2. Extrapolation with model outside calibration domain

\[Y_i = f(x_i, q) + \delta(x_i, q_{\text{dis}}) + \epsilon_i \]

\(\delta \) ensures that \(q \) is estimated in a statistically consistent manner in the calibration domain, may be inaccurate outside domain without restrictions on \(\delta \) or prior information.

Computed model \(f(x_i, q) + \delta(x_i, q_{\text{dis}}) \)

is accurate inside calibration domain but

has minimal predictive capability outside this domain ("overfitting")

Sufficient prior structure on \(\delta \)

Surrogate models (§1.3)

Construct representations quantifying primary features of the high-fidelity model while being computationally efficient for:

- Bayesian model calibration, uncertainty quantification, design, optimization...

Regression or interpolation-based models

Inter-fit models, response surface models, emulators, meta-models, approximation models

Model \(y = f(q), q \in \mathbb{R}^p \)
draw samples to construct input-output relations (based on interpretation or regression theory)

...non-invasive method, can use software for large scale applications to generate data...

\[M \text{ realizations: } y_m = f(q^m), \quad m = 1 \ldots M \]

Choose \(q^m \) e.g. by Monte Carlo, critical approx \(f(q) \) is treated as black box

Construct emulator \(f(q) \) approximating \(f(q) \)

Approximate fine scale behavior by statistical model

\[y_m = f(q^m) + \varepsilon_m, \quad m = 1 \ldots M \]

random variable

\(y_m \) realizations

\(\varepsilon_m \) i.i.d., \(\sim N(0, \sigma^2) \)

Quadratic response surface model

\[f(q, \beta) = \beta_0 + \sum_{i=1}^{P} \beta_i q_i + \sum_{i=1}^{P} \sum_{j=i}^{P} \beta_{ij} q_i q_j \]

\(P = \frac{(P+1)(P+2)}{2} \) coefficients \(\beta_0, \beta_i, \beta_{ij} \)

Need \(M > P \) samples

\[X = \begin{bmatrix} q_1 & q_1 \cdot q_1 & (q_1)^2 & q_1 \cdot q_2 & \cdots & q_1 \cdot q_P \\ q_1^2 & q_1 \cdot (q_1)^2 & (q_1)^2 & q_1 q_2 & \cdots & q_1 q_P \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ q_P & q_P \cdot q_1 & (q_P)^2 & q_P q_2 & \cdots & q_P q_P \end{bmatrix} \in \mathbb{R}^{M \times P} \]
Least squares approximation:

\[\beta = (X^TX)^{-1}X^T y_s \]

Suitable for optimization problems: analytic solutions of optimum

Kriging model:

\[\hat{f}(q, \beta) = g^T(q) \beta + Z(q) \]

Trend function \rightarrow Gaussian process \rightarrow kriging model

Ordinary kriging: \(g^T(q) \beta = \beta_0 \)

At sample points: \(y_m = f(q^m, \beta_0), \ y_s = (y_1^s, \ldots, y_n^s) \)

\(Z \) stationary random process: \(E(Z) = 0 \)

\(E(Z^2) = \sigma^2 \)

\(\text{cov}(Z(q^i), Z(q^j)) = \sigma^2 R(q^i, q^j) + \sigma_0^2 \delta(q^i - q^j) \)

where

\(\text{minimum function} \)

\(\delta(q^i - q^j) = \begin{cases} 1 & q^i = q^j \\ 0 & \text{otherwise} \end{cases} \)

\(R(q^i, q^j) = \exp \left(-\sum_{k=1}^{p} \Theta_k |q^{i_k} - q^{j_k}|^{\phi_k} \right) \)

\(0 < \phi_k < 2, \ \Theta_k > 0 \)

\[\hat{f}(q, \beta_0) = \beta_0 + r^T(q) R^{-1}(y_s - \beta_0 \mathbf{1}) \]

\(R_{ij} = R(q^i, q^j), \ r(q) = R(q, q) \in \mathbb{R}^M \)

\(\mathbf{1} = (1, \ldots, 1)^T \in \mathbb{R}^M \)

\[\beta_0(\theta, y) = (\mathbf{1}^T R^{-1} \mathbf{1})^{-1} \mathbf{1}^T R^{-1} y_s \]

Least squares estimate for \(\beta_0 \)
Minimize $Y = c^TY_S$, $c = (c_1, c_2, ..., c_m)$

$c = \text{min arg } E(c^TY_S - Y)^2$ \text{(*)}

Constraint $E(c^T Y_S) = E(Y)$ \text{(**) σ^2}

\[(*) \Rightarrow E \left(\sum_{i=1}^{M} \sum_{j=1}^{M} c_i y_{S_i} y_{S_j} c_j - 2 \sum_{i=1}^{M} c_i y_{S_i} y_{Y} y_{Y} \right) = \sigma^2 (1 + c^T R c - 2c^T r)
\text{(**) \Rightarrow E(\sum_{i=1}^{M} c_i y_{S_i}) = E(Y) \Rightarrow \sum_{i=1}^{M} c_i = 1$}

\[\text{min } c^T R c - 2c^T r \quad c^T c = 1\]

With Lagrange multiplier λ

\[\begin{pmatrix} 0 & 1^T \\ 1 & R \end{pmatrix} \begin{pmatrix} \lambda \\ c \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}\]

With solution

\[\hat{y}(q, \beta_0) = \hat{y} = \beta_0 + r^T R^{-1}(y_S - \beta_0 1)\]

\[\beta_0 = (1^T R^{-1} 1)^{-1} 1^T R^{-1} y_S\]

At $q_j^i: v_i(q_j^i) = R(q_i^j, q_j^i)$, $r^T R^{-1} = (0 ... 1 ... 0) = e_j^T$

\[\Rightarrow \hat{y}_j = \beta_0 + c_j^T (y_S - \beta_0 1) = y_{e_j} = y_j\]
Radial basis functions

\[f(q; \beta_0) = \sum_{m=1}^{M} f_m \psi_m(q) + \beta_0 = \Psi^T q + \beta_0 \]

\[\psi_m(q) = \psi(11q^m - q_11) = \psi(r^m), \quad m = 1 \ldots M \]

\[\psi(r^m) = \begin{cases}
 e^{-r^m / 2\sigma^2}, & n = 1, 2, 3 \\
 r^m, & n = 1, 2, 3 \\
 r^m \ln r_0 &
\end{cases} \]

Interpolation condition: \(f(q^m; \beta_0) = y_m, \quad m = 1 \ldots M \)

\[\sum_{m=1}^{M} f_m = 0 \quad \beta_0 \) takes the constant part \]

\[\sum_{m=1}^{M} \sum_{k=1}^{M} f_k \psi_k(q^m) = y_s - \beta_0 \quad \phi_{mk} \sum_{m=1}^{M} \sum_{k=1}^{M} f_k \psi_k(q^m) = \phi y_s - \beta_0 \]

\[\phi f = y_s - \beta_0 \]

\[f(q; \beta_0) = \beta_0 + \psi^T(q) \phi^{-1}(y_s - \beta_0) \]

Compare with kriging model

\[r_i(q) = R(q^i, q^i) \leftrightarrow \psi_i(q) = \psi(11q^i - q_11) \]

\[R_{ij} = R(q^i, q^j) \leftrightarrow \phi_{ij} = \psi_j(q^i) = \psi(11q^i - q_11) \]

\[= \exp(-\sum \theta_k |q^i - q^j|_{k}) \]

\[\sum_{m=1}^{M} f_m = \phi^{-1}(y_s - \beta_0) = 0 \Rightarrow \beta_0 = (\phi^T \phi)^{-1} \phi^T y_s \]
Evolutionary PDE
\[\frac{\partial u}{\partial t} = N(u, q) + F(q), \quad x \in D, \quad t > 0 \]

Weak form
\[\int_D \frac{\partial u}{\partial t} v \, dx + \int_D N(u, q) S(v) \, dx = \int_D F(q) v \, dx \quad \forall v \in V \]

Surrogate model
\[u(t, x, q) = \sum_{k=0}^\infty \sum_{j=1}^J U_{jk}(t) \phi_j(x) \psi_k(q) \]

\[\phi_j(x) \quad \text{FEM basis functions} \]
\[\psi_k(q) = L_k(q) \quad \text{Lagrange polynomials} \]
\[\psi_k(q^m) = \delta_{km} \]

Insert (2) into (1) at \(q = q^m \) \(\Rightarrow \) equations for \(u_{jk} \)

Parameter space is discretized

Projection-based methods

\[V^J = \text{span} \{ \phi_j \} \subset V \quad \text{in (1)} \]

\[u^J(t, x, q) = \sum_{j=1}^J U_{jk}(t) \phi_j(x) \]

\[\int_D \frac{\partial u^J}{\partial t} \phi_k \, dx + \int_D N(u^J, q) S(\phi_k) \, dx = \int_D F(q) \phi_k \, dx \quad l = 1, \ldots, J \]

Reduce approximation space

\[V^{J_r} = \text{span} \{ \phi_{j_r} \} \subset V, \quad J_r \ll J \]
with approximation
\[\hat{u}(t, x, q) = \hat{u}^j(t, x, q) = \sum_{j=1}^{J} u_j(t) \phi_j^r(x) \]

(1) \[\frac{\partial u^j}{\partial t} + \frac{\partial}{\partial x} \left(\frac{1}{D} F(q) \phi_j^r \right) = \int_{D} N(u^j, q) S(\phi_j^r) dx = \frac{1}{D} F(q) \phi_j^r dx \]

How are \(\phi_j^r \) chosen?

Eigenfunctions or modal expansions

analytic or numerical eigenfunctions in space

Separation of variables

\[
\begin{align*}
\frac{\partial T}{\partial x} &= -\alpha \frac{\partial^2 T}{\partial x^2} \quad 0 < x < L, \quad t > 0 \\
T(t, 0) &= T(t, L) = 0, \quad T(0, x) = T_0(x) \\
T(t, x) &= \sum_{j=1}^{J} u_j(t) \phi_j(x) \\
\phi_j(x) &= \sin \frac{j \pi x}{L}, \quad \text{few basis functions needed} \\
\end{align*}
\]

Snapshot-based methods

Snapshot set: solutions generated at different independent variables (e.g.) or parameter values

\[u(t_m, x, q), \quad u(t, x, q^m) \]

sampling techniques must generate basis that is sufficiently rich to incorporate all expected system dynamics

Monte Carlo sampling for \(q^m \)}
Proper orthogonal decomposition (POD)
numerical solutions \(\{ u_m(x) \}_{m=1}^M, \) all \(x \in \mathcal{D} \)
e.g. solutions at \(t_m \)

Consider deviations from the mean \(\bar{u} \)

\[
\bar{u} = \frac{1}{M} \sum_{m=1}^{M} u_m(x), \quad v_m = u_m - \bar{u}
\]

POD is algorithm to compress information in \(v_m \)

Construct basis functions \(\phi(x) = \sum_{m=1}^{M} a_m v_m(x) \)

\(a_m \) maximize \(\frac{1}{M} \sum_{m=1}^{M} |\langle v_m, \phi \rangle|^2 \) \(\quad (3) \)
such that \(\langle \phi, \phi \rangle = \| \phi \|^2 = 1 \)

\[
\langle f, g \rangle = \int_{\mathcal{D}} f(x)g(x)dx
\]

\[
C(x, y) = \frac{1}{M} \sum_{m=1}^{M} v_m(x)v_m(y)
\]

\[
R\phi = \int_{\mathcal{D}} C(x, y)\phi(y)dy
\]

\[
\Rightarrow \langle R\phi, \phi \rangle = \frac{1}{M} \sum_{m=1}^{M} |\langle v_m, \phi \rangle|^2 \quad (4)
\]

\[
\langle R\phi, \psi \rangle = \langle \phi, R\psi \rangle, \text{ } R \text{ is symmetric}
\]

Max of (3) or (4) is given by eigenvector \(\phi \) with
max eigenvalue \(\lambda \)

\[
R\phi = \lambda \phi \text{ (scaled) such that } \| \phi \| = 1
\]
Insert \(\phi(y) = \sum_{k=1}^{M} a_k \psi_k(y) \) into

\[
\int_{D} C(x,y) \phi(y) \, dy = \lambda \phi(x)
\]

\[
\Rightarrow \frac{1}{M} \sum_{m=1}^{M} \left(\sum_{k=1}^{D} \psi_k(y) \psi_m(y) \, dy \right) a_k \psi_m(x) = \sum_{m=1}^{M} \lambda a_m \psi_m(x)
\]

Let \(K_{mk} = \frac{1}{M} \int_{D} \psi_m(y) \psi_k(y) \, dy \)

\[
a = (a_1, a_2, \ldots, a_M)^T
\]

\[
\Rightarrow Ka = \lambda a \quad K = K^T \quad \text{pos. def}
\]

Orthogonal eigenvectors \(a_1, a_2, \ldots, a_M \)

eigenvalues \(\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_M \geq 0 \)

Maximum of (3) is \(\phi_1(x) = \sum_{m=1}^{M} a_m^1 \psi_m(x) \)

\[
\phi_j(x) = \sum_{m=1}^{M} a_m^j \psi_m(x), \quad j = 2, \ldots, M
\]

Orthonormal basis functions

\[
\phi_j(x) = \sum_{m=1}^{M} \frac{a_m^j}{\sqrt{\lambda_m}} \psi_m(x), \quad j = 1, \ldots, M
\]

Compare with Karhunen-Loève expansion for a random field \(\alpha(x, w) \)
POD with discrete observations

Snapshots $u_m \in \mathbb{R}^n, M \leq n$

$$v_m = u_m - \bar{u}$$

Snapshot matrix $A = (v_1, \ldots, v_M) \in \mathbb{R}^{n \times M}$

$$K = \frac{1}{M} A^T A \in \mathbb{R}^{M \times M}, \text{ rank } A = r = M$$

$$K_{mj} = \frac{1}{M} v_m^T v_j$$

POD basis $\{\phi_j\}_{j=1}^r$ by eigenvalue problem

$$K \phi_j = \lambda_j \phi_j \Rightarrow \phi_j = \frac{1}{\sqrt{\lambda_j}} A v_j$$

Relation to SVD:

$$A = U \Sigma V^T, U \in \mathbb{R}^{n \times n}, V \in \mathbb{R}^{M \times M}$$

U, V orthogonal

$$\Sigma = \begin{pmatrix} D & 0 \\ 0 & 0 \end{pmatrix}, D = \text{diag}(\sigma_1, \ldots, \sigma_r) \in \mathbb{R}^{n \times n}$$

here $r = M$

$$K = \frac{1}{M} A^T A = \frac{1}{M} V \Sigma^2 V^T, V = (\tilde{v}_1, \tilde{v}_2, \ldots, \tilde{v}_M)$$

$$\Rightarrow K \tilde{v}_j = \frac{1}{M} \sigma_j^2 \tilde{v}_j \Rightarrow \lambda_j = \frac{1}{M} \sigma_j^2$$

POD basis in \tilde{u} $\phi_j = \frac{1}{\sqrt{\lambda_j}} A \tilde{v}_j = \frac{\sigma_j}{\sqrt{\lambda_j}} \tilde{v}_j$

Reduced representation $\tilde{u} = \sum_{j=1}^r u_j \phi_j$
High-dimensional model representation (HDMR)

HDMR or Sobol representation of \(f \) in \(y = f(q) \)

\[
f(q) = f_0 + \sum_{i=1}^{p} f_i(q_i) + \sum_{1 \leq i < j \leq p} f_{ij}(q_i, q_j) + \ldots
\]

\[
+ \sum_{1 \leq i_1 \leq i_2 \leq \ldots \leq i_p \leq n} f_{i_1 \ldots i_p}(q_{i_1}, \ldots, q_{i_p}) + \ldots + f_{123\ldots p}(q_{i_1}, \ldots, q_{i_p})
\]

For mean response, \(q \in [0,1]^p \)

\(\Rightarrow \) exact representation

In practice, approximate expansion

\[
f(q) \approx f_0 + \sum_{i=1}^{p} f_i(q_i) + \sum_{1 \leq i < j \leq p} f_{ij}(q_i, q_j)
\]

ANOVA-HDMR

\[
f_0 = \frac{1}{n} \int_{\Gamma} f(q) \, dq , \quad \Gamma = [0,1]^p
\]

\[
f_i(q_i) = \frac{1}{n} \int_{\Gamma^{p-1}} f(q) \, dq_{\bar{i}} - f_0
\]

\[
\Gamma^{p-1} = [0,1]^{p-1} , \quad dq_{\bar{i}} = dq_1 dq_2 \ldots dq_{i-1} dq_{i+1} \ldots dq_p
\]

\[
f_{ij}(q_i, q_j) = \frac{1}{n} \int_{\Gamma^{(p-2)}} f(q) \, dq_{\bar{ij}} - f_i(q_i) - f_j(q_j) - f_0
\]

\(\text{En so: integration over } \Gamma \text{ numerically or MC} \)

Random sampling **RS-HDMR**
\[
fo = \frac{1}{R} \sum_{r=1}^{R} f(q^r) \quad \text{for } q^r \sim U(0,1)^p
\]

Exponential growth in sample points to determine \(f_i(q_i), f_{ij}(q_i,q_j), \ldots\)

Assume \(f_i(q_i) = \sum_{k=1}^{K} a_k \phi_k(q_i)\)

\[
f_{ij}(q_i,q_j) = \sum_{k=1}^{K} \sum_{l=1}^{K} B_{ij}^{kl} \phi_k(q_i) \phi_l(q_j)
\]

Tensor product basis functions: \(\phi_{kl}(q_i,q_j) = \phi_k(q_i) \phi_l(q_j)\)

\(\phi_k\) are Legendre polynomials shifted to \([0,1]\)

Orthogonality of \(\phi_k \Rightarrow a_k^2 \approx \frac{1}{R} \sum_{r=1}^{R} f(q^r) \phi_k(q^r)\)

\[
a_k \approx \frac{1}{2k+1}
\]

Surrogate-based Bayesian model calibration

Likelihood function

\[
\Pi(y|q) = \frac{1}{(2\pi \sigma^2)^{n/2}} e^{-\frac{1}{2} \sum_{i=1}^{n} (y_i - \hat{f}_i(q))^2}
\]

Errors \(\varepsilon_i\) iid, \(\varepsilon_i \sim N(0,\sigma^2)\)

\[
SSQ = \sum_{i=1}^{n} (y_i - \hat{f}_i(q))^2
\]

Replace \(\hat{f}_i(q)\) with surrogate evaluation \(\hat{f}_i(q)\)
\[\tilde{\pi}(y|q) = \frac{1}{(2\pi \sigma^2)^{n/2}} e^{-\tilde{SS}_q / 2\sigma^2} \]

\[\tilde{SS}_q = \sum_{i=1}^{n} (y_i - \tilde{f}_i(q))^2 \]

Exercises: 13.1, 13.2

Local sensitivity analysis (§14)

Quantify contributions of parameters and determine effect of variations in parameters.

* Is model robust or sensitive to various parameters?
* Can model be simplified by fixing insensitive parameters?
* Find regimes in parameter space with optimal impact on output and its uncertainties.
* Guide experimental design to measurement regimes that have the greatest impact on parameter sensitivity.

Local sensitivity analysis focuses on variability of response when parameters are perturbed about a nominal value.

Construction of local sensitivities:
1. finite difference approximation
2. solution of sensitivity equations
3. automatic differentiation (AD)
\[
\frac{dy}{dt} = f(y, t, q)
\]

What is \(\frac{dy}{dq} \)?

1. Finite difference approximation
\[
\frac{dy}{dq_k} \approx \frac{y(t, q+\Delta q) - y(t, q)}{\Delta q}
\]
where \(\Delta q_k = \frac{h_i}{h} \), \(h_k = h(\frac{i}{2}) \).

2. \(\frac{\partial \frac{dy}{dq}}{\partial q} = \frac{\partial (y(q))}{\partial q} = \frac{\partial f(y(q))}{\partial q} + \frac{\partial f(y(q))}{\partial y(q)} \frac{dy}{dq} \)

\[
\Rightarrow \frac{\partial \frac{dy}{dq}}{\partial q} = \frac{\partial f(y(q))}{\partial q} + \frac{\partial f(y(q))}{\partial y(q)} \frac{dy}{dq}
\]

Solve for \(\frac{dy}{dq} \).

3. AD can compute \(\frac{\partial \bar{G}}{\partial q} \) where \(\bar{G}(q) \) is computed in subroutine

Forward sensitivity analysis (FSAP)

Matrix system, solution \(\phi \), observation \(y \), mean parameter values \(q \)

\[(\forall) \quad A(q) \phi = s(q), \quad y = C(q) \phi = C(q) A^{-1}(q) s(q) \in \mathbb{R}^p
\]

nominal values \(A = A(q), \ C = C(q), \ s = s(q) \)

If \(y \in \mathbb{R}^p \) then \(C \in \mathbb{R}^{(N-1) \times p} \)

work to solve (\(\forall \)) the expensive part

for \(p \) changes of \(q \): (\(\forall \)) is solved \(p \) times
\[\delta y = C^T \delta \phi + \delta C^T \delta \bar{\phi} \quad (1st \ variation) \]

\[(*) \quad A \delta \phi + S A \delta \phi = \delta s \]

To compute \(\delta y \):

\[V \phi = \delta \phi \Rightarrow \delta \phi : A \delta \phi = \delta s - S A \delta \phi \Rightarrow \delta \phi = A^{-1} (\delta s - S A \delta \phi) \]

\[\delta y = C^T A^{-1} (\delta s - S A \delta \phi) + \delta C^T A^{-1} \delta \phi \]

Perturb \(\psi \) by \(\delta \psi \Rightarrow S A, S C, \delta s \Rightarrow \delta y \)

Repeated solution of \((*)\) for large \(A \) and different \(\delta q \) may be expensive.

Adjoint sensitivity analysis procedure (ASAP)

Using perturbations

\[(*) \quad A^T \psi = C \quad (adjoint \ sensitivity \ eq.) \]

Multiply \((*)\) by \(\psi^T \)

\[\psi^T A \delta \phi = \psi^T (\delta s - S A \delta \phi) \Leftrightarrow \langle \psi, \delta s - S A \delta \phi \rangle = \langle \psi, A \delta \phi \rangle \]

\[\langle \psi, A \delta \phi \rangle = \langle A^T \psi, \delta \phi \rangle = \langle C, \delta \phi \rangle \]

\[\Rightarrow \delta y = \delta C^T \phi + \psi^T (\delta s - S A \delta \phi) \quad (\&) \]

Solve \((*)\) once for \(\bar{\psi} \), then compute \(\delta y \) from \((\&)\)
With $C \in \mathbb{R}^{(N-1)\times 1}$, $\Rightarrow \nu$ right hand sides
Solve ($\#) \nu$ times
ASAP more efficient than FSAP when number of parameters p exceeds the number of responses ν