
Topic 13: Consistency 1

(Version of 20th November 2020)

Pierre Flener

Optimisation Group
Department of Information Technology

Uppsala University
Sweden

Course 1DL441:
Combinatorial Optimisation and Constraint Programming,

whose part 1 is Course 1DL451:
Modelling for Combinatorial Optimisation

1Based partly on material by Christian Schulte and Yves Deville

http://user.it.uu.se/~pierref
http://optimisation.research.it.uu.se

Definitions

Value
Consistency

Domain
Consistency

Bounds
Consistency

Consistency
and
Backtracking

Outline

1. Definitions

2. Value Consistency

3. Domain Consistency

4. Bounds Consistency

5. Consistency and Backtracking

COCP/M4CO 13 - 2 -

Definitions

Value
Consistency

Domain
Consistency

Bounds
Consistency

Consistency
and
Backtracking

Outline

1. Definitions

2. Value Consistency

3. Domain Consistency

4. Bounds Consistency

5. Consistency and Backtracking

COCP/M4CO 13 - 3 -

Definitions

Value
Consistency

Domain
Consistency

Bounds
Consistency

Consistency
and
Backtracking

Constraint Problems

Definitions
A constraint satisfaction problem (CSP) is 〈V ,D,C〉 where:

V = [v1, . . . , vm] is a finite sequence of variables,
which are often called decision variables.
D = [D1, . . . ,Dm] is a finite sequence of domains:
the set of possible values for vi is Di , for all i ∈ 1..m.
C = {c1, . . . , cp} is a finite set of constraints on the
variables. A constraint γ(vi1 , . . . , viq) is a relation,
of arity q. We assume ij = j , without loss of generality.

A constrained optimisation problem (COP) is 〈V ,D,C, f 〉:
The triple 〈V ,D,C〉 is a CSP, as above.
f (v1, . . . , vm) is a function from D1 × · · · × Dm to R or Z,
called the objective function, the objective here being
to minimise it, without loss of generality.

COCP/M4CO 13 - 4 -

Definitions

Value
Consistency

Domain
Consistency

Bounds
Consistency

Consistency
and
Backtracking

More on problems:

Without loss of generality, we often simplify notation by
here requiring that all variables initially have the same
domain U, called the universe: D1 = · · · = Dm = U.
We then refer to a triple 〈V ,U,C〉 as a CSP, and to a
quadruple 〈V ,U,C, f 〉 as a COP.

We here focus on discrete finite domains, and thus also
refer to a CSP or COP as a combinatorial problem.

We distinguish a problem from its instances, defined
by instance data. Example: n-Queens vs 8-Queens.

COCP/M4CO 13 - 5 -

Definitions

Value
Consistency

Domain
Consistency

Bounds
Consistency

Consistency
and
Backtracking

Stores and Solutions

Definition
The store of a CP solver with systematic search maps each
decision variable v of a CSP or COP to its current domain,
which is initialised to the domain of v in the CSP or COP.

Example
The function {x 7→ {1,7} , y 7→ {2,5}} is a store, where the
current domain {1,7} of x is {x 7→ {1,7} , y 7→ {2,5}} (x).

Definitions
A variable v is fixed in store s iff its domain is a singleton:
|s(v)| = 1. A store s is fixed iff all its variables are fixed in s.

Notation:
If the name, say s, of the store is irrelevant, then we denote
the current domain s(v) of a decision variable v by dom(v).

COCP/M4CO 13 - 6 -

Definitions

Value
Consistency

Domain
Consistency

Bounds
Consistency

Consistency
and
Backtracking

Definition
A store s is a solution store to a constraint c = γ(v1, . . . , vq)
if and only if s is fixed and denotes a solution to c:
we have s(vi) = {di} for all i ∈ 1..q, and 〈d1, . . . ,dq〉 ∈ c.

Example
The store {x 7→ {3} , y 7→ {4}} is a solution store to x ≤ y .

Definition
A solution 〈d1, . . . ,dq〉 to a constraint γ(v1, . . . , vq) is in (also
denoted ∈) a store s iff every value belongs to the domain
of the corresponding variable: di ∈ s(vi) for all i ∈ 1..q.

Example
The solution 〈3,4〉 to the constraint x ≤ y is in the store
{x 7→ {1,3} , y 7→ {2,4} , z 7→ {5,6}}.

COCP/M4CO 13 - 7 -

Definitions

Value
Consistency

Domain
Consistency

Bounds
Consistency

Consistency
and
Backtracking

The purpose of a solver with systematic search is to find
eventually and provably each (provably optimal) solution:

Definitions
For variables V = [v1, . . . , vm], domains D = [D1, . . . ,Dm],
and a store s such that s(vi) = {di} for all i ∈ 1..m:

The store s is a solution store to a CSP 〈V ,D,C〉
if and only if s is a solution store to each constraint in C
and di ∈ Di for all i ∈ 1..m.
The store s is a solution store to a COP 〈V ,D,C, f 〉
if and only if s is a solution store to the CSP 〈V ,D,C〉
and the objective value of s, namely f (d1, . . . ,dm),
is minimal, that is less than or equal to the objective
value of every other solution store to 〈V ,D,C〉.

Definition
A CP solver with systematic search is correct if and only if it
finds each solution store to any CSP or COP exactly once.

COCP/M4CO 13 - 8 -

Definitions

Value
Consistency

Domain
Consistency

Bounds
Consistency

Consistency
and
Backtracking

Overview

Definition
A consistency is the targeted characterisation of the domain
values kept in the store by a propagator for a constraint, but
correctness of the solver must not depend on enforcing it.

We distinguish:

Value consistency (VC) is quite weak.

Domain consistency (DC) is very strong.

Bounds consistency (BC) is between VC and DC.

We now discuss VC, DC, and various flavours of BC.

COCP/M4CO 13 - 9 -

Definitions

Value
Consistency

Domain
Consistency

Bounds
Consistency

Consistency
and
Backtracking

Outline

1. Definitions

2. Value Consistency

3. Domain Consistency

4. Bounds Consistency

5. Consistency and Backtracking

COCP/M4CO 13 - 10 -

Definitions

Value
Consistency

Domain
Consistency

Bounds
Consistency

Consistency
and
Backtracking

Value Consistency

Example (Value consistency for distinct)
If a variable becomes fixed, then its value does not appear
in the domains of all the other variables of the constraint.

Consider distinct([x , y , z]):
Store s = {x , y 7→ {1,2} , z 7→ {5}} is value consistent.
Store s = {x , y , z 7→ {1,2}} is value consistent, hence
search is needed to show that there is no solution in s.
Store s = {x , y 7→ {1,2} , z 7→ {1,2,5}} is value
consistent, hence search is needed to show that there
are two solutions in s, both with z = 5.

Enforcing value consistency for distinct([v1, . . . , vq]) is
known as naı̈ve distinct, and takes O(q) time:

Store {w , x , y , z 7→ {1,2,5}} is contracted upon w = 5
to the store {w 7→ {5} , x , y , z 7→ {1,2}}.

COCP/M4CO 13 - 11 -

Definitions

Value
Consistency

Domain
Consistency

Bounds
Consistency

Consistency
and
Backtracking

Enforcing value consistency, in general now:
To enforce value consistency for a constraint γ(· · ·):
whenever a decision variable becomes fixed,
any impossible values according to the semantics of γ(· · ·)
are deleted from the domains of its other decision variables.

More about value consistency:
In the literature, value consistency (denoted below by VC)
is also known as forward-checking consistency (FCC).

COCP/M4CO 13 - 12 -

Definitions

Value
Consistency

Domain
Consistency

Bounds
Consistency

Consistency
and
Backtracking

Outline

1. Definitions

2. Value Consistency

3. Domain Consistency

4. Bounds Consistency

5. Consistency and Backtracking

COCP/M4CO 13 - 13 -

Definitions

Value
Consistency

Domain
Consistency

Bounds
Consistency

Consistency
and
Backtracking

Domain Consistency

Definition
A store s is domain consistent for a constraint γ(· · ·) iff for
each decision variable v and each value in its domain s(v),
there exist values in the domains of the other variables
such that all these values form a solution to γ(· · ·).

Example (Domain consistency & distinct([x , y , z]))
Store s = {x , y , z 7→ {1,2}} is domain inconsistent.
Store s′ = {x , y , z 7→ ∅} is domain consistent, hence no
search is needed to show that there is no solution in s′.
{x , y 7→ {1,2} , z 7→ {1,2,5}} is domain inconsistent.
{x , y 7→ {1,2} , z 7→ {5}} is domain consistent, so no
search is needed to show that z = 5 in all solutions.

+ See distinct propagator in Topic 16: Propagators.

COCP/M4CO 13 - 14 -

Definitions

Value
Consistency

Domain
Consistency

Bounds
Consistency

Consistency
and
Backtracking

Example (Domain consistency for x 6= y , y 6= z, z 6= x)
{x , y , z 7→ {1,2}} is domain consistent for all three
constraints, hence search is needed to show that there
is no solution in this store.
{x , y 7→ {1,2} , z 7→ {1,2,5}} is domain consistent,
hence search is needed to show z = 5 in all solutions.

Decomposing constraint distinct([v1, . . . , vq]) into q·(q−1)
2

constraints vi 6= vj (1 ≤ i < j ≤ q) yields VC for distinct
and requires O(q2) space: + see Topic 16: Propagators.

Example (Domain consistency for x = 3 · y + 5 · z)
Only the solutions 〈3,1,0〉, 〈5,0,1〉, and 〈6,2,0〉 are in
{x 7→ {2, . . . ,7} , y 7→ {0,1,2} , z 7→ {−1, . . . ,2}}.
Hence {x 7→ {3,5,6} , y 7→ {0,1,2} , z 7→ {0,1}} is
domain consistent, but has 3 · 3 · 2− 3 non-solutions!

+ CP = reasoning with sets of (at least all) possible values!
COCP/M4CO 13 - 15 -

Definitions

Value
Consistency

Domain
Consistency

Bounds
Consistency

Consistency
and
Backtracking

Geometric intuition (pictures: © Yves Deville)

������

������

������
������

������

������

In general, a domain is a union of intervals.

COCP/M4CO 13 - 16 -

Definitions

Value
Consistency

Domain
Consistency

Bounds
Consistency

Consistency
and
Backtracking

Geometric intuition (pictures: © Yves Deville)

������

������

������

������

������

Contracting the domain of x from 1 interval into 2 intervals

COCP/M4CO 13 - 16 -

Definitions

Value
Consistency

Domain
Consistency

Bounds
Consistency

Consistency
and
Backtracking

Geometric intuition (pictures: © Yves Deville)

������

������

������

������

������

Contracting the domain of y from 1 interval into 2 intervals

COCP/M4CO 13 - 16 -

Definitions

Value
Consistency

Domain
Consistency

Bounds
Consistency

Consistency
and
Backtracking

More about domain consistency:

In the literature, domain consistency (denoted by DC)
is also known as generalised arc consistency (GAC)
or hyper-arc consistency (HAC), and arc consistency
(AC) in the case of binary constraints (of arity 2).

DC is the strongest consistency, and thus implies VC
for instance, but enforcing it is sometimes prohibitively
expensive, for instance on linear equality constraints.

Naı̈ve ways to enforce DC for a constraint c are:
• Execute the DC definition as an algorithm with 3 nested

loops to find values staying in the variable domains of c.
• Compute all solutions to c and lose them by projection

onto each variable domain: see example at slide 15.

Both are impractical! + It is often possible to exploit the
combinatorial structure of a constraint to enforce DC
much faster: examples are in Topic 16: Propagators.

COCP/M4CO 13 - 17 -

Definitions

Value
Consistency

Domain
Consistency

Bounds
Consistency

Consistency
and
Backtracking

Outline

1. Definitions

2. Value Consistency

3. Domain Consistency

4. Bounds Consistency

5. Consistency and Backtracking

COCP/M4CO 13 - 18 -

Definitions

Value
Consistency

Domain
Consistency

Bounds
Consistency

Consistency
and
Backtracking

Bounds Consistency

Example (Consistency for 2 · x = y)
Consider the store s = {x 7→ {1,2,6} , y 7→ {0,2,3,4,5}}:

Enforcing DC contracts s to {x 7→ {1,2} , y 7→ {2,4}}.
But Gecode contracts s to {x 7→ {1,2} , y 7→ {2,3,4}}!

Definitions
A store s is bounds(Z) consistent for a constraint γ(· · ·) iff
for each decision variable v and the lower & upper bounds
of its domain s(v), there exist values between the bounds
inclusive of the domains of the other variables such that all
these values form an integer solution to γ(· · ·).

Similarly for a store being bounds(R) consistent.

COCP/M4CO 13 - 19 -

Definitions

Value
Consistency

Domain
Consistency

Bounds
Consistency

Consistency
and
Backtracking

Definition
A store s is bounds(D) consistent for a constraint γ(· · ·) iff
for each decision variable v and the lower & upper bounds
of its domain s(v), there exist values in the domains of the
other variables such that all values form a solution to γ(· · ·).

Note that bounds(D) is not a misspelling of bounds(D).

Example (Bounds consistencies for max(x , y) = z)
Consider s = {x 7→ {2,3,5} , y 7→ {3,4,6} , z 7→ {4,6}}:

Enforcing bounds(Z) or bounds(R) consistency
leaves s unchanged.
Enforcing bounds(D) consistency
contracts s to {x 7→ {2,3,5} , y , z 7→ {4,6}}.

COCP/M4CO 13 - 20 -

Definitions

Value
Consistency

Domain
Consistency

Bounds
Consistency

Consistency
and
Backtracking

Geometric intuition (pictures: © Yves Deville)

������

������

������
������

������

������

In general, a domain is a union of intervals.

COCP/M4CO 13 - 21 -

Definitions

Value
Consistency

Domain
Consistency

Bounds
Consistency

Consistency
and
Backtracking

Geometric intuition (pictures: © Yves Deville)

������

������

������

������

������

Contracting the domain of x into a tighter interval

COCP/M4CO 13 - 21 -

Definitions

Value
Consistency

Domain
Consistency

Bounds
Consistency

Consistency
and
Backtracking

Geometric intuition (pictures: © Yves Deville)

������

������

������
������

������

Contracting the domain of y into a tighter interval

COCP/M4CO 13 - 21 -

Definitions

Value
Consistency

Domain
Consistency

Bounds
Consistency

Consistency
and
Backtracking

More about bounds consistencies:
In the literature, bounds(R) consistency, denoted below
by BC(R), is also known as interval consistency. By default,
Gecode enforces BC(R) for arithmetic constraints. Note:

DC⇒ BC(D)⇒ VC

BC(D)⇒ BC(Z)⇒ BC(R)

Example (Consistency for SEND + MORE = MONEY)
Enforcing DC for both distinct(· · ·) and the linear
equality suffices to solve the problem, without search!
However, this is not faster than search interleaved with
enforcing DC for distinct(· · ·) and BC(R) for the linear
equality, as enforcing DC for linear equality is prohibitively
expensive (see Topic 16: Propagators).

COCP/M4CO 13 - 22 -

Definitions

Value
Consistency

Domain
Consistency

Bounds
Consistency

Consistency
and
Backtracking

Outline

1. Definitions

2. Value Consistency

3. Domain Consistency

4. Bounds Consistency

5. Consistency and Backtracking

COCP/M4CO 13 - 23 -

Definitions

Value
Consistency

Domain
Consistency

Bounds
Consistency

Consistency
and
Backtracking

More about Consistency

Definitions
The existentially quantified values in the definitions
of DC and BC(·) are called supports (or witnesses).
If at least one support exists for a considered value d
of a universally quantified decision variable v in those
definitions, then d is supported, else d is unsupported.

Definitions
The enforcing of some consistency for some constraint is
called propagation and is performed by an algorithm called
a propagator, which targets to delete the unsupported
domain values according to that consistency.

+ See in-depth discussion in Topic 14: Propagation.
+ See example propagators in Topic 16: Propagators.

COCP/M4CO 13 - 24 -

Definitions

Value
Consistency

Domain
Consistency

Bounds
Consistency

Consistency
and
Backtracking

Not all propagators enforce VC, BC(·), or DC, which
have simple definitions: there are many useful but
unnamed consistencies that can be, and are, enforced.
For example, DC can be enforced for some variables
of the constraint, and BC(·) for its remaining variables.
Pragmatism often prevails in propagator design:
maximally contract domains within a reasonable
time and space complexity, typically polynomial
in the number of decision variables of the constraint.
A CP solver may offer a few propagators / consistencies
for a constraint predicate, one being the default.
The modeller must make experiments to choose for
each constraint a suitable propagator / consistency,
given typical instances of the problem at hand.
A variable can be subjected to several consistencies in
the constraints it participates in: the data structure for
stores is not specific to a particular consistency.

COCP/M4CO 13 - 25 -

Definitions

Value
Consistency

Domain
Consistency

Bounds
Consistency

Consistency
and
Backtracking

Complexity of Consistencies

Preview of Topic 16: Propagators:

Example (distinct([v1, . . . , vq]))
Value consistency: O(q) time
Bounds consistency: O(q · lg q) time; often O(q) time
Domain consistency: O(m · √q) time, O(m · q) space,

for m ≥ q domain values

Example (Linear Arithmetic on q decision variables)
Value consistency (useless): O(q) time
Bounds consistency: O(q) time
Domain consistency: exponential time (as NP-hard) for
equality (=), but no higher time complexity than BC(R)
for disequality (6=) and inequality (<,≤,≥, >)

COCP/M4CO 13 - 26 -

Definitions

Value
Consistency

Domain
Consistency

Bounds
Consistency

Consistency
and
Backtracking

n-Queens Revisited (pics: © Ch. Lecoutre)

1

8

2

3

4

5

6

7

ba
 d f g he

1

8

2

3

4

5

6

7

ba
 d f g he

distinct([ra, rb, .., rh]),distinct([|ra−1|, |rb−2|, . . . , |rh−8|])
The two solutions to the 4-queens instance:

1

2

3

4

ba
 d

1

2

3

4

ba
 d

COCP/M4CO 13 - 27 -

Definitions

Value
Consistency

Domain
Consistency

Bounds
Consistency

Consistency
and
Backtracking

4-Queens: Backtracking Search (BT)

1

2

3

4

ba
 d

1

2

3

4

ba
 d

1

2

3

4

ba
 d

1

2

3

4

ba
 d

1

2

3

4

ba
 d

1

2

3

4

ba
 d

1

2

3

4

ba
 d

1

2

3

4

ba
 d

1

2

3

4

ba
 d

1

2

3

4

ba
 d

. . . 15 steps
omitted . . .

1

2

3

4

ba
 d

COCP/M4CO 13 - 28 -

Definitions

Value
Consistency

Domain
Consistency

Bounds
Consistency

Consistency
and
Backtracking

4-Queens: BT + Value Consistency (VC)

1

2

3

4

ba
 d

1

2

3

4

ba
 d

1

2

3

4

ba
 d

1

2

3

4

ba
 d

1

2

3

4

ba
 d

1

2

3

4

ba
 d

1

2

3

4

ba
 d

1

2

3

4

ba
 d

1

2

3

4

ba
 d

1

2

3

4

ba
 d

1

2

3

4

ba
 d

1

2

3

4

ba
 d

COCP/M4CO 13 - 29 -

Definitions

Value
Consistency

Domain
Consistency

Bounds
Consistency

Consistency
and
Backtracking

4-Queens: BT + Domain Consistency (DC)

1

2

3

4

ba
 d

1

2

3

4

ba
 d

1

2

3

4

ba
 d

1

2

3

4

ba
 d

1

2

3

4

ba
 d

1

2

3

4

ba
 d

COCP/M4CO 13 - 30 -

Definitions

Value
Consistency

Domain
Consistency

Bounds
Consistency

Consistency
and
Backtracking

4-Queens: BT + DC (versus BT + VC)

Why

1

2

3

4

ba
 d

under DC, versus

1

2

3

4

ba
 d

under VC?

Assume the search guess ra = 1 is tried:
1 The distinct([ra, rb, rc, rd]) row constraint propagates

to {ra 7→ {1} , rb, rc, rd 7→ {2,3,4}}, like under VC.
2 The distinct([|ra − 1|, |rb − 2|, |rc − 3|, |rd − 4|])

diagonal constraint first propagates, like under VC, to
{ra 7→ {1} , rb 7→ {3,4} , rc 7→ {2,4} , rd 7→ {2,3}}.

3 The previous propagator also notices that rb cannot
be 3 as the domain of rc would then be wiped out; etc.
This would not happen with two diagonal constraints!

VC only detects the conflicts between the just fixed variable
and the remaining variables, but DC also detects the
conflicts between the remaining variables.

COCP/M4CO 13 - 31 -

	Definitions
	Value Consistency
	Domain Consistency
	Bounds Consistency
	Consistency and Backtracking

