Problem 3: Boolean Satisfiability (SAT)

Tasks: You must follow the structure of the demo report!

a. Modelling: A cruise design $\langle d, c, e \rangle$, with $d \geq c \geq 2$ and c dividing d, is an assignment over e evenings of d diners to $\frac{d}{c}$ tables of c chairs each in a restaurant of a cruise ship such that all diners sit every evening at a table with only people they have not dined with yet.

For example, the following is an $\langle 8, 2, 7 \rangle$ cruise design, the diners being named 1 to 8:

<table>
<thead>
<tr>
<th>evening 1</th>
<th>table 1</th>
<th>table 2</th>
<th>table 3</th>
<th>table 4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>{1, 5}</td>
<td>{2, 6}</td>
<td>{3, 7}</td>
<td>{4, 8}</td>
</tr>
<tr>
<td>evening 2</td>
<td>{1, 4}</td>
<td>{2, 5}</td>
<td>{3, 6}</td>
<td>{7, 8}</td>
</tr>
<tr>
<td>evening 3</td>
<td>{1, 3}</td>
<td>{2, 4}</td>
<td>{5, 7}</td>
<td>{6, 8}</td>
</tr>
<tr>
<td>evening 4</td>
<td>{1, 2}</td>
<td>{3, 4}</td>
<td>{5, 8}</td>
<td>{6, 7}</td>
</tr>
<tr>
<td>evening 5</td>
<td>{1, 6}</td>
<td>{2, 7}</td>
<td>{3, 8}</td>
<td>{4, 5}</td>
</tr>
<tr>
<td>evening 6</td>
<td>{1, 7}</td>
<td>{2, 8}</td>
<td>{3, 5}</td>
<td>{4, 6}</td>
</tr>
<tr>
<td>evening 7</td>
<td>{1, 8}</td>
<td>{2, 3}</td>
<td>{4, 7}</td>
<td>{5, 6}</td>
</tr>
</tbody>
</table>

Write a toolchain, in a programming language for which a compiler or interpreter is available on the Linux computers of the IT department:

(1) An executable called cruDes must read the space-separated instance parameters d, c, and e from standard input, say cruDes 8 2 7, and write to standard output a propositional formula $\varphi_{d,c,e}$ in DIMACS conjunctive normal form (CNF) that is satisfiable if and only if a cruise design $\langle d, c, e \rangle$ exists, so that it can be fed to a SAT solver (we recommend MiniSAT: see the Resources at the Student Portal). Explain the meaning of the Boolean variables that you use in $\varphi_{d,c,e}$. Do not worry too much about symmetric candidate solutions in the search space.

Hints: Based on [1], write a help function atmost(k, x_1, \ldots, x_n) that generates a set of clauses that is satisfiable if and only if at most k of the n Boolean variables x_i are True, with $0 \leq k \leq n$. Also write a help function andReified(x_1, \ldots, x_n, b) that generates a set of clauses that is satisfiable if and only if the Boolean variable b is
True if (but not only if) all the n Boolean variables x_i are True. Finally, write a help function ORREIFIED(x_1, \ldots, x_n, b) that generates a set of clauses that is satisfiable if and only if the Boolean variable b is True if (but not only if) at least one of the n Boolean variables x_i is True.

(2) For satisfiable instances, an executable called cruDesPrint must read from standard input one line with the space-separated instance parameters d, c, and e, followed by the SAT solver output, and write to standard output a line with the space-separated values of d, c, and e, followed by one line per row of an $e \times d$ matrix representing the solution, the diner names being space-separated. For example, the $(8, 2, 7)$ cruise design on the previous page is represented by http://user.it.uu.se/~pierref/courses/AD3/assignments/cruDes-8-2-7.txt.

For satisfiable instances, you can pipe the output into the polynomial-time solution checker at http://user.it.uu.se/~pierref/courses/AD3/assignments (for Linux and macOS), which reads such a solution from standard input, in order to gain confidence in the correctness of your encoding.

b. Report, using tables, the performance of your encoding on at least the following instances:

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>2</td>
<td>7</td>
<td>12</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>10</td>
<td>2</td>
<td>9</td>
<td>15</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>12</td>
<td>2</td>
<td>11</td>
<td>18</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>14</td>
<td>2</td>
<td>12</td>
<td>21</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>16</td>
<td>2</td>
<td>10</td>
<td>24</td>
<td>3</td>
<td>6</td>
</tr>
</tbody>
</table>

Use a time-out of at least 60 seconds per run and report the performance (satisfiability status and runtime) over a single run per instance, as the recommended MiniSAT solver is deterministic by default; a precision of one decimal place suffices here.

For every instance (d, c, e) above, your encoding must terminate without time-out and memory-out; further, increase e beyond the given value as long as the previous run proved satisfiability without time-out and memory-out (that is, stop increasing e upon either proven unsatisfiability, or time-out, or memory-out).

A necessary, but not sufficient, condition for satisfiability is $e \leq \left\lfloor \frac{d-1}{c-1} \right\rfloor$, as every diner meets every evening $c - 1$ new diners among the $d - 1$ other diners: how fast does your encoding detect the trivial unsatisfiability of instances violating this inequality?

In order to generate a LaTeX result table similar to the one in the demo report, you can use (or adapt) the Python3 script http://user.it.uu.se/~pierref/courses/AD3/assignments/cruDesTabler.py written by former students Daniel Beretta and Maxwell Clarke in spring 2017: it expects cruDes and cruDesPrint to be written in Python3, but you are free to write them in any other language and adapt the script or write your own.

c. Ordered Resolution: Consider the following CNF formula:

$$\varphi \equiv (x_1 \lor x_2) \land (x_3 \lor x_4) \land (x_5 \lor x_6) \land \neg x_1 \lor \neg x_3 \land \neg x_1 \lor \neg x_5 \land \neg x_3 \lor \neg x_5 \land \neg x_2 \lor \neg x_4 \land \neg x_2 \lor \neg x_6 \land \neg x_4 \lor \neg x_6$$

Perform ordered resolution on this formula, selecting the variables in the order given by their index (i.e., x_1 before x_2 before ...). Show the result after each iteration. Based on your resolution, is φ satisfiable?
d. **DPLL:** Consider again the formula φ given in Task c. Explain in detail how the DPLL algorithm, when applied to φ, determines whether the formula is satisfiable. Assume that the variables are selected in the order given by their index (i.e., x_1 before x_2 before ...), and that they are assigned 1 (i.e., True) before they are assigned 0 (i.e., False). Remember to perform unit propagation and to apply the pure-literal rule where possible, in order to prune parts of the search space.

e. **CDCL:** Consider the following CNF formula:

$$(x_1 \lor x_8 \lor \neg x_2) \land (x_1 \lor \neg x_3) \land (x_2 \lor x_3 \lor x_4) \land (\neg x_4 \lor \neg x_5) \land (x_7 \lor \neg x_4 \lor \neg x_6) \land (x_5 \lor x_6)$$

Assume that x_7 has been assigned 0 at decision level 2, and that x_8 has been assigned 0 at decision level 3. Moreover, assume that the current decision assignment is $x_1 = 0$ at decision level 5. Draw the resulting implication graph. Does the graph contain any conflicts? If so, then mark these clearly, and provide a conflict clause.

Solo teams (except PhD students) may omit Task c but are encouraged to perform it nevertheless.

References

Problem 4: SAT Modulo Theories (SMT)

Background: Let us use the SMT-LIB language and an SMT solver to implement simple verification tools for software programs with a heap. For this, we consider a minimalist assembler language, MiniASM, with some similarities to Java bytecode. The *instructions* of the language are the following:

$$Instr ::= push_j \quad \text{push the number } j \text{ onto the operand stack}$$

$$\mid pop \quad \text{pop a number from the operand stack and discard it}$$

$$\mid dup \quad \text{duplicate the topmost number on the operand stack}$$

$$\mid plus \quad \text{pop the two topmost numbers, say } a \text{ and } b, \text{ from the operand stack, and push the sum } a + b \text{ onto the stack}$$

$$\mid neg \quad \text{pop the topmost number, say } a, \text{ from the operand stack, and push the negated value } -a \text{ onto the stack}$$

$$\mid read \quad \text{pop the topmost number, say } a, \text{ from the operand stack, read the number, say } b, \text{ at address } a \text{ on the heap, and push } b \text{ onto the stack}$$

$$\mid write \quad \text{pop the two topmost numbers, say } a \text{ and } b, \text{ from the operand stack, and write } b \text{ at address } a \text{ on the heap}$$

A MiniASM *program* is a list of instructions. Every element stored on the heap or the operand stack is a 32-bit integer. We do not consider any form of alignment, that is values are stored on the heap simply at consecutive addresses.
For example, the following MiniASM program reads the values \(v_0 \) and \(v_1 \) stored at addresses 0 and 1 on the heap, and writes their sum back at address 0:

\[
\begin{align*}
\text{Stack: } & \langle \rangle \\
push_0 \quad \text{Stack: } & \langle 0 \rangle \\
\text{read} \quad \text{Stack: } & \langle v_0 \rangle \\
push_1 \quad \text{Stack: } & \langle v_0, 1 \rangle \\
\text{read} \quad \text{Stack: } & \langle v_0, v_1 \rangle \\
\text{plus} \quad \text{Stack: } & \langle v_0 + v_1 \rangle \\
push_0 \quad \text{Stack: } & \langle v_0 + v_1, 0 \rangle \\
\text{write} \quad \text{Stack: } & \langle \rangle
\end{align*}
\]

Tasks: Write two verification tools, in a programming language for which a compiler or interpreter is available on the Linux computers of the IT department, for the following purposes:

a. Take a MiniASM program \(P \) and generate an SMT-LIB script that encodes the partial correctness of \(P \). That is, the script should contain exactly one check-sat call, which produces unsat if and only if \(P \) is partially correct: we say that \(P \) is partially correct if \(P \) leaves a non-zero number as topmost element on the stack whenever \(P \) terminates.

Use your correctness checker to find out whether the following program is partially correct:

\[
\begin{align*}
push_1; & \quad \text{push}_0; \quad \text{read}; \quad \text{write}; \quad \text{push}_0; \quad \text{read}; \quad \text{read}
\end{align*}
\]

Explain the outcome of the verification process.

b. Take two MiniASM programs \(P \) and \(Q \) and generate an SMT-LIB script that encodes the equivalence of \(P \) and \(Q \). That is, the script should contain exactly one check-sat call, which produces unsat if and only if \(P \) and \(Q \) are partially equivalent: we say that \(P \) and \(Q \) are partially equivalent if terminating runs of \(P \) and \(Q \), starting from the same initial stack and heap, lead to the same final heap.

Use your equivalence checker to find out whether the following two programs for swapping the values of two integer variables \(x \) and \(y \) are partially equivalent:

- Assuming that \(x \) is stored at heap address 0, and \(y \) at heap address 1, the temporary variable \(t \) of the program \(t := x; \quad x := y; \quad y := t \) can be represented using the stack:

\[
\begin{align*}
push_0; & \quad \text{read}; \quad \text{push}_1; \quad \text{read}; \quad \text{push}_0; \quad \text{write}; \quad \text{push}_1; \quad \text{write}
\end{align*}
\]

- Assuming that \(x \) is stored at heap address 0, and \(y \) at heap address 1, the program \(x := x + y; \quad y := x - y; \quad x := x - y \) can be translated as follows:

\[
\begin{align*}
push_0; & \quad \text{read}; \quad \text{push}_1; \quad \text{read}; \quad \text{plus}; \quad \text{dup}; \quad \text{push}_1; \quad \text{read}; \quad \text{neg}; \quad \text{plus}; \quad \text{dup}; \quad \text{push}_1; \quad \text{write}; \quad \text{neg}; \quad \text{plus}; \quad \text{push}_0; \quad \text{write}
\end{align*}
\]

Explain the outcome of the verification process.
c. We now extend MiniASM by introducing three additional instructions:

\[
\text{Instr ::= } \cdots \mid \text{cmp}_o \quad \text{pop the two topmost numbers, say } a \text{ and } b, \text{ from the operand stack, and push 1 onto the stack if } a \circ b, \text{ and 0 otherwise; with } \circ \in \{=, \leq\}
\]

\[
\mid \text{jmp}_j \quad \text{pop the topmost number, say } a, \text{ from the operand stack; if } a \text{ is zero, then continue with the next instruction, else skip the next } j \text{ instructions; with } j \geq 0
\]

For example, the following code replaces the topmost stack element by its absolute value:

\[
\text{dup; push}_0; \text{cmp}_\leq; \text{jmp}_1; \text{neg}
\]

Note that the extended MiniASM language only provides forward jumps, so that programs always terminate, as it is not possible to encode loops.

Propose an approach to analyse the correctness of programs also in this situation.

Solo teams (except PhD students) may omit Task C but are encouraged to perform it nevertheless.

The tools need not include parsers and may hardcode the considered programs. Submit also the commented source codes of your tools and the generated SMT-LIB constraints. For the experiments, either use the web interface of Z3 at http://rise4fun.com/z3, or install any SMT solver on your own computer. You need neither report the runtimes nor make multiple runs per verification (even though SMT solvers are usually randomised), as the solving times should be very short here, the main difficulty lying here in the modelling phase.

Hints: One can encode program state in MiniASM using three SMT-LIB variables:

- the heap \(H\) of type \((\text{Array} \ (_ \ \text{BitVec} \ 32) \ (_ \ \text{BitVec} \ 32))\);
- the stack \(S\) of type \((\text{Array} \ (_ \ \text{BitVec} \ 32) \ (_ \ \text{BitVec} \ 32))\);
- an index variable \(SP\) of type \((_ \ \text{BitVec} \ 32)\), pointing to the topmost element of \(S\).

To translate a program with \(n\) instructions into SMT-LIB, declare \(n + 1\) triplets \((H_i, S_i, SP_i)\) and generate constraints that imply that each triplet \((H_i, S_i, SP_i)\) represents the program state after executing the \(i\)th instruction.

Submission Instructions

All task answers, other than source code, **must** be in a **single** report in **PDF** format; all other formats are rejected. Furthermore:

- Identify the team members and state the team number inside the report.

- Address each task of each problem, using the numbering and the ordering in which they appear in the assignment statement.

- Take the instructions of the demo report at http://user.it.uu.se/~pierref/courses/AD3/demoReport as a **strict** guideline for document structure and content, as well as an indication of its expected quality.
• Write clear task answers, source code, and comments.
• Justify all task answers, except where explicitly not required.
• State any assumptions you make that are not in this document.
• Thoroughly proofread, spellcheck, and grammar-check your report.
• Upload all source code required to run your experiments, and include running instructions.
• Match exactly the uppercase, lowercase, and layout conventions of any filenames and I/O texts imposed by the tasks, as we will process your source code automatically.
• Write a paragraph, which will not be graded, describing your experience with this assignment: which aspects were too difficult or too easy, which aspects were interesting or boring? This will help us improve the course in the coming years.
• Remember that when submitting you implicitly certify that your report and all its uploaded attachments were produced solely by your team, except where explicitly stated otherwise and clearly referenced, that each teammate can individually explain any part starting from the moment of submitting your report, and that your report and attachments are not freely accessible on a public repository.

Only one of the teammates submits the solution files (one PDF report with answers to all the tasks, plus all source code files), without folder structure and without compression, via the Student Portal, whose clock may differ from yours, by the given hard deadline.

Grading Rules

For each problem: If the requested source code exists, and runs without runtime errors on the Linux computers of the IT department under the compiler, interpreter, or solver you indicate, and computes (near-)optimal solutions to some of our chosen instance data in reasonable time on that hardware, and has all the requested task answers in the report, then you get at least 1 point (of 5), otherwise you get 0 points. Furthermore:

• If your code passes most of our grading tests and your report is complete, then you get 4 or 5 points, depending also on the quality of the report part for this problem; you are not invited to the grading session for this problem.

• If your code fails many of our grading tests or your report is incomplete, then you get an initial mark of 1 or 2 points, depending also on the quality of the report part for this problem; you are invited to the grading session for this problem, where you can try and increase your initial mark by 1 point into your final mark.

However, if the assistant figures out a minor fix that is needed to make your source code run as per your and our instructions, then, instead of giving 0 points up front, the assistant may deduct 1 point at his discretion.

Considering that there are three help sessions for each assignment, you must get minimum 3 points (of 10) on each assignment, including minimum 1 point (of 5) on each problem, until the end of its grading session, and minimum 10 points (of 20) over both assignments in order to pass the Assignments part (2 credits) of the course.