
Modelling for Combinatorial Optimisation (1DL451)

and Constraint Programming (1DL442)

Uppsala University – Autumn 2023

Assignment 2: Spacecraft Assembly Problem (SAP)

Prepared by Pierre Flener, Gustav Björdal, and Jean-Noël Monette

— Deadline: 13:00 on Friday 22 September 2023 —

The scope of this assignment is Topics 1 to 4: you need not show any knowledge of subsequent
topics. The source code of the demo report (at https://user.it.uu.se/˜pierref/
courses/COCP/demoReport) has problem-independent indications on how to proceed. Read
the Submission Instructions and Grading Rules at the end of this document. It is strongly re-
commended to prepare and attend the help sessions, as huge time savings may ensue.

It is the year 2137. You are consultants and the factory of a client can assemble one spacecraft
per week. The factory manager is given a list of orders, each order specifying at the end of
which week some ordered spacecrafts should be ready and which spacecraft types they should
be. Your job is to decide which week to assemble each ordered spacecraft (or, equivalently,
which spacecraft type to assemble each week) in order to minimise the total cost incurred by
the storage of the spacecrafts that are completed before their due date and by the adaptation
of the factory when switching between spacecraft types. An instance of the SAP is defined by:

• the number weeks of weeks for the planning;

• the number types of spacecraft types the factory can assemble;

• for each t in 1..types and each w in 1..weeks, the number Order[t,w] of spacecrafts
of type t to assemble by the end of week w; note that each Order[t,w] can be any non-
negative integer;

• the cost storageCost of storing one spacecraft during one week;

• for each t1 and t2 in 1..types, the cost SetupCost[t1,t2] of adapting the fact-
ory from assembling spacecrafts of type t1 to assembling spacecrafts of type t2; this
cost matrix respects the triangular inequality (for all i, j, k in 1..types, we have
SetupCost[i,k]+SetupCost[k,j] ≥ SetupCost[i,j]), but might be asymmet-
rical, and there is no setup cost when not changing the spacecraft type (for all i in
1..types, we have SetupCost[i,i] = 0).

A skeleton MiniZinc model and instances of varying sizes and difficulty, in the form of datafiles
using the parameter names above, are at https://user.it.uu.se/˜pierref/courses/
COCP/assignments/assignment2/assignment2.zip.

1

https://user.it.uu.se/~pierref/courses/COCP/demoReport
https://user.it.uu.se/~pierref/courses/COCP/demoReport
https://user.it.uu.se/~pierref/courses/COCP/assignments/assignment2/assignment2.zip
https://user.it.uu.se/~pierref/courses/COCP/assignments/assignment2/assignment2.zip


Here are some clarifications by the factory manager:

• A spacecraft assembled during the week it is due incurs no storage cost.

• There is no limit on storage space: one can always store as many spacecrafts as needed.

• One cannot assemble an ordered spacecraft after its due date.

• There is no setup cost before the first spacecraft is assembled and there is no setup cost
after the last spacecraft is assembled.

• If there is a stretch of one or more weeks with zero assembly directly after the assembly of
a spacecraft of type t1 and directly before the assembly of a spacecraft of type t2, then
one must still pay the cost SetupCost[t1,t2].

This problem can be modelled using at least two viewpoints: either (1) decide, for each week,
which, if any, spacecraft to assemble; or (2) decide, for each spacecraft, during which week to
assemble it. Perform the following sequence of tasks:1

A. In order to reason with individual spacecrafts, pre-compute at least the derived parameter
DueWeek, specified in the skeleton model.

B. Write and evaluate a MiniZinc model called SAP1.mzn using the first viewpoint above.
Write and evaluate a MiniZinc model called SAP2.mzn using the second viewpoint above.

Hints. Try both viewpoints in parallel for a while and then finish the model that comes
easiest for you. Finish the other model only afterwards: some insights should carry over,
which can save you a lot of time. Model incrementally, based on the specification: first
model the assembly schedule, then extend the model with the storage costs, and finally
extend it with the setup costs. Make sure each model is correct before and after each
extension. Make sure your two models yield, for each instance, the same objective value
upon proven optimality.

For each evaluation, use all the provided instances and report the results for the chosen
backends for all the considered technologies. Use a time-out of 5 CPU minutes per
instance in order to avoid too long solving times. Note that the numbers of weeks
and spacecraft types are not necessarily indicative of the difficulty of an instance. See
Table 1 at the end of this document for the minimum requirements for each possible score
on this assignment. For your convenience, here are the minimal objective values for some
instances (in real life, you do not know any of the optima when you start modelling a
problem):

instance minimum

sap 005 02 171
sap 006 02 280
sap 008 04 431
sap 010 05 675

C. Which model was easier to write? Why? Which model is easier to understand? Why?

D. Which improvements of your models have you performed to render them more efficient? A
purely textual reply is expected: quantify the effect of each improvement, without neces-
sarily running all versions of a model on all the instances under all the chosen backends;
use your best judgement.

1Solo teams may skip using storageCost within their models, but are highly encouraged to try nevertheless.

2



E. Which combination of model, technology, and backend would you recommend to the
factory manager for solving future instances of the problem? Why? Factor in your answer
to Question C, as one may also want to consider the maintainability of the chosen model.

F. Briefly describe a real-world situation where (a variation) of the SAP can occur.

Submission Instructions

In order to protect yourself against an unnecessary loss of points, use the following to-do list
before submitting:

• Tackle each task of each problem, using (in order to accelerate the grading) the num-
bering and the ordering in which they appear in this assignment statement.

• Take the instructions of the demo report at https://user.it.uu.se/˜pierref/
courses/COCP/demoReport as a strict guideline for the structure and content of a
model description, model evaluation, and task answer, and as an indication of the expected
quality of content: write with the precision that you would expect from a textbook.

• You must use the MiniZinc experiment script explained in https://user.it.uu.se/

˜pierref/courses/COCP/assignments/cheatsheet.pdf: it conducts the exper-
iments and generates a result table that can be automatically imported (rather than
manually copied) into a LATEX report, so that each time you change a model, it suffices
to re-run the script and re-compile your report, without any tedious number copying!

• If a MiniZinc model does not compile and run error-free under backends of all the con-
sidered solving technologies, then obtain a teacher’s approval in due time before submit-
ting your report.

• Thoroughly proofread, spellcheck, and grammar-check the report, at least once per
teammate, including the comments in all code. In case you are curious about technical
writing: the English Style Guide of UU at https://mp.uu.se/en/web/info/stod/
kommunikation-riktlinjer/sprak/eng-skrivregler and the technical-writing
Checklist & Style Manual of the Optimisation group at https://optimisation.
research.it.uu.se/checkList.pdf offer many pieces of advice; common errors
in English usage are discussed at https://brians.wsu.edu/common-errors; in
particular, common errors in English usage by native Swedish speakers are listed at
https://www.crisluengo.net/english-language.

• Match exactly the uppercase, lowercase, and layout conventions of any filenames and
I/O texts imposed by the tasks, as we will process submitted source code automatically.
However, do not worry when Studium appends a version number to the filenames when
you make multiple submission attempts until the deadline.

• Do not rename any provided problem-specific skeleton model, for the same reason.

• Import all the MiniZinc models also into the report: for brevity, it is allowed to import
only the lines after the copyright notice.

• Produce the report as a single file in PDF format; all other formats will be rejected.

3

https://user.it.uu.se/~pierref/courses/COCP/demoReport
https://user.it.uu.se/~pierref/courses/COCP/demoReport
https://user.it.uu.se/~pierref/courses/COCP/assignments/cheatsheet.pdf
https://user.it.uu.se/~pierref/courses/COCP/assignments/cheatsheet.pdf
https://mp.uu.se/en/web/info/stod/kommunikation-riktlinjer/sprak/eng-skrivregler
https://mp.uu.se/en/web/info/stod/kommunikation-riktlinjer/sprak/eng-skrivregler
https://optimisation.research.it.uu.se/checkList.pdf
https://optimisation.research.it.uu.se/checkList.pdf
https://brians.wsu.edu/common-errors
https://www.crisluengo.net/english-language


• Remember that when submitting you implicitly certify (a) that your report and all its
uploaded attachments were produced solely by your team, except where explicitly stated
otherwise and clearly referenced, (b) that each teammate can individually explain any
part starting from the moment of submitting your report, and (c) that your report and
attachments are not freely accessible on a public repository.

• Submit (by only one of the teammates) the solution files (one report and all MiniZinc
source code) without folder structure and without compression via Studium, whose clock
may differ from yours, by the given hard deadline.

Grading Rules

If all the tasks have been tackled, and all the requested models are in files with the imposed
names, comments, and explanations exemplified in the demo report, and , for all our grading
instances, all models produce correct outputs under backends of all the considered solving tech-
nologies and (near -)optimal outputs under backends of at least two technologies in reasonable
time under MiniZinc version 2.7.6 on a Linux computer of the IT department, then you get at
least 1 point (read on), else your final score is 0 points. Furthermore:

• If all models meet the minimum requirements in the first four or five rows in Table 1
below, and all models are good (in terms of comments and against the checklists of Top-
ics 2 and 3 at https://user.it.uu.se/˜pierref/courses/COCP/demoReport/
checklist.pdf), and all task answers are mostly correct, then you get a final score
of 3 or 4 or 5 points and are not invited to the grading session.

• If some models meet the minimum requirements in at most the first three rows in Table 1
below, or some models are flawed (in terms of comments and against the checklists of
Topics 2 and 3), or the task answers have many errors, then you get an initial score
of 1 or 2 or 3 points and might be invited to the grading session, where you can try and
increase your initial score by 1 point into your final score, a no-show or non-invitation
leading to your final score being the initial one.

However, if an assistant figures out a minor fix that is needed to make some model run as per
our submission instructions above, then , instead of giving 0 points up front, the assistant may
at their discretion deduct 1 point from the score then earned.

minimum requirement

score optimality feasibility

1..5 sap 005 02 sap 008 04
2..5 sap 008 04 sap 015 10
3..5 sap 010 05 sap 030 05
4..5 sap 010 06 sap 100 15

5 sap 030 05

Table 1: In each row, a solution to the instance in the ‘optimality’ column must be found and
proven optimal by at least one backend under at least one viewpoint, and a solution to the
instance in the ‘feasibility’ column must be found by at least one backend under at least one
viewpoint, each time within 5 CPU minutes and no matter how slow the other backends and
viewpoints are, under MiniZinc version 2.7.6 on any Linux computer of the IT department.

4

https://user.it.uu.se/~pierref/courses/COCP/demoReport/checklist.pdf
https://user.it.uu.se/~pierref/courses/COCP/demoReport/checklist.pdf

