\checkmark$ | $\checkmark$ | - | - |
| millet | $\checkmark$ | - | - | - | - | $\checkmark$ | $\checkmark$ |
| oats | - | $\checkmark$ | - | $\checkmark$ | - | $\checkmark$ | - |
| rye | - | $\checkmark$ | - | - | $\checkmark$ | - | $\checkmark$ |
| spelt | - | - | $\checkmark$ |  |  |  |  |
| wheat | - | - | $\checkmark$ |  |  |  |  |

Propagation: No more propagation possible.

## Continuing - .

Intuition
Example 1
Example 2
Example 3
Algorithms
Reminders of Discrete Mathemaics
Solving: Overview Propagator for a
Constraint
Fixpoint of Multiple Propagators

## Example (BIBD integer model)

|  | plot1 | plot2 | plot3 | plot4 | plot5 | plot6 | plot7 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| barley | $\checkmark$ | $\checkmark$ | $\checkmark$ | - | - | - | - |
| corn | $\checkmark$ | - | - | $\checkmark$ | $\checkmark$ | - | - |
| millet | $\checkmark$ | - | - | - | - | $\checkmark$ | $\checkmark$ |
| oats | - | $\checkmark$ | - | $\checkmark$ | - | $\checkmark$ | - |
| rye | - | $\checkmark$ | - | - | $\checkmark$ | - | $\checkmark$ |
| spelt | - | - | $\checkmark$ | $\checkmark$ |  |  |  |
| wheat | - | - | $\checkmark$ |  |  |  |  |

Guess: Let plot4 grow spelt. Strategy: $\checkmark$ guesses first.

Propagation: etc.

## Outline

## Intuition

Example 1

1. Intuition

Example 1

## Example 2

## Example 3

2. Algorithms

Reminders of Discrete Mathematics
Solving: Overview
Propagator for a Constraint
Fixpoint of Multiple Propagators

## Problem, Model, and Propagation

Intuition
Example 1 Example 2 Example 3

Algorithms
Reminders of Discrete Mathemaics
Solving: Overview
Propagator for a
Constraint
Fixpoint of Multiple
Propagators

## Example (Propagation to Domain Consistency)

Find $a \in\{1,2, \ldots, 9\}$ and $b \in\{0,1, \ldots, 8\}$ such that

$$
\begin{aligned}
2 \cdot a+4 \cdot b & =24 \\
a+b & =9
\end{aligned}
$$

| $a$ |  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |  |

## Problem, Model, and Propagation

Intuition
Example 1

## Example (Propagation to Domain Consistency)

Find $a \in\{1,2, \ldots, 9\}$ and $b \in\{0,1, \ldots, 8\}$ such that

$$
\begin{aligned}
2 \cdot a+4 \cdot b & =24 \\
a+b & =9
\end{aligned}
$$

State $2 \cdot a+4 \cdot b=24$ : prune unsupported values of $a$ :

|  |  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |  |

## Problem, Model, and Propagation

Intuition
Example 1

## Example (Propagation to Domain Consistency)

Find $a \in\{1,2, \ldots, 9\}$ and $b \in\{0,1, \ldots, 8\}$ such that

$$
\begin{aligned}
2 \cdot a+4 \cdot b & =24 \\
a+b & =9
\end{aligned}
$$

State $2 \cdot a+4 \cdot b=24$ : prune unsupported values of $a$ :

|  |  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |  |

## Problem, Model, and Propagation

Intuition
Example 1

## Example (Propagation to Domain Consistency)

Find $a \in\{1,2, \ldots, 9\}$ and $b \in\{0,1, \ldots, 8\}$ such that

$$
\begin{aligned}
2 \cdot a+4 \cdot b & =24 \\
a+b & =9
\end{aligned}
$$

State $2 \cdot a+4 \cdot b=24$ : prune unsupported values of $b$ :

|  |  |  |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | $b$ |  | 2 |  | 4 |  | 6 |  | 8 |  |
|  | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |  |

## Problem, Model, and Propagation

Intuition
Example 1

## Example (Propagation to Domain Consistency)

Find $a \in\{1,2, \ldots, 9\}$ and $b \in\{0,1, \ldots, 8\}$ such that

$$
\begin{aligned}
2 \cdot a+4 \cdot b & =24 \\
a+b & =9
\end{aligned}
$$

State $2 \cdot a+4 \cdot b=24$ : prune unsupported values of $b$ :

|  |  |  |  | 2 |  | 4 |  | 6 |  | 8 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $b$ |  |  |  |  |  |  |  |  |  |  |
|  | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |  |

## Problem, Model, and Propagation

Intuition
Example 1

## Example (Propagation to Domain Consistency)

Find $a \in\{1,2, \ldots, 9\}$ and $b \in\{0,1, \ldots, 8\}$ such that

$$
\begin{aligned}
2 \cdot a+4 \cdot b & =24 \\
a+b & =9
\end{aligned}
$$



Keep propagator for $2 \cdot a+4 \cdot b=24$, as not subsumed: its constraint is not definitely true under the current store.

## Problem, Model, and Propagation

Intuition
Example 1

## Example (Propagation to Domain Consistency)

Find $a \in\{1,2, \ldots, 9\}$ and $b \in\{0,1, \ldots, 8\}$ such that

$$
\begin{aligned}
2 \cdot a+4 \cdot b & =24 \\
a+b & =9
\end{aligned}
$$

State $a+b=9$ : prune unsupported values of $a$ :


## Problem, Model, and Propagation

Intuition
Example 1

## Example (Propagation to Domain Consistency)

Find $a \in\{1,2, \ldots, 9\}$ and $b \in\{0,1, \ldots, 8\}$ such that

$$
\begin{aligned}
2 \cdot a+4 \cdot b & =24 \\
a+b & =9
\end{aligned}
$$

State $a+b=9$ : prune unsupported values of $a$ :


## Problem, Model, and Propagation

Intuition
Example 1

## Example (Propagation to Domain Consistency)

Find $a \in\{1,2, \ldots, 9\}$ and $b \in\{0,1, \ldots, 8\}$ such that

$$
\begin{aligned}
2 \cdot a+4 \cdot b & =24 \\
a+b & =9
\end{aligned}
$$

State $a+b=9$ : prune unsupported values of $b$ :


## Problem, Model, and Propagation

Intuition
Example 1

## Example (Propagation to Domain Consistency)

Find $a \in\{1,2, \ldots, 9\}$ and $b \in\{0,1, \ldots, 8\}$ such that

$$
\begin{aligned}
2 \cdot a+4 \cdot b & =24 \\
a+b & =9
\end{aligned}
$$

State $a+b=9$ : prune unsupported values of $b$ :


## Problem, Model, and Propagation

Intuition
Example 1

## Example (Propagation to Domain Consistency)

Find $a \in\{1,2, \ldots, 9\}$ and $b \in\{0,1, \ldots, 8\}$ such that

$$
\begin{aligned}
2 \cdot a+4 \cdot b & =24 \\
a+b & =9
\end{aligned}
$$



Keep propagator for $a+b=9$, as not subsumed: its constraint is not definitely true under the current store.

## Problem, Model, and Propagation

Intuition
Example 1

## Example (Propagation to Domain Consistency)

Find $a \in\{1,2, \ldots, 9\}$ and $b \in\{0,1, \ldots, 8\}$ such that

$$
\begin{aligned}
2 \cdot a+4 \cdot b & =24 \\
a+b & =9
\end{aligned}
$$

Run $2 \cdot a+4 \cdot b=24$ : prune unsupported values of $a$ :


## Problem, Model, and Propagation

Intuition
Example 1

## Example (Propagation to Domain Consistency)

Find $a \in\{1,2, \ldots, 9\}$ and $b \in\{0,1, \ldots, 8\}$ such that

$$
\begin{aligned}
2 \cdot a+4 \cdot b & =24 \\
a+b & =9
\end{aligned}
$$

Run $2 \cdot a+4 \cdot b=24$ : prune unsupported values of $a$ :


## Problem, Model, and Propagation

Intuition
Example 1

## Example (Propagation to Domain Consistency)

Find $a \in\{1,2, \ldots, 9\}$ and $b \in\{0,1, \ldots, 8\}$ such that

$$
\begin{aligned}
2 \cdot a+4 \cdot b & =24 \\
a+b & =9
\end{aligned}
$$

Run $2 \cdot a+4 \cdot b=24$ : prune unsupported values of $b$ :


## Problem, Model, and Propagation

Intuition
Example 1

## Example (Propagation to Domain Consistency)

Find $a \in\{1,2, \ldots, 9\}$ and $b \in\{0,1, \ldots, 8\}$ such that

$$
\begin{aligned}
2 \cdot a+4 \cdot b & =24 \\
a+b & =9
\end{aligned}
$$

Run $2 \cdot a+4 \cdot b=24$ : prune unsupported values of $b$ :


## Problem, Model, and Propagation

## Example (Propagation to Domain Consistency)

Intuition
Example 1

Find $a \in\{1,2, \ldots, 9\}$ and $b \in\{0,1, \ldots, 8\}$ such that

$$
\begin{aligned}
2 \cdot a+4 \cdot b & =24 \\
a+b & =9
\end{aligned}
$$



Dispose of propagator for $2 \cdot a+4 \cdot b=24$, as subsumed: its constraint is definitely true under the current store.

## Problem, Model, and Propagation

Intuition
Example 1

## Example (Propagation to Domain Consistency)

Find $a \in\{1,2, \ldots, 9\}$ and $b \in\{0,1, \ldots, 8\}$ such that

$$
\begin{aligned}
2 \cdot a+4 \cdot b & =24 \\
a+b & =9
\end{aligned}
$$

Run $a+b=9$ : prune unsupported values of $a$ :


## Problem, Model, and Propagation

Intuition
Example 1

## Example (Propagation to Domain Consistency)

Find $a \in\{1,2, \ldots, 9\}$ and $b \in\{0,1, \ldots, 8\}$ such that

$$
\begin{aligned}
2 \cdot a+4 \cdot b & =24 \\
a+b & =9
\end{aligned}
$$

Run $a+b=9$ : prune unsupported values of $b$ :


## Problem, Model, and Propagation

Intuition
Example 1

## Example (Propagation to Domain Consistency)

Find $a \in\{1,2, \ldots, 9\}$ and $b \in\{0,1, \ldots, 8\}$ such that

$$
\begin{aligned}
2 \cdot a+4 \cdot b & =24 \\
a+b & =9
\end{aligned}
$$



Dispose of propagator for $a+b=9$, as subsumed: its constraint is definitely true under the current store.

## Problem, Model, and Propagation

Intuition
Example 1 Example 2 Example 3

Algorithms
Reminders of Discrete Mathemaics
Solving: Overview
Propagator for a
Constraint

## Fixpoint of Multiple

 PropagatorsExample (Propagation to Domain Consistency)
Find $a \in\{1,2, \ldots, 9\}$ and $b \in\{0,1, \ldots, 8\}$ such that

$$
\begin{aligned}
2 \cdot a+4 \cdot b & =24 \\
a+b & =9
\end{aligned}
$$



No propagators are left: all solutions are found. No search!

## Problem, Model, and Propagation

## Example (Propagation to Domain Consistency)

Find $a \in\{1,2, \ldots, 9\}$ and $b \in\{0,1, \ldots, 8\}$ such that

$$
\begin{aligned}
2 \cdot a+4 \cdot b & =24 \\
a+b & =9
\end{aligned}
$$



This general propagation method works for all systems of constraints (linear or not, equalities or inequalities, etc), no matter how many constraints and decision variables.

## Outline

Intuition
Example 1
Example 2
Example 3
Algorithms
Reminders of
Discrete Mathematics
Solving: Overview
Propagator for a
Constraint
Fixpoint of Multiple Propagators

1. Intuition

Example 1
Example 2
Example 3
2. Algorithms

Reminders of Discrete Mathematics
Solving: Overview
Propagator for a Constraint
Fixpoint of Multiple Propagators

Intuition
Example 1
Example 2

Algorithms
Reminders of Discrete Mathemailics
Solving: Overview
Propagator for a
Constraint
Fixpoint of Multiple Propagators

## Problem, Model, and Propagation

## Example (Propagation to Bounds(*) Consistency)

Find $a \in\{1,2, \ldots, 9\}$ and $b \in\{0,1, \ldots, 8\}$ such that

$$
2 \cdot a+4 \cdot b=24
$$

| $a$ |  |  |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  |  |  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| $b$ |  |  |  |  |  |  |  |  |  |  | O

## Problem, Model, and Propagation

## Intuition

Example 1
Example 2
Example 3
Algorithms
Reminders of Discrete Mathematics
Solving: Overview

## Propagator for a

Constraint

## Fixpoint of Multiple

 Propagators
## Example (Propagation to Bounds(*) Consistency)

Find $a \in\{1,2, \ldots, 9\}$ and $b \in\{0,1, \ldots, 8\}$ such that

$$
2 \cdot a+4 \cdot b=24
$$

State $2 \cdot a+4 \cdot b=24$ : prune unsupported bounds of $a$ :


## Intuition

Example 1
Example 2
Example 3
Algorithms
Reminders of Discrete Mathematics
Solving: Overview

## Propagator for a

Constraint

## Fixpoint of Multiple

 Propagators
## Problem, Model, and Propagation

## Example (Propagation to Bounds(*) Consistency)

Find $a \in\{1,2, \ldots, 9\}$ and $b \in\{0,1, \ldots, 8\}$ such that

$$
2 \cdot a+4 \cdot b=24
$$

State $2 \cdot a+4 \cdot b=24$ : prune unsupported bounds of $a$ :

| $a$ |  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |  |
|  |  |  |  |  |  |  |  |  |  |  |

## Intuition

Example 1
Example 2

Algorithms
Reminders of
Discrete Mathemalics
Solving: Overview

## Propagator for a

Constraint

## Fixpoint of Multiple

 Propagators
## Problem, Model, and Propagation

## Example (Propagation to Bounds(*) Consistency)

Find $a \in\{1,2, \ldots, 9\}$ and $b \in\{0,1, \ldots, 8\}$ such that

$$
2 \cdot a+4 \cdot b=24
$$

State $2 \cdot a+4 \cdot b=24$ : prune unsupported bounds of $b$ :

| $a$ |  |  | 2 | 3 | 4 | 5 | 6 | 7 | 8 |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |$b^{2} 0$

## Problem, Model, and Propagation

## Intuition

Example 1
Example 2
Example 3
Algorithms
Reminders of Discrete Mathematics
Solving: Overview
Propagator for a
Constraint
Fixpoint of Multiple Propagators

## Example (Propagation to Bounds(*) Consistency)

Find $a \in\{1,2, \ldots, 9\}$ and $b \in\{0,1, \ldots, 8\}$ such that

$$
2 \cdot a+4 \cdot b=24
$$

State $2 \cdot a+4 \cdot b=24$ : prune unsupported bounds of $b$ :


## Intuition

Example 1
Example 2

Algorithms
Reminders of Discrete Mathematics Solving: Overview Propagator for a Constraint Fixpoint of Multiple Propagators

## Problem, Model, and Propagation

## Example (Propagation to Bounds(*) Consistency)

Find $a \in\{1,2, \ldots, 9\}$ and $b \in\{0,1, \ldots, 8\}$ such that

$$
2 \cdot a+4 \cdot b=24
$$

| a | 2 | 3 | 4 | 5 | 6 | 7 | 8 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $b$ | 2 | 3 | 4 | 5 |  |  |  |  |

Keep the propagator for $2 \cdot a+4 \cdot b=24$, as not subsumed.

## Problem, Model, and Propagation

Intuition
Example 1
Example 2

Algorithms
Reminders of Discrete Mathematics Solving: Overview Propagator for a Constraint Propagators

Example (Propagation to Bounds(*) Consistency)
Find $a \in\{1,2, \ldots, 9\}$ and $b \in\{0,1, \ldots, 8\}$ such that

$$
2 \cdot a+4 \cdot b=24
$$

| $a$ |  |  |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $b$ |  |  | 2 | 3 | 4 | 5 | 6 | 7 | 8 |  |
|  |  | 2 | 3 | 4 | 5 |  |  |  |  |  |

Keep the propagator for $2 \cdot a+4 \cdot b=24$, as not subsumed.
Some propagators are left: no solutions found yet. Search!

## Outline

## Intuition

## Example 1

Example 2
Example 3
Algorithms

1. Intuition

Example 1
Example 2
Example 3
2. Algorithms

Reminders of Discrete Mathematics
Solving: Overview
Propagator for a Constraint
Fixpoint of Multiple Propagators

## Outline

## Intuition

Example 1
Example 2
Example 3
Algorithms
Reminders of Discrete Mathematics Solving: Overview
Propagator for a
Constraint
Fixpoint of Multiple Propagators

1. Intuition

$$
\begin{aligned}
& \text { Example } 1 \\
& \text { Example } 2 \\
& \text { Example } 3
\end{aligned}
$$

2. Algorithms Reminders of Discrete Mathematics
Solving: Overview
Propagator for a Constraint Fixpoint of Multiple Propagators

## Definition (Strict partial order)

A strict partial order is a pair $\langle X, \sqsubset\rangle$, where $X$ is a set over which the binary relation $\sqsubset$ is irreflexive $(\forall x \in X: x \not \subset x)$ and transitive $(\forall x, y, z \in X: x \sqsubset y \wedge y \sqsubset z \Rightarrow x \sqsubset z)$.
Example: $(\mathbb{Z},<)$ is a strict partial order.

## Definition (Well-founded order)

A well-founded order is a strict partial order $\langle X, \sqsubset\rangle$ in which there is no infinite decreasing sequence $\cdots \sqsubset x_{3} \sqsubset x_{2} \sqsubset x_{1}$. Examples: $(\mathbb{N},<) ;\left(2^{S}, \subset\right)$ for a set $S$; and loop variants.

## Definition (Lexicographic order)

Given two well-founded orders $\left\langle X, \sqsubset_{X}\right\rangle$ and $\left\langle Y, \sqsubset_{y}\right\rangle$, the lexicographic order $\left\langle X \times Y\right.$, $\left.\sqsubset_{\text {lex }}\right\rangle$ is well-founded, where $\left\langle x_{1}, y_{1}\right\rangle \sqsubset_{\text {lex }}\left\langle x_{2}, y_{2}\right\rangle$ iff either $x_{1} \sqsubset x x_{2}$ or $x_{1}=x_{2} \wedge y_{1} \sqsubset y y_{2}$. Similarly for composing more than two orders.

Examples: lex_less is $\left(\mathbb{N}^{*},<_{\text {lex }}\right)$; loop variant of slide 28.

## Functions

Intuition
Example 1
Example 2
Example 3

## Definition (Fixpoint)

A fixpoint of a function $f: X \rightarrow X$ is an element $x \in X$ that does not change under $f$, that is $f(x)=x$.

Example: A store of the set $\mathbb{S}$ of all possible stores can be a fixpoint of a propagator, which is a total function in $\mathbb{S} \rightarrow \mathbb{S}$.

Idempotent functions compute fixpoints:

## Definition (Idempotency)

A function $f$ is idempotent iff it is equal to its composition with itself: $\forall x: f(f(x))=f(x)$.

Example: A propagator $p: \mathbb{S} \rightarrow \mathbb{S}$ can be idempotent.

## Outline

## Intuition

Example 1
Example 2
Example 3
Algorithms
Reminders of
Discrete Mathematics
Solving: Overview
Propagator for a
Constraint
Fixpoint of Multiple Propagators

1. Intuition

Example 1
Example 2
Example 3
2. Algorithms

Reminders of Discrete Mathematics
Solving: Overview
Propagator for a Constraint
Fixpoint of Multiple Propagators

## Solving

## Systematic search, for a satisfaction problem:

1: propagate all constraints; backtrack if empty domain
2: if only fixed variables, then show solution \& backtrack
3: while there is at least one scheduled propagator do
4: select non-fixed variable $v$ of current domain dom $(v)$
5: $\quad$ partition $\operatorname{dom}(v)$ using guesses (say $v=d \& v \neq d$, or $v>d \& v \leq d$, for a selected value $d \in \operatorname{dom}(v)$ )
6: for each guess: recurse upon adding it as constraint For an optimisation problem: before backtracking at line 2 add the constraint that any next solution must be better.

## Strategies:

■ Line 4: variable selection: smallest domain, ...
■ Line 5: value selection: maximum, median, ...
■ Line 5: guess selection: equality, bisection, ...
■ Tree exploration: depth-first search, ...

## Strength of Stores

## Intuition

Example 1
Example 2
Example 3
Algorithms

## Definition (Store strength comparison, denoted $s \prec t$ )

Store $s$ is (strictly) stronger than store $t$ if and only if $s(v) \subseteq t(v)$ for every decision variable $v$, and $s(v) \subsetneq t(v)$ for at least one decision variable $v$.
$(\mathbb{S}, \prec)$ is a well-founded (and hence partial) order.

## Example (Store strength comparison)

Consider these stores for variables $\{x, y\}$ over $\{4,5,7\}$ :

$$
\begin{aligned}
& s_{1}=\{x \mapsto\{4,5 \quad\}, y \mapsto\{5,7\}\} \\
& s_{2}=\{x \mapsto\{5\}, y \mapsto\{5,7\}\} \\
& s_{3}=\{x \mapsto\{5,7\}, y \mapsto\{4,5,7\}\}
\end{aligned}
$$

Note: $s_{2} \prec s_{1}$ and $s_{2} \prec s_{3}$, but $s_{1}$ and $s_{3}$ are incomparable.

## Outline

## Intuition

Example 1
Example 2
Example 3
Algorithms
Reminders of
Discrete Mathematics
Solving: Overview
Propagator for a
Constraint
Fixpoint of Multiple Propagators

1. Intuition

Example 1
Example 2
Example 3
2. Algorithms

Reminders of Discrete Mathematics
Solving: Overview

## Propagator for a Constraint

## Fixpoint of Multiple Propagators

## Definition (Propagator)

A propagator $p_{c}$ for a constraint $c$ modifies a store so that:

- Contracting: The result store is stronger than or equal to $(\preceq)$ the input store: $p_{c}(s) \prec s$ or $p_{c}(s)=s$, for any $s$.
■ Correct: Each solution to $c$ in the store remains there: $d \in s \Rightarrow d \in p_{c}(s)$, for any store $s$ and solution $d$ to $c$.
■ Checking: For each solution to $c$, no domain is shrunk: $d \in c \Leftrightarrow p_{c}(s)=s$, for any fixed store $s$ denoting $d$.
$\square$ Monotonic (optional): Strength-ordered stores remain ordered: $s_{1} \preceq s_{2} \Rightarrow p_{c}\left(s_{1}\right) \preceq p_{c}\left(s_{2}\right)$, for any $s_{1}$ and $s_{2}$.


## Example (Domain-consistency propagator for $x \leq y$ )

$$
\begin{aligned}
& p_{x \leq y}(s)=\left\{\begin{array}{l}
x \mapsto\{n \in s(x) \mid n \leq \max (s(y))\}, \\
y \mapsto\{n \in s(y) \mid n \geq \min (s(x))\}
\end{array}\right\} \\
& p_{x \leq y}(\{x \mapsto\{1,3,5,9\}, y \mapsto\{0,2,4\}\})=\{x \mapsto\{1,3\}, y \mapsto\{2,4\}\}
\end{aligned}
$$

## Motivation for Monotonicity

## Counter-example

Consider the non-monotonic propagator for constraint $c$

$$
p_{c}(s)=\text { if } s(x)=\{4,5,7\} \text { then }\{x \mapsto\{4\}\} \text { else } s
$$

and the stores $s_{1}=\{x \mapsto\{4,5\}\}$ and $s_{2}=\{x \mapsto\{4,5,7\}\}$ :
$s_{1} \preceq s_{2}$ but $p_{c}\left(s_{2}\right)=\{x \mapsto\{4\}\} \preceq\{x \mapsto\{4,5\}\}=p_{c}\left(s_{1}\right)$
The result stores could also be incomparable; note that $\prec$ and $\preceq$ are partial ordering relations.

But propagation would be propagator-order-dependent:

$$
p_{c}\left(p_{x<7}\left(s_{2}\right)\right)=\{x \mapsto\{4,5\}\} \neq\{x \mapsto\{4\}\}=p_{x<7}\left(p_{c}\left(s_{2}\right)\right)
$$

This might lead to unexpected solver behaviour.

## Consequences of Propagator Definition

- Property of propagation, if only monotonic propagators:


## Intuition

Example 1 Example 2 Example 3 Propagators

- Order independence: Propagators may be invoked in any order: their weakest common fixpoint is unique. E.g., from $\{x, y \mapsto\{3,4,5\}\}$, the weakest fixpoint of $p_{x \geq y}$ and $p_{y>3}$ is $\{x, y \mapsto\{4,5\}\}$, whereas a strongest fixpoint is a solution store, such as $\{x, y \mapsto\{5\}\}$.
Only this property depends on monotonicity.
$■$ Properties of a propagator $p_{c}$ for a constraint $c$ :
- Correctness: Each monotonic propagator necessarily is correct, so the latter requirement does not have to be proven separately for a propagator proven monotonic.
- Non-solution identification: For a non-solution to $c$, the domain of some decision variable becomes empty.

Intuition
Example 1
Example 2
Example 3
Algorithms
Reminders of Discrete Mathemalics

Idempotency of propagators is not required:
Every DC propagator is idempotent; a BC propagator may be non-idempotent: see Ex. 2.9 on p. 19 of Course Notes.

## Terminology:

In the literature, the deletion of domain values is also called pruning, filtering, contraction, or narrowing.
If a domain loses its last value, then we say that there was a domain wipe-out, and the propagator must fail.

## Definition (Model)

A model of a CSP $\langle V, U, C\rangle$ is a tuple $\langle V, U, P\rangle$, where $P$ is the set of propagators chosen for the constraints $C$. Similarly for a model of a COP.

For propagator algorithms, see Topic 16: Propagators.

## Outline

## Intuition

Example 1
Example 2
Example 3
Algorithms
Reminders of
Discrete Mathematics
Solving: Overview
Propagator for a
Constraint
Fixpoint of Multiple Propagators

1. Intuition

Example 1
Example 2
Example 3
2. Algorithms

Reminders of Discrete Mathematics
Solving: Overview
Propagator for a Constraint
Fixpoint of Multiple Propagators

## Naïve Fixpoint Algorithm

## Intuition

Example 1
Example 2
Example 3
Algorithms
Reminders of
Discrete Mathematics

## Solving: Overview

## Propagator for a

Constraint
Fixpoint of Multiple Propagators
function $\operatorname{Propagate}(R, s)$
while $\exists q \in R: q(s) \supsetneqq s$ do // variant: $s$
select $q \in R: q(s) \supsetneqq s$
$s:=q(s)$
return $s$
// post: $s$ is a common fixpoint of $R$

## Toward More Realistic Propagation

## Intuition

## Why is the previous algorithm naïve?

For the condition of its while loop:
$\square$ We may examine a propagator that does not depend in some sense on the propagator that was just run.

- We do not maintain the set of propagators that are known to be at fixpoint.
So we may examine a propagator that cannot prune values.
Variables of a propagator:
Let $\operatorname{var}(p)$ denote the set of decision variables of the constraint implemented by propagator $p$ :
$■$ Running $p$ has no effect on $\operatorname{dom}(v)$, for $v \in V \backslash \operatorname{var}(p)$.
$■$ Running $p$ is independent of $\operatorname{dom}(v)$, for $v \in V \backslash \operatorname{var}(p)$.


## Variable-Directed Fixpoint Algorithm

Call to build the root of the search tree: Propagate $\left(P, P, s_{0}\right)$.
Intuition
Example 1
Example 2 Example 3

Algorithms
function Propagate( $R, Q, s) / / R=$ all prop.s; pre: $Q \subseteq R$ while $Q \neq \varnothing$ do // invariant: every $p \in R \backslash Q$ is at fixpt // variant: $\langle s| Q,\rangle$
select $q \in Q \quad / /$ prop.s of $Q$ are possibly not at fixpt $Q:=Q \backslash\{q\}$

$$
s^{\prime}:=q(s) \quad / / s^{\prime} \preceq s
$$

ModVars $:=\left\{v \in \operatorname{var}(q) \mid s(v) \neq s^{\prime}(v)\right\}$
DepProps $:=\{p \in R \mid \exists v \in \operatorname{var}(p): v \in$ ModVars $\}$
$Q:=Q \cup$ DepProps // maybe $q \in Q$ : optional idempot.
$s:=s^{\prime}$
return $s$
// post: $s$ is a common fixpoint of $R$

## Toward Further Improved Propagation

Intuition

## Propagators signal status to avoid some useless runs:

■ Propagator $p$ is failed upon a domain wipe-out.
■ Propagator $p$ is subsumed (or entailed) by store $s$ iff all stronger stores are fixpoints: $\forall s^{\prime} \preceq s: p\left(s^{\prime}\right)=s^{\prime}$. This status is an obligation when $s$ is a solution store. Such a propagator can safely be disposed of in the model.
■ Otherwise, if so, ideally signal that $p$ is at fixpoint for $s$.
■ It is always safe to signal that a propagator $p$ is possibly not at fixpoint for the result store $s$.

## Examples (Subsumption)

$p_{x \leq y}$ is subsumed by $\{x \mapsto\{1,3\}, y \mapsto\{3,5\}\}$, but not by $\{x \mapsto\{1,3,4\}, y \mapsto\{3,5\}\}$. A DC propagator of a unary constraint, like $x \in\{1,3,5\}$, is subsumed upon its first run.

## Propagators with Status Message

## Example (Domain-consistency propagator for $x \leq y$ )

## Intuition

Example 1
Example 2
Example 3
Algorithms
Reminders of Discrete Mathemaics Solving: Overview Propagator for a

$$
\begin{gathered}
p_{x \leq y}(s)=\text { let } s^{\prime}=\left\{\begin{array}{l}
x \mapsto\{n \in s(x) \mid n \leq \max (s(y))\}, \\
y \mapsto\{n \in s(y) \mid n \geq \min (s(x))\}
\end{array}\right\} \text { in } \\
\text { if } s^{\prime}(x)=\varnothing \vee s^{\prime}(y)=\varnothing \text { then }\langle\text { Failed, } \varnothing\rangle \\
\text { else if } \max \left(s^{\prime}(x)\right) \leq \min \left(s^{\prime}(y)\right) \text { then }\left\langle\text { Subsumed, } s^{\prime}\right\rangle \\
\text { else }\left\langle\text { AtFixpt, } s^{\prime}\right\rangle
\end{gathered}
$$

Note that $\min (s(x))$ and $\max (s(y))$ do not change: hence $s^{\prime}$ is at least a fixpoint for $p_{x \leq y}$ and at best subsumes it!

## Responsibility:

The burden of signalling, in reasonable runtime, a proper status message is on the programmer of a propagator.

## Propagator-Status-Directed Fixpoint Algo.

Intuition
Example 1
Example 2
Example 3
Algorithms
Reminders of Discrete Mathematics Solving: Overview Propagator for a
function Propagate( $R, Q, s$ )// non-subsumed prop.s in $R$ while $Q \neq \varnothing$ do // invariant: ...; variant: ...
select $q \in Q$
$Q:=Q \backslash\{q\}$
$\left\langle m, s^{\prime}\right\rangle:=q(s) \quad / / s^{\prime} \preceq s$
if $m=$ Failed then return $\langle R, \varnothing\rangle$ endif
if $m=$ Subsumed then $R:=R \backslash\{q\}$ endif
ModVars $:=\left\{v \in \operatorname{var}(q) \mid s(v) \neq s^{\prime}(v)\right\}$
DepProps $:=\{p \in R \mid \exists v \in \operatorname{var}(p): v \in$ ModVars $\}$
if $m=$ AtFixpt then DepProps $:=$ DepProps $\backslash\{q\}$ endif
$Q:=Q \cup$ DepProps
$s:=s^{\prime}$
return $\langle R, s\rangle \quad / /$ post: $s$ is a common fixpoint of $R$

## Toward Even Further Improved Propagation

Intuition

Signalling how domains were modified:
Mutually exclusive modification events for each variable $v$ :
1 None $(v)$ : the domain of $v$ was not changed.
2 Failed $(v)$ : the domain of $v$ was wiped out.
3 Fixed $(v)$ : the domain of $v$ was pruned to a singleton.
$4 \operatorname{Min}(v)$ : the lower bound of dom( $v$ ) was increased. $\operatorname{Max}(v)$ : the upper bound of dom( $v$ ) was decreased.
5 Any $(v)$ : the domain of $v$ was otherwise pruned.
Gecode: $\operatorname{Min}(v)$ and $\operatorname{Max}(v)$ are bundled into Bounded( $v$ ).
It is often simple to decide whether a propagator remains at fixpoint depending on how another propagator prunes domains of decision variables they share: variable sharing is no longer the sole criterion for adding propagators to $Q$.

## Propagator Conditions

## Example (Domain-consistency propagator for $x \leq y$ )

$$
p_{x \leq y}(s)=\left\{\begin{array}{l}
x \mapsto\{n \in s(x) \mid n \leq \max (s(y))\}, \\
y \mapsto\{n \in s(y) \mid n \geq \min (s(x))\}
\end{array}\right\}
$$

PropConds $\left(p_{x \leq y}\right)=\{\operatorname{Min}(x), \operatorname{Max}(y)\}$
Promise: If the propagator is at fixpoint, then it will remain at fixpoint, unless $\min (\operatorname{dom}(x))$ or $\max (\operatorname{dom}(y))$ changes.

Example (Domain-consistency propagator for $x \neq y$ )
$p_{x \neq y}(s)=\left\{\begin{array}{l}x \mapsto s(x) \backslash \text { if }|s(y)|=1 \text { then } s(y) \text { else } \varnothing, \\ y \mapsto s(y) \backslash \text { if }|s(x)|=1 \text { then } s(x) \text { else } \varnothing\end{array}\right\}$
PropConds $\left(p_{x \neq y}\right)=\{\operatorname{Fixed}(x), \operatorname{Fixed}(y)\}$
Promise: If the propagator is at fixpoint, then it will remain at fixpoint, unless dom $(x)$ or dom $(y)$ becomes a singleton.

## Assumptions

## Intuition

Example 1
Example 2 Example 3

Algorithms

## Responsibilities, under Gecode:

■ The programmer of propagator $p$ states PropConds $(p)$.

- The solver computes as follows the set Conds( $s, s^{\prime}$ ) of propagator conditions raised by applying a propagator $q$ to a store $s$, giving $s^{\prime}=q(s)$ :

Modification event Conditions added to Conds $\left(s, s^{\prime}\right)$
Fixed ( $v$ ) Fixed $(v)$, Bounded ( $v$ ), Any ( $v$ )
Bounded(v) Bounded(v), Any (v)
Any ( $v$ )
None(v)
Any ( $v$ )
(none)
■ The solver schedules a propagator $p$ (adds $p$ to $Q$ ) if the conditions Conds $\left(s, s^{\prime}\right)$ raised by propagator $q$ intersect with the propagator conditions PropConds $(p)$.

## Intuition

Example 1
Example 2
Example 3
Algorithms

## Reminders of

 Discrete Mathemalics
## Solving: Overview

 Propagator for a Constraintfunction Propagate( $R, Q, s$ )
while $Q \neq \varnothing$ do
// invariant: ...; variant: ...
select $q \in Q$
$Q:=Q \backslash\{q\}$
$\left\langle m, s^{\prime}\right\rangle:=q(s) \quad / / s^{\prime} \preceq s$
if $m=$ Failed then return $\langle R, \varnothing\rangle$ endif
if $m=$ Subsumed then $R:=R \backslash\{q\}$ endif
AOodVars $:=\left\{v \in \operatorname{var}(q) \mid s(v) \neq s^{\prime}(v)\right\}$
DepProps :=
$\left\{p \in R \mid \operatorname{Conds}\left(s, s^{\prime}\right) \cap \operatorname{PropConds}(p) \neq \varnothing\right\}$
if $m=$ AtFixpt then DepProps $:=$ DepProps $\backslash\{q\}$ endif
$Q:=Q \cup$ DepProps

$$
s:=s^{\prime}
$$

return $\langle R, s\rangle \quad / /$ post: $s$ is a common fixpoint of $R$

Intuition
Example 1
Example 2

## Yet Further Optimisations

## Priorities: The set $Q$ is implemented as a queue:

 How to do "select $q \in Q$ "?■ According to cost: cheapest first
■ According to expected impact: highest impact first
■ In general: first-in first-out queue
Propagator rewriting:

## Example

When all domain values for $x$ are smaller than those for $y$, then the propagator for $\max (x, y)=z$ can be replaced by the propagator for $y=z$.

## Further reading:

For a more formal treatment of all these issues, including proofs, see the Course Notes.

