

High-order convergent and accurate electromagnetic solvers on Lipschitz domains

Johan Helsing, Anders Karlsson, and Karl-Mikael Perfekt

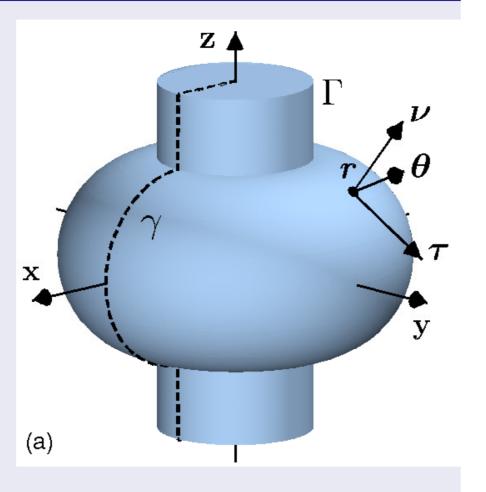
Lund University

Emerging Topics in Optics, IMA, April 24-28, 2017

Problem, challenges, and methods

Problem: Solve the time harmonic Maxwell equations and find eigenwavenumbers k and eigenfields E of perfectly conducting axially symmetric cavities and for dielectric objects in vacuum.

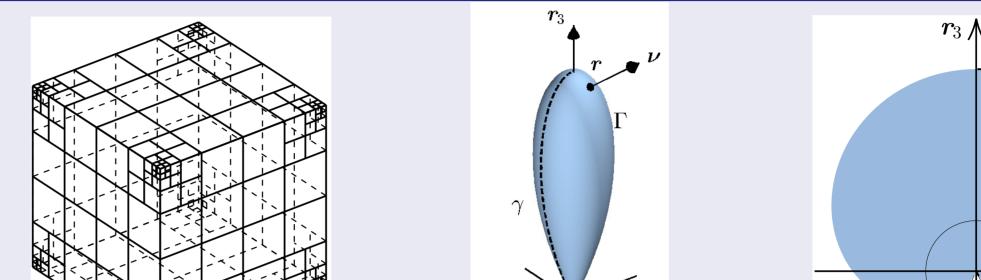
Challenges: Large structures. High accuracy. Finding all eigenmodes. Resolution of singular fields at sharp edges. Normalization $||E||^2 = 1$ of eigenfields. **Methods**: ChIE extensions of MFIE and EFIE (no surface divergence for surface charge densities), 16th-order explicit kernel-split panel-based Fourier– Nyström discretization, recursively compressed inverse preconditioning (RCIP), volume \rightarrow surface integral for $||E_n||^2 = 1$, robust search for eigenwavenumbers.



Problem, challenges and methods

Problem: Solve the electrostatic transmission problem for an inclusion with Lipschitz surface Γ and permittivity ϵ embedded in a background medium with unit permittivity. Then compute the polarizability tensor $\omega_{ij}(\epsilon)$ and its spectral measure. **Challenges**: High accuracy. Resolution of singular fields at sharp edges and in corners. Integral operator spectra depend on function spaces considered: $L^2(\Gamma)$ or energy space. **Methods**: Classic integral equation, 16th- and 32nd-order explicit kernel-split panel-based (Fourier–)Nyström discretization, recursively compressed inverse preconditioning (RCIP), fixed-point iteration, Newton's method, homotopy.

Geometries and meshes



Integral equation for eigenproblem

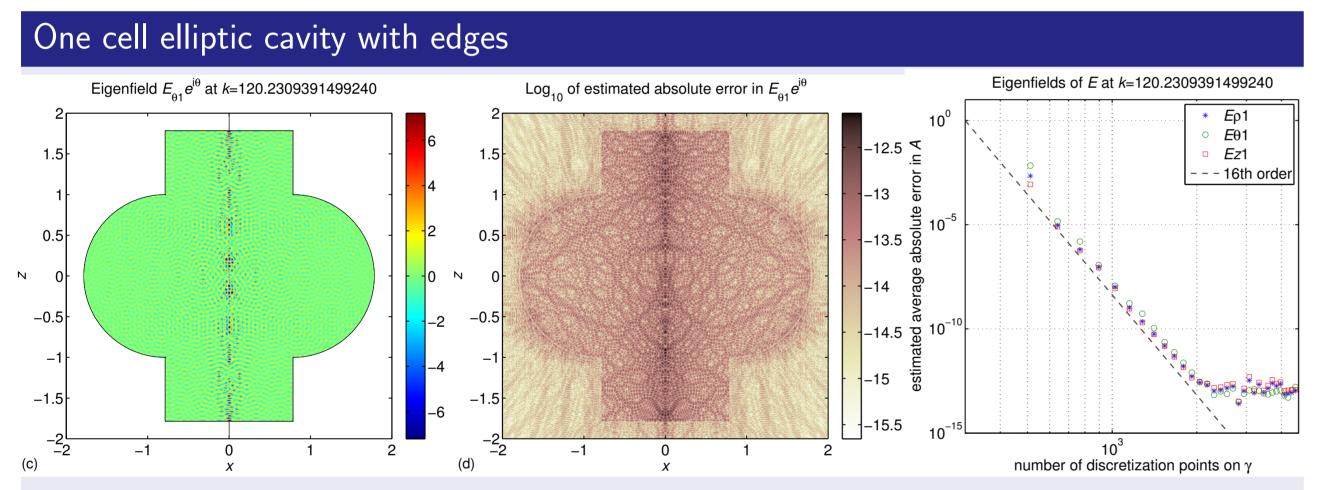
The ChIE extended MFIE system can be written on modal block operator form as

$$egin{bmatrix} I-2K_{
un} & 2\mathrm{i}kS_{5n} & -2kS_{6n} \ 0 & I+K_{1n} & \mathrm{i}K_{2n} \ 0 & \mathrm{i}K_{3n} & I+K_{4n} \end{bmatrix} egin{bmatrix} arrho_{\mathrm{sn}}(r) \ J_{ au n}(r) \ J_{ heta n}(r) \end{bmatrix} = egin{bmatrix} 0 \ 0 \ 0 \ 0 \end{bmatrix} \,,$$

where $K_{\nu n}$, K_{1n} , K_{2n} , K_{3n} , K_{4n} are modal double-layer type integral operators and S_{5n} , S_{6n} are single-layer type operators. All operators are weakly singular.

The RCIP idea

 $(I + K)\rho = g$ is difficult to solve on Lipschitz domains. The split $K = K^* + K^\circ$ and the change of variables $\rho = (I + K^*)^{-1}\tilde{\rho}$ give the simpler compressed preconditioned equation $(I + K^\circ P_W^T (I + K^*)^{-1} P)\tilde{\rho} = g$, where P is a prolongation operator. Recursion on nested grids is used for the lossless compression of $P_W^T (I + K^*)^{-1} P$.



Left: The azimuthal component of normalized electric field for the 9928th n = 1eigenmode with eigenwavenumber k = 120.2309391499240 evaluated at $4.9 \cdot 10^5$ points on a cartesian grid. Object diameter $\approx 75\lambda$. Center: \log_{10} of estimated absolute pointwise error. Right: stable 16th-order convergence with mesh refinement.

Left: a three times dyadically refined mesh on the surface of a cube. Middle: An axially symmetric surface Γ with a conical point of opening angle $\alpha = 5\pi/36$, denoted a *snow cone*. Right: A cross section of the snow cone interior for $\alpha = 31\pi/36$.

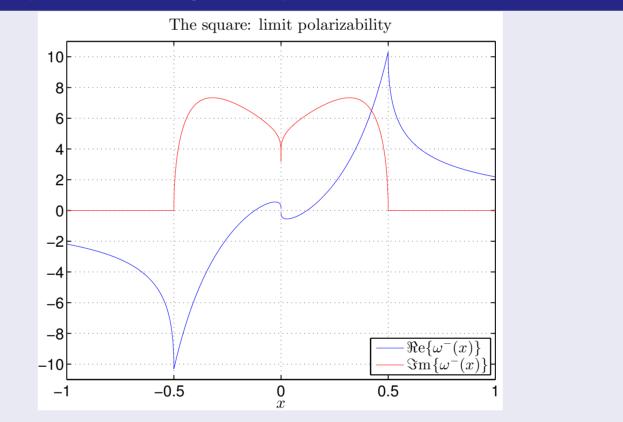
Integral equation

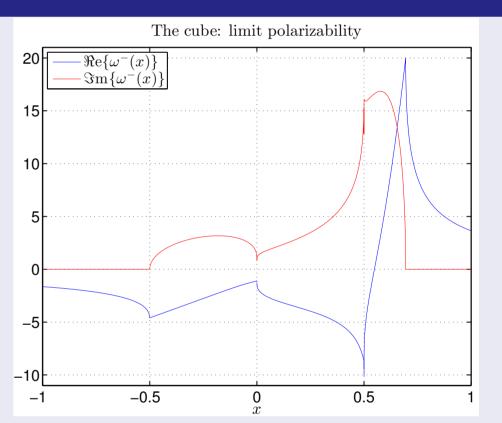
With standard basis e_i , the element ω_{ij} of the polarizability tensor of an inclusion is

$$\omega_{ij}(z) = rac{2}{|V|} \int_{\Gamma} (e_i \cdot r) \left[(K_
u - z)^{-1} (e_j \cdot
u)
ight](r) \, \mathrm{d}\sigma(r) \, ,$$

where K_{ν} is two times the adjoint of the Neumann–Poincaré operator (double layer potential), $z \equiv x + \mathrm{i}y = (\epsilon + 1)/(\epsilon - 1)$, and |V| is the volume of the inclusion.

Limit polarizability of square and cube

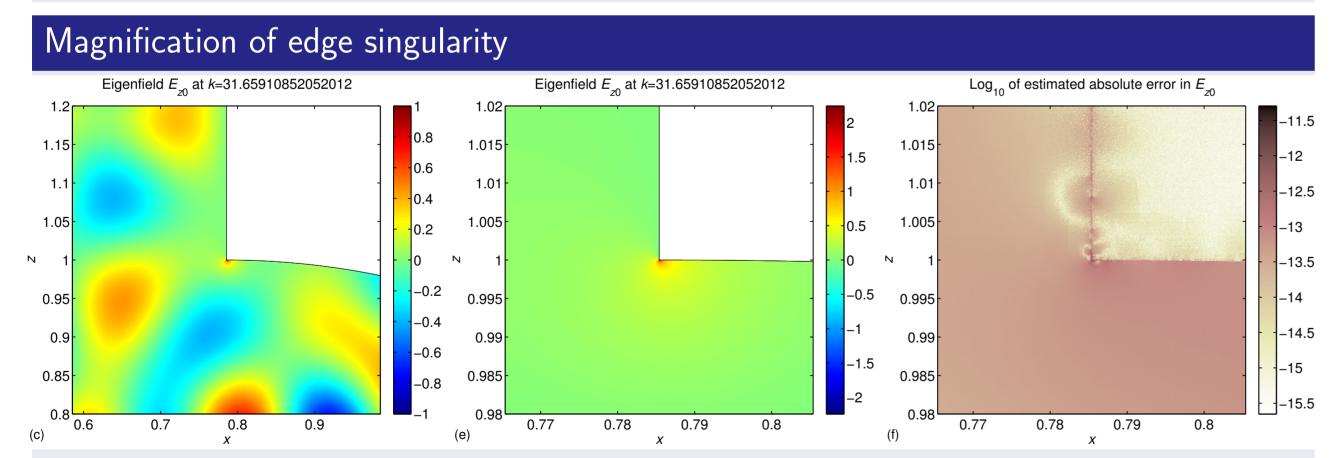




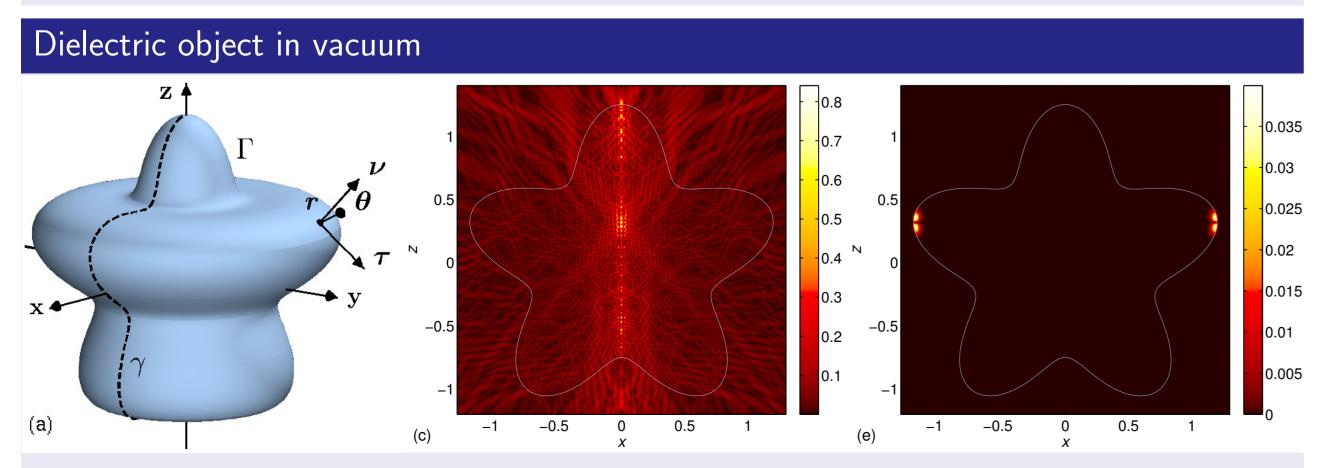
 2α

Limit values of $\omega(z)$ as $y \to 0^-$. The accuracy varies from full machine precision to about five digits. $\Im\{\omega^-(x)\}\$ of the cube has support for $x \in (-0.5, 0.694526)$.

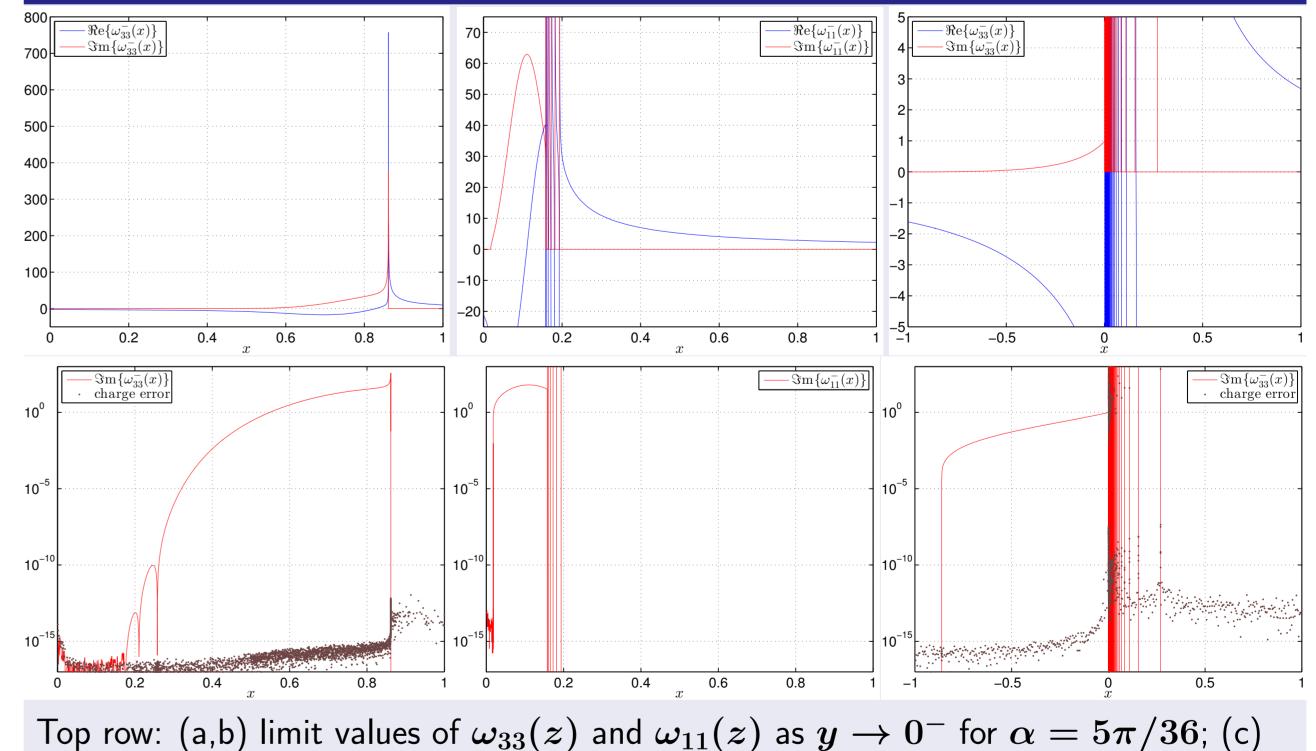
Limit polarizability of snow cones



Left and center: zoom of z-component of normalized electric field for the 662nd n = 0 eigenmode with eigenwavenumber k = 31.65910852052012. The field diverges in the reentrant corners. Right: \log_{10} of estimated absolute pointwise error.



Left: Object. Center: Azimuthal component of electric field for the n = 1 eigenmode with eigenwavenumber k = 110.041232211051 - 0.404177078290i. The refractive index is m = 1.5. The object diameter is around 46 vacuum wavelengths. Right: Whispering gallery n = 450 mode with eigenwavenumber

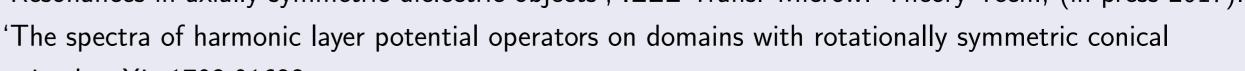


Top row: (a,b) limit values of $\omega_{33}(z)$ and $\omega_{11}(z)$ as $y \to 0^{-1}$ for $\alpha = 5\pi/36$; (c) $\omega_{33}(z)$ for $\alpha = 31\pi/36$. Bottom row: imaginary parts with logarithmic scales on the vertical axes. The spectral measure $\mu_i(x)$, associated with $\omega_{ii}(z)$, is determined by $\mu'_i(x) = -\Im\{\omega_{ii}^-(x)\}/\pi$. The numerical accuracy in (a,b) is such that $\int_{-1}^1 d\mu_i(s) = -2$ holds to almost machine precision. Note the infinite number of poles for $\omega_{33}^-(x)$, x > 0, and $\alpha = 31\pi/36$, of which 275 are located and drawn.

References

'Solving integral equations on piecewise smooth boundaries using the RCIP method ...', arXiv:1207.6737. 'On the polarizability and capacitance of the cube', Appl. Comput. Harmon. Anal., **34**, 445–468, 2013. 'Determination of normalized electric eigenfields in microwave cavities with ...', JCP, **304**, 465–486, 2016. 'Resonances in axially symmetric dielectric objects', IEEE Trans. Microw. Theory Tech., (in press 2017).

k = 258.059066513439, m = 1.5, and object diameter around 108 vacuum wavelengths. The absolute pointwise error is less than 10^{-11} in both field plots.



points', arXiv:1703.01628.

▲□▶▲@▶▲≧▶▲≧▶ ≧ ∽Q⊘

