
Modelling for Combinatorial Optimisation (1DL451)

and Part 1 of Constraint Programming (1DL442)

Uppsala University – Autumn 2023

Cheatsheet: MiniZinc Backends & Experiment Script

Gustav Björdal, Pierre Flener, and Frej Knutar Lewander

24th August 2023

1 MiniZinc Installation and Command-Line Interface

On the Windows computers in the basement of Ångström house 10, start the ThinLinc client
from the start menu, set “Server” to thinlinc.student.it.uu.se, set “Username” to
your user identity, set “Password” to your password A, and press “Connect”.

Our script first install.sh adds three aliases in your .bashrc file in your home
directory:

> cd /it/kurs/consprog/minizinc/
> ./first_install.sh

Note that in order to execute the aliases in terminal tabs you had open before you executed
first install.sh, you must for each terminal tab execute the command:

> source ˜/.bashrc

There should now be three new aliases in your .bashrc file in your home directory that can
be executed in your terminal: minizinc, minizinc-ide, and run backends.

Since non-interactive terminals do not automatically process the .bashrc file in your
home directory, the aliases cannot be used in commands that in turn run other commands
(such as the timeout command) or script files, but must instead be replaced by their as-
sociated command (such as /it/kurs/consprog/minizinc/run backends.sh for the
run backends alias). In order to use the Gurobi backend in the MiniZinc integrated devel-
opment environment (Section 2) and the MiniZinc command-line interface in a non-interactive
terminal, you must first use the following command:

> module load gurobi

Our experiment script (Section 3) runs this command automatically.
Our MiniZinc command-line interface (CLI), with backends of all solving technologies that

are to be used in this course (note that the official CLI just has a subset thereof), is at

/it/kurs/consprog/minizinc/MiniZincIDE/bin/minizinc

and, after running our first install.sh script, can be accessed with the minizinc alias.
See Table 1 on the second-last page for information about our installed backends. Run MiniZinc
from the command line using:

1



> minizinc

Get help that is specific to a backend by using its name in Table 1:

> minizinc --help <backend>

For more information on the official MiniZinc CLI, see its documentation.1

2 MiniZinc Integrated Development Environment

Our MiniZinc integrated development environment (IDE),2 with backends of all solving techno-
logies that are to be used in this course (the official IDE just has a subset thereof), is on the Thin-
Linc computers of the IT department at /it/kurs/consprog/minizinc/MiniZincIDE/
and, after running our first install.sh script, can be accessed with the minizinc-ide
alias. Feel free to use our IDE (if not the official IDE) while designing your models, but test each
model under all solving technologies, even when still designing it. An IDE is not suitable for
running the experiments we ask for in the assignment and project reports, as for this you ought
to run the backends from our CLI or, much more conveniently, using our script of Section 3.

3 Running a Batch of Experiments

Our run backends.sh script (accessed with the run backends alias after running our
first install.sh script) both runs a batch of experiments on all the backends we installed
on the ThinLinc computers of the IT department and generates a results table in LATEX format.
It can run either a set of .dzn files or by increasing values of some parameter, as discussed in
the following subsections. Type run_backends --help to see its flags.

3.1 Setting Everything Up

To run our experiment script, move to the directory where your .mzn model file and a directory
with your .dzn datafiles are located. Assume you have a directory called myModels in your
home directory, with a model file called tilePacking.mzn for a tile packing problem and a
directory called dataDir with your datafiles. Navigate to this directory:

> cd ˜/myModels/
> ls
dataDir/
tilePacking.mzn
> ls dataDir
instance_4.dzn
instance_5.dzn
instance_6.dzn

3.2 Extracting Values

Assume you want to report the width, height, and area of the best-found bounding box in a
table, where there are variables w and h in the model corresponding to the width and height of
the bounding box, and the area is to be minimised. For our experiment script to extract these

1https://www.minizinc.org/doc-latest/en/command_line.html
2https://www.minizinc.org/ide

2

https://www.minizinc.org/doc-latest/en/command_line.html
https://www.minizinc.org/ide


values, use the --vars flag with the names of these variables; for optimisation problems, the
objective value is extracted automatically, so you should not specify it :

... --vars w h ...

The values of some variables cannot be extracted unless explicitly annotating they are output
variables in the MiniZinc model. For example, we declare that the variable x is an output
variable with the add_to_output annotation in order for our script to be able to extract it:

% assuming n, y, and z are declared elsewhere:
var 1..n: x :: add_to_output = y+z;

Each of the space-separated words must be the exact name of a variable in the MiniZinc model.

3.3 Running Experiments over a Parameter Range

Assume you want to run the model for an increasing number n of tiles. In order to allow our
script to control this, declare a parameter, say n, in your model:

int: n;

The following command runs the tilePacking.mzn model (assumed to be in the current
directory) for values of n between 3 and 15, by increments of 5, with a time-out of 60,000 mil-
liseconds (60 seconds), and writes the results in LATEX format into a file called results.tex:

> run_backends --vars w h -r n 3 15 5 -t 60000 \
-o results.tex tilePacking.mzn

The \ character means a line break since the command does not fit on one line in this document:
you should not include it but write everything on one line. After importing the output file
into a LATEX tabular environment using the LATEX command \input{results.tex}, you
get something like Table 2, except for the left column. The meanings of the flags can be
seen when typing run_backends at the command line. Note that -r <param> <start>
<stop> <inc> increments <param> by <inc> until it is greater than <stop>, but it does
not necessarily run the instance where <param> = <stop>. In the example "n 3 15 5"
above, the script only runs for the instances n=3, n=8, and n=13.

Each instance is currently only run once on each backend, so no statistics are performed on
the results of multiple runs, even though this ought to be done, especially for backends that
perform randomisation, such as yuck.

3.4 Running Experiments on a Set of Datafiles

Our experiment script can also run the model for a set of datafiles (as required by Assignments 2
and 3). Assuming you have three datafiles called instance 4.dzn, instance 5.dzn, and
instance 6.dzn in a directory called dataDir in the same location as your tilePacking.mzn
model, you can run the model for those datafiles, with a time-out of 60,000 milliseconds, and
write the results in LATEX format into a file called results.tex using the following command:

> run_backends --vars w h -d dataDir/*.dzn -t 60000 \
-o results.tex tilePacking.mzn

Recall that the \ character means a line break since the command does not fit on one line in this
document: you should not include it but write everything on one line. After importing the out-
put file into a LATEX tabular environment using the LATEX command \input{results.tex},

3



you get something like Table 2. The meaning of the flag -d is shown upon typing run_backends
at the command line.

Recall that each instance is currently only run once on each backend, so that no statistics
are performed on the results of multiple runs, even though this ought to be done, especially for
backends that perform randomisation, such as yuck.

3.5 Running Experiments Overnight

If you want to run your experiments while being logged out of a chosen ThinLinc computer3

of the IT department, then log into one of the ThinLinc computers using ssh and use the
screen command to start a detached session. Open a terminal and connect via ssh to one of
the ThinLinc computers:

> ssh username@<hostname>.it.uu.se

Once logged in, write:

> screen -Rd

This changes your terminal to what looks like a fresh terminal. From here you can perform the
steps described in the previous subsections in order to start your experiments.

Note: If you are in a computer lab and start a detached screen session directly in a ter-
minal, without first doing an ssh, then the session will not persist after you log out and your
experiments will be aborted.

You should put a reasonable global time-out on the entire batch of your experiments so that
they do not run for too long! You can set for instance a 1-day time-out using timeout 1d
when you start our experiment script:

> cd ˜/myModels
> timeout 1d /it/kurs/consprog/minizinc/run_backends.sh \

--vars w h -d dataDir/*.dzn -t 60000 -o results.tex \
tilePacking.mzn

Once you have started our experiment script, you can exit the screen session by pressing
Ctrl-a Ctrl-d. This will return you to the terminal from where you started screen. If at
this point you log out, then the script will keep on running.

If you want to check the progress of the experiments and possibly terminate the experiments
(say because you have in the meantime found some improvements to your model), then open a
terminal and run screen -Rd again: this gets you back to where you left off and you can kill
the experiment script using Ctrl-c.

Note: The screen session is local to the ThinLinc computer you had logged into, so if you
started it from siegbahn.it.uu.se and then log into fredholm.it.uu.se, then you will
not be able to reopen the screen session. However, when the script finishes you can access
the results from any ThinLinc computer, provided you have output them to a file.

3https://www.it.uu.se/datordrift/maskinpark/linux

4

https://www.it.uu.se/datordrift/maskinpark/linux


4 CP-SAT

Under at most 6 threads, the CP-SAT backend by Google is of lazy-clause generation (LCG)
solving technology, which ultimately proves optimality. Under at least 7 threads,4 it also con-
ducts large-neighbourhood search (LNS), which is a local-search solving technology (different
from the one of Yuck) that we see in Topic 7 and Assignment 3, and thus only occasionally proves
optimality. In order to ensure that CP-SAT makes no use of LNS and that its performance
actually corresponds to only the use of LCG, the -n 6 flag must be used when running it via
our MiniZinc CLI, so that you use five distinct solving technologies. Our run backends.sh
script uses this flag when running CP-SAT. In order to force CP-SAT to use only LCG but no
LNS in our MiniZinc IDE, do the following:

1. Select CP-SAT under “Solver configuration”.

2. Click on “Show configuration editor”.

3. Under “Solving” change the number of threads to 6.

5 Error Reports

This is a working document that we will update during the course if bugs or features are
discovered. Always first check your results against some runs from the CLI or IDE in order to
see that things look about right. If our experiment script reports ERR for any run, then this
most likely means that there is something wrong with your model. Do checks at the CLI or
IDE in order to determine what is wrong. If you have strong reasons to suspect a bug on our
side, then please report it to the COCP helpdesk as soon as possible.

4According to https://github.com/d-krupke/cpsat-primer#parallelization.

5

https://github.com/d-krupke/cpsat-primer#parallelization


Backend
identifier

Backend
name

Proves
Optimality

Miscellaneous
and Known Bugs

gecode Gecode ultimately Good all-round backend that supports all Mini-
Zinc features.

cp-sat CP-SAT ultimately See Section 4!

chuffed Chuffed ultimately –

gurobi Gurobi ultimately Generates at each run a log file that it is safe to
remove.
If you run it via our MiniZinc CLI, then you must
first run the module load gurobi command.

coin-bc COIN-BC ultimately Use the commercial Gurobi Optimizer if possible.

highs HiGHS ultimately Use the commercial Gurobi Optimizer if possible.

yuck Yuck occasionally –

picatsat PicatSAT ultimately –

Table 1: MiniZinc backends accessible on the ThinLinc computers of the IT department
through our CLI /it/kurs/consprog/minizinc/MiniZincIDE/bin/minizinc and
our IDE /it/kurs/consprog/minizinc/MiniZincIDE/MiniZincIDE.sh.

6



Backend CP-SAT Gecode Gurobi PicatSAT Yuck

instance w, h, obj time w, h, obj time w, h, obj time w, h, obj time w, h, obj time

instance 4 5, 7, 35 960 7, 5, 35 590 7, 5, 35 600 5, 7, 35 940 7, 5, 35 t/o
instance 5 5, 12, 60 490 12, 5, 60 460 5, 12, 60 600 5, 12, 60 1130 5, 12, 60 t/o
instance 6 9, 11, 99 600 11, 9, 99 500 11, 9, 99 790 –, –, – t/o 11, 9, 99 t/o

Table 2: Results for our model of Tile Packing, which is a minimisation problem. In the ‘time’ column, if the reported time is less than the
time-out (60,000 milliseconds here), then the reported objective value in the ‘obj’ column was proven optimal; else the time-out is indicated
by ‘t/o’ and the reported objective value is either the best value found, but not proven optimal, before timing out, or ‘–’, indicating that no
feasible solution was found before timing out. Boldface indicates the best performance (objective value or time) on each row.

7


	MiniZinc Installation and Command-Line Interface
	MiniZinc Integrated Development Environment
	Running a Batch of Experiments
	Setting Everything Up
	Extracting Values
	Running Experiments over a Parameter Range
	Running Experiments on a Set of Datafiles
	Running Experiments Overnight

	CP-SAT
	Error Reports

