
Topic 6: Algorithm Analysis & Sorting1

(Version of November 14, 2011)

Pierre Flener

Computing Science Division
Department of Information Technology

Uppsala University
Sweden

Course 1DL201:
Program Construction and Data Structures

1Based on original slides by John Hamer and Yves Deville, with some
figures from the CLRS textbook (which are c� The MIT Press, 2009)

http://user.it.uu.se/~pierref/

Road Map

Asymptotic
Algorithm
Analysis

Insertion
Sort

Merge Sort

Master
Method

Quick Sort

Accumulator
Introduction

Stable
Sorting

Road Map
Revisited

Asymptotic Algorithm Analysis

We can analyse an algorithm without needing to run it, and
thus gain some understanding of its likely performance.

This analysis can be done at design time, before the
program is written. Even if the analysis is approximate,
performance problems may be detected.

The notation used in the analysis is helpful in documenting
software libraries. It allows programs using such libraries to
be analysed without requiring analysis of the library source
code (which is often not available).

We will mostly analyse the runtime performance.
The same principles apply to memory consumption.
We speak of time complexity and space complexity.

Course 1DL201 - 6 - Program Construction and Data Structures

Road Map

Asymptotic
Algorithm
Analysis

Insertion
Sort

Merge Sort

Master
Method

Quick Sort

Accumulator
Introduction

Stable
Sorting

Road Map
Revisited

The ⇥ Notation

The ⇥ notation is used to denote a set of functions that
increase at the same rate (within some constant bound).

Formally, ⇥(g(n)) is the set of all functions f (n) that are
bounded below by c1 · g(n) � 0 and above by c2 · g(n), for
some constants c1 > 0 and c2 > 0, when n gets sufficiently
large, that is, when n is at least some constant n0 > 0.

The function g(n) in ⇥(g(n)) is called a complexity function.

We write f (n) = ⇥(g(n)) when we mean f (n) 2 ⇥(g(n)).

The ⇥ notation is used to give asymptotically tight bounds.

Course 1DL201 - 12 - Program Construction and Data Structures

Road Map

Asymptotic
Algorithm
Analysis

Insertion
Sort

Merge Sort

Master
Method

Quick Sort

Accumulator
Introduction

Stable
Sorting

Road Map
Revisited

Terminology

Let lg x denote log2 x , let k � 2 be a constant,
and let variable n denote the input size:

Function Growth Rate
1 constant

sub-linearlg n logarithmic
lg2 n log-squared
n linear

polynomialn · lg n
n2 quadratic
n3 cubic
kn exponential exponential
n! super-exponential
nn

+ From now on (and in the homeworks), we use ⇥(1)
instead of introducing constants such as t0 and tadd.

Course 1DL201 - 13 - Program Construction and Data Structures

Road Map

Asymptotic
Algorithm
Analysis

Insertion
Sort

Merge Sort

Master
Method

Quick Sort

Accumulator
Introduction

Stable
Sorting

Road Map
Revisited

Example

Theorem: n2 + 5 · n + 10 = ⇥(n2).
Proof: We need to choose constants c1 > 0, c2 > 0,
and n0 > 0 such that

0 c1 · n2 n2 + 5 · n + 10 c2 · n2

for all n � n0. Dividing by n2 (assuming n > 0) gives

0 c1 1 +
5
n
+

10
n2 c2

The “sandwiched” term, 1+ 5
n + 10

n2 , gets smaller as n grows.
It peaks at 16 for n = 1, so we can pick n0 = 1 and c2 = 16.
It drops to 6 for n = 2 and becomes close to 1 for n = 1000.
It never gets less than 1, so we can pick c1 = 1.
Exercise: Prove that 5 · n3 + 7 · n2 � 3 · n + 4 6= ⇥(n2).

Course 1DL201 - 14 - Program Construction and Data Structures

Road Map

Asymptotic
Algorithm
Analysis

Insertion
Sort

Merge Sort

Master
Method

Quick Sort

Accumulator
Introduction

Stable
Sorting

Road Map
Revisited

Keep Complexity Functions Simple

While it is formally (and trivially) correct to say that
n2 + 5 · n + 10 = ⇥(n2 + 5 · n + 10), the whole purpose of
the ⇥ notation is to work with simple expressions.
Thus, we often do not expect any arbitrary factors or
lower-order terms inside a complexity function.

We can simplify complexity functions by:
Setting all constant factors to 1.
Dropping all lower-order terms.

Since logb x = 1
logc b · logc x , where 1

logc b is a constant factor
(when the bases b and c are constants), we shall use lg x
in complexity functions.

Course 1DL201 - 15 - Program Construction and Data Structures

Road Map

Asymptotic
Algorithm
Analysis

Insertion
Sort

Merge Sort

Master
Method

Quick Sort

Accumulator
Introduction

Stable
Sorting

Road Map
Revisited

Variations on ⇥: The O and ⌦ Notations

Variants of ⇥ include O (“big-Oh”), which drops the lower
bound, and ⌦ (“big-Omega”), which drops the upper bound:

Examples: Any linear function a · n + b is in O(n2), O(n3),
and so on, but not in ⇥(n2), ⇥(n3), and so on. Any
quadratic function a · n2 + b · n + c is in ⌦(n). We use O to
give an upper bound on a function, and ⌦ to give a lower
bound, but no claims are made about how tight these
bounds are. We use ⇥ to give a tight bound, namely when
the upper and lower bounds are the same.

Course 1DL201 - 17 - Program Construction and Data Structures

Road Map

Asymptotic
Algorithm
Analysis

Insertion
Sort

Merge Sort

Master
Method

Quick Sort

Accumulator
Introduction

Stable
Sorting

Road Map
Revisited

Application of a Pre-Established Formula

Theorem 1 (proof omitted): If, for some constants a and b:

C(n) =

(
⇥(1) if n b
a · C(n � 1) +⇥(1) if n > b

then the closed form of the recurrence is:

C(n) =

(
⇥(n) if a = 1
⇥(an) if a > 1

Another pre-established formula is in the Master Theorem:
page 44

Course 1DL201 - 24 - Program Construction and Data Structures

Road Map

Asymptotic
Algorithm
Analysis

Insertion
Sort

Merge Sort

Master
Method

Quick Sort

Accumulator
Introduction

Stable
Sorting

Road Map
Revisited

The Master Method and Master Theorem

From now on, we will ignore the base cases of a recurrence.

The closed form for a recurrence T (n) = a · T (n/b) + f (n)
reflects the “battle” between the two terms in the sum.
Think of a · T (n/b) as the process of “distributing the work
out” to f (n), where the actual work is done.

Theorem 2 (known as the Master Theorem, proof omitted):
1 If f (n) is dominated by nlogb a (see the next page),

then T (n) = ⇥(nlogb a).
2 If f (n) and nlogb a are balanced (if f (n) = ⇥(nlogba)),

then T (n) = ⇥(nlogba · lg n).
3 If f (n) dominates nlogb a and if the regularity condition

(see the next page) holds, then T (n) = ⇥(f (n)).

Course 1DL201 - 44 - Program Construction and Data Structures

Road Map

Asymptotic
Algorithm
Analysis

Insertion
Sort

Merge Sort

Master
Method

Quick Sort

Accumulator
Introduction

Stable
Sorting

Road Map
Revisited

Dominance and the Regularity Condition

The three cases of the Master Theorem depend on
comparing f (n) to nlogb a. However, it is not sufficient for f (n)
to be “just a bit” smaller or bigger than nlogb a. Cases 1
and 3 only apply when there is a polynomial difference
between these functions, that is when the ratio between the
dominator and the dominee is asymptotically larger than the
polynomial n✏ for some constant ✏ > 0.

Example: n2 is polynomially larger than both n1.5 and lg n.

Counter-Example: n · lg n is not polynomially larger than n.

In Case 3, a regularity condition requires a · f (n/b) c · f (n)
for some constant c < 1 and all sufficiently large n.
(All the f functions in this course will satisfy this condition.)

Course 1DL201 - 45 - Program Construction and Data Structures

Road Map

Asymptotic
Algorithm
Analysis

Insertion
Sort

Merge Sort

Master
Method

Quick Sort

Accumulator
Introduction

Stable
Sorting

Road Map
Revisited

Gaps in the Master Theorem

The Master Theorem does not cover all possible
recurrences of the form T (n) = a · T (n/b) + f (n):

Cases 1 and 3: The difference between f (n) and nlogba

might not be polynomial.
Counter-Example: The Master Theorem does not
apply to the recurrence T (n) = 2 · T (n/2) + n · lg n,
despite it having the proper form. We have a = 2 = b,
so we need to compare f (n) = n · lg n to
nlogb a = n1 = n. Clearly, f (n) = n · lg n > n for large
enough n, but the ratio f (n)/n is lg n, which is
asymptotically less than the polynomial n✏ for any
constant ✏ > 0, so we are not in Case 3.
Case 3: The regularity condition might not hold.

Course 1DL201 - 46 - Program Construction and Data Structures

Road Map

Asymptotic
Algorithm
Analysis

Insertion
Sort

Merge Sort

Master
Method

Quick Sort

Accumulator
Introduction

Stable
Sorting

Road Map
Revisited

Common Cases of the Master Theorem

a b nlogb a f (n) Case T (n)

1 2 n0

⇥(1) 2 ⇥(lg n)
⇥(lg n) none ⇥(?)
⇥(n · lg n) 3 ⇥(n · lg n)
⇥(nk), with k > 0 3 ⇥(nk)

2 2 n1

⇥(1) 1 ⇥(n)
⇥(lg n) 1 ⇥(n)
⇥(n) 2 ⇥(n · lg n)
⇥(n · lg n) none ⇥(?)
⇥(nk), with k > 1 3 ⇥(nk)

(This table can only be used for looking up a closed form,
but it cannot be referred to in the homeworks or exams.)

Course 1DL201 - 47 - Program Construction and Data Structures

	Road Map
	Asymptotic Algorithm Analysis
	Insertion Sort
	Merge Sort
	Master Method
	Quick Sort
	Accumulator Introduction
	Stable Sorting
	Road Map Revisited

