Modelling for Combinatorial Optimisation (1DL451)
and Constraint Programming (1DL442)
Uppsala University — Autumn 2023
Assignment 3: Scooter Service Problem (SSP)

Prepared by Gustav Bjordal and Pierre Flener
— Deadline: 13:00 on Friday 6 October 2023 —

The scope of this assignment is Topics 1 to 8: you need not show any knowledge of subsequent
topics. The source code of the demo report (at https://user.it.uu.se/~pierref/
courses/COCP/demoReport) has problem-independent indications on how to proceed. Read
the Submission Instructions and Grading Rules at the end of this document. It is strongly
recommended to prepare and attend the help sessions, as huge time savings may ensue.

The objectives of this assignment are (a) to design a model for a problem with a lot of side
constraints, (b) to learn how a complex vehicle routing problem can be modelled with suitable
global constraints, (c) to observe experimentally the power of large-neighbourhood search (which
is a form of local search), and (d) to see the bigger picture, as an optimisation problem is
usually just one aspect of a larger problem, here in the sense that the instance data come from a
machine-learning pipeline.

Background

Rented electric scooters are an increasingly popular transportation method in urban areas.
However, they present new logistic challenges for each company that owns a fleet of electric
scooters. We tackle here part of the challenge of deciding how to service the scooters.

We consider scooters of a newer model, where the battery pack can be replaced on location
and service employees travel around town with charged batteries in order to replace the batteries
of scooters with a too low charge, and possibly do some other minor maintenance. We assume
each service employee is paid based on the payment values of the actually serviced scooters.

Since a company need not service all the scooters at once, it can decide every now and then
which scooters to service, which employee services which scooters, and which route each service
employee travels. Furthermore, when deciding whether or not to service a particular scooter,
the company also wants to take into account other factors than its current charge level, such
as the likelihood that someone will want to use it soon, its geographical location, and its need
for maintenance. For taking these factors into account, one can use methods of modern Data
Science in order to create a machine-learning pipeline that, based on historic and current data,
generates the matrix of estimated current travel times between any two scooters, as well as
predictions (in the form of a scalar per scooter) that represent the service priority and payment
value of each scooter.

We consider here what to do once we have such predictions from a machine-learning pipeline:
rather than letting the employees decide individually for which scooters they grab the intention


https://user.it.uu.se/~pierref/courses/COCP/demoReport
https://user.it.uu.se/~pierref/courses/COCP/demoReport

of service, we use the MiniZinc toolchain in order to make these decisions automatically while
considering all the employees collectively.

The Scooter Service Problem

We are given the following parameters and derived parameters:

nScooters is the number of scooters;

nEmployees is the number of employees;

nNodes = nScooters + 2 x nEmployees isthe number of nodes in a directed graph,
where the nodes in 1. .nScooters represent the current scooter locations, and the nodes
in (nScooters+1) ..nNodes represent the start and end locations of the employees, as

explained below;

TravelTime[f,t] is the estimated time of travelling from node f to node t, both
in 1..nNodes, plus servicing the scooter at t, if any; note that TravelTime cannot be
assumed to be symmetric;

for each scooter s in 1. .nScooters:

— Priority[s] is the priority of some employee servicing s: a higher value means a
higher priority;

— Payment [s] is the payment that any employee would receive for servicing s;

for each employee e in 1. .nEmployees:

StartNode [e] is the start node of e;
— EndNode [e] is the end node of e;

MinNumScooters[e] is the minimum number of scooters e is willing to service;

MaxNumScooters [e] is the maximum number of scooters e is willing to service;

— MaxTime [e] is the preferred maximum total travel time of e.

The scooter service problem (SSP) is to decide, within the complete directed graph induced by
the nodes described above, the route of each employee, which then also determines the scooters
that each employee services. The constraints are as follows:

Each scooter is serviced by at most one employee.

Each employee e in 1. .nEmployees services either 0 scooters (and has an empty route)
or from MinNumScooters[e] to MaxNumScooters[e] scooters.

There are three simultaneous objectives:

Minimise totalOvertime, which is the total overtime of all the employees, where the over-
time of employee e is the amount by which the total travel time of e exceeds MaxTime [e].

Maximise totalPayment, which is the total payment that all the employees receive.
Note that this makes sense even from the company point of view: the scooters that have a
higher payment value are normally prioritised.



e Minimise totalPriorityLoss, which is the total priority of all the scooters that are
not serviced by any employee.

In order to combine these objectives into a single objective, we minimise a weighted sum in
order to balance them:

minimize alpha * totalOvertime
- beta * totalPayment
+ gamma * totalPriorityLoss

where alpha, beta, and gamma are additional parameters. Note that we do not minimise the
total travel time of all the employees: this can be done as a post-processing step where we
optimise the route of each employee, but we do not consider doing so in this assignment.

Viewpoint

In order to model the SSP, we use a so-called giant-tour formulation to represent the routing
of all the employees, where all their routes are merged into a single (sub-)circuit. We more or
less transform our vehicle routing problem (VRP) into a travelling salesperson problem (TSP).
Formally, we use an array Succ of so-called successor variables, indexed by all the nodes (the
scooters, as well as the employee start and end nodes), where Succ [n] denotes the node that
is visited after node n, and we state a single subcircuit constraint on these variables. Note
that we use subcircuit (and not circuit) as some scooters might not be serviced in an
optimal solution. For this formulation to be correct, you must state constraints that force the
successor of each employee’s end node to be the start node of the circularly next employee.
Figure 1 is a sketch of this formulation for three service employees and six scooters that need
service: the white and blue squares are respectively the start and end nodes of the employee
whose number is written inside the square, while the yellow circles are the scooter nodes.
Subfigure 1a shows the additional constraints described above, enforcing that the successor of
each blue end node is the white start node of the circularly next employee. Subfigure 1b shows
a sub-circuit solution, where employee 1 services (in order) scooters A, B, and C; employee 2
services scooters D and E; employee 3 services no scooters; and no employee services scooter F.
Since the subcircuit constraint allows some scooters not to be serviced (by their nodes
having self-loops in the visualised solution) and since we need to decide, for each scooter, which
employee services it, we introduce a dummy employee that services all the scooters serviced by
no employee. We do this by introducing an employee called dummy and requiring that a scooter
be serviced by that employee if and only if its node has a self-loop in the visualised solution.

B—: b—: N

e © o

(a) Enforcing a giant tour (b) A sub-circuit under the giant-tour formulation

Figure 1: The giant-tour viewpoint



A skeleton MiniZinc model and instances of varying sizes and difficulty, in the form of
datafiles using the parameter names above, are at https://user.it.uu.se/~pierref/
courses/COCP/assignments/assignment3/assignment3.zip. For brevity, you need
not import lines 1 to 54 of the skeleton model, if you do not change them, into your report.

Tasks

Perform the following sequence of tasks:!
A. Write and evaluate a MiniZinc model called SSP-A.mzn in order to solve the SSP.

Hint: We provide in the skeleton model most of the decision variables that are needed to
model this problem, but you can remove some variables if you find no use for them, and
you might need additional variables. You may use a search annotation towards greatly
accelerating CP and LCG backends: first state a suitable search strategy in plain English
and argue for it, and then formulate or approximate it as a MiniZinc search annotation.

Warning: It is very rare but you may run into what is called numerical instability (due
to integers being relaxed into floats) when a MIP-based backend claims that a feasible
sub-optimal solution (as per the other backends) is optimal. Sometimes, very small changes
to the model remove the bug, but do not spend much time on this and just report the
instability in reply to the question “Are there any contradictions between the results?” of
the demo report.

B. Extend SSP-A.mzn by adding the statement include and adding
the annotations restart_constant (p) and relax_and_reconstruct (Succ, o)
to the solve statement (just before the minimize keyword), for Gecode to use large-
neighbourhood search (LNS) for solving the SSP. Call this new model SSP-B.mzn.

Determine experimentally (but without reporting how) good values for p (an integer from 0
to 10000 denoting the constant number of nodes after which a restart will be made) and o
(an integer from 0 to 100 denoting the probability, as a percentage, of each variable of the
array Succ being fixed upon a restart to its value in the previous solution) and evaluate
SSP-B.mzn (in the usual way), but only under the Gecode solver: when invoking the
script run_backends. sh use also the flag ——backends gecode. Some other solvers
also support LNS, but currently not via their MiniZinc backends.

With LNS, Gecode no longer performs systematic search, but local search, and is thus
no longer able to prove optimality unless the objective value reaches the lower bound,
but it can often find solutions of much higher quality before timing out. Based on your
evaluation, is this a reasonable trade-off here? Why?

For the evaluation(s), use all the provided instances. Use a time-out of 5 CPU minutes
per instance in order to avoid too long solving times. For your convenience, here are the
minimal objective values for some small instances (in real life, you do not know all the optima
when you start modelling a problem; note that —264 in the second row is not wrong):

instance name objective value

005-003-01 —266
009-006-03 —264
010-008_01 —636
012_006_03 —538
02301703 —1239

'Solo teams may skip Task B, but are highly encouraged to do it nevertheless.


https://user.it.uu.se/~pierref/courses/COCP/assignments/assignment3/assignment3.zip
https://user.it.uu.se/~pierref/courses/COCP/assignments/assignment3/assignment3.zip

Submission Instructions

In order to protect yourself against an unnecessary loss of points, use the following to-do list
before submitting:

Tackle each task of each problem, using (in order to accelerate the grading) the numbering
and the ordering in which they appear in this assignment statement.

Take the instructions of the demo report at https://user.it.uu.se/~pierref/
courses/COCP/demoReport as a strict guideline for the structure and content of a
model description, model evaluation, and task answer, and as an indication of the expected
quality of content: write with the precision that you would expect from a textbook.

You must use the MiniZinc experiment script explained in https://user.it.uu.se/
~pierref/courses/COCP/assignments/cheatsheet.pdf: it conducts the exper-
iments and generates a result table that can be automatically imported (rather than
manually copied) into a IXTEX report, so that each time you change a model, it suffices to
re-run the script and re-compile your report, without any tedious number copying!

If a MiniZinc model does not compile and run error-free under backends of all the
considered solving technologies, then obtain a teacher’s approval in due time before
submitting your report.

Thoroughly proofread, spellcheck, and grammar-check the report, at least once per
teammate, including the comments in all code. In case you are curious about tech-
nical writing: the English Style Guide of UU at https://mp.uu.se/en/web/info/
stod/kommunikation—-riktlinjer/sprak/eng-skrivregler and the technical-
writing Checklist & Style Manual of the Optimisation group at https://optimisation.
research.it.uu.se/checkList.pdf offer many pieces of advice; common errors
in English usage are discussed at https://brians.wsu.edu/common—-errors; in
particular, common errors in English usage by native Swedish speakers are listed at
https://www.crisluengo.net/english—-language.

Match exactly the uppercase, lowercase, and layout conventions of any filenames and
I/0O texts imposed by the tasks, as we will process submitted source code automatically.
However, do not worry when Studium appends a version number to the filenames when
you make multiple submission attempts until the deadline.

Do not rename any provided problem-specific skeleton model, for the same reason.

Import all the MiniZinc models also into the report: for brevity, it is allowed to import
only the lines after the copyright notice.

Produce the report as a single file in PDF format; all other formats will be rejected.

Remember that when submitting you implicitly certify (a) that your report and all its
uploaded attachments were produced solely by your team, except where explicitly stated
otherwise and clearly referenced, (b) that each teammate can individually explain any
part starting from the moment of submitting your report, and (c) that your report and
attachments are not freely accessible on a public repository.

Submit (by only one of the teammates) the solution files (one report and all MiniZinc
source code) without folder structure and without compression via Studium, whose clock
may differ from yours, by the given hard deadline.


https://user.it.uu.se/~pierref/courses/COCP/demoReport
https://user.it.uu.se/~pierref/courses/COCP/demoReport
https://user.it.uu.se/~pierref/courses/COCP/assignments/cheatsheet.pdf
https://user.it.uu.se/~pierref/courses/COCP/assignments/cheatsheet.pdf
https://mp.uu.se/en/web/info/stod/kommunikation-riktlinjer/sprak/eng-skrivregler
https://mp.uu.se/en/web/info/stod/kommunikation-riktlinjer/sprak/eng-skrivregler
https://optimisation.research.it.uu.se/checkList.pdf
https://optimisation.research.it.uu.se/checkList.pdf
https://brians.wsu.edu/common-errors
https://www.crisluengo.net/english-language

Grading Rules

If all the tasks have been tackled, and all the requested models are in files with the imposed
names, comments, and explanations exemplified in the demo report, and, for all our grading
instances, all models produce correct outputs under backends of all the considered solving
technologies and (near-)optimal outputs under backends of at least two technologies in reasonable
time under MiniZinc version 2.7.6 on a Linux computer of the IT department, then you get at
least 1 point (read on), else your final score is 0 points. Furthermore:

e If all models are good (in terms of comments and against the checklists at https://user.
it.uu.se/~pierref/courses/COCP/demoReport/checklist.pdf) and all task
answers are mostly correct, then you get a final score of 3 or 4 or 5 points and are not
invited to the grading session. Note that we have not been able to design the equivalent
of Table 1 of Assignment 2, where some objective criteria reliably assess the quality of a
model, so grading is more subjective here: this is further preparation for your project and
real life, where one often does not know all the optima either.

e If some models are flawed (in terms of comments and against the checklists of Top-
ics 2 and 3) or the task answers have many errors, then you get an initial score
of 1 or 2 or 3 points and might be invited to the grading session, where you can try
and increase your initial score by 1 point into your final score, a no-show or non-invitation
leading to your final score being the initial one.

However, if an assistant figures out a minor fix that is needed to make some model run as per
our submission instructions above, then, instead of giving 0 points up front, the assistant may
at their discretion deduct 1 point from the score then earned.


https://user.it.uu.se/~pierref/courses/COCP/demoReport/checklist.pdf
https://user.it.uu.se/~pierref/courses/COCP/demoReport/checklist.pdf

