Fundamentals of Integer Programming

Di Yuan

Department of Information Technology, Uppsala University

January 2018
Outline

- Definition of integer programming
- Formulating some classical problems with integer programming
- Linear programming
- Solution methods for integer programming
- (Introduction to modeling language and solver)
- Impact of modeling on problem solving
Definition of Integer Programming

Optimization and Programming

- Mathematical programming: to find the best solution from a set of alternatives
- A generic formulation:
 \[
 \begin{align*}
 \max & \quad f(x) \quad \text{Objective function} \\
 \min & \quad f(x) \\
 \text{s. t.} & \quad x \in X \quad \text{Solution set} \\
 \text{Variables} & \\
 \end{align*}
 \]
- The variables (their values) represent problem solution
- The solution set is specified by equations and inequalities

\[X = \{ g_i(x) \sim b_i, i = 1, \ldots, m \}, \text{ where } \sim \text{ can be any of } \leq, =, \text{ and } \geq \]
Binary Knapsack

- A set of items, each with a value and weight
- A knapsack with a weight capacity limit
- Select items to maximize the total value of the knapsack, without exceeding the weight limit

\[
\begin{align*}
\text{max} & \quad \sum_{i=1}^{n} c_i x_i \\
\text{s. t.} & \quad \sum_{i=1}^{n} a_i x_i \leq b \\
& \quad x \in \{0, 1\}, i = 1, \ldots, n
\end{align*}
\]
Types of Optimization Models

- Linear programming
- Integer (linear) programming
- Nonlinear programming
- Integer nonlinear programming
Definition of Integer Programming

Generic Model of Mixed Integer (Linear) Programming (MIP)

\[
\begin{align*}
\max \ & \ \frac{1}{\min} \sum_{j=1}^{n} c_j x_j \\
\text{s. t.} \ & \ \sum_{j=1}^{n} a_{ij} x_j \sim b_i, \ i = 1, \ldots, m \\
& \ l_j \leq x_j \leq u_j, \ j = 1, \ldots, k \\
& \ l_j \leq x_j \leq u_j, \text{integer, } j = k + 1, \ldots, n \\
\sim \ & \ \text{can be any of } \leq, =, \text{and } \geq \\
\end{align*}
\]

Special case: binary variables
Coloring

- Assign a color to each vertex (node); two adjacent vertexes must use different colors
- Minimize the total number of colors used
Modeling Some Classical Problems with Integer Programming

Coloring (cont’d)

How to define the variables and constraints?

Define color set \(C \)

\[
\begin{align*}
\text{min } \quad & y_{red} + y_{blue} + \ldots \\
\text{s. t. } \quad & x_{1,red} + x_{1,blue} + \ldots = 1 \\
& x_{2,red} + x_{2,blue} + \ldots = 1 \\
& \quad \ldots \\
& x_{1,red} \leq y_{red} \\
& x_{1,blue} \leq y_{blue} \\
& \quad \ldots \\
& x_{1,red} + x_{2,red} \leq 1 \\
& x_{1,blue} + x_{2,blue} \leq 1 \\
& \quad \ldots \\
& \mathbf{x} \in \{0, 1\}, \mathbf{y} \in \{0, 1\}
\end{align*}
\]

- \(x_{ic} = 1 \) if node \(i \) has color \(c \)
- \(y_c = 1 \) if color \(c \) is used (by any node)
Set Covering

- Candidate service centers and demand points
- Each service center has a deployment cost, and can serve a subset of the demand points
- Select a subset of service centers at minimum total cost, to cover all demand points
Set Covering (cont’d)

- \(J \): Set of demand points
- \(I \): Candidate set of service centers
- \(I_j \): Subset of service centers covering point \(j \in J \)
- \(c_i \): Deployment cost, \(i \in I \)

- \(x_i = 1 \) if \(i \in I \) is deployed

\[
\begin{align*}
\text{min} & \quad \sum_{i \in I} c_i x_i \\
\text{s. t.} & \quad \sum_{i \in I_j} x_i \geq 1, \quad \forall j \in J \\
& \quad x \in \{0, 1\}
\end{align*}
\]
Uncapacitated Facility Location

- A set of candidate facility (e.g., warehouse) locations
- A set of customers
- Opening a facility has a fixed charge
- Transportation cost between facility locations and customers
Uncapacitated Facility Location (cont’d)

- I: Candidate set of facility locations
- J: Set of customers
- f_i: Fixed charge, $i \in I$
- c_{ij}: Transportation cost, $i \in I, j \in J$
- $x_{ij} = 1$ if facility $i \in I$ serves customer j
- $y_i = 1$ if facility $i \in I$ is deployed

\[
\begin{align*}
\text{min} & \quad \sum_{i \in I} f_i y_i + \sum_{i \in I} \sum_{j \in J} c_{ij} x_{ij} \\
\text{s. t.} & \quad \sum_{i \in I} x_{ij} = 1, \forall j \in J \\
& \quad x_{ij} \leq y_i, \forall i \in I, \forall j \in J \\
& \quad x, y \in \{0, 1\}
\end{align*}
\]
Traveling Salesman Problem

- Find a tour visiting each node in a graph exactly once with minimum length
Traveling Salesman Problem (cont’d)

- How to formulate this problem by integer programming?

 \[x_{ij} = 1 \text{ if city } j \text{ is visited immediately after city } i \ (i \neq j) \]

 \[
 \begin{align*}
 \min & \quad \sum_{i \in N} \sum_{j \in N: j \neq i} c_{ij} x_{ij} \\
 \text{s. t.} & \quad \sum_{j \in N: j \neq i} x_{ij} = 1, \forall i \in N \\
 & \quad x \in \{0, 1\}
 \end{align*}
 \]

 Have we overlooked anything?

 \[
 \sum_{i \in S} \sum_{j \in N \setminus S} x_{ij} \geq 1, \forall S \subset N
 \]

 Potential drawback of the formulation?
Linear Programming

A Small Example

max \quad 8x_1 + 5x_2
s. t. \quad x_1 + x_2 \leq 6
\quad 9x_1 + 5x_2 \leq 45
\quad x_1 \geq 0, x_2 \geq 0, \text{ integer}

max \quad 8x_1 + 5x_2
s. t. \quad x_1 + x_2 \leq 6
\quad 9x_1 + 5x_2 \leq 45
\quad x_1 \geq 0, x_2 \geq 0
Linear Programming Relaxation

- Relaxation: “removal” of some constraints/restrictions
- In general, the linear programming relaxation is an approximation of the integer model; the solution of the former may be fractional
- Which one is easier to solve?
Solving a Linear Programming Model

- Fundamental property: Optimum is located at one of the extreme/corner points (why?)

- This is used by the Simplex Method for solving linear programs (visiting a sequence of objective-improving extreme points)

- There are other efficient, interior-point methods
The Convex Hull

- Convex hull: The minimum convex set containing the solution space

- Integer programming = linear programming on the convex hull of the integer points

- Convex hull exists, but its description is hard to derive in general
Solution Methods for Integer Programming

Computing the Global Optimum

- General-purpose method: Linear programming relaxation
 - Iterative improvement in approximating the convex hull, a.k.a. cutting planes
 - Divide-and-conquer, a.k.a. branch-and-bound

- Optimality gap: The (relative) difference between the objective value of the best known integer solution and that of the best (“optimistic”) LP bound so far
Cutting Planes: An Example

Knapsack problem instance:

\[
\begin{align*}
\text{max} & \quad 6x_1 + 4x_2 + 6x_3 + 7x_4 + 5x_5 + 9x_6 + 8x_7 \\
\text{s. t.} & \quad 5x_1 + 6x_2 + 8x_3 + 6x_4 + 4x_5 + 6x_6 + 5x_7 \leq 21 \\
& \quad x \in \{0, 1\}
\end{align*}
\]

LP optimum: \(x_1 = x_5 = x_6 = x_7 = 1, x_4 = 0.167, x_2 = x_3 = 0\)

Can we pack items 1, 4, 6, and 7 all in the knapsack? (5+6+6+5=22)

\[x_1 + x_4 + x_6 + x_7 \leq 3\]

The above inequality (referred as a “cover cut”) is valid for integer solutions, but violated by the LP relaxation optimum.
Cutting Planes: An Example (cont’d)

Adding the cut to the linear programming relaxation:

\[
\begin{align*}
\text{max} & \quad 6x_1 + 4x_2 + 6x_3 + 7x_4 + 5x_5 + 9x_6 + 8x_7 \\
\text{s. t.} & \quad 5x_1 + 6x_2 + 8x_3 + 6x_4 + 4x_5 + 6x_6 + 5x_7 \leq 2 \\
& \quad x_1 + x_4 + x_6 + x_7 \leq 3 \\
& \quad 0 \leq x \leq 1
\end{align*}
\]

LP optimum: \(x_4 = x_5 = x_6 = x_7 = 1, \; x_1 = x_2 = x_3 = 0\)

Challenge: To time-efficiently find valid and useful cuts
Solution Methods for Integer Programming

Branch-and-Bound: An Example

Same knapsack problem instance:

\[
\begin{align*}
\text{max} & \quad 6x_1 + 4x_2 + 6x_3 + 7x_4 + 5x_5 + 9x_6 + 8x_7 \\
\text{s. t.} & \quad 5x_1 + 6x_2 + 8x_3 + 6x_4 + 4x_5 + 6x_6 + 5x_7 \leq 21 \\
& \quad x \in \{0, 1\}
\end{align*}
\]

LP optimum: \(x_1 = x_5 = x_6 = x_7 = 1, x_4 = 0.167, x_2 = x_3 = 0\)

Rounding down \(x_4\) to zero gives an integer solution of value 28

\(\Rightarrow\) Integer optimum is at least 28
Branch-and-Bound: An Example (cont’d)

Branching generates a search tree

We can stop branching here if the integer solution of value 29 is known (why?)

Can we stop branching here because of an integer solution of value 28?
Introduction to Modeling Language and Solver

Optimization Solver

- **Solver**: software implementing methods for solving optimization models (here: integer programming models)

- **Interface + optimization engine**

```
CPLEX> read knapsack.lp
Problem 'knapsack.lp' read.
Read time = 0.00 sec.
CPLEX> optimize
MIP emphasis: balance optimality and feasibility.
Root relaxation solution time = 0.00 sec.

<table>
<thead>
<tr>
<th>Modes</th>
<th>Node</th>
<th>Left</th>
<th>Objective</th>
<th>IInf</th>
<th>Best Integer</th>
<th>Best Node</th>
<th>Cuts/</th>
<th>ItCnt</th>
<th>Gap</th>
</tr>
</thead>
<tbody>
<tr>
<td>*</td>
<td>0+</td>
<td>0</td>
<td>96.00000</td>
<td>1</td>
<td>96.00000</td>
<td>1</td>
<td></td>
<td></td>
<td>10.34%</td>
</tr>
<tr>
<td>*</td>
<td>0+</td>
<td>0</td>
<td>87.00000</td>
<td>1</td>
<td>96.00000</td>
<td>1</td>
<td></td>
<td></td>
<td>5.49%</td>
</tr>
<tr>
<td></td>
<td>cutoff</td>
<td></td>
<td>91.00000</td>
<td>1</td>
<td>96.00000</td>
<td></td>
<td>3</td>
<td>2</td>
<td>0.00%</td>
</tr>
</tbody>
</table>

Cover cuts applied: 1
Implied bound cuts applied: 1

MIP - Integer optimal solution: Objective = 9.1000000000e+01
Solution time = 0.00 sec. Iterations = 2 Nodes = 0

CPLEX> display solution var -
Variable Name       Solution Value
x1                  1.000000
x3                  1.000000
x5                  1.000000
x6                  1.000000
All other variables in the range 1-6 are 0.
CPLEX>
```
Another Sample of Solver Log for Integer Programming

<table>
<thead>
<tr>
<th>Nodes</th>
<th>Objective</th>
<th>IInf</th>
<th>Best Integer</th>
<th>Cuts/Best Bound</th>
<th>ItCnt</th>
<th>Gap</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>227006.7258</td>
<td>3</td>
<td>227006.7258</td>
<td>2417</td>
<td></td>
<td></td>
</tr>
<tr>
<td>*</td>
<td>0+</td>
<td>232258.1849</td>
<td>227006.7258</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>*</td>
<td>0+</td>
<td>228124.0562</td>
<td>228124.0562</td>
<td></td>
<td>2475</td>
<td>0.49%</td>
</tr>
<tr>
<td>0</td>
<td>227020.2075</td>
<td>2</td>
<td>228124.0562</td>
<td></td>
<td>2500</td>
<td>0.48%</td>
</tr>
<tr>
<td>0</td>
<td>227020.4963</td>
<td>1</td>
<td>228124.0562</td>
<td></td>
<td>2505</td>
<td>0.48%</td>
</tr>
<tr>
<td>0</td>
<td>227020.5204</td>
<td>1</td>
<td>228124.0562</td>
<td></td>
<td>2505</td>
<td>0.48%</td>
</tr>
</tbody>
</table>

Elapsed time = 2.02 sec. (969.11 ticks, tree = 0.01 MB)

*	12+	5	227702.7631	227025.7507	0.30%	
17	7	227161.7492	227702.7631	227025.7507	2710	0.30%
78	50	cutoff	227702.7631	227034.4173	6190	0.29%
148	83	cutoff	227244.3466	227702.7631	9186	0.29%
206	100	cutoff	227702.7631	227094.1950	11789	0.27%
281	135	227586.9086	227702.7631	227179.3228	14822	0.23%
349	166	227409.3745	227702.7631	227199.4808	17941	0.22%
411	184	227634.5232	227702.7631	227255.7513	19929	0.20%
467	195	227560.6384	227702.7631	227259.8459	21664	0.19%
534	223	227494.7655	227702.7631	227269.0224	24768	0.19%
789	260	cutoff	227702.7631	227336.1536	36761	0.16%

Elapsed time = 6.20 sec. (4102.59 ticks, tree = 2.69 MB)

Cover cuts applied: 14
Implied bound cuts applied: 291
Flow cuts applied: 4
Mixed integer rounding cuts applied: 17
Lift and project cuts applied: 1
Introduction to Modeling Language and Solver

Modeling Language: Separation between Model and Data

knapsack.mod

```
# Number of items
param NumItem >0;

# Set of items
set ITEMS := 1..NumItem; # Creates set {1, ..., NumItem}

# Other parameters
param Limit >0;
param Value {ITEMS} >=0;
param Weight {ITEMS} >=0;

# Variable definition
var x {ITEMS} binary;

# Objective function
maximize TotalValue: sum {j in ITEMS} Value[j] * x[j];

# Weight limit constraint
subject to WeightLimit:
  sum {j in ITEMS} Weight[j] * x[j] <= Limit;
```

knapsack6.dat

```
param NumItem := 6;
param Limit := 14;

param: Value Weight :=
1  12  2
2  10  1
3  25  5
4  11  2.5
5  30  4
6  24  3;
```
Command Script: An Example

Reset AMPL
reset;

Load AMPL model and data
model knapsack.mod;
data knapsack500.dat;

Set solver parameters
option relax_integrality 0;
option cplex_options 'mipdisplay=2 integrality=1e-9 optimality=1e-9 timelimit=3600';

Solve the problem
solve;

Display optimum and solution
display TotalValue;
display {j in ITEMS: x[j]=1} x[j];
quit;
Modeling System + Solver

- Model and data specification
- Solver options
- Display options
- etc.

Model
- Sets
- Parameters
- Variables
- Objective function
- Constraints

Solver

Data
- Set elements
- Parameter values

Result analysis
- Feasible solution?
- Optimal solution?
- Optimum and variable value
- Solution time
- etc.
Introduction to Modeling Language and Solver

AMPL Basics: Sets

- **Simple sets** (numbers or symbols)

  ```
  set ITEMS := 1,2,3,4,5,6;
  
  set ITEMS := 1..6;
  
  set DAYS := Mon, Tues, Wed, Thurs, Fri, Sat, Sun;
  ```

- **Indexed collection of sets**

  ```
  # Declaration of base stations, test points, and coverage relation
  set BASESTATIONS;
  set TESTPOINTS;
  set COVERAGE {TESTPOINTS} within BASESTATIONS;
  
  # Numerical values in a data file
  set BASESTATIONS := 1..100;
  set TESTPOINTS := 1..10000;
  set COVERAGE[1] := 1 3 10 15;
  ```
Introduction to Modeling Language and Solver

AMPL Basics: Parameters

- Scalar parameter and parameters for set elements
  ```
  param Limit;
  param Capacity {Links};
  ```

- Bounds and default value
  ```
  param Limit >0;
  param MaxCapacity;
  param Capacity {LINKS} >=0, <=MaxCapacity;
  param Cost {BASESTATIONS} >=0 default 1000;
  param Traffic {TESTPOINTS} >=0 default 0;
  ```

- Symbolic parameters
  ```
  set DAYS;
  param FirstDay symbolic in DAYS;
  param LastDay symbolic in DAYS;

  # Values in a data file
  set DAYS := Mon, Tues, Wed, Thurs, Fri, Sat, Sun;
  param FirstDay := Mon;
  param LastDay := Sun;
  ```
AMPL Basics: Variables

- Similar to declaration of numerical parameters
- May have value and/or type restrictions

```AMPL
var x {ITEMS} binary;

var production {DAYS} >= 0, integer;

var flow {(i,j) in LINKS} >= 0, <= Capacity[i,j];

var location {BASESTATIONS} binary;

var serve {TESTPOINTS, BASESTATIONS} binary;

# A more efficient declaration using set COVERAGE
var serve {j in TESTPOINTS, i in COVERAGE[j]} binary;
```
Introduction to Modeling Language and Solver

AMPL Basics: Objective Function and Constraints

- Integer linear programming: The objective is a linear expression of the variables

```plaintext
maximize TotalValue: sum {j in ITEMS} Value[j] * x[j];
minimize TotalCost: sum {i in BASESTATIONS} Cost[i] * location[i];
```

- Single constraint

```plaintext
subject to WeightLimit:
    sum {j in ITEMS} Weight[j] * x[j] <= Limit;
```

- Indexed collections of constraints (with condition)

```plaintext
subject to ServiceCoverage {j in TESTPOINTS: traffic[j]>0}:
    sum {i in COVERAGE[j]} serve[j,i] >= 1;
```
AMPL Basics: A Complete Model for Set Covering

\[
\begin{align*}
\text{min} & \quad \sum_{i \in I} c_i x_i \\
\text{s. t.} & \quad \sum_{i \in I_j} x_i \geq 1, \forall j \in J \\
& \quad x \in \{0, 1\}
\end{align*}
\]

```AMPL
set CENTERS;
set POINTS;
set COVERAGE {POINTS} within CENTERS;
param Cost {CENTERS} >=0;
var x {CENTERS} binary;
minimize TotalCost: sum {i in CENTERS} Cost[i] * x[i];
subject to Covering {j in POINTS}:
   - sum {i in COVERAGE[j]} x[i] >= 1;
```
Uncapacitated Facility Location

Can we reduce the model size?

\[
\begin{align*}
\text{min} & \quad \sum_{i \in I} f_i y_i + \sum_{i \in I} \sum_{j \in J} c_{ij} x_{ij} \\
\text{s. t.} & \quad \sum_{i \in I} x_{ij} = 1, \forall j \in J \\
& \quad x_{ij} \leq y_i, \forall i \in I, \forall j \in J \\
& \quad x, y \in \{0, 1\}
\end{align*}
\]

\[
\begin{align*}
\text{min} & \quad \sum_{i \in I} f_i y_i + \sum_{i \in I} \sum_{j \in J} c_{ij} x_{ij} \\
\text{s. t.} & \quad \sum_{i \in I} x_{ij} = 1, \forall j \in J \\
& \quad \sum_{j \in J} x_{ij} \leq |J| y_i, \forall i \in I \\
& \quad x, y \in \{0, 1\}
\end{align*}
\]
Uncapacitated Facility Location (cont’d)

<table>
<thead>
<tr>
<th>Facilities</th>
<th>Customers</th>
<th>Aggregated Model (seconds)</th>
<th>Disaggregate Model (seconds)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>200</td>
<td>1.19</td>
<td>0.39</td>
</tr>
<tr>
<td>30</td>
<td>300</td>
<td>5.55</td>
<td>1.6</td>
</tr>
<tr>
<td>50</td>
<td>500</td>
<td>69.67</td>
<td>19.42</td>
</tr>
<tr>
<td>70</td>
<td>700</td>
<td>2362.67</td>
<td>764.30</td>
</tr>
</tbody>
</table>

AMPL Version 20060626 (Linux 2.6.9-5.EL)

Node log...
Best integer = 1.433808e+05 Node = 0 Best node = 1.687869e+04
Best integer = 2.293498e+04 Node = 0 Best node = 1.687869e+04
Heuristic still looking.
Heuristic still looking.
Heuristic complete.
Best integer = 2.276127e+04 Node = 828 Best node = 1.831542e+04
Best integer = 2.267411e+04 Node = 1000 Best node = 1.838685e+04
Implied bound cuts applied: 2292
Flow cuts applied: 18

Times (seconds):
Solve = 2362.67

AMPL Version 20060626 (Linux 2.6.9-5.EL)

Node log...
Best integer = 4.704366e+04 Node = 0 Best node = 2.203318e+04
Best integer = 2.295632e+04 Node = 0 Best node = 2.203318e+04
Heuristic still looking.
Best integer = 2.267411e+04 Node = 0 Best node = 2.203529e+04
Heuristic complete.

Implied bound cuts applied: 2292
Flow cuts applied: 18

Times (seconds):
Solve = 2362.67

Gomory fractional cuts applied: 36
Using devex.

CPLEX 10.1.0: optimal integer solution; objective 22674.11
157501 MIP simplex iterations
36 branch-and-bound nodes
Impact of Modeling on Problem Solving

Coloring

Define color set C

$$\min \quad y_{\text{red}} + y_{\text{blue}} + \ldots$$

s. t.

$$x_{1,\text{red}} + x_{1,\text{blue}} + \cdots = 1$$
$$x_{2,\text{red}} + x_{2,\text{blue}} + \cdots = 1$$
$$\vdots$$
$$x_{1,\text{red}} \leq y_{\text{red}}$$
$$x_{1,\text{blue}} \leq y_{\text{blue}}$$
$$\vdots$$
$$x_{1,\text{red}} + x_{2,\text{red}} \leq 1$$
$$x_{1,\text{blue}} + x_{2,\text{blue}} \leq 1$$
$$\vdots$$
$$x \in \{0, 1\}, \quad y \in \{0, 1\}$$

- $x_{ic} = 1$ if node i has color c
- $y_c = 1$ if color c is used (by any node)

- Symmetry: Solution search becomes inefficient
- Alternative model of set-covering type

Is this a good formulation? Other formulations?
Impact of Modeling on Problem Solving

Coloring (cont’d)

Sample results for an extension of graph coloring:

<table>
<thead>
<tr>
<th>Nodes</th>
<th>Model I (previous slide)</th>
<th>Model II (not shown)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Best Solution</td>
<td>Time</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>0.1s</td>
</tr>
<tr>
<td>20</td>
<td>16</td>
<td>1s</td>
</tr>
<tr>
<td>30</td>
<td>21</td>
<td>10h</td>
</tr>
<tr>
<td>40</td>
<td>15</td>
<td>10h</td>
</tr>
<tr>
<td>50</td>
<td>28</td>
<td>10h</td>
</tr>
<tr>
<td>60</td>
<td>31</td>
<td>10h</td>
</tr>
</tbody>
</table>

It may matter (a lot) which model you use