Exam in Algorithms & Data Structures 3 (1DL481)

Prepared by Pierre Flener

Friday 10 March 2017 from 14:00 to 17:00, at Bergsbrunnagatan 15

Instructions: Question 1 is mandatory: you must earn at least half its points in order to pass the exam. Answer two of Questions 2 to 4. Your answers must be written in English. Unreadable, unintelligible, and irrelevant answers will not be considered. Provide only the requested information and nothing else, but always show all the details of your reasoning, unless explicitly not requested, and make explicit all your assumptions. Answer each question only on the indicated pages. Do not write anything into the following table:

<table>
<thead>
<tr>
<th>Question</th>
<th>Max Points</th>
<th>Your Mark</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>20</td>
<td></td>
</tr>
</tbody>
</table>

Help: Unfortunately, no teacher can attend this exam.

Grading: Your grade is as follows, when your exam mark is e points, including at least 4 points on Question 1, and you have earned a pass grade (p = pass) on your oral presentation and attendance to the oral presentations of the other students:

<table>
<thead>
<tr>
<th>Grade</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>18 ≤ e ≤ 20 ∧ p = pass</td>
</tr>
<tr>
<td>4</td>
<td>14 ≤ e ≤ 17 ∧ p = pass</td>
</tr>
<tr>
<td>3</td>
<td>10 ≤ e ≤ 13 ∧ p = pass</td>
</tr>
<tr>
<td>U</td>
<td>00 ≤ e ≤ 09 ∨ p ≠ pass</td>
</tr>
</tbody>
</table>

We will grade your first two answers in case you address all of Questions 2 to 4.

Identity: Your anonymous exam code:
Answer to Question 1:
Question 1: NP-Completeness (mandatory question!) (8 points)

Do one of the following exercises from CLRS3 and earn at least half its points:

A. Exercise 34.5-7: The *longest-simple-cycle problem* is the problem of determining a simple cycle (no repeated vertices) of maximum length in a graph. Formulate a related decision problem, and show that the decision problem is NP-complete.

B. Problem 34-1a: An *independent set* of a graph $G = (V, E)$ is a subset $V' \subseteq V$ of vertices such that each edge in E is incident on at most one vertex in V'. The *independent-set problem* is to find a maximum-size independent set in G.

To the left is an independent-set instance (V, E), where the vertices of V are the 10 black and white points and the edges of E are depicted by lines. A maximum-size independent set consists of the 6 black vertices: each edge in E is incident on at most one black vertex.

Formulate a related decision problem for the independent-set problem, and prove that it is NP-complete, by reducing from the *clique problem*, whose decision version asks if an undirected graph $G = (V, E)$ contains a clique of size k, that is a subset $V' \subseteq V$ of k vertices, each pair of which being connected by an edge in E.

C. Exercise 35.3-2: An instance (X, \mathcal{F}) of the *set-covering problem* consists of a finite set X and a family \mathcal{F} of subsets of X, such that every element of X belongs to at least one subset in \mathcal{F}: $X = \bigcup_{S \in \mathcal{F}} S$. We say that a subset $S_i \in \mathcal{F}$ covers its elements. The problem is to find a minimum-size subset $\mathcal{C} \subseteq \mathcal{F}$ whose members cover all of X: $X = \bigcup_{S \in \mathcal{C}} S_i$.

To the left is a set-covering instance (X, \mathcal{F}), where X consists of the 12 black points and $\mathcal{F} = \{S_1, S_2, S_3, S_4, S_5, S_6\}$. A minimum-size set cover is $\mathcal{C} = \{S_3, S_4, S_5\}$, with size 3.

Show that the decision version of the set-covering problem is NP-complete by reducing it from the *vertex-cover problem*, which asks to find a minimum-size vertex cover in a given undirected graph $G = (V, E)$, that is a minimum-size subset $V' \subseteq V$ such that if $(u, v) \in E$, then either $u \in V'$ or $v \in V'$ (or both).

Chosen exercise:

Continued answer (you should start on the previous side):
Answer to Question 2:
Question 2: Probabilistic Analysis and Randomised Algorithms (3 + 3 points)

Do both of the following short exercises from CLRS3:

A. Exercise 5.2-1: The procedure `Hire-Assistant`, given below, expresses a strategy for hiring the best applicant among candidates numbered 1 through \(n \):

```plaintext
Hire-Assistant(n)
1 best = 0  // candidate 0 is a least-qualified dummy candidate
2 for i = 1 to n
3   interview candidate i
4   if candidate i is better than candidate best
5     fire candidate best
6     best = i
7   hire candidate i
```

In `Hire-Assistant`, assuming that the \(n \) candidates are presented in a random order, what is the probability that you hire exactly one time? What is the probability that you hire exactly \(n \) times?

B. Exercise 5.3-2: Professor Kelps decides to write a procedure that produces at random any permutation of the array \(A[i..n] \) besides the identity permutation. He proposes the following procedure:

```plaintext
Permute-Without-Identity(A)
1 n = A.length
2 for i = 1 to n - 1  // RANDOM(\ell, u) returns a random number from \( \ell \) to \( u \)
3   swap A[i] with A[RANDOM(i + 1, n)]
```

Does this code do what Professor Kelps intends?

Continued answer (you should start on the previous side):
Answer to Question 3:
Question 3: Amortised Analysis (6 points)

Do one of the following exercises from CLRS3:

A. Exercise 17.1-3: Suppose we perform a sequence of n operations on a data structure in which the ith operation costs i if i is an exact power of 2, and 1 otherwise. Use aggregate analysis to determine the amortised cost per operation.

B. Exercise 17.2-1: Suppose we perform a sequence of stack operations (Push or Pop) on a stack whose size never exceeds k. After every k operations, a COPY operation is invoked automatically to make a copy of the entire stack for backup purposes. Use an accounting method of analysis to show that the cost of n stack operations, including copying the stack, is $O(n)$ by assigning suitable amortised costs to the various stack operations.

Chosen exercise:

Continued answer (you should start on the previous side):
Answer to Question 4:
Question 4: Approximation Algorithms (6 points)

Do one of the following exercises from CLRS3:

A. Exercise 35.4-2: The input to the **MAX-3-CNF satisfiability problem** is the same as for 3-CNF-SAT (which asks whether a conjunction of disjunctions, each of exactly 3 distinct literals, is satisfiable; a **literal** is an occurrence of a Boolean variable or its negation), and the goal is to return an assignment of the variables that maximises the number of satisfied disjunctions. The **MAX-CNF satisfiability problem** is like the MAX-3-CNF satisfiability problem, except that it does not restrict each disjunction to have exactly 3 literals. Give a randomised 2-approximation algorithm for the MAX-CNF satisfiability problem. [A high-level argument suffices for the proof of 2-approximation. The used Princeton lecture slides would call it a 1/2-approximation.]

B. Problem 35-3: **Weighted set-covering problem**: Suppose that we generalise the set-covering problem (see Question 1C) so that each set S_i in the family F has an associated weight w_i and the **weight** of a cover C is $\sum_{S_i \in C} w_i$. We wish to determine a minimum-weight cover. Section 35.3 handles the case in which $w_i = 1$ for all i, giving the following greedy set-covering heuristic:

Greedy-Set-Cover(X, F)
1. $U = X$ // the set U maintains the set of remaining uncovered elements
2. $C = \emptyset$ // the set C maintains the cover being constructed
3. **while** $U \neq \emptyset$
4. select an $S_i \in F$ that maximises $|S_i \cap U|$
5. $U = U - S_i$
6. $C = C \cup \{S_i\}$
7. **return** C

On the instance of Question 1C, this heuristic produces a sub-optimal cover of size 4 by selecting either the sets $S_1, S_4, S_5,$ and S_3 or the sets $S_1, S_4, S_5,$ and S_6, in order. Show how to generalise this heuristic in a natural manner to provide an approximate solution for any instance of the weighted set-covering problem. Does the CLRS3 analysis for the unweighted case still carry through, establishing that the generalised heuristic also is a polynomial-time $(\ln |X| + 1)$-approximation algorithm? [A yes/no answer with a high-level argument suffices for the last question.]

Chosen exercise:

Continued answer (you should start on the previous side):
Spare page for answers (or nice cartoons!)