
Modelling for Combinatorial Optimisation (1DL451)

and Constraint Programming (1DL442)

Uppsala University – Autumn 2023

Assignment 1 (pass/fail)

Prepared by Pierre Flener, Gustav Björdal, and Jean-Noël Monette

— Deadline: 13:00 on Friday 8 September 2023 —

The scope of this assignment is Topics 1 to 2: you need not show any knowledge of subsequent
topics. The source code of the demo report (at https://user.it.uu.se/˜pierref/
courses/COCP/demoReport) has problem-independent indications on how to proceed. Read
the Submission Instructions and Grading Rules at the end of this document. It is strongly re-
commended to prepare and attend the help sessions, as huge time savings may ensue.

Combinatorial optimisation is intended for complex real-life problems, but we warm up
slowly, with simple puzzles and simplified real-life problems. Model the following problems1

(by starting from copies of the problem-independent https://user.it.uu.se/˜pierref/
courses/COCP/demoReport/skeleton.mzn) and evaluate the performance of backends of
all the solving technologies considered in the course (see Problem 1). If you make assumptions
that are not part of a problem formulation, then state them clearly in the report and model.

Some of the problems have more than one solution, or more than one optimal solution. Also,
some of the problems can actually be solved without search, either by paper-and-pencil analysis
or by polynomial-time algorithms. Models can however be written without much knowledge of
such analytic or algorithmic processes. The objective of this assignment is to assess whether the
MiniZinc toolchain is of help even for such computationally simple problems. Speed is not an
issue for Problems 2 and 3, and you should finish all problems and the report before revisiting
Problems 4 and 5 towards tuning those models until your self-allocated time budget is up.

1 Solving Technologies (pass/fail)

Give the acronym and full name of the solving technology of each backend that is used by
our experiment-running script run backends.sh explained in https://user.it.uu.se/

˜pierref/courses/COCP/assignments/cheatsheet.pdf.

2 The Nine Children (pass/fail)

There is a person with nine children of different ages, expressed as integers. There are equally
long gaps between the ages of any two consecutively born children. The squared age of the
parent is the sum of the squares of the ages of the children. Perform the following sequence of
tasks, where you can assume that no person gets older than 150 years:

1Solo teams may skip Problem 2, but are highly encouraged to try it nevertheless.

1

https://user.it.uu.se/~pierref/courses/COCP/demoReport
https://user.it.uu.se/~pierref/courses/COCP/demoReport
https://user.it.uu.se/~pierref/courses/COCP/demoReport/skeleton.mzn
https://user.it.uu.se/~pierref/courses/COCP/demoReport/skeleton.mzn
https://user.it.uu.se/~pierref/courses/COCP/assignments/cheatsheet.pdf
https://user.it.uu.se/~pierref/courses/COCP/assignments/cheatsheet.pdf


A. Write a MiniZinc model called nineChildren.mzn in order to find the ages of the
children and their parent. Follow the instructions of Section C of the demo report for how
to document your model; this applies to all the problems of all the assignments.

B. Evaluate your model, writing the age of the parent in the result table. Follow the instruc-
tions of Section D of the demo report for how to evaluate your model; this applies to all
the problems of all the assignments.

C. How old are the children and their parent? Describe how to use the MiniZinc toolchain
in order to determine whether this solution is unique and, if not, to determine a solution
with the youngest parent.

3 Halmos and his Wife (from Paul Halmos) (pass/fail)

Paul Halmos, the mathematician, and his wife attended a dinner party attended by four other
couples. During the cocktail hour, some of those present shook hands, but in an unsystematic
way, with no attempt to shake everyone’s hand. Nobody shook their own hand, nobody shook
hands with their spouse, and nobody shook hands with the same person more than once. During
dinner, Halmos asked each of the nine other people present, including his wife, how many hands
they had shaken. Under the given conditions, the possible answers range from 0 to 8. However,
it turned out that each person gave a different answer: one person had not shaken any hand,
one person had shaken exactly one hand, one person had shaken exactly two hands, and so on,
up to one person who had shaken hands with all the others present, except their spouse, that
is eight hands. Perform the following sequence of tasks:

A. Write a MiniZinc model wifeHalmos.mzn to find how many hands Halmos’ wife shook.

B. Evaluate your model, writing her number of handshakes in the result table.

C. Add a constraint to the model in order to determine whether the number of handshakes
by Halmos’ wife in Task B is unique. If it is not unique, then report under Task B the
first solution of each backend.

4 A Largest Permutation (pass/fail)

Find a permutation [v1, . . . , vn] of the integers 1 to n such that the sum of the products of all
pairs of successive values vi and vi+1 is maximal. Perform the following sequence of tasks:

A. Write a MiniZinc model called largestPerm.mzn in order to find such a permutation.

B. Evaluate your model from n = 5 to at most n = 25, by steps of 5, using any time-out
of 30 to 60 CPU seconds, and giving the best-found solution upon a time-out.

This problem can be solved in time polynomial in n but is a difficult benchmark for
general-purpose solvers: you are not expected to find a model that scales up to n = 25
before timing out with such a short time-out, and our purpose only is to observe the
different scalability of the various solving technologies and backends.

In general, we usually do not expect proven optimality and are interested in comparing
best-found solutions.

Hint: The maximum sum for n = 5 is 46, and you can gauge the progress by using the Mini-
Zinc integrated development environment (IDE) or the -a option at the command-line interface
(CLI) for displaying the intermediate feasible solutions to an optimisation problem.

2



5 Tile Packing (pass/fail)

Place n tiles of sizes 1×1, 2×2, . . . , n×n inside a bounding rectangle of width w and height h
such that no tiles are overlapping and w ·h is minimal. Perform the following sequence of tasks:

A. Write a MiniZinc model called tilePacking.mzn in order to find such a tile pack-
ing, using the diffn predicate, which is specified at https://www.minizinc.org/
doc-latest/en/lib-globals-packing.html and has an example in Figure 5.118.1
at https://sofdem.github.io/gccat/gccat/Cdiffn.html).
Hint: Give the variables as tight domains as possible.

B. Evaluate your model from n = 4 to n = 15, by steps of 1, using any time-out of 30
to 60 CPU seconds, giving the best-found solution upon a time-out, and writing the
tuple ⟨w, h,w · h⟩ instead of just the objective value w · h in the result table. Hint: Use
the add_to_output annotation for the MiniZinc variables corresponding to w and h.

C. A reflection or rotation of any (partial) solution results in a symmetrical (partial) solution.
Likewise, reflecting or rotating any (partial) non-solution results in a symmetrical (partial)
non-solution. An easy way to break these symmetries is to constrain the lower-left corner
of the largest tile, which is of size n × n, to be placed in the lower-left quadrant of the
bounding rectangle. Add such a symmetry-breaking constraint γ to your model via the
syntax constraint symmetry_breaking_constraint(γ), re-run the evaluation
of Task B, and discuss the performance impact this has for each backend, in terms of both
solution quality and solution time. Hint: Avoid using the div function by rewriting a
constraint such as a < b div c into a * c < b, which is valid when c is positive.

Trivia: The largest known optimal solution is for n = 32: it has a bounding rectangle of
size 85 × 135 and took about 33.5 CPU days to find and prove optimal. Finding this solution
requires much more sophisticated symmetry breaking as well as search heuristics.

Submission Instructions

In order to protect yourself against an unnecessary loss of points, use the following to-do list
before submitting:

• Tackle each task of each problem, using (in order to accelerate the grading) the num-
bering and the ordering in which they appear in this assignment statement.

• Take the instructions of the demo report at https://user.it.uu.se/˜pierref/
courses/COCP/demoReport as a strict guideline for the structure and content of a
model description, model evaluation, and task answer, and as an indication of the expected
quality of content: write with the precision that you would expect from a textbook.

• You must use the MiniZinc experiment script explained in https://user.it.uu.se/

˜pierref/courses/COCP/assignments/cheatsheet.pdf: it conducts the exper-
iments and generates a result table that can be automatically imported (rather than
manually copied) into a LATEX report, so that each time you change a model, it suffices
to re-run the script and re-compile your report, without any tedious number copying!

• If a MiniZinc model does not compile and run error-free under backends of all the con-
sidered solving technologies, then obtain a teacher’s approval in due time before submit-
ting your report.

3

https://www.minizinc.org/doc-latest/en/lib-globals-packing.html
https://www.minizinc.org/doc-latest/en/lib-globals-packing.html
https://sofdem.github.io/gccat/gccat/Cdiffn.html
https://user.it.uu.se/~pierref/courses/COCP/demoReport
https://user.it.uu.se/~pierref/courses/COCP/demoReport
https://user.it.uu.se/~pierref/courses/COCP/assignments/cheatsheet.pdf
https://user.it.uu.se/~pierref/courses/COCP/assignments/cheatsheet.pdf


• Thoroughly proofread, spellcheck, and grammar-check the report, at least once per
teammate, including the comments in all code. In case you are curious about technical
writing: the English Style Guide of UU at https://mp.uu.se/en/web/info/stod/
kommunikation-riktlinjer/sprak/eng-skrivregler and the technical-writing
Checklist & Style Manual of the Optimisation group at https://optimisation.
research.it.uu.se/checkList.pdf offer many pieces of advice; common errors
in English usage are discussed at https://brians.wsu.edu/common-errors; in
particular, common errors in English usage by native Swedish speakers are listed at
https://www.crisluengo.net/english-language.

• Match exactly the uppercase, lowercase, and layout conventions of any filenames and
I/O texts imposed by the tasks, as we will process submitted source code automatically.
However, do not worry when Studium appends a version number to the filenames when
you make multiple submission attempts until the deadline.

• Do not rename any provided problem-specific skeleton model, for the same reason.

• Import all the MiniZinc models also into the report: for brevity, it is allowed to import
only the lines after the copyright notice.

• Produce the report as a single file in PDF format; all other formats will be rejected.

• Remember that when submitting you implicitly certify (a) that your report and all its
uploaded attachments were produced solely by your team, except where explicitly stated
otherwise and clearly referenced, (b) that each teammate can individually explain any
part starting from the moment of submitting your report, and (c) that your report and
attachments are not freely accessible on a public repository.

• Submit (by only one of the teammates) the solution files (one report and all MiniZinc
source code) without folder structure and without compression via Studium, whose clock
may differ from yours, by the given hard deadline.

Grading Rules

If all the tasks have been tackled and all the requested models are in files with the imposed
names, comments, and explanations exemplified in the demo report, then you might pass this
assignment (read on), else you fail it. Furthermore:

• If all models pass most of our grading instances (by producing correct outputs under
backends of all the considered solving technologies and (near -)optimal outputs under
backends of at least two technologies in reasonable time under MiniZinc version 2.7.6 on
a Linux computer of the IT department), and all models are good (in terms of com-
ments and against the checklist of Topic 2 at https://user.it.uu.se/˜pierref/
courses/COCP/demoReport/checklist.pdf), and all task answers are mostly cor-
rect, then you do pass this assignment and are not invited to the grading session.

• If some models fail many of our grading instances, or some models are flawed (in terms
of comments and against the checklist of Topic 2), or the task answers have many errors,
then you are invited to the grading session, at the end of which you are informed whether
you pass or fail this assignment, a no-show leading to failure.

4

https://mp.uu.se/en/web/info/stod/kommunikation-riktlinjer/sprak/eng-skrivregler
https://mp.uu.se/en/web/info/stod/kommunikation-riktlinjer/sprak/eng-skrivregler
https://optimisation.research.it.uu.se/checkList.pdf
https://optimisation.research.it.uu.se/checkList.pdf
https://brians.wsu.edu/common-errors
https://www.crisluengo.net/english-language
https://user.it.uu.se/~pierref/courses/COCP/demoReport/checklist.pdf
https://user.it.uu.se/~pierref/courses/COCP/demoReport/checklist.pdf

	Solving Technologies (pass/fail)
	The Nine Children (pass/fail)
	Halmos and his Wife (from Paul Halmos) (pass/fail)
	A Largest Permutation (pass/fail)
	Tile Packing (pass/fail)

