
Algorithms and Data Structures 3 (course 1DL481)

Uppsala University – Spring 2024

Assignment 2

Prepared by Pierre Flener, Tjark Weber, Philipp Rümmer, and Gustav Björdal

— Deadline: 13:00 on Friday 23 February 2024—

Recall that the assignments exercise the material of the lectures that is not covered by the
exam. It is strongly recommended to read the Submission Instructions and Grading Rules at
the end of this document even before attempting to solve the following problems. It is also
strongly recommended to prepare and attend the help sessions, as huge time savings may ensue.

Problem 3: Boolean Satisfiability (SAT) (60% weight)

The aim of solving this problem is first to understand the algorithms in SAT solving technology
on three small warm-up tasks and then to declaratively encode a problem (whose high-level
description has no Boolean unknowns) into a formula in conjunctive normal form (CNF) over
Boolean variables, towards potentially impressive performance.

Tasks: You must follow the structure and instructions of the demo report:1

a. Ordered Resolution: Consider the following CNF formula:

φ ≡ (x1 ∨ x2) ∧ (x3 ∨ x4) ∧ (x5 ∨ x6) ∧ (¬x1 ∨ ¬x3) ∧ (¬x1 ∨ ¬x5)
∧ (¬x3 ∨ ¬x5) ∧ (¬x2 ∨ ¬x4) ∧ (¬x2 ∨ ¬x6) ∧ (¬x4 ∨ ¬x6)

Perform ordered resolution on this formula, selecting the variables in the order given by
their index (i.e., x1 before x2 before . . . ). Show the result after each iteration. Based on
your resolution, is φ satisfiable?

b. DPLL: Consider again the formula φ given in Task a. Explain in detail how the DPLL
algorithm, when applied to φ, determines whether the formula is satisfiable. Assume that
the variables are selected in the order given by their index (i.e., x1 before x2 before . . . ),
and that they are assigned 1 (i.e., True) before they are assigned 0 (i.e., False). Remember
to perform unit propagation and to apply the pure-literal rule where possible, in order to
prune parts of the search space.

c. CDCL: Consider the following CNF formula:

(x1 ∨ x8 ∨ ¬x2) ∧ (x1 ∨ ¬x3) ∧ (x2 ∨ x3 ∨ x4) ∧ (¬x4 ∨ ¬x5)
∧ (x7 ∨ ¬x4 ∨ ¬x6) ∧ (x5 ∨ x6)

1Solo teams (except PhD students) may omit Task a, but are encouraged to perform it nevertheless.

1



Assume that x7 was assigned 0 at decision level 2, and that x8 was assigned 0 at decision
level 3. Moreover, assume that the current decision assignment is x1 = 0 at decision
level 5. Draw a resulting implication graph. Does the graph contain any conflicts? If so,
then mark these clearly, and provide a conflict clause.

d. Encoding: A cruise design ⟨d, c, e⟩, with d ≥ c ≥ 2 and c dividing d, is an assignment
over e evenings of d diners to d

c tables of c chairs each in a restaurant of a cruise ship such
that all diners sit every evening at a table, with only people they have not dined with yet.

For example, the following is an ⟨8, 2, 7⟩ cruise design, the diners being named 1 to 8:

table 1 table 2 table 3 table 4

evening 1 {1, 5} {2, 6} {3, 7} {4, 8}
evening 2 {1, 4} {2, 5} {3, 6} {7, 8}
evening 3 {1, 3} {2, 4} {5, 7} {6, 8}
evening 4 {1, 2} {3, 4} {5, 8} {6, 7}
evening 5 {1, 6} {2, 7} {3, 8} {4, 5}
evening 6 {1, 7} {2, 8} {3, 5} {4, 6}
evening 7 {1, 8} {2, 3} {4, 7} {5, 6}

Write a toolchain, in a programming language for which a compiler or interpreter is
available on the Linux computers of the IT department:

1. An executable called cruDes reads the problem parameters d, c, e as command-line
arguments and writes to standard output a propositional formula φd,c,e in DIMACS
CNF that is satisfiable if and only if a cruise design ⟨d, c, e⟩ exists, so that it can be
fed to a SAT solver (say MiniSat: see https://user.it.uu.se/~pierref/courses/
AD3/resources.html), such as in ./cruDes 8 2 7 > in; minisat in out.

Explain the meaning of the Boolean variables that you use in φd,c,e, and explain how
the constraints of the problem are encoded using those variables. Do not worry too
much about symmetric candidate solutions in the search space.

Hints: See [1, Section 2.2.2] for the basics of CNF encodings. For example, based
on [2], write a help function AtMost(k, x1, . . . , xn) that generates a set of 2nk+n−
3k−1 clauses that is satisfiable if and only if at most k of the n Boolean variables xi
are True, with 0 ≤ k ≤ n. If pressed for time, then note that you do not need to
understand fully this encoding. Also write a help function AndImply(x1, . . . , xn, b)
that generates a set of clauses that encode (

∧n
i=1 xi) ⇒ b for the Boolean variables xi

and b. Similarly, write a help function OrImply(x1, . . . , xn, b) that generates a set
of clauses that encode (

∨n
i=1 xi) ⇒ b.

2. For satisfiable instances, an executable called cruDesPrint reads the problem para-
meters d, c, e as command-line arguments and the solver output from standard input,
such as in ./cruDes 8 2 7 > in; minisat in out; cat out | ./cruDesPrint

8 2 7, and writes to standard output a line with the space-separated values of d,
c, e, followed by one line per row of an e × d matrix representing the solution, the
diner names being space-separated. For example, the ⟨8, 2, 7⟩ cruise design above
is represented by https://user.it.uu.se/~pierref/courses/AD3/assignments/

cruDes-8-2-7.txt.

For satisfiable instances, experimentally pipe the output of cruDesPrint into the
polynomial-time solution checker at https://user.it.uu.se/~pierref/courses/

AD3/assignments (for Linux and macOS), which reads such a solution from standard
input, in order to gain confidence in the correctness of your encoding.

2

https://user.it.uu.se/~pierref/courses/AD3/resources.html
https://user.it.uu.se/~pierref/courses/AD3/resources.html
https://user.it.uu.se/~pierref/courses/AD3/assignments/cruDes-8-2-7.txt
https://user.it.uu.se/~pierref/courses/AD3/assignments/cruDes-8-2-7.txt
https://user.it.uu.se/~pierref/courses/AD3/assignments
https://user.it.uu.se/~pierref/courses/AD3/assignments


Experimentally make sure the time of producing a correct encoding is short.

e. Experiments. Indicate the SAT solver and hardware you chose for your experiments.2

Consider the following instances:

d c e

8 2 7
10 2 9
12 2 11
14 2 12
16 2 10

d c e

12 3 4
15 3 6
18 3 6
21 3 6
24 3 6

d c e

16 4 5
20 4 4
24 4 4
28 4 4
32 4 3

Using a timeout of at least 60 seconds per run, report the performance (satisfiability
status and runtime, in seconds, as the sum of the encoding time and solving time) over a
single run per instance, as the recommended MiniSat solver is deterministic by default;
a precision of one decimal place suffices. For every instance ⟨d, c, e⟩ above, your encoding
should terminate without a timeout. Furthermore , increase e beyond the given value as
long as the previous run proved satisfiability without a timeout (that is, stop increasing e
upon either proven unsatisfiability or a timeout).

For full automation, do not use our web interface to MiniSat, but rather install MiniSat,
make it executable via chmod +x minisat, and configure our Python script cruDesTabler
at https://user.it.uu.se/~pierref/courses/AD3/assignments in order to run the
experiments requested above (with as defaults MiniSat, a timeout of 60 seconds, and one
decimal place): it runs the checker on each solution and generates a results table in LATEX
that plugs into the demo report and looks like the one there; a failed check yields no table
and an indication of the failed instance.

A necessary, but not sufficient , condition for satisfiability is e ≤
⌊
d−1
c−1

⌋
, as every diner

meets every evening c−1 new diners among the d−1 other diners: discuss, by observation
in your results table and not by modifying cruDes, how fast your encoding detects the
trivial unsatisfiability of instances that violate this inequality. Note that our experiment
script indicates trivial unsatisfiability as LATEX comments within the results table.

References

[1] S. Prestwich. CNF encodings. In A. Biere, M. Heule, H. van Maaren, and T. Walsh, editors,
Handbook of Satisfiability, volume 185 of Frontiers in Artificial Intelligence and Applications,
chapter 2, pages 75–97. IOS Press, 2009. Available at https://dx.doi.org/10.3233/

978-1-58603-929-5-75 and https://www.researchgate.net/publication/242029085_

CNF_encodings.

[2] C. Sinz. Towards an optimal CNF encoding of Boolean cardinality constraints. In P. van
Beek, editor, CP 2005, volume 3709 of LNCS, pages 827–831. Springer, 2005. Available at
https://dx.doi.org/10.1007/11564751_73; extended and corrected (LTn,k

SEQ has 2nk +
n− 3k− 1 clauses) at http://www.carstensinz.de/techreports/CardConstraints.pdf.

2 Under Linux, do lscpu to find the specification, and under macOS, you find it via “About This Mac” in the
Apple menu.

3

https://user.it.uu.se/~pierref/courses/AD3/assignments
https://dx.doi.org/10.3233/978-1-58603-929-5-75
https://dx.doi.org/10.3233/978-1-58603-929-5-75
https://www.researchgate.net/publication/242029085_CNF_encodings
https://www.researchgate.net/publication/242029085_CNF_encodings
https://dx.doi.org/10.1007/11564751_73
http://www.carstensinz.de/techreports/CardConstraints.pdf


Problem 4: SAT Modulo Theories (SMT) (40% weight)

The aim of solving this problem is to understand how a program verification problem can be
encoded into a constraint satisfaction problem that can be solved efficiently by SMT technology.

Background: Let us use the SMT-LIB language and an SMT solver to implement simple
verification tools for software programs with a heap. For this, we consider a minimalist assembler
language, MiniASM, with some similarities to Java bytecode. The instructions of the language
are the following:

Instr ::= pushj push the number j onto the top of the operand stack

| pop pop the topmost number from the operand stack and discard it

| dup pop the topmost number, say a, from the operand stack,
and push a two times onto the stack

| plus pop the two topmost numbers, say a and b, from the operand stack,
and push the sum a+ b onto the stack

| neg pop the topmost number, say a, from the operand stack,
and push the negated value −a onto the stack

| read pop the topmost number, say a, from the operand stack,
read the number, say b, at address a on the heap,
and push b onto the stack

| write pop the two topmost numbers, say a (at the top) and b (below the top),
from the operand stack, and write b at address a on the heap

A MiniASM program is a list of instructions. Every element stored on the heap or the operand
stack is a 32-bit integer. We do not consider any form of alignment, that is values are stored
on the heap at consecutive addresses.

For example, the following shows the execution of a MiniASM program that reads the val-
ues v0 and v1 stored at addresses 0 and 1 on the heap, and writes their sum back at address 1:

Instruction Heap Stack Stack Pointer

@0 : v0, @1 : v1 ⟨. . . ⟩ x
push0 @0 : v0, @1 : v1 ⟨. . . , 0⟩ x+ 1
read @0 : v0, @1 : v1 ⟨. . . , v0⟩ x+ 1
push1 @0 : v0, @1 : v1 ⟨. . . , v0, 1⟩ x+ 2
read @0 : v0, @1 : v1 ⟨. . . , v0, v1⟩ x+ 2
plus @0 : v0, @1 : v1 ⟨. . . , v0 + v1⟩ x+ 1
push1 @0 : v0, @1 : v1 ⟨. . . , v0 + v1, 1⟩ x+ 2
write @0 : v0, @1 : v0 + v1 ⟨. . . ⟩ x

Hints: One can encode program state in MiniASM using three SMT-LIB variables:

• the heap H of type (Array (_ BitVec 32) (_ BitVec 32));

• the stack S of type (Array (_ BitVec 32) (_ BitVec 32));

• an index variable SP of type (_ BitVec 32), pointing to the topmost element of S.

To translate a program with n instructions into SMT-LIB, declare n + 1 triplets (Hi, Si,SP i)
and generate constraints that imply that each triplet (Hi, Si,SP i) represents the program state
after executing the ith instruction.

4



Tasks: You must follow the structure and instructions of the demo report. Write two
verification tools, in a programming language for which a compiler or interpreter is available on
the Linux computers of the IT department, for the following purposes:3

a. For each MiniASM instruction, describe how to encode the transition between program
states, first in plain English and then using SMT-LIB syntax (see https://smtlib.cs.

uiowa.edu/standard.shtml, but all you need is in our slides https://user.it.uu.se/

~pierref/courses/AD3/slides/SMT1.pdf). Use bvneg (arithmetic negation) and not
bvnot (bit-wise negation) for this assignment. Use store instead of a quantified formula
in order to encode array writes.

b. Take a MiniASM program P and generate an SMT-LIB file that encodes the partial cor-
rectness of P . That is, the script should contain exactly one check-sat call, which
produces unsat (note that this is not a typo) if and only if P is partially correct: we say
that P is partially correct if P leaves a non-zero number as topmost element on the stack
whenever P terminates. State the final assert call, which ensures that the SMT solver
produces unsat when needed.

Use your partial-correctness checker in order to state which of the following programs are
partially correct:

push10; read (1)

push1; dup; dup;write; read (2)

push1; dup; read; dup; neg; plus; plus (3)

push1; push0; read;write; push0; read; read (4)

push10; push0; swap (5)

push10; dup; read; swap; push1; plus; read; plus (6)

push10; dup; push1; plus; dup; push1; plus; plus; plus (7)

where swap is the abbreviation of push0;write; push1;write; push0; read; push1; read, that is
changing the order of the two top-most numbers on the stack.

Your tool need not include a parser and may hardcode the considered programs. Indicate
the SMT solver you chose for your experiments. Within the context of this task, explain
what the output of get-model means when the SMT solver produces sat.

c. Take two MiniASM programs P and Q and generate an SMT-LIB script that encodes the
equivalence of P and Q. That is, the script should contain exactly one check-sat call,
which produces unsat (note that this is not a typo) if and only if P and Q are partially
equivalent: we say that P and Q are partially equivalent if terminating runs of P and Q,
starting from the same initial stack, stack pointer, and heap, lead to the same final heap.
State the final assert call, which ensures that the SMT solver produces unsat when
needed.

Use your partial-equivalence checker in order to state whether the following two programs
for swapping the values of two integer variables x and y are partially equivalent:

• Assuming that x is stored at heap address 0, and y at heap address 1, the program
t := x; x := y; y := t, where t is a local variable, can be translated as follows:

push0; read; push1; read; push0;write; push1;write (8)
3Solo teams (except PhD students) may omit Tasks b.6, b.7, and d, but are encouraged to perform them

nevertheless.

5

https://smtlib.cs.uiowa.edu/standard.shtml
https://smtlib.cs.uiowa.edu/standard.shtml
https://user.it.uu.se/~pierref/courses/AD3/slides/SMT1.pdf
https://user.it.uu.se/~pierref/courses/AD3/slides/SMT1.pdf


• Assuming that x is stored at heap address 0, and y at heap address 1, the program
x := x+ y; y := x− y; x := x− y can be translated as follows:

push0; read; push1; read; plus; dup; push1; read;

neg; plus; dup; push1;write; neg; plus; push0;write
(9)

Your tool need not include a parser and may hardcode the considered programs. Indicate
the SMT solver you chose for your experiments. Within the context of this task, explain
what the output of get-model means when the SMT solver produces sat.

d. We now extend MiniASM by introducing three additional instructions:

Instr ::= · · ·
| cmp◦ pop the two topmost numbers, say a and b, from the operand stack,

and push 1 onto the stack if a ◦ b, and 0 otherwise; with ◦ ∈ {=,≤}
| jmpj pop the topmost number, say a, from the operand stack;

if a is zero, then continue with the next instruction,
else skip the next j instructions; with j ≥ 0

For example, the following code replaces the topmost stack element by its absolute value:

dup; push0; cmp≤; jmp1; neg

Propose an approach to encode a program with cmp◦ and jmpj instructions (where j ≥ 0)
and to analyse the partial correctness of programs also in this extended language. In
particular, identify and discuss the difficulty of encoding the jmpj instruction, and propose
an encoding based on your insights. The proposal should be detailed enough for another
student to be able to implement the approach without any further reasoning, but you
need not implement anything.

Note that the extended MiniASM language only provides forward jumps, so that programs
always terminate, as it is not possible to encode loops.

Submit also the commented source code of your tools and the generated SMT-LIB constraints.
For the experiments, either use the web interface of Z3 at https://microsoft.github.io/

z3guide/playground/Freeform%20Editing, but then set the logic with (set-logic QF ABV)

so as to have both arrays (A) and bit vectors (BV), or install any SMT solver on your own
computer. You need neither report the runtimes nor make multiple runs per verification (even
though SMT solvers are usually randomised), as the solving times should be very short here,
the main difficulty lying here in the encoding phase.

Submission Instructions

• Address each task of each problem.

• You must follow the structure (using, in order to accelerate the grading, the numbering
and ordering of the tasks in this assignment statement) and instructions of the demo
report at https://user.it.uu.se/~pierref/courses/AD3/demoReport, whether or not
you use LATEX. Write with the precision that you would expect from a textbook.

6

https://microsoft.github.io/z3guide/playground/Freeform%20Editing
https://microsoft.github.io/z3guide/playground/Freeform%20Editing
https://user.it.uu.se/~pierref/courses/AD3/demoReport


• Thoroughly proofread, spellcheck, and grammar-check the report, including the com-
ments in all code. In case you are curious about technical writing: the English Style Guide
of UU at https://mp.uu.se/en/web/info/stod/kommunikation-riktlinjer/sprak/

eng-skrivregler and the technical-writing Checklist & Style Manual of the Optimisa-
tion group at https://optimisation.research.it.uu.se/checkList.pdf offer many
pieces of advice; common errors in English usage are discussed at https://brians.wsu.
edu/common-errors; in particular, common errors in English usage by native Swedish
speakers are listed at https://www.crisluengo.net/english-language.

• Match exactly the uppercase, lowercase, and layout conventions of any filenames and I/O
texts imposed by the tasks, as we will process submitted source code automatically.
Do not rename any of the provided skeleton codes, for the same reason. However, do
not worry when Studium appends a version number to the filenames when you make
multiple submission attempts until the deadline.

• Remember that when submitting you implicitly certify (a) that your report and all its
uploaded attachments were produced solely by your team, except where explicitly stated
otherwise and clearly referenced, (b) that each teammate can individually explain any
part starting from the moment of submitting your report, and (c) that your report and
attachments are not freely accessible on a public repository.

• Submit (by only one of the teammates) via Studium (whose clock may differ from yours)
by the given hard deadline three solution files: your report as a single file in PDF format
(all other formats will be rejected) and two compressed folders with all source-code files
required to run your experiments of each problem.

Grading Rules

For each problem: If the requested source code exists, and it runs without runtime errors on the
Linux computers of the IT department under the compiler, interpreter, or solver you indicate,
and it computes correct and (near -)optimal solutions to some of our tests in reasonable time on
that hardware, then you get at least 1 point (read on), otherwise your final score is 0 points.
Furthermore:

• If the code passes most of our tests and the report addresses all the tasks and subtasks,
then your final score is 3 or 4 or 5 points, depending also on the quality of the report
part for this problem; you are not invited to the grading session for this problem.

• If the code fails many of our tests or the report does not address all the tasks and
subtasks, then your initial score is 1 or 2 points, depending also on the quality of the
report part for this problem; you might be invited to the grading session for this problem,
where you can try and increase your initial score by 1 point into your final score.

However, if the assistants figure out a minor fix that is needed to make your code run as per
your and our instructions, then , instead of giving 0 points up front, the assistants may at their
discretion deduct 1 point from the score thus earned.

Let si be your final score on Problem i, whose stated weight is wi: your final score on this
assignment is

∑
i(wi · 2 · si), rounded to the nearest (possibly previous) integer, if both si > 0.

Considering there are three help sessions for each assignment, youmust earn at least 3 points
(of 10) on each assignment until the end of its grading session, including at least 1 point (of 5)
on each problem and at least 10 points (of 20) over both assignments, in order to pass the
Assignments part (2 credits) of the course, if you attend the guest lecture from industry.

7

https://mp.uu.se/en/web/info/stod/kommunikation-riktlinjer/sprak/eng-skrivregler
https://mp.uu.se/en/web/info/stod/kommunikation-riktlinjer/sprak/eng-skrivregler
https://optimisation.research.it.uu.se/checkList.pdf
https://brians.wsu.edu/common-errors
https://brians.wsu.edu/common-errors
https://www.crisluengo.net/english-language

