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Problem, challenges, and methods

Problem: Solve the time harmonic Maxwell equa-
tions and find eigenwavenumbers k and eigenfields E
of perfectly conducting axially symmetric cavities and
for dielectric objects in vacuum.
Challenges: Large structures. High accuracy. Find-
ing all eigenmodes. Resolution of singular fields at
sharp edges. Normalization ‖E‖2 = 1 of eigenfields.
Methods: ChIE extensions of MFIE and EFIE (no
surface divergence for surface charge densities),
16th-order explicit kernel-split panel-based Fourier–
Nyström discretization, recursively compressed inverse
preconditioning (RCIP), volume→surface integral for
‖En‖2 = 1, robust search for eigenwavenumbers.

Integral equation for eigenproblem

The ChIE extended MFIE system can be written on modal block operator form as I − 2Kνn 2ikS5n −2kS6n

0 I +K1n iK2n

0 iK3n I +K4n

 %sn(r)
Jτn(r)
Jθn(r)

 =

 0
0
0

 ,
where Kνn, K1n, K2n, K3n, K4n are modal double-layer type integral operators and
S5n, S6n are single-layer type operators. All operators are weakly singular.

The RCIP idea

(I + K)ρ = g is difficult to solve on Lipschitz domains. The split K = K? + K◦ and
the change of variables ρ = (I + K?)−1ρ̃ give the simpler compressed preconditioned
equation (I + K◦PT

W(I + K?)−1P)ρ̃ = g, where P is a prolongation operator.
Recursion on nested grids is used for the lossless compression of PT

W(I + K?)−1P.
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Eigenfields of E at k=120.2309391499240
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Left: The azimuthal component of normalized electric field for the 9928th n = 1
eigenmode with eigenwavenumber k = 120.2309391499240 evaluated at 4.9 · 105

points on a cartesian grid. Object diameter ≈ 75λ. Center: log10 of estimated
absolute pointwise error. Right: stable 16th-order convergence with mesh refinement.

Magnification of edge singularity
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Left and center: zoom of z-component of normalized electric field for the 662nd
n = 0 eigenmode with eigenwavenumber k = 31.65910852052012. The field
diverges in the reentrant corners. Right: log10 of estimated absolute pointwise error.

Dielectric object in vacuum
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Left: Object. Center: Azimuthal component of electric field for the n = 1 eigenmode
with eigenwavenumber k = 110.041232211051− 0.404177078290i. The
refractive index is m = 1.5. The object diameter is around 46 vacuum wavelengths.
Right: Whispering gallery n = 450 mode with eigenwavenumber
k = 258.059066513439, m = 1.5, and object diameter around 108 vacuum
wavelengths. The absolute pointwise error is less than 10−11 in both field plots.

Problem, challenges and methods

Problem: Solve the electrostatic transmission problem for an inclusion with Lipschitz
surface Γ and permittivity ε embedded in a background medium with unit permittivity.
Then compute the polarizability tensor ωij(ε) and its spectral measure.
Challenges: High accuracy. Resolution of singular fields at sharp edges and in corners.
Integral operator spectra depend on function spaces considered: L2(Γ) or energy space.
Methods: Classic integral equation, 16th- and 32nd-order explicit kernel-split
panel-based (Fourier–)Nyström discretization, recursively compressed inverse
preconditioning (RCIP), fixed-point iteration, Newton’s method, homotopy.

Geometries and meshes
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Left: a three times dyadically refined mesh on the surface of a cube. Middle: An axially
symmetric surface Γ with a conical point of opening angle α = 5π/36, denoted a
snow cone. Right: A cross section of the snow cone interior for α = 31π/36.

Integral equation

With standard basis ei, the element ωij of the polarizability tensor of an inclusion is

ωij(z) =
2

|V |

∫
Γ

(ei · r)
[
(Kν − z)−1(ej · ν)

]
(r) dσ(r) ,

where Kν is two times the adjoint of the Neumann–Poincaré operator (double layer
potential), z ≡ x+ iy = (ε+ 1)/(ε− 1), and |V | is the volume of the inclusion.

Limit polarizability of square and cube
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The square: limit polarizability
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The cube: limit polarizability
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Limit values of ω(z) as y → 0−. The accuracy varies from full machine precision to
about five digits. =m{ω−(x)} of the cube has support for x ∈ (−0.5, 0.694526).

Limit polarizability of snow cones
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Top row: (a,b) limit values of ω33(z) and ω11(z) as y → 0− for α = 5π/36; (c)
ω33(z) for α = 31π/36. Bottom row: imaginary parts with logarithmic scales on the
vertical axes. The spectral measure µi(x), associated with ωii(z), is determined by
µ′i(x) = −=m{ω−ii(x)}/π. The numerical accuracy in (a,b) is such that∫ 1
−1 dµi(s) = −2 holds to almost machine precision. Note the infinite number of

poles for ω−33(x), x > 0, and α = 31π/36, of which 275 are located and drawn.
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