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13.2.4 The equation ẏ = �y, is treated by a strongly unstable two-step
method, see Example 13.2.16, with step size h = 0:2, The erroryn�exp(�tn) is oscillating. We here see only the smooth variation
of its amplitude (in logarithmic scale), for two different values ofy1, as described in the Example. . . . . . . . . . . . . . . . . . . . 74

iii



iv List of Figures
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Chapter 13

Ordinary Differential

Equations

13.1 Initial Value Problems for ODEs. Theoretical
Background

13.1.1 Introduction

To start with, we shall study the following problem: given a function f(t; y), find
a function y(t) which for a � t � b is an approximate solution to the initial value
problem for the ordinary differential equation or, with an established abbreviation,
the ODE, dydt = f(t; y); y(a) = :
In mathematics courses, one learns how to determine exact solutions to this problem
for certain special functions f . An important special case is when f is an affine
function of y. However, for most differential equations, one must be content with
approximate solutions.

Many problems in science and technology lead to differential equations. Often,
the variable t means time, and the differential equations expresses the rule or law of
nature which governs the change in the system being studied. In order to simplify
the language in our discussions, we consider t as the time, and we use terms like
time step, velocity etc. However, t can be a spatial coordinate in some applications.

As a rule, one has a system of first-order differential equations and
initial conditions for several unknown functions, y1; y2; : : : ; ys, say, wheredyidt = fi(t; y1; : : : ; ys); yi(a) = i; i = 1; 2; : : : ; s:
It is convenient to write such a system in vector formdydt = f(t; y); y(a) = ; (f : R�Rs ! Rs); (13.1.1)

where now y = (y1; : : : ; ys)T ;  = (1; : : : ; s)T ; f = (f1; : : : ; fs)T
1



2 Chapter 13. Ordinary Differential Equations

are column vectors. When the vector form is used, it is just as easy to describe
numerical methods for systems as it is for a single equation.

Often it is convenient to assume that the system is given in autonomous
form dydt = f(y); y(a) = ; (f : Rs ! Rs) (13.1.2)

i.e., f does not depend explicitly on t. A non-autonomous system is easily aug-
mented to autonomous form by the addition of the trivial extra equation,dys+1dt = 1; ys+1(a) = a;
which has the solution ys+1 = t. 1

Unless it is stated otherwise, we shall only consider numerical methods that
produce identical results (in exact arithmetic) for a non-autonomous system and
for this augmented autonomous system. The use of the autonomous form in the
analysis and in the description of numerical methods is usually no restriction.

Wherever it is necessary or convenient, we shall return to the non-autonomous
formulation. For example, a linear system with variable (t-dependent) coefficients is
best discussed in the non-autonomous formulation, because the augmented system
is no longer linear.

We shall mostly write ẏ; ÿ instead of dy=dt, d2y=dt2, (and analogously for vari-
ables denoted by an other character than y). So Eqn. (13.1.2) often reads ẏ = f(y).y0; y00, may be used, only if the dot notation would be awkward, for typographical
reasons, since we prefer to reserve primes for derivatives with respect to a vector
argument, e.g. f 0(y) = �f=�y, see the notation used in Ch. 12. If k > 2, we usually
write, e.g., dky=dtk or u(k).

Also higher-order differential equations can be rewritten as a system of first-
order equations:

Example 13.1.1 The initial value problemu(3) = g(t; u; u̇; ü); u(0) = 1; u̇(0) = 2; ü(0) = 2;
is, by the substitution y = (y1; y2; y3)T , where y1 = u; y2 = u̇; y3 = ü, transformed
into the system ẏ =

0� y2y3g(t; y1; y2; y3)

1A ; y(0) =

0� 123

1A :
Most programs for initial value problems for ODEs are written for non-autonomous

first order systems. So, this way of rewriting a higher order system is of practical
importance. The transformation to autonomous form mentioned above is, however,
rarely needed in practice, but it gives a conceptual simplification in the description
and the discussion of numerical methods.

1It is sometimes more convenient to call the extra variable y0 instead of ys+1.
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If t denotes time, then the differential equation (13.1.2), determines the veloc-
ity vector of a particle as a function of time and the position vector y. Thus, the
differential equation determines a velocity field, and its solution describes a mo-
tion in this field along an orbit or a path in Rs. The point set fy(t); tg 2 Rs�R,
is called the solution curve. 2

In the examples of this chapter, we shall see graphical representations in a
plane both of orbits and of motions, and of one or several components of a solution
curve (yi versus t).

For a non-autonomous system, the velocity field changes with time. You need
time as an extra coordinate for visualizing all the velocity fields, just like the stan-
dard device mentioned above for making a non-autonomous system autonomous.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
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Figure 13.1.1. Velocity field of the two-dimensional system in Example 13.1.2 .

Example 13.1.2 The velocity field of the autonomous two-dimensional systemẏ1 = �y1 � y2; (13.1.3)ẏ2 = y1 � y2;
is shown in Fig. 13.1.1. The solution of the equation describes the motion of a
particle in that field. For various initial conditions, we get a whole family of solution
curves. Three such curves are shown, for

(y1(0); y2(0)) = (1; 0); (1; 1); (0; 1):
This interpretation is directly generalizable to three dimensions, and these geometric
ideas and terms are also suggestive for systems of more than three dimensions.

2There are in the literature several different terminologies for these concepts.
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It is useful to bear in mind the simple observation that every point of an orbit
gives the initial value for the rest of the orbit. ”Today is the first day of the rest of
your life.” Also note that the origin of time is arbitrary for an autonomous system:
if y(t) is one solution, then y(t+ k) is also a solution for any constant k. 3

It seems plausible that the motion in a given velocity field is uniquely de-
termined by its initial position, provided that the velocity field is sufficiently well-
behaved. This statement will be made more precise below (see Theorem 13.1.3).
In other words: under very general conditions, the initial value problem defined by
(13.1.2) has exactly one solution. The picture also suggests that if one chooses
sufficiently small step size, the rule,

Displacement = Step size � Mean velocity over a time step,

can be used for a step-by-step construction of an approximate solution. In
fact, this is the basic idea of most methods for the numerical integration of ODEs.

More or less sophisticated approximations of the ”mean velocity” over a time
step yield different methods, sometimes presented under the name of dynamic simu-
lation. The simplest one is Euler’s method that was described already in Chapter
1. We assume that the reader has a clear idea of this method. The methods we shall
treat are such that one proceeds step by step to the times t1; t2; : : :, and computes
approximate values, y1; y2; : : :, to y(t1); y(t2); : : :. We shall distinguish two classes
of methods:

(a) One-step methods, where yn is the only input data to the step in whichyn+1 is to be computed. Values of the function f(y) (and perhaps also some of
its total time derivatives) are computed at a few points close to the orbit. They
are used in the construction of an estimate of yn+1, usually much more accurate
than Euler’s method would have given with the same step size. An example of a
one-step method was given in Sec. 1.4, namely Runge’s 2nd order method, with
two function evaluations per step:4k1 = hf(tn; yn); k2 = hf(tn + 1

2h; yn + 1
2k1); yn+1 = yn + k2: (13.1.4)

The step size is chosen so that k2�k1 � 3 sc tol, where tol is a tolerance chosen by
the user. For details, see Sec. 1.4, Theorem 13.2.1, Example 13.2.1 and Sec 13.3. We
shall there see a bound for the global error that is proportional to tol; the factor
of proportionality depends on certain quantities that describe important features of
the function f .

The reader is advised to use the implementation of this that is, together with
a few auxiliary programs, available on the web, for the computer exercises of this
section. The accuracy required is, as a rule, obtained with much longer steps and less
work than Euler’s method needs. We shall see, however, that there are exceptions
from this rule, due to the possibility of numerical instability, so-called stiffness, an
important phenomenon that will be discussed in Section 2 and in later sections.

3This statement must be modified in an obvious way if y(t) exists on a finite interval only.
4It has also been called Heun’s method or the improved Euler method, but these names are

also used for other methods.
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(b) Multistep methods, where longer time steps are made possible, or the ac-
curacy is improved by the use of several values from the past: yn; yn�1; : : : ; yn�k+1.
Shampine [31, p.171] calls them methods with memory. In Sec. 3.2, Problem 9 two
important families of methods, due to Adams (explicit and implicit), were derived
by operator techniques and applied to a simple problem. The explicit 3rd order
accurate version of Adams method reads in terms of backward differences:yn+1 � yn = h(y0n+1 + 1

2ry0n+1 +
5

12
r2y0n+1): (13.1.5)

The next term of the expansion, 3
8r3y0n+1, is used in the step size control. Details

are given in Sec.13.4, together with other facts about multistep methods. Numerical
stability is a particularly important issue for them. A k-step method requires some
special arrangement for starting, because only one of the k initial values that the
difference equation needs, is given for the differential equation. One can, e.g., obtain
them by computing k� 1 steps by a one step method. Another possibility is to use
the procedure that most implementations of such methods has for the automatic
variation of the order k and the step size h. The computations can therefore start
withk = 1 and a very small step size. Then these quantities are gradually increased.

It is important to distinguish between global and local error. Let y(t; t�; y�)
denote the exact solution of the system ẏ = f(y), which satisfies the conditiony(t�) = y�; in other words y(t; t�; y�) is the motion that passes through the point
(t�; y�).

The global error at the point (tn+1; yn+1) is yn+1� y(tn+1; t0; y0), while the
local error at the same point is yn+1 � y(tn+1; tn; yn), for a one-step method. In
other words, the local errors are the jumps in the staircase curve in Fig. 13.1.3.

The local error for a multistep method can also be defined byyn+1 � y(tn+1; tn; yn);
but, in order to make it uniquely determined at the point (tn; yn) we must, in the
definition, use the values y�n�j = y(tn�j ; tn; yn), j = 1 : k�1, instead of the actually

computed values yn�j from the past. (The actual value of yn is used for j = 0.) 5

The distinction between the global and local error is made already for the
computation of integrals (Chapter 5), which is, of course, a special case of the
differential equation problem. There the global error is simply the sum of the local
errors. We saw, e.g., in Sec. 8.2, that the global error of the trapezoidal rule isO(h2), while its local error is O(h3), although this terminology was not used there.
The reason for the difference in order of magnitude of the two errors is that the
number of local errors which are added is inversely proportional to h.

For differential equations, the error propagation mechanism is, as we shall see,
more complicated; but even here it holds that the difference between the exponents
in the asymptotic dependence on h of the local and global errors is equal to 1, for first
order differential systems. For the sake of simplicity, let us consider a computation
with constant (though arbitrary) step size h. The local error at a point (t; y), where

5There are alternative definitions, see, e.g., Hairer, Nørsett and Wanner,(1993), vol.1, p.368. A
related concept is the local truncation error, see x13.3.4.
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the motion is smooth is, for some p, proportional to hp+1, asymptotically as h! 0.
For a particular method, the smallest value of p that can be obtained at such a
point is called the order of consistency of the method, 6 and from now on this is
denoted by p. We say that a method is consistent iff p � 1.

For most numerical methods in practical use p also becomes the order of
accuracy of the method, in the sense that the global error approaches zero at the
rate of hp, if we consider an ensemble of numerical computations with decreasing
values of h over a finite interval, where the initial value problem in question has a
sufficiently smooth solution. This statement supposes certain stability properties of
the numerical method; methods that do not satisfy them are no longer in practical
use. We shall later prove results of this type for some important families of numerical
methods.

There exist one-step methods and multistep methods of any order of accuracy.
Although this definition of the order p is based on the application of the method
with constant step size, it makes sense to use the same value also for computations
with variable step size, under certain conditions.

As mentioned above, the systematic discussion of one-step methods and mul-
tistep methods comes in Sec. 13.3 and Sec. 13.4, respectively. Other methods, in
particular extrapolation methods, and methods that use higher order derivatives
than the the first, in the treatment of 1st order differential systems, are discussed
in Sec. 13.5, e.g. Taylor series methods. Special methods for differential systems
of special types are discussed in Sec. 13.6, e.g., methods for second order differential
systems. Methods for boundary and eigenvalue problems, and for the determination
of unknown parameters in differential systems are then presented in Sec. 13.7.

In the other sections, i.e., 1,2,8,9, ideas, concepts and results will be presented,
which are relatively independent of the particular numerical methods, although
references are made to Euler’s method, Runge’s 2nd order method and other simple
methods for the illumination of the general theory. In Sec. 13.1 we treat existence
and uniqueness for initial value problems, error propagation in differential systems,
some useful concepts and facts from the qualitative theory of differential equations,
and logarithmic norms with applications.

The headlines of Sec. 13.2 are control of step size, local time scale and scale
functions, general questions related to implicit methods — with applications to
so-called stiff systems and differential algebraic systems, and the construction of
stability regions for numerical methods.

Some more advanced topics of general nature are treated in the the last two
sections. In Sec. 13.8 more useful ideas from the qualitative theory of differential
equations are collected, and there is more theory and applications of logarithmic
norms. Finally, Sec. 13.9 is devoted to systems of difference equations, matrix power
boundedness, and some other topics like algorithms for stability investigations.

We try to give a logically connected survey of the theory and application of
numerical methods for ODEs, but since the space is limited we are happy to be
able to refer to two excellent modern monographs for proofs, computational details

6There may be exceptional points, or even exceptional differential systems, where the local
error is o(hp+1).
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and also for alternative points of view, and for the treatment of more complicated
topics, namely Butcher [4], Hairer, Nørsett and Wanner [20], and Hairer and Wan-
ner [21]. Many other important books are mentioned in the bibliography; a book
by Shampine [31] deserves special attention, since it presents a perspective of these
topics that results from several decades of research, development and application in
scientific laboratories and universities, in a style that makes minimal demands on
the mathematical and computational background of the reader.

13.1.2 Existence and Uniqueness for Initial Value Problems

We shall consider initial value problems for the autonomous systemẏ = f(y); y(a) = ; (13.1.6)

where f : Rs ! Rs. In this subsection we shall use a single bar j � j to denote a
norm in Rs or the absolute value of a number, while a double bar k � k is used for
the max-norm in a Banach space B of continuous vector valued functions over an
interval I = [a� d; a+ d], i.e., kuk = maxt2I ju(t)j:
These notations are also used for the corresponding operator norms. Let D � Rs
be a closed region. We recall, see Sec. 12.2, that f satisfies a Lipschitz condition inD, with the Lipschitz constant L, ifjf(y)� f(z)j � Ljy � zj; 8y; z 2 D: (13.1.7)

By Lemma 11.2.2, max jf 0(y)j, y 2 D, is a Lipschitz constant, if f is differentiable
and D is convex. A point, where a local Lipschitz condition is not satisfied is called
a singular point of the system (13.1.6).

Theorem 13.1.3.
If f satisfies a Lipschitz condition in the whole of Rs, then the initial value

problem (13.1.6) has precisely one solution for each initial vector . The solution
has a continuous first derivative for all t.

If the Lipschitz condition holds in a subset D of Rs only, then existence and
uniqueness hold as long as the orbit stays in D.

Proof. We shall sketch a proof of this fundamental theorem, when D = Rs, based
on an iterative construction named after Picard. We define an operator F (usually
nonlinear) that maps the Banach space B into itself:F (y)(t) = +

Z ta f(y(x))dx:
Note that the equation y = F (y) is equivalent to the initial value problem (13.1.6)
on some interval [a� d; a+ d], and consider the following iteration in B.
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For any pair y; z of elements in B, we have,kF (y)� F (z)k � Z a+da jf�y(t)�� f�z(t)�j � jdtj� Z a+da Ljy(t)� z(t)j � jdtj � Ldky � zk:
It follows that Ld is a Lipschitz constant of the operator F . If d < 1=L, F is a
contraction, and it follows from the Contraction Mapping (Theorem 11.2.1) that
the equation y = F (y) has a unique solution. For the initial value problem (13.1.6)
it follows that there exists precisely one solution, as long as jt� aj � d.

This solution can then be continued to any time by a step by step procedure,
for a+d can be chosen as a new starting time and substituted for a in the proof. In
this way we extend the solution to a+ 2d, then to a+ 3d, etc. and also backwards
to a� d; a� 2d; a� 3d, etc..

Note that this proof is based on two ideas of great importance to numerical
analysis: iteration and the step-by-step construction. (There is an alternative proof
that avoids the step-by-step construction, see, e.g., Coddington and Levinson [6,
p. 12]). A few points to note are:

A. For the existence of a solution, it is sufficient that f is continuous, (the
existence theorem of Cauchy and Peano, see, e.g., Coddington and Levinson [6,
p. 6])). That continuity is not sufficient for uniqueness can be seen by the following
simple initial value problem, ẏ = 2jyj1=2; y(0) = 0;
which has an infinity of solutions for t > 0, namely y(t) = 0, or, for any non-negative
number k, y(t) =

�
0; if t � k;
(t� k)2; otherwise.

The Lipschitz condition is one of the simplest sufficient conditions for uniqueness.

B. The theorem is extended to non-autonomous systems by the usual device
for making a non-autonomous system autonomous 13.1.2).

C. If the Lipschitz condition holds only in a subset D, then the ideas of the
proof can be extended to guarantee existence and uniqueness, as long as the orbit
stays in D. Let M be an upper bound of jf(y)j in D, and let r be the shortest
distance from  to the boundary of D. Sincejy(t)� j = j Z ta f�y(x)

�dxj �M jt� aj;
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we see that there will be no trouble as long as jt � aj < r=M , at least. (This is
usually a pessimistic underestimate.) On the other hand, the exampleẏ = y2; y(0) =  > 0;
which has the solution y(t) = =(1� t), shows that the solution can cease to exist
for a finite t (namely for t = 1=), even if f(y) is analytic for all y. Since f 0(y) = 2y,
the Lipschitz condition is guaranteed only as long as j2yj < L. In this example,
such a condition cannot hold forever, no matter how large L has been chosen.

D. This theory is easily extended to the case of y 2 Cs, t is real and f(t; y) is
(say) analytic in t; y separately. Nor is the computational practice hard, if complex
arithmetic is conveniently available. If not, one can, of course, make a real system
of double size for the real and imaginary parts of the variables.

Sometimes one has to integrate a complex analytic differential system, dw=dz =f(z; w); w 2 Cs; z 2 C, along a path in the complex domain. If the path is known
in the form z = �(t) , where t is real, we obtain the case just discussed. Each com-
ponent of the solution becomes an analytic function in some domain around the
initial point. Note, however, that the solution w(z) can be a multivalued analytic
function. If you integrate from z = a to z = b along two different paths, you can
obtain obtain two different values of f(b), e.g., if f(z; w(z)) has a pole in the region
enclosed by the two paths, see Problem P23.

Such a trouble does not occur for a linear non-autonomous system, i.e., iff(z; w) � A(z)w � g(z), w(a) = , along a path in a simply connected open regionD where the elements of A(z), g(z) are analytic—poles are allowed outside D only.
Then w(z) is uniquely defined and is analytic in D, see, e.g., Coddington-Levinson,
loc.cit. Sec. 3.7.

If one is interested in some end value w(b); b 2 R only, it may be possible
to find a complex path from a to b, where f�z; w(z)

�
is more well-behaved than on

the real interval [a; b], so that larger step sizes can be used. We shall not discuss
this further (see Problem P23). A similar question for numerical quadrature is
mentioned in Volume I, Chapter 5.

E. Isolated jump discontinuities in the function f offer no difficulties, if the
problem after a discontinuity can be considered as a new initial value problem that
satisfies a Lipschitz condition. For example, in non-autonomous problems of the
form ẏ = f(y) + r(t); or ẏ = r1(t)y + r(t);
a Lipschitz condition for f together with integrability conditions for r(t), r1(t) are
sufficient for existence and uniqueness. In this case ẏ(t) is discontinuous, only
when r(t) or r1(t) is so, hence y(t) is continuous. 7 There exist also in practical
problems, however, more nasty discontinuities, where existence and uniqueness are
not obvious; see Problem P19.

7The discussion can be extended to the case where r(t) contains an impulse (a Dirac delta
function). y(t) then obtains a discontinuity.
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F. A point y� where f(y�) = 0 is called a critical point of the autonomous
system. (It is usually not a singular point.) If y(t1) = y� at some time t1, the
theorem tells that y(t) = y� is the unique solution for all t, forwards as well as
backwards. It follows that a solution that does not start at y� cannot reach y�
exactly in finite time, but it can converge very fast towards y�.
Note that this does not hold for a non-autonomous system, at a point wheref(t1; y(t1)) = 0, as is shown by the simple example ẏ = t, y(0) = 0, for whichy(t) = 1

2 t2 6= 0 when t 6= 0. For a non-autonomous system ẏ = f(t; y), a critical
point is instead defined as a point y�, such that f(t; y�) = 0; 8t � a. Then it is true
that y(t) = y�;8t � a, if y(a) = y�.
13.1.3 Variational Equations and Error Propagation

We shall discuss the propagation of disturbances (for example numerical errors) in
an ODE system. The application to numerical methods comes later. It is a useful
model for the error propagation in the application of one step methods, i.e. if yn is
the only input data to the step, where yn+1 is computed.
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Figure 13.1.2. Families of solution curves y(t; ) for two different differ-
ential equations.

The solution of the initial-value problem, (13.1.2), can be considered as a
function y(t; ), where  is the vector of initial conditions. Here again, one can
visualize a family of solution curves, this time in the (t; y)-space, one curve for each
initial value, y(a; ) = . To begin with, we consider the case of a single ODE. The
family of solutions can, for example, look like one of the two families of curves in
Fig. 13.1.2. The dependence of the solution y(t; ) on  is often of great interest,
both for the technical and scientific context it appears in and for the numerical
treatment.
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A disturbance in the initial condition—e.g., a round-off error in the value of—means that y(t) is forced to follow “another track” in the family of solutions.
Consider, e.g., the numerical treatment by a one-step method. Then there is a
small disturbance at each step,—truncation error and/or rounding error—which
produces a similar transition to “another track” in the family of solution curves. In
Fig. 13.1.3, we give a greatly exaggerated view of what normally happens. The small
circles show the computed points ( in a fictitious case). One can compare the above
process of error propagation to an interest process; in each step there is “interest”
on previously committed errors. At the same time, a new “error capital” (local
error) is put in. In Fig. 13.1.3, the local errors are the jumps in the staircase curve.
The “interest rate” can, however, be negative (see Fig. 13.1.2b); an advantage in

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

Exact solution curve.

Numerical
solution

Figure 13.1.3. An exaggerated picture of the propagation of truncation
error. The circles show four steps of the numerical solution.

this context. If the curves in the family of solutions depart from each other quickly,
then the initial value problem is ill-conditioned; otherwise it is well-conditioned.
footnote: Some multistep methods can introduce other characteristics in the error
propagation mechanism that are not inherent in the differential equation itself. So
our discussion in this section are valid, only if the method has adequate stability
properties , for the step size sequence chosen. We shall make this assumption more
clear later, e.g., in the beginning of Sec. 13.2. For the two methods mentioned so
far, the discussion is relevant (for example) as long as khf 0(y)k2 � 1.

We can look at the error propagation more quantitatively, to begin with in the
scalar case. Consider the function U = �y(t; )=�. It satisfies a linear differential
equation, the linearized variational equation�U�t = J(t)U; J(t) =

��f�y �y=y(t;)
; (13.1.8)

since, under appropriate differentiability conditions, dealt with in any good text on
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Calculus, �U�t =
��t��y�� =

����y�t � =
���f(t; y(t; ))� =

�f�y �y� :
Note that the variational equation is usually non-autonomous, even if the underlying
ODE is autonomous. We can derive many results from the above, sincey(t; + Æ)� y(t; ) � �y� Æ = U(t; )Æ:
We rewrite Eqn. (13.1.8) in the form,

� ln jU j�t = J(t).
Proposition 13.1.4.

Closely lying curves in the family of solutions approach each other, as t in-
creases, if �f=�y < 0 and depart from each other if �f=�y > 0.�f=�y corresponds to the “rate of interest” mentioned previously. In the
following we assume that �f=�y < �� for all y in some interval D, that contains
the range of y(t; ), (a < t < b). Hence � ln jU j=�t � ��: The following propositions
are obtained by the integration of this inequality.

Proposition 13.1.5.
For U(t) = �y=� it holds, even if �� is negative, thatjU(t)j � jU(a)je��(t�a); a � t � b:

Proposition 13.1.6.
Let y(tn) be perturbed by a quantity �n. The effect of this perturbation on y(t),t > tn, will not exceed j�nje��(t�tn) (13.1.9)

as long as this bound guarantees that the perturbed solution curve remains in D.

Various bounds for the global error can be obtained by adding such local
contributions. Assume, e.g., that there is no initial error at t = t0, that the sequenceftng is increasing, and that the local error per unit of time is less than �, i.e.,j�nj � �(tn+1�tn). Substitute this in (13.1.9) and sum all contributions for tn+1 � t,
An approximate bound for the global error at the time t is thus obtained:� Xtn+1�t(tn+1 � tn)e��(t�tn) � � Z tt0

e��(t�x)dx;
hence jApproximate Global Errorj � ( � e��(t�t0)�1�� ; if �� 6= 0;�(t� t0); if �� = 0.

(13.1.10)
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Figure 13.1.4. The global error bound, divided by �, versus t � t0 for�� = �1; �0:5; 0.

Note that, if �� < 0, the error is bounded by �=j��j, for all t > t0. The global error
bound, divided by �, is shown in Fig. 13.1.4 for �� = �1; �0:5; 0.

We shall see that Fig. 13.1.4 and the inequalities of (13.1.10), with a different
interpretation, are typical for the error propagation under much more general and
realistic assumptions than those made here. More general versions of the second
and the third propositions will be given below.

Now the concept of variational equation will be generalized to systems of
ODEs. Let z(t) be a function that satisfies the differential system,ż = f(z) + r(t);
where r(t) is a piecewise continuous perturbation. Let y(t) be a solution of the
system ẏ = f(y). Set u(t) = z(t)� y(t):
Then u = u(t) satisfies the differential equation,u̇ = f(y(t) + u)� f(y(t)) + r(t); (13.1.11)

called the exact or the nonlinear variational equation. It is sometimes conve-
nient to allow the perturbation term r to depend on u, i.e., r = r(t; u).

Lemma 13.1.7.
The nonlinear variational equation (13.1.11) can be written in pseudo-linear

form, i.e. u̇ = J(t; u)u+ r(t; u); (13.1.12)
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where J(t; u) is a neighborhood average of the Jacobian matrix,J(t; u) =

Z 1

0

f 0�y(t) + �u�d�; (13.1.13)

the dash means differentiation of f(y) with respect to the vector y.

Proof. By the chain rule, �f(y(t) + �u)=�� = f 0(y(t) + �u)u, hencef(y(t) + u)� f(y(t)) =

Z 1

0

f 0(y(t) + �u)ud� = J(t; u)u: (13.1.14)

For example, u(t; ) = y(t;  + Æ) � y(t; ) satisfies (13.1.12) exactly, withr(t; u) = 0, u(a; ) = Æ:
In x13.1.4 we shall see that strict bounds for the solution of the nonlinear

variational equation can be obtained rather conveniently by means of the so-called
logarithmic norm technique. In Theorem 13.1.23 we shall obtain a strict generaliza-
tion of the bounds (13.1.10) to nonlinear systems. In some other respects, however,
it can be rather awkward to deal with this pseudo-linear equation where, e.g., the
superposition principle does not hold exactly.

Systems of ODEs often contain parameters, and it may be of interest to study
how the solution y(t; p) depends on a parameter vector p. If we assume that the
matrix U(t; p) = �y=�p exists then the following result can be derived formally
by the application of the chain rule to (13.1.15). You find a more thorough treat-
ment (with a proof of the validity of this assumption) in the first three chapters of
Coddington-Levinson [6]. We may include components of the initial values y(t0) in
the parameter vector.

Theorem 13.1.8.
Let y = y(t; p) be the solution of the initial value problem,dy=dt = f(t; y; p); y(a) = (p); (13.1.15)

where p is a vector of parameters. Assume that f is a continuous function of t,
a differentiable function of y and p everywhere, and assume that k�f=�yk � L
everywhere.

Then, y(t; p) is a differentiable function of t and p. The matrix valued functionU(t; p) = �y=�p is determined by the non-homogeneous linearized variational
equation, dU=dt� J(t; p)U = �f=�p; U(0) = �=�p:J(t; p) equals �f=�y evaluated at y = y(t; p). 8

If f is an analytic function of (y; p) in some complex neighborhood of (y0; p0),
then y(t; p) is an analytic function of p that can be expanded into powers of p �

8The matrix J(t; p) must not be confused with the neighborhood average J(t; u) introduced
above.
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enough.

Comments: The perturbation expansion is called regular, since the same
number of initial values y(a) are required for p = p0 as for p 6= p0, see also x3.1.6.
This is not the case for singular perturbation problems, see Sec. 13.8.

The coefficient vectors in the regular expansion (which are functions of t) can,
if p is a scalar, be computed recursively by the solution of inhomogeneous linear
variational equations with the same matrix J(t; p0), but the right hand sides now
depend on the coefficients previously computed. See one of the last problems of this
section.

In practice, it may be easier to compute numerical solutions y(t; p0 + �) for
a few (judiciously selected) values of �. 9 A few coefficients in an approximation
of y(t; p0 + �) as a polynomial in � can then be computed by a polynomial fitting
program. This polynomial is not identical to a truncated perturbation expansion.

We shall now discuss linear systems with variable coefficients in general. We
change notation; J is replaced by A. Let u = uj(t), j = 1 : s, be the solution of the
differential system u̇ = A(t)u; u(a) = ej : (13.1.16)

We can combine these vector differential equations to a matrix differential equationU̇ = A(t)U; U(a) = I: (13.1.17)

The jth column of the solution U(t) is uj(t), j = 1 : s. The solution of (13.1.16)
with a general initial condition at t = a readsu(t;u(a)) = U(t)u(a): (13.1.18)

More generally, the solution with a condition at t = x readsu(t) = U(t)(U(x))�1u(x): (13.1.19)U(t) is called a fundamental matrix solution for (13.1.16). 10 We summarize and
extend this in a theorem.

Theorem 13.1.9.
The solution at time t of a homogeneous linear ODE system with variable

coefficients is a linear function of its initial vector. For the system in (13.1.16) this
function is represented by the fundamental matrix U(t) defined by (13.1.17).

The solution of the inhomogeneous problem, u̇ = A(t)u+ r(t), reads,u�t;u(a)
�

= U(t)u(a) +

Z ta U(t)(U(x))�1r(x)dx: (13.1.20)

9It is important to use the same step size sequence for all �, in order to rely on approximate
cancellation of truncation errors; see a warning example in Hairer, Nørsett and Wanner [1993, p.
201].

10It is nowadays often called evolution operator, a terminology that is also applied for differential
equations in infinite dimensional spaces and, in nonlinear problems, for the analogous non-linear
operator.
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For a fixed t, u(t;u(a)) is thus an affine function of u(a).

The proof of (13.1.20) is left as an exercise (Problem P16).
If A does not depend on t,U(t) = etA; U(t)(U(x))�1 = U(t� x): (13.1.21)

The matrix exponential is defined in Example 10.2.2. More generally, the funda-
mental matrix can be expressed in terms of matrix exponentials, if A(t) commutes
with its time derivative for all t. In other cases the fundamental matrix cannot be
expressed in terms of matrix exponentials, and U(t)(U(x))�1 6= U(t� x).

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 13.1.5. Orbits for the linear system (13.1.3) from 40 starting
points. See Example 13.1.10 and Problem 7.

Example 13.1.10 Fig. 13.1.5 shows the orbits from 40 starting points on the
boundary of the square with corners at y1 = �1, y2 = �1, for the linear sys-
tem (13.1.3), i.e. ẏ1 = �y1 � y2, ẏ2 = y1 � y2. For some values of t, the points
reached at time t are joined. Note that these points are located on a square that
is the map at time t of the square boundary that contains the initial points. That
all these maps become rotated and diminished squares is due to this special exam-
ple. Theorem 13.1.9 tells, however, that for any linear system, also with variable
coefficients, they would have become parallelograms, at least. See also Problem P7.

Example 13.1.11 Fig. 13.1.6 shows graphical output from simulations of the fa-
mous Lotka–Volterra predator-prey model, see Braun (1975), by means of a



13.1. Initial Value Problems for ODEs. Theoretical Background 17

0 1 2 3 4
0

1

2

3

4

Prey

P
re

da
to

r

Predator−Prey B

0 5 10 15 20
0

0.5

1

1.5

2

2.5
predator−prey A

t

y1
  y

2

1

2

0 1 2 3 4
0

1

2

3

4

y1

y2

predator−prey C

0 1 2 3 4
0

1

2

3

4

Prey

P
re

da
to

r

Predator−Prey D

Figure 13.1.6. Four graphical representations of orbits for the non-linear
Predator-Prey Model. Parameter values: a = b =  = d = 1. See Example 13.1.11
and Exercise C7.

multistep method with constant step size h = 0:05.ẏ1 = ay1 � by2y1; ẏ2 = �y2 + dy1y2; (a; b; ; d > 0):
In this model, the populations of predators and prey are supposed to be large
and are approximately described by means of differentiable functions; y1(t); y2(t)
are approximately the number of prey and predator, respectively. scaled by the
division by some large number. The scaled number of prey swallowed during the
time interval [t; t+dt] is assumed to be by1(t)y2(t)dt. The parameter a is the nativity
minus the mortality due to other causes than a hungry predator. The parameters; d have analogous interpretations.

Fig.A shows y1(t), y2(t) with the initial condition y1(0) = 2:4, y2(0) = 1.
Fig. B shows five orbits, with starting points y1 = 2:4 : 0:4 : 4; y2 = 1: These
orbits give experimental (numerical) evidence for the conjecture that the orbits of
this problem are closed curves. Each orbit returns to its starting point and, by the
uniqueness theorem, it then continues along the same path again and again and
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again. . . , hence y(t) is a periodic function of t, but you see from fig.C or D that the
length of the period depends on the starting point. (A hint for a theoretical proof
is given in a problem of Section 13.9.)

In fig.C the points which are reached at the same time t are joined, t = 0 : 0:15 :
6:60. The mappings y(0) 7! y(0:15n), n = 1 : 44 are no straight lines here, since
the problem is nonlinear. On a ”microscopic” scale the mapping is approximately
affine: you see that small (approximate) parallelograms are mapped onto small
(approximate) parallelograms, in fact by means of the the matrices U(0:3n; y(0)),n = 1 : 22.

Finally, fig.D illustrates the non-linearity of the mappings on a ”macroscopic
scale”. Smiley initially looks like a honey melon, but after a revolution he is more
like a banana; and look what has happened to his smile. For the production of
this figure 160 copies of the 2 � 2 system were run simultaneously, with different
initial values — this took on a PC less than 10 seconds, including the numerical
and graphical output to file and screen.
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Figure 13.1.7. ü = u2; u(0) = 1. Small changes of u̇(0) make large
changes in the solution.

Example 13.1.12 Fig. 13.1.7 shows u(t) versus t for the problem ü = u2, u(0) = 1,
for seven close values of u̇(0). This second order equation is written as a first order
system, wherey � � y1y2

�
=

� u̇u� ; ẏ =

� y2y2
1

� � f(y); f 0(y) =

�
0 1

2y1 0

� :
The eigenvalues of f 0(y) are �p2y1. Although they do not tell the whole truth whenf 0(y(t)) is not constant, they usually give some indication about the local rate of
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growth of a disturbance; note the different behaviour for positive and negative values
of y1 = u.

You easily find that u(t) = 6(t+
p

6)�2 satisfies the differential equation with
initial conditions u(0) = 1, u̇(0) = �2=p6 = �0:816497. Note that u(t) ! 0 ast ! 1. It can be shown that u(t) ! +1 for some finite value of t, for all other
solutions of this differential equation; also for those solutions, which are negative in
some interval.

These figures were produced by means of a fifth order accurate multistep
method. The small circles are delimiters of arcs consisting of five consecutive steps.
More questions about this example are asked in exercise C13 b.

13.1.4 Some Elementary Results from the Qualitative Theory of

ODEs

The topic of the qualitative theory of differential equations is how to draw conclu-
sions about some essential features of the motions of a system of ODEs, even if
the motions cannot be expressed explicitly in analytic form. In a way it seems to
be the opposite to the study of ODEs by numerical methods. It is more adequate,
however, to consider the qualitative theory as a complement to numerical methods.

The ideas and results from this theory can be very useful in many ways, for
example:� for the planning of numerical experiments,� for an intelligent interpretation of the results of a simulation,� for testing a program, in particular for finding out, whether an unexpected

result of a simulation is reasonable, or due to a bug in the program, or due to
the use of too large time steps, or some other cause.

On the other hand, simulation on a computer is a useful tool also for re-
searchers, whose purpose is to study qualitative features. The reader must find his
own switch between computational and analytical techniques, but some ideas from
the qualitative theory of ODEs are useful in the bag of tricks.

All ODE systems in this subsection are assumed to satisfy a Lipschitz condition
etc., so that there is no trouble about existence and uniqueness. We begin by a
simple and useful example.

Example 13.1.13 Consider a single autonomous ODE, ẏ = f(y), where the graph
of f(y) is shown in the left part of Fig. 13.1.8. The equation has three critical
points, y1 < y2 < y3, i.e. points where f(y) = 0. Since y(t) increases if f(y) > 0
and decreases if f(y) < 0, we see from the arrows of the figure, that y(t) ! y1 ify(0) < y2, and y(t) ! y3 if y(0) > y2, as t ! 1. See the right part of the figure.
With an intuitively understandable terminology (that is consistent with the formal
definitions given below), we may say that the critical points y1; y3 are stable (or
attracting), while the critical point y2 is unstable (or repelling).
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Figure 13.1.8. Graphs of f(y) and y(t) for Ex. 13.1.13.

This discussion can be applied to any single autonomous ODE. Notice that a
critical point p is stable if f 0(p) < 0, and unstable if f 0(p) > 0.

By Taylor’s formula, f(y) � f 0(p)(y�p). If f 0(p) 6= 0, it is seen that a motion
that starts near p is, at the beginning, approximated by y(t) � p+(y0�p) exp f 0(p)t.
In the case of repulsion, the neglected terms of this Taylor expansion will play a
bigger role, as time goes by.

Now we shall consider a general autonomous system.

Theorem 13.1.14. A Basic Theorem in the Qualitative Theory of ODE’s.

Let V � Rs be a closed set with a piecewise smooth boundary. A nor-
mal pointing into V is then defined by a vector-valued, piecewise smooth functionn(y); y 2 �V.

Assume that there exists a function n1(y) that satisfies a Lipschitz condition
for y 2 Rs; such that

(a) kn1(y)k � K for y 2 Rs,
(b) n(y)Tn1(y) �  > 0 for y 2 �V.

Consider an autonomous system ẏ = f(y), and assume thatn(y)T f(y) � 0; 8y 2 �V ; (13.1.22)

and that y(a) 2 V. Then the motion stays in V for all t > a.

Comments:� V is, for example, allowed to be a polyhedron or an unbounded closed set.� n1(y) is to be thought of as a smooth function defined in the whole of Rs. On�V it should be a smooth approximant to n(y).
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Figure 13.1.9. Illustration to Theorem 13.1.14. The arrows show the
velocity vectors for an autonomous system. A motion that starts in the interior of
the oval curve remains inside it all the time.

Proof. (Sketch.) Consider Fig. 13.1.9. The statement is almost trivial, if the
inequality in (13.1.22) is strict. To begin with, we therefore consider a modified
problem, ẏ = f(y) + pn1(y); p > 0, with the solution y(t; p). Then n(y)T ẏ �n(y)T pn1(y) � p > 0; y 2 �V .

In other words: at every boundary point, the velocity vector for the modified
problem points into the interior of V . Therefore, an orbit of the modified problem
that starts in V can never escape out of V , i.e., y(t; p) 2 V for t > a; p > 0.
By Theorem 13.1.8, y(t; p) ! y(t), as p ! 0. Since V is closed, this proves the
statement.

We shall now formulate two useful corollaries of this result.

Theorem 13.1.15 (Comparison Theorem).
Let y(t) be the solution of a single non-autonomous equation,ẏ = f(t; y); y(a) = : (13.1.23)

If a function z(t) satisfies the two inequalities, ż(t) � f(t; z(t)); (8t � a), andz(a) � y(a), then z(t) � y(t) 8 t � a.

Proof. You can either convince yourself by a glance at Fig. 13.1.10, or deduce it
from the previous theorem, after rewriting (13.1.23) as an autonomous system, and
define V = f(t; y) : y � z(t)g.
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Figure 13.1.10. The arrows show the slopes of the solution curve of a
single ODE, ẏ = f(t; y). when it crosses the curve y = z(t). A solution curve that
starts above this curve, remains there in the whole interval where the arrows make
a positive angle with the tangent of the curve y = z(t).

There are variants of this result with reversed inequalities, which can easily
be reduced to the case treated. Another variant: if strict inequality holds in at
least one of the two assumptions concerning z(t), then strict inequality holds in the
conclusion, i.e., z(t) < y(t); 8t > a.

Theorem 13.1.16 (Positivity Theorem).

Consider an autonomous system, and assume that for i = 1; 2; : : : ; s;
(a) yi(0) � 0; (b) fi(y) � 0, whenever yi = 0, and yj � 0 if j 6= i.
Then yi(t) � 0 for all t > a.

Another variant: If (a) is replaced by the condition yi(0) > 0, and (b) is
unchanged, then yi(t) > 0; 8t > a, (but yi(t) may tend to zero, as t!1).

Proof. Hint: Choose V = fy : yi � 0; i = 1; 2; : : : ; sg.
In many applications, the components of y correspond to physical quantities

known to be non-negative in nature, e.g. mass densities or chemical concentrations.
A well designed mathematical model should preserve this natural non-negativeness,
but since modeling usually contains idealizations and approximations, it is not self-
evident that the objects of a mathematical model possess all the important proper-
ties of the natural objects. The positivity theorem can sometimes be used to show
that it is the case.

It is important to realize that a numerical method can violate such natural
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requirements, for example if the step size control is inadequate, see Example ??.
Another branch of the qualitative theory of ODEs, is concerned with the

stability of critical points, not to be confused with the stability of numerical
methods. Let p be a critical point of the non-autonomous system, ẏ = f(t; y), i.e.,f(t; p) = 0; 8t � .
Definition 13.1.17.

A critical point p is stable, in the sense of Lyapunov, 11 if for any given� > 0 there exists a Æ > 0, such that, for all a � , if ky(a) � pk < Æ thenky(t) � pk < �; 8t > a. The critical point p is asymptotically stable, if it is
stable and limt!1 y(t) = p.

For the linear homogeneous system ẏ = A(t)y it follows that the stability of the
origin is the same as the boundedness of all solutions, as t ! 1. If A is constant,
this means that keAtk � C; 8t � 0.

Theorem 13.1.18.
Let A be a constant square matrix. The origin is a stable critical point of the

system ẏ = Ay, if and only if the eigenvalues of A satisfy the following conditions:
(i) The real parts are less than or equal to zero.
(ii) There are no defective eigenvalues on the imaginary axis.

The stability is asymptotic if and only if all eigenvalues of A have strictly
negative real parts.

Proof. Hint: Express eAt in terms of the Jordan canonical form of A, see x10.2.4.

This theorem is not generally valid for linear systems with variable coefficients.
You will find a case where the equation ẏ = A(t)y has unbounded solutions, though<�(A(t)) � �1 (say) for all t, among the problems of Sec, 13.9.

Another important fact is that stability and boundedness are not equivalent
for nonlinear problems. We saw in Example 13.1.13 that a solution that started a
little above the unstable critical point k2 became bounded by k3.

If some, but not all, eigenvalues of A have negative real parts then y(t) =eAty0 ! 0 as t ! 1 iff y0 belongs to the subspace spanned by the eigenvectors
belonging to these eigenvalues. One then talks about conditional asymptotic stabil-
ity. In numerical applications this notion can rarely be applied, and as a rule such
conditionally stable cases are to be treated like unstable cases, since truncation and
rounding errors will usually kick the solution out from this subspace. There are,
however, exceptions. See, e.g., Exercise C13

It is different for another kind of conditional asymptotic stability that is ex-
emplified by the differential equation ẏ = �y2. Here y(t) ! 0 for any positive

11Aleksandr Mikhailovich Lyapunov, Russian mathematician 1857-1918, who gave fundamental
contributions to stability theory and probability. Our stability concept is in some more advanced
texts called uniform stability. In such texts, Æ is allowed to depend on a for non-autonomous
systems.
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value of y(0), while y(t) ! �1 for any negative value of y(0). A more complicated
situation occurs in systems that describe chemical reactions. The right hand sides
are often quadratic functions of y, and the positivity theorem can be used to prove
that yi(t) > 0, 8i, 8t > 0, if yi(0) � 0; 8i. Nevertheless, in a numerical solution a
component of y can become negative, due to truncation and rounding errors, and
if nothing is done about it, the numerical solution may diverge violently. In this
case something can be done. Some care is, however, needed in the decision when a
variable can be set equal to zero, but it is beyond the scope of this text to go into
details.

In the neighborhood of a critical point p a solution y(t) of the system ẏ = f(y)
is, during a finite time interval, close to a solution y = yL(t) of the linearized
variational equation ẏ = f 0(p)(y � p):
This is a system with constant coefficients. If all eigenvalues of f 0(p) have negative
real parts, p is asymptotically stable; both y(t) and yL(t) converge towards p at the
same exponential rate. The largest real parts of the eigenvalues of f 0(p) determine
the type and the rate of convergence, e.g., essentially monotonic if the relevant eigen-
values are real, spiraling if the relevant eigenvalues is a conjugate pair of complex
numbers.

If the largest real parts are positive, y(t) and yL(t) move away from p, mono-
tonically or spiraling at the same exponential rate, real or complex. In the case
between, i.e. if the largest real part is zero, it can happen that y(t) like yL(t) re-
mains in the neighborhood of p, e.g., in a 2-dimensional case the orbit can be a closed
curve, and both motions are periodic, with approximately the same frequency.

We observe this in the predator-prey example. Here p = [1; 1], the eigenvalues
of f 0(p) are �i, and the period is thus approximately 2�; a theoretical proof that
all the orbits of this example are indeed closed is found in Sec. 13.8.

But it is not always so; even if the relevant eigenvalues are a conjugate imag-
inary pair, it can happen that y(t) (unlike yL(t)) can spiral in towards p or spiral
away from p, see Theorem 13.1.29 and the problems of Sec. 13.8.

13.1.5 The Logarithmic Norm, Properties and Applications

We shall now develop tools that, among other things, make the generalisation of
Propositions 13.1.5 and 13.1.6 to systems of ODEs.

Definition 13.1.19.
Let k � k denote some vector norm and its subordinate matrix norm. Then the

subordinate logarithmic norm of the matrix A is given by�(A) = lim�!+0

kI + �Ak � 1� (13.1.24)

This limit exists, for any choice of vector norm, since one can show, by the triangle
inequality, that, as � ! +0, the right hand side decreases monotonically and is
bounded below by �kAk.
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First note that, if a 2 C then,

lim�!+0

j1 + �aj � 1� = <a: (13.1.25)

Just like the ordinary norm of a matrix is a generalization of the modulus of of a
complex number, the logarithmic norm corresponds to the real part. The logarith-
mic norm is a real number, and �(A) � kAk. It can even be negative, which is very
favorable for the estimates and bounds that we are interested in, where a bound for
the logarithmic norm, multiplied by t, typically appears in an exponent.

Many of the notations and results below are analogous to familiar things for
ordinary vector and matrix norms, e.g. we denote by �p(A) the logarithmic norm
subordinate to lp norm.

Theorem 13.1.20. The logarithmic norm subordinate to the max-norm reads,�1(A) = maxi �<(aii) +
Xj;j 6=i jaij j�:

More generally, the logarithmic norm subordinate to the weighted max-norm,kxkw = maxi jxji=wi, reads�w(A) = maxi �<(aii) +
Xj;j 6=i jaijwj=wij�:

If all diagonal elements are real and larger than �1=�, thenkI + �Akw = 1 + ��w(A): (13.1.26)

Similarly, the logarithmic norm subordinate to the l1-norm reads,�1(A) = maxj �<(ajj) +
Xi;i6=j jaij j� = �1(AH ):

Set B = 1
2 (A + AH ), and let �i(B) be an eigenvalue of B. Then the logarithmic

norm subordinate to the l2-norm reads,�2(A) = maxi <�i(B) � �(B) � 1
2 (�(A) + �(AH )): (13.1.27)

Here �(�) denotes the logarithmic norm subordinate to any norm, e.g., the max-norm
or some weighted max-norm. (The last inequalities are of practical importance, since
the exact formula for �2(A) may require much computation.)

Proof. Set si =
Pj;j 6=i jaij j. By (6.2.16), kI+ �Ak1 = maxi(j1+ �aiij+ �si), hencekI + �Ak1 � 1� = maxi � j1 + �aiij � 1� + si�! maxi (<aii + si):

Moreover, if �aii � �1 8i, then kI + �Ak1 = maxi(1 + �aii + �si) = 1 + ��1(A).
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The derivations of the formulas concerning the weighted max-norm and thel1-norm are left for Problem 9b.
Short proofs of the formulas for �2(A) require ideas that are developed later.

12 Here we only note the analog tokI + �Ak2
2 = maxi j�i((I + �A)(I + �AH))j = maxi j1 + ��i(A+AH) +O(�2)j

= maxi j1 + 2��i(B) +O(�2)j:
The inequality <(�i(B) � �(B) follows from statement B in Theorem13.1.25. Fi-
nally, �(B) � 1

2 (�(A) + �(AH )) follows from the important subadditivity property,
i.e. property B in the next theorem.

Theorem 13.1.21.
The logarithmic norm has the following properties:

A. �kAk � �(A) � kAk.
B. �(�A+ �B) � ��(A) + ��(B); if � � 0; � � 0, subadditivity.

C. �(�A+ I) = ��(A) + <; if � � 0;  2 C.

Proof. Property A follows from the application of the triangle inequality to the
definition of �(A). We next note that, for � � 0,�(�A) = lim�!+0

kI + ��Ak � 1� = � lim�!+0

kI + (��)Ak � 1

(��)
= ��(A):

We can therefore, without loss of generality, put � = � = 1 in the rest of the proof.
By the triangle inequality,I +

�
2

(A+B)
� 1 =

I + �A
2

+
I + �B

2

� 1 � kI + �Ak � 1

2
+
kI + �Bk � 1

2
:

Divide the first and the last expression by 1
2�, and let � ! +0; property B follows

(for � = � = 1).
In order to prove property C, we consider the identity,k(1 + �)(I + �A)k � 1 = j1 + �j(kI + �A)k � 1) + (j1 + �j � 1):

After division by � and passage to the limit, the right hand side becomes �(A)+<.
The left hand side can be written,kI + �I + �A+O(�2)k � 1 = kI + �(I +A)k � 1 +O(�2);

12In fact, Eq.(13.1.27) is a particular case of Theorem 13.8.2, where a general inner-product
norm is considered.
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where the triangle inequality was used in the last step. After division by � and
passage to the limit, this becomes �(I +A).

Remark: In general, �(�A) 6= ��(A). Actually, �(�A) � ��(A), since by
the subadditivity, �(A) + �(�A) � �(A � A) = 0. By induction, the subadditivity
can be extended to any number of terms and, by a passage to the limit, also to
infinite sums and integrals. In particular we have, for the neighborhood averageJ(t; u) defined by (13.1.13),�(J(t; u)) = ��Z 1

0

f 0(y + �u)d�� � Z 1

0

�(f 0(y + �u)d�) � max�(f 0(z));
(13.1.28)

where the domain of z must include the line segment between y and y + u.
The most important applications of the logarithmic norm are given in the

next two theorems. Recall the concept of a “pseudo-linear” system introduced in
Lemma 13.1.7.

Theorem 13.1.22. The solutions of a ”pseudo-linear” system,u̇ = J(t; u)u+ r(t; u); (13.1.29)

satisfy the inequality, 13 kuk0 � �(J(t; u))kuk+ kr(t; u)k: (13.1.30)

Let Dt � Rs be the ball fw : kwk � �(t)g where �(t) varies continuously with t.
Assume that ku(a)k < �(a) and that�(J(t; w)) � ��(t); kr(t; w)k � �(t); 8w 2 Dt; (13.1.31)

where ��(t); �(t) are piecewise differentiable functions.
Then, ku(t)k �  (t), where  (t) is a solution of a single differential equation, ̇ = ��(t) + �(t);  (a) = ku(a)k; (13.1.32)

as long as a bound that can be derived from this differential equation guarantees that (t) < �(t).
If ��; � are chosen to be independent of t, and if u(a) = 0, this leads exactly

to the bounds (13.1.10), and the behaviour of  (t) is illustrated by Fig. 13.1.4.
Concerning bounds for more general situations, see (13.1.20) and problem P10.

Proof. By Taylor’s theorem,u(t+ h) = u(t) + hJ(t; u)u(t) + hr(t; u) + o(h); (h > 0);
13It can happen that kuk0 is discontinuous, e.g., if the max-norm is used. We shall always refer

to the derivative in the positive direction. Usually the inequalities are (a fortiori) valid for the
derivative in the negative direction too.



28 Chapter 13. Ordinary Differential Equationsku(t+ h)k � k(I + hJ)u(t)k+ hkrk+ o(h) � kI + hJk � ku(t)k+ hkrk+ o(h):
Subtract ku(t)k from the first and the last side, and divide by h.ku(t+ h)k � ku(t)kh � kI + hJk � 1h ku(t)k+ krk+ o(1):
As h ! +0, the left hand side tends to the right-hand derivative of ku(t)k, and
we obtain the result, ku(t)k0 � �(J(t; u))kuk+ kr(t; u)k, where the last inequality
holds as long as u(t) 2 Dt.

Then, by the Comparison Theorem ku(t)k �  (t), where  (t) is the solution
of (13.1.32), as long as the bound derived from this guarantees that  (t) < �(t)
(hence u(t) 2 Dt).

For example, if �� and � do not depend on t, (t) =

( (a)e��(t�a) + � e��(t�a)�1�� ; if �� 6= 0;. (a) + �(t� a); if �� = 0,
(13.1.33)

i.e., if u(a) = 0 the same bounds as in (13.1.10). Bounds valid when ��, � depend
on t, can be obtained from (13.1.20), the scalar case. Eq. (13.1.29) with the

continuous perturbation term r(t; u) thus yields the same bounds as the discrete
perturbation model that led to (13.1.10), previously developed for the scalar case
only.

Theorem 13.1.23. Let z : R ! Rs be a known differentiable function that satisfies
the differential inequality,kż(t)� f(z(t))k � �(t); a � t � b; (13.1.34)

for some piecewise differentiable function �(t), and let y(t) be a solution of the
differential system, ẏ � f(y) = 0; a � t � b:
Let �(t) be a continuous function, and consider a family of balls in Rs, Dt = fw :kw � z(t)k < �(t)g, and assume that ky(a) � z(a)k < �(a). Also assume that, for
every t 2 [a; b], there exists a real-valued piecewise differentiable function ��(t), such
that �(f 0(y)) � ��(t); 8y 2 Dt:
Then kz(t)�y(t)k �  (t), where  (t) is a solution of the scalar differential equation, ̇ = ��(t) + �(t);  (a) = kz(a)� y(a)k;
as long as  (t) < �(t), i.e. as long as a bound obtained from this, e.g. (13.1.33), or
a bound derived from (13.1.20), guarantees that y(t) 2 Dt. The behaviour of  (t)
is illustrated by Fig.13.1.4.

Comment: The union of the sets (t;Dt) � R�Rs is to be thought of as a
hose or ”a French horn” enclosing the path in R�Rs defined by the points (t; z(t)).
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Proof. Set u(t) = z(t) � y(t). Note that we can write u̇(t) = f(y(t) + u(t)) �f(y(t)) + r(t), where kr(t)k � �(t). By Lemma 13.1.7,f(y(t) + u(t))� f(y(t)) =

Z 1

0

f 0(y(t) + �u(t)) d� u(t) = J(t; u(t))u(t):
By (13.1.28), �(J(t; u(t)) � maxy �(f 0(y)) � ��(t); y 2 Dt. Hence, u(t) satisfies
a pseudo-linear system of the form, u̇ = J(t; u)u + r(t), where kr(t)k � �(t). The
result then follows from the previous theorem. Theorem 13.1.23 is, for the sake

of simplicity, formulated for an autonomous system. It is, mutatis mutandis, valid
also for a non-autonomous system ẏ = f(t; y). Theorem 13.2.1 is an important
generalization of the last two theorems, adapted to a continuous model for the error
propagation in the numerical treatment of initial value problems. An important
corollary about the convergence towards a critical point is left for Problem P14.
Other generalizations are made in Section 13.8.

Example 13.1.24
Consider the pendulum equation and the linearized pendulum equation, with

the same initial values, �̈ = � sin �; �̈ = ��;�(0) = �(0) = �0 > 0; �̇(0) = �̇(0) = 0:
We shall find a bound for j�(t) � �(t)j. Sety � � y1y2

�
=

� �̇�� ; z � � z1z2

�
=

� �̇� � ;
and rewrite the differential equations as systems of the first order.ẏ =

� y2�y1

� � f(y); f 0(y) =

�
0 1�1 0

� :ż =

� z2� sin z1

�
=

� z2�z1

�
+ e(t); e(t) =

�
0z1(t)� sin z1(t)� :

It can be shown that ke(t)k2 � �3
0=6 � �(t), (problem P15).

Set B = 1
2

�f 0(y) + f 0(y)T � = 0; 8y. By (13.1.27), �2(f 0(y)) � �(B) =
0. Then, by Theorem 13.1.23, kz(t) � y(t)k2 �  (t); where  (t) is a solution of
the scalar differential equation,  ̇ = ��(t) + �(t) � 0 + �3

0=6,  (0) = 0. Hencekz(t)� y(t)k2 � t�3
0=6. This impliesj�(t)� �(t)j � t�3

0=6; j�̇(t)� �̇(t)j � t�3
0=6:

A sharper bound can be obtained for small values of t (actually for t < 2):j�(t)� �(t)j � Z t
0

j�̇(�)� �̇(�)j d� � t2�3
0

12
; hence j�(t)� �(t)j � min

� t
6
; t2

12

� �3
0 :

The bound is good only if (say) �2
0t� 12; one can show that both j�(t)j and j�(t)j

are bounded by �0. An experimental study of the sharpness of this bound is left for
exercise C5.
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Theorem 13.1.25.

A. keAtk � e�(A)t; if t � 0.

B. The real part of an eigenvalue of A cannot exceed �(A).

C. kAuk � j�(A)j kuk; if �(A) < 0.

D. kA�1k � j�(A)j�1; if �(A) < 0.

Proof. The system u̇ = Au has the solution u(t) = eAtu(0). Then, by the simplest
particular case of Theorem 13.1.22 (with J = A; r = 0; t � 0), keAtu(0)k =ku(t)k � e�(A)tku(0)k. Since this is true for every vector u(0), statement A follows.

In order to prove statement B, note that if Av = �v then keAvk = ke�vk =e<�kvk. Then, by statement A, e�(A)kvk � keAvk = e<�kvk. This proves statement
B.

By the definition of the logarithmic norm, we have, as �! +0,�(A) � ku+ �Auk � kuk�kuk + o(1) � �kAukkuk + o(1) 8u:
The triangle inequality was used in the last step. Statement C follows.

By the last formula,��(A) � infu kAukkuk = infv kvkkA�1vk =
1kA�1k :

Since �(A) < 0, this proves statement D. A completely different proof is indicated
by the hints of Problem P11a. See also generalizations in Problem P11b.

A corollary of statement B is that A is non-singular if �(A) < 0.
For some differential systems the sharpness of the bound given by Theorems

13.1.22 and 13.1.23 may strongly depend on the choice of vector norm. We shall
therefore here indicate how one can make the logarithmic norm techniques more
efficient in practice. Since this is rather abstract and technical, some readers may
prefer to proceed directly to Sec 13.2, and to study the end of the present section
later, together with x13.8.1 and x13.9.1, where some related matters are developed
more thoroughly.

Let kuk be a given vector norm, and let T be a given non-singular matrix,
with condition number �(T ) = kTkkT�1k. Define a new norm by kukT = kT�1uk.
It is easily proved that the axioms for a vector norm are satisfied. You may call it
a T-norm. Then kAkT = kT�1ATk; �T (J) = �(T�1JT ): (13.1.35)

The proofs are left for Problem P12c. Also note that an arbitrary inner-product
norm can be considered as a transformed l2-norm, where T�1 is the right Cholesky
factor of the positive definite matrix G that defines the inner-product.
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In view of statement B of Theorem 13.1.25 it is natural to ask if we, for
a given matrix J can find a transformation T that is efficient in the sense that�T (J) = maxi <�i(J), i.e., the largest real part in the spectrum of J . The analogous
question for operator norms was answered by Theorem 10.2.9 and its corollary. The
proofs of the following results are omitted, since they are very similar to the proofs
given in x10.2.4.

Theorem 13.1.26.
Given a matrix A 2 Rn�n, and set �(A) = maxi <�i(A). Denote by k � k anylp-norm (or weighted lp-norm), 1 � p �1.
The following holds, with the notations of (13.1.35):

(a) If A has no defective eigenvalues with <� = �(A), then there exists a matrixT such that �T (A) = �(A).

(b) If A has a defective eigenvalue with <� = �(A), then for every � > 0 there
exists a matrix T (�), such that �T (�)(A) � �(A) + �.
As � ! 0, the condition number �(T (�)) tends to 1 like �1�m�

, where m� is
the largest order of a Jordan block belonging to an eigenvalue � with <� =�(A).

(c) If �(A) < ��, then there exists an inner-product norm, such that the subordi-
nate logarithmic norm is �(A) < ��.

Corollary 13.1.27 (Asymptotic Stability).
If A is a constant matrix, the following conditions are equivalent:

(a) The origin is asymptotically stable for the autonomous system ẏ = Ay.

(b) limt!1 eAt = 0.

(c) �(A) < 0.

(d) There exists an inner-product norm such that �(A) < 0, Equivalently, there
exists a positive constant Æ such that, in this norm, �(A) < �Æ.

Corollary 13.1.28 (On Stability).
If A is a constant matrix, the following conditions are equivalent:

(a) The origin is stable for the autonomous system ẏ = Ay.

(b) eAt is bounded for t 2 [0;1).

(c) No eigenvalue of A has a positive real part, and there are no defective eigen-
values on the imaginary axis.

(d) There exists an inner-product norm such that �(A) � 0,
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Sometimes a weighted max-norm is a simple alternative to the inner-product
norm in Condition (d), e.g. for matrices with positive off-diagonal elements, see the
beginning of x13.9.1, and Problem 1 of Sec. 13.9.

We shall apply Theorem 13.1.26 to give a short proof of part of a classical
theorem due to Lyapunov.

Theorem 13.1.29.
Consider the system ẏ = Ay + g(t; y), where kg(t; y)k = o(kyk), uniformly

in t. (The constant matrix A is the Jacobian at the origin, for all t.)
(1) If the origin is asymptotically stable for the linear approximation ẏ = Ay, it

is so also for the non-linear system.

(2) If �(A) > 0 then the origin is unstable, or possibly conditionally stable, for
the non-linear system.

(3) If �(A) = 0, then the stability question for the non-linear problem cannot be
settled merely by the discussion of the linear approximation ẏ = Ay.

Proof. By the above results we can, for some positive Æ, find a norm such that�(A) < �Æ, and then find a constant � such that kg(t; y)k < 1
2Ækyk when kyk < �.

Finally we choose ky(0)k < �. Then, as long as ky(t)k < �, we have, by (13.1.30),ky(t)k0 � �(A)ky(t)k+ kg(t; y(t))k � �Æky(t)k+ 1
2Æky(t)k = � 1

2Æky(t)k:
We see that ky(t)k is decreasing, hence the inequalities ky(t)k < � and ky(t)k0 <� 1

2Æky(t)k hold forever, and hence ky(t)k < �e�1
2 Æt ! 0, as t!1.

This proves the first part of the theorem. The second part will be proved inx13.8.1. Finally, the third part is demonstrated by the problems ẏ = �y3, with the
solutions y(t) = y(0)(1� 2y(0)2t)�1=2, which have the same linear approximation,ẏ = 0, for which the origin is non-asymptotically stable. We see that the origin is
unstable for ẏ = y3, and asymptotically stable for ẏ = �y3.

We now consider some possibilities and difficulties related to making the
bounds given by Theorems 13.1.22 and 13.1.23 sharp. Sometimes it is advisable
to use a different norm internally for deriving a bound and then transform the
result to the externally used norm.

By Theorem 13.1.26, the non-negative number �(A)�maxi <�i(A) is a mea-
sure of the non-efficiency of the logarithmic norm for a particular choice of vector
norm.

This measure does not tell the whole truth, however, since it can happen that
the norms for which �(A) is small are, in Wilkinson’s word, ”bizarre”. This means
that the matrix T can be extremely ill-conditioned in a situation where we wish to
express the assumptions and the final results in terms of our external norm k � k;
the T -norm is then just an aid to obtain ��T instead of �� in some exponents.

Consider, for example, the linear system u̇ = J(t)u + r(t), and suppose for
the sake of simplicity that �� 6= 0, ��T 6= 0. By (13.1.32), we have for the external
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norm, ku(t)k � ku(a)ke��t + �e��t � 1�� :
If the T -norm is used, we obtain the boundku(t)kT � ku(a)kT e��T t + �T e��T t � 1��T ;
where �T is a bound for kr(t)kT . In order to eliminate ku(t)kT , ku(a)kT , �T it is, in a
general discussion, hard to do anything better than using the inequalities ku(a)kT �kT�1k � ku(a)k and k�Tk � kT�1k� for the input and ku(t)kT � kTk � ku(t)k for the
output. These two factors make together the condition number �(T ). The above
bound for ku(t)kT is then to be replaced by the boundku(t)k � �(T )

�ku(a)ke��T �t + �e��T t � 1��T �:
The condition number does no harm in a proof of a theorem like 13.1.29; as t!1
the effect of the reduced exponents dominates the effect of a big constant factor in
front of the expression, in particular if (say) ��T < 0 while �� > 0. In a bound that
is to be applied in finite time, however, the factor �(T ) can be a disaster.

This reminds of the discussion of iterative processes in Ex. 11.1.3, and we shall
also see other important situations, where similarity transformations are involved
in the discussion of bounds for the growth, e.g. in next section and in Sec. 13.8 —
where we shall also discuss modifications when T must depend on time. In all these
cases we insist in emphasizing that the transformation should be well conditioned.
There exist, however, other situations, where the T -norm is no less adequate for
external use than the original norm. Then no warning is needed; see, e.g., the
beginning of x13.2.1.

In some applications one may need a T -norm, where T depends on t. This can
be handled, although it requires a modification of Theorems 13.1.10 and 13.1.11;
see Theorems 13.2.1 and 13.9.1.

Among other properties and applications of the logarithmic norm dealt with
in later sections, we mention:� A criterion for the existence and uniqueness of a solution to a non-linear
algebraic system; see Theorem 13.2.20.� The logarithmic norm subordinate to a general inner-product norm; see
Sec. 13.8.� Logarithmic norm techniques for block matrices, with applications to ODEs,
see x13.8.3.

Finally, Söderlind [34] has generalized logarithmic norms in a way that for a
nonlinear function f : D � Rs ! Rs requires a Lipschitz condition only. (We have
above assumed the integrability of the Jacobian matrix.) LetL[f ] = supu 6=v kf(u)� f(v)kku� vk u; v 2 D:
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be the Lipschitz constant over a path-connected set D. Then Söderlind’s general-
ization reads M [f ] = limh!0+

L[I + hf ]� 1h :
Review Questions

R1. Explain, with an example, how a differential equation of higher order can be
written as a system of first-order differential equations.

R2. Define local and global error, and explain with a figure the error propagation
for a one-step method for a scalar differential equation. What is meant by
order of accuracy?

R3. (a) Formulate the basic existence and uniqueness theorem for initial value
problems for the system ẏ = f(y). Set up the iteration formula used in the
demonstration.

(b) Demonstrate the existence and uniqueness theorem. What is the relation
between the Lipschitz constants of f(y) and the iteration operator?

(c) Give a simple example of a differential equation, where the solution escapes
to 1 in finite time. Explain why this does not contradict the existence and
uniqueness theorem.

(d) Show that the initial value problem dy=dt = y2=3, y(0) = 0; has an infinite
number of solutions. Explain why this does not contradict the existence and
uniqueness theorem.

(e) What is a critical point p of an autonomous system ẏ = f(y)? Let p be a
critical point. Prove the following statement, under appropriate conditions:
If y(t1) = p , at some time t1, then y(t) = p for all times t.
Can an orbit reach a critical point in finite time, if it is not there from the
beginning? (Motivate the answer.)

Hint: Use the uniqueness theorem.

R4. Define and derive the non-linear and the linearized variational equations, and
state a few results that can be deduced from them. In Example 13.1.11
(Predator-Prey Problem), it is stated that ”on a microscopic scale the map-
ping is approximately affine”. Explain this statement, and give a motivation
for it.

R5. (a) Define the logarithmic norm of a matrix.

(b) Give the formulas for the logarithmic norm subordinate to some common
norms, and derive it for one of these norms. Compute, for some given numer-
ical 2 � 2-matrix A; �1(A); �1(A) and �2(A), and a simple upper bound
for �2(A) that does not require eigenvalues.

(c) Show that if u̇ = J(t)u+ r(t), t � a, then kuk0(t) � �(J(t))ku(t)k+kr(t)k.
Also show that ky(t)k �  (t), where  (t) satisfies an ODE of the form 0 = ��(t) + r�(t). Give the conditions that  (a); ��(t); r�(t) satisfy. Solve
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this equation, if �� and r� are constant, and compute limt!1  (t). Sketch
the behavior of  (t) for various values of ��.
(d) Generalize the previous question to an approximate bound for z(t)� y(t),
where y(t); z(t), satisfy the ODEs, ẏ = f(y), ż = f(z)+r(t), under appropriate
conditions that include the conditions of the previous question as particular
cases.

(e) Tell five of the most important general properties of the logarithmic norm,
in particular the subadditivity.

(f) Show that keAtk � e�(A)t for t � 0, and that (zI �A)�1 � (<z� �(A))�1

under a condition that is to be specified.

R6. Formulate and explain, with your own words and pictures, the Comparison
theorem and the Positivity theorem (in several variants). Formulate also the
Basic theorem that these are corollaries from. Make applications.

R7. Define stability and asymptotic stability in the sense of Lyapunov. If you like,
please draw a figure instead of using �; Æ. For a linear autonomous system ẏ =Ay, give conditions for these types of stability, both in terms of eigenvalues and
in terms of the logarithmic norm. Are the conditions necessary, sufficient or
both? What do you know of the relations between the stability properties of a
critical point p for a nonlinear system ẏ = f(y) and for its linear approximationẏ = f 0(p)(y � p)?

Problems

P1. (a) Rewrite the system ÿ = t2 � ẏ � z2;z̈ = t+ ż + y3;
with initial conditions y(0) = 0, ẏ(0) = 1, z(0) = 1, ż(0) = 0, as an initial
value problem for a system of first-order equations.

(b) Write the linear differential equation u(k) =
Pk�1i=0 aiu(i) as a system ẏ =Ky for the vector y = (u; u̇; : : : ; u(k�1))T . If � is an eigenvalue of K, what

is the corresponding eigenvector? Hint: See Problem 8 of Sec 10.1, but note
that the conventions are different.

P2. (a) Find the general solution to the differential equation ẏ = y=t. Where
is the Lipschitz condition not satisfied? Study the behavior of orbits in the
neighborhood of such singular points.
Also study the system ẏ1 = y1; ẏ2 = y2. Note that the singular point of
the single differential equation ẏ = y=t corresponds to a critical point of this
system.

(b) Study in a similar way the single differential equation ẏ = at=y, a 2 R,
and the system ẏ1 = ay2, ẏ2 = y1. How does the character of the solution
manifold depend on the parameter a? (See also Exercise C3 below.) Reduce,
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by appropriate scaling of y; t, the discussion to the three cases a = �1 anda = 0.

P3. (a) Four of the orbits in Fig. 13.1.5 seem to be envelopes of families of straight
lines. Explain this observation.

(b) Determine theoretically the speed of the rotation and shrinking of the
squares in the figure, and make, for comparison, some measurements in the
figure. Find a crude estimate of the end value of t used in the computation of
the figure. (Measure the “white hole” .)

(c) More about linear systems with constant coefficients. Incomplete!!!!!

(d) Show by a simple example that a critical point of a non-linear differential
equation can be asymptotically stable, although it is only stable for the the
linear approximation of the equation.

P4. (a) Consider the differential equation ẏ = 1 � y2. Study the behaviour ofy(t) as t ! 1 for all initial values, both by the qualitative technique of
Example13.1.13 and by means of the exact solution of the differential equation,
suitably expressed in the form t = �(y) + C. Which do you prefer?
If y(0) = 1, a crude approximation to the solution reads y(t) = t for t < 1,y(t) = 1 for t � 1. What is the largest error of this approximation?
Also show that y(t) = 1 � Æ for t � 1

2 ln 2Æ , if y(0) = 0; Æ � 1. Note thatt � 1:5 for Æ = 0:1 and t � 2:6 for Æ = 0:01. We can roughly say that the
”scale” of t and y is 1 for this problem.
Similarly, what is the ”scale” of t and y for the problem ẏ = a� by2; y(0) =
0; a > 0; b > 0, i.e. what is the maximum of y(t) and when is it attained to
90%?
Take a = 0:01; b = 106 . (Compare P4 below.)

(b) Discuss in a similar way the logistic equation, u̇ = u(d� u). For what
value of u does u(t) has an inflexion point? (Answer this without solving the
differential equation.)
What is the relation between the solution of u̇ = u(1 � u) that starts in the
inflexion point and the solution of ẏ = 1� y2 with y(0) = 0? If u(0) < 0, doesu(t) become �1 for a finite value of t or in the limit as t!1 ? Hint: How
does the integral t =

R du=f(u) behave?

(c) Bimolecular reaction. Consider a chemical reactionA+B k1�! C. Denote the concentration of the species A; B; C by y1; y2; y3,
respectively; By the law of mass action,the concentration y3 is during
an “infinitesimal” time interval of length dt increased by the amount r1dt =k1y1y2dt, while y1; y2 are decreased by the same amount. k1 is a characteristic
of the reaction called the rate constant. It may depend on the temperature,
but we assume here that the reaction is kept isothermal.

Suppose that there is a reaction in the opposite direction C k2�! A+B, wherey3 is decreased by the amount r2dt = k2y3dt during a time interval dt, whiley1; y2 are increased at the same rate. The quantities ri, i = 1; 2, are called
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reaction rates. This leads to the system of algebraic and differential equations:r1 = k1y1y2; r2 = k2y3 k1 > 0: k2 > 0;ẏ1 = �r1 + r2; y1(0) = a > 0;ẏ2 = �r1 + r2; y2(0) = b > a;ẏ3 = r1 � r2; y3(0) = 0;
Note that ẏ1 + ẏ3 = 0, 8t > 0, and hence y1 = a � y3; 8t > 0. Show thaty2 = b � y3. The problem is thus reduced to a single differential equation,
satisfied by y(t) = y3(t):ẏ = f(y); y(0) = 0; where f(y) � k1(a� y)(b� y)� k2y:
Show, without solving the differential equation, that y(t) > 0; 8t > 0, and that
the equation has two critical points, one of which, p1 (say), is asymptotically
stable. Why is the other critical point unstable? Also show that p1 < a < b
and that y3(t) converges monotonically to p1, ultimately faster than ef 0(a)t.
Hint: Recall Example ??. Sketch the graph of f(y), y � 0, and note thatf(0) > 0, f(a) < 0, f(y) ! +1 as y ! +1. Also note that f 0(a) < 0.

For k1 = 1, k2 = 2, a = 0:4, b = 0:6, determine p1; f 0(a) and the ultimate
rate of exponential convergence f 0(p1).

P5. (a) Show that the paths of two solutions of the autonomous system ẏ = f(y),y(t) 2 Rs cannot intersect. Show that this is not generally true for two solu-
tion curves

�y(t); t� 2 Rs �R of a non-autonomous system ẏ = f(y; t).
(b) By a simple example, show that two solution curves in the yt-plane for
a single second order equation ÿ = f(y) can indeed intersect, in fact in more
than one point.
Suppose that you compute a one parameter family of initial value problems
for the system ẏ = f(y), y 2 Rs, s > 2 and you plot y1 versus y2. Can it
happen that two curves in this picture intersect in more than one point?

(c) If the path for a solution to ẏ = f(y), y 2 Rs returns to a point where
it has been before, show that the same orbit will be repeated over and over
again. Hence the solution y(t) becomes a periodic function of t. Show, by
example, that the length of the period is not necessarily the same for all paths
belonging to a system.
Construct a system of 3 autonomous ODEs, where the pictures of y1 versusy2 are all circles, but the solutions are not periodic functions of t.
(d) Some of our examples may give the impression that the presence of the
term ay2, a > 0 on the right hand side of a single ODE ẏ = f(y) may cause a
catastrophic growth of most solutions. The following two cases tell that it is
not necessarily so.
Consider the equation ẏ = �y + ay2. Show that, for any a > 0, y(t) tends
to zero monotonically and exponentially if y(0) < 1=a. What happens ify(0) > 1=a? (You do not need to compute then explicit solution.)
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Consider the equation ẏ = 1 � y + ay2. Suppose that 0 < a < 1
4 . Show

that there are two critical points, 0 < y1 < y2, and that y(t) converges mono-
tonically and exponentially to y1 if y(0) < y2. What happens if a > 1

4 ora = 1
4 ?

P6. We use the terminology introduced in P4. Let A;B;C be three chemical
species with concentrations y1; y2; y3; initially y1 = 1, y2 = y3 = 0. The
following is a set of chemical reactions called autocatalytic:C + C k1�! B + C; C +B k2�! A+B; A k3�! C:
Although B is both a winner and a loser of the second reaction, this must not
be simplified to C �! A; its reaction rate is r2 = k2y2y3. The other reaction
rates are r1 = k1y2

3 ; r3 = k3y1.

(a) Explain that the law of mass action yields the differential system ẏ =Ar(y), wherey(0) =

0� 1
0
0

1A ; A =

0� 0 1 �1
1 0 0�1 �1 1

1A ; r(y) =

0� k1y2
3k2y2y3k3y1

1A :
(b) Show that all variables are non-negative for t > 0, as they should, because
they are concentrations.

(c) Show that y1(t) + y2(t) + y3(t) = 1, by adding the three equations etc.
Relations like this are common in many applications. They are called linear
invariants. For a general system ẏ = f(y), show that bT y(t) is a linear
invariant, if bT f(y) = 0; 8y 2 Rs. (bT is a constant row vector.) Also show
that every independent linear invariant of a system reduces the rank of f 0(y)
by one, for all y. Show how invariants for a system of the form ẏ = Ar(y),
can be found (if there are any), by applying a numerical algorithm to the
matrix A.

(d) Determine the critical point p of the system in (a). Show that the Jacobian
is of rank 2 if y3 6= 0, but at the critical point (and at the starting point) it
is of rank 1. (It can be shown that this has the effect that the convergence
towards the critical point becomes slower than exponential. This is rather
common in chemical systems.)
Determine  2 R3 so that y(t) = p+ t�1 satisfies this system approximately
for t� 1,

(e) Let � be a small positive number. Consider the case k1 = ��2, k2 = ��1,k3 = 1, set y1 = z1, y2 = z2; y3 = �z3, and make use of the invariant.
Show that the system readsz1 = 1� z2 � �z3;ż2 = z2

3 ; z2(0) = 0;�ż3 = �z2
3 � z2z3 + z1; z3(0) = 0;
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Note that the first equation is an algebraic equation, not a differential equa-
tion. This problem is continued in computer exercise C2.

(f) Usually the ODEs derived from the law of mass action, can also be written
in the following form, y0i = Pi(y)� yiQi(y), i = 1; 2; : : : ; s; where Pi(y), Qi(y)
are functions of the vector y, usually polynomials, which are non-negative for
every vector with non-negative components. Show that y(t) is non-negative
for all t > 0, if the initial values are so.
Rewrite the equations of Problem (a) in this form.

Comment: One may not find all linear invariants by the algorithm, that was
asked for in (c), but if the components of r(y) are monomials in y — as they
are in most systems derived from the law of mass action (and in many other
applications) — one has a good chance to succeed.
The matrix A is typically a constant, rectangular and sparse matrix with small
integer elements. Although rounding errors are usually important in matrix
computations, they will typically cause very little trouble in this context.
In Problem P3(d) the invariants y1 + y3 = a, y2 + y3 = b, were used to
eliminate y1; y2 symbolically in the third differential equations, although this
terminology was not used there. The differential equations for ẏ1 and ẏ2 were
then replaced by invariants. In general, the order of the differential system
can be reduced by the number of linearly independent invariants; some care is
needed in the choice of the differential equations to be replaced by algebraic
equations.
In more complicated systems it is usually easier to avoid the symbolical sub-
stitutions: let a variable that has lost its differential equation remain in the
formulas for the other differential equations; their numerical values are in ev-
ery time step computed by means of the invariants before the variables that
still have differential equations are treated.
Alternatively, linear and non-linear invariants, also called first integrals, can
often be derived from some physical conservation laws.

P7. A study of a population subject to competition (crowding) and toxins. (Ex-
tension of a model treated in Klamkin [24, p. 317].)
Let u(t), v(t) be, respectively, the size of a population and the amount of toxins
at the time t. Assume that the difference r(u) between the birth rate and the
death rate, due to other causes than the toxins, is of the form r(u) = k0�k1u,
like in the logistic model (which is a particular case of this problem).
Furthermore, assume that k2uv individuals are killed, per unit of time, by
toxins in the environment. These toxins are produced by the population, and
assume that the amount produced per unit of time is k3u. Finally, assume that
that the toxins have a spontaneous exponential decay (see the term �k4v).
All parameters are non-negative. This leads to equations of the formu̇ = (k0 � k1u)u� k2uv; v̇ = k3u� k4v:
(a) Reduce the number of parameters from 5 to 2 by scaling t; u; v, i.e. sett = lx; u = my1; v = ny2, so that we obtain a differential system of the more
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transparent form ẏ1 = y1 � y2
1 � ay1y2; ẏ2 = y1 � by2: (13.1.36)

Express a; b; l; m; n in terms of the original parameters. See also Exercise
C6.

(b) Determine the critical points of (13.1.36) and the rate of convergence to
them in the asymptotically stable cases.

(c) Is it true that, with this model, neither y1 nor y2 can become negative, if
the initial values are positive? Assume that y1(0) is a small positive number
and that y2(0) = 0. Find an upper bound for y1.

P8. Sometimes the perturbations grow much faster than the exact solution itself.
Make theoretical studies of the following example.

Verify that the problem ẏ = y� 2t=y, y(0) = 1, has the solution y =
p

2t+ 1.
Show by the linearized variational equation that a small perturbation at t =
0 will be amplified by the factor e2t=p2t+ 1. Compare the growth of the
perturbations and the growth of the solution over the interval (0, 12).
Another way to the understanding of this example is to note that z = y2

satisfies the linear problem ż = 2z � 4t. For example, give the starting value
a small negative perturbation, z(0) = 1� Æ (say). Show that z(t) < 0, when
2t > ln(1=Æ) +

p
2 ln(1=Æ); the correspondingly perturbed y(t) is no longer

real. (This will be followed up in exercise C10.)

P9. (a) Compute exp(kAk1), and exp(�1(A)) forA =

��10 �1
3 �10

� :
(b) Treat Problem (a) with the l2-norm instead of the max-norm. Show also
that �(A) � �10 for any choice of norm.

(c) Let y(t) be the solution of an equation of the form ẏ = Ay+r(t); y(0) = 0,
where A is the same matrix as in (a) and (b), and kr(t)k1 � 1. Find a con-
stant  such that ky(t)k1 �  for all positive t.

P10. (a) Derive the expressions for �1(A), kI+�Akw, and �w(A) given in Theorem
13.1.20.

(b) Derive, by means of Theorem13.1.9, a bound for  (t) from the differential
equation (13.1.32). We can obtain a uniform bound for all t > a, if we make
further assumptions about ��(t); �(t). For example, assume that

either ��(t) < �Æ (Æ > 0); and �(t) � 2; (8t > a);
or ��(t) � 0;8t > a; and

Z 1a �(t) dt � 2:
Find uniform bounds for  (t) 8t > a under these assumptions.
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More generally (also if ��(t) > 0), show that  (t) � e1( (a) + 2);8t > a, ifZ tx ��(s)ds � 1; 8x; t; a � x � t; and

Z 1a �(t)dt � 2:
(c) Consider the system ẏ = A(t)y, whereA(t) =

0B� 2

1 + t2 2

2 + t2
1

2 + t3 1

2 + t2 1CA :
Show that all solutions are bounded as t!1, in spite that both eigenvalues
have positive real parts for every t > 1 (by Gershgorin’s theorem).

(d) Consider the real differential system ẏ = A(t)y+ r(t); t > 0, y(0) given.
Assume that the symmetric part of A(t), i.e., B(t) = 1

2 (A(t) +A(t)T ), is neg-

ative semi-definite and that
R1

0
kr(t)kdt is convergent. Show that ky(t)k is

bounded as t!1.

(e) Show that the same conclusion holds, if you instead assume that the eigen-
values of B(t) are less than a negative constant �Æ and kr(t)k � C; 8t � 0.

P11. (a) Consider the linear system ẏ = Ay � r; where A and r are constant, andA is non-singular. Note that A�1r is a critical point, and show that every
motion converges to this point, as t ! 1, if �(A) < 0. Use this to show
that kA�1k � j�(A)j�1; if �(A) < 0:
Comment: The derivation of this result in Theorem13.1.25 is very different.

(b) Show the following relations:k(I � hJ)�1k � (1� �(hJ))�1; if �(hJ) < 1;k(A� zI)�1k � (<z � �(A))�1; if <z > �(A):
P12. (a) Derive the inequality j�(A)� �(B)j � kA�Bk, and show that �(A(t)) is

a continuous function of t if A(t) is so. Also show that �(f 0(y)) is continuous
if f 0(y) is so.
Find an example where d�(A(t))=dt is not continuous, in spite that A0(t) is
continuous.

(b) Consider the matrix differential equations,Ẏ = A(t)Y; Ż = ZB(t);
where Y; Z;A(t); B(t), are n� n matrices. Show thatkY k0 � �(A(t))kY k; kZk0 � �(B(t))kZk;
where the matrix norm and the logarithmic norm are subordinate to the same
vector norm. Generalize to inhomogeneous equations,e.g., Ż = ZB(t) +C(t).
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Hint: Proceed like the beginning of the proof of Theorem 13.1.22.

(c) A norm k � k is given, and define another norm, kukT = kT�1uk, whereT is a non-singular matrix. Show that 14 kAkT = kT�1ATk and �T (A) =�(T�1AT ).

P13. There are several alternative definitions of the logarithmic norm, some of which
are better suited for a generalization to semibounded operators in infinite-
dimensional spaces. Show that �(A) is equal to the limits of the following
three expressions,k(I � �A)�1k � 1� ; ln kI + �Ak� ; (� # 0); kA+ kIk � k; (k !1):
Use the third expression in an alternative derivation of Theorem 13.1.22: setu = e�ktv, derive a differential inequality for kvk, then return to kuk. Show
that the inequality becomes sharpest in the limit, k !1.

P14. (a) Suppose that f 0(y) is continuous, and that �(f 0(y)) < 0 in DR = fy :ky � pk � Rg, where p is a critical point, f(p) = 0.
Show that if y(t0) 2 DR for some time t0, then y(t) ! p exponentially ast!1.

(b) By means of the example f(y) = �y3, show that the convergence is not
necessarily exponential if �(f 0(y)) < 0 in DR = fy : ky � pk � Rg, with the
exception of the point p.

P15. (a) In the notation of Example 13.1.24, show that ke(t)k2 � �3
0=6.

(b)Let y(t) be the solution of the initial value problem ẏ = t2 +y2; y(0) = 1.
Show that the solution is still finite at t = 0:833 by comparing y(t) with a
solution of the differential equation, ż = a2 + z2, for some suitable choice ofa. Also show theoretically that y(t) becomes infinite before t = 1. Hint: Sety = 1=u. (See also exercise C11.)

P16. Prove Theorem 13.1.9.

P17. (a) Assume that all solutions of the linear system u̇ = A(t)u satisfy the in-
equality ku(t)k � 0ku(x)k 8t � a; 8x 2 (a; t). Let U(t) be the fundamental
matrix solution of this linear system, see (13.1.18) and Theorem 13.1.9. Show
that kU(t)U(x)�1k � 0.

(b) Assume that B(t; u) is a matrix-valued function such that kB(t; u)k �1; 8t � a if kuk � 2(t). Then show that all solutions of the pseudo-linear
system u̇ =

�A(t) +B(t; u)
�u satisfy the inequality,ku(t)k � 0ku(a)k+ 0

Z ta 1ku(x)kdx;
as long as this inequality implies that ku(t)k � 2(t). Generalize to the case
when 1 is allowed to depend on t.
(c) The Gronwall–Bellman Lemma. Let g(t) be a differentiable function,

14If you do not solve this, study the proof of (13.8.2).
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and let k(t) be a continuous function, such that k(t) � 0; 8t � a, and setK(t) =
R ta k(x)dx. Assume that a continuous function y(t) for t � a satisfies

the inequality y(t) � g(t) +

Z ta k(x)y(x)dx: (13.1.37)

Show that if k(t) = k > 0, g(t) = g are constant, theny(t) � gek(t�a):
More generally, show that y(t) � g(t) +

R ta k(x)g(x)eK(t)�K(x)dx.
Apply the results to find a bound for ku(t)k in Problem (b).

Hint: Let w(t) be the solution of the integral equation obtained when the
inequality in (13.1.37) is replaced by an equality. Note that w(t) is the solu-
tion of the differential equation w0(t) = g0(t) + k(t)w(t), w(a) = g(a). Solve
this differential equation by the formula of Theorem 13.1.9, and integrate the
result by parts.

Note: This lemma gives an alternative approach to some of the questions
treated by the logarithmic norm technique in this book, sometimes with
stronger results. On the other hand, the restriction to non-negative func-
tions k(t) is not needed in the logarithmic norm technique. An analogous
result for difference equations is given as a problem in Sec. 13.9.

P18. (C. Moler, personal communication.) Consider the initial value problem,dy=dt =
p

1� y2, y(0) = 0. Show that the Lipschitz condition is not satisfied
at y = 1, but nevertheless the problem has a unique real differentiable solution
for positive values of t, namely:y(t) =

�
sin t; if 0 � t � 1

2� ,
1; if t > 1

2�.

Hint: Derive contradictions from the suppositions that y(t) > 1 or y(t) < 1
for some t > 1

2�.

P19. (a) Study the differential equation, ẏ = �1� 2 sgn(y); with initial conditiony(0) = 1. If we insist on the convention that sgn(0) = 0, show that there is no
solution for t > 1

3 . Why does not this contradict the existence and uniqueness
theorem?
Find out, with paper and pencil or with a computer, what happens if you
apply Euler’s method with constant step size to this equation.

(b) This problem is related to the study of the motion of particle in a slope
with Coulomb friction (dry friction).
Notations: the friction coefficient is , the angle between the slope and the
horizontal plane is �; 0 < � < �=2, and the acceleration of gravity is g.
Let the velocity at time t be v(t). v(0) > 0 is given. The positive direction is
uphill. The equation of motion then reads:dvdt =

�
0; if v = 0 and  � tan(�);�g sin(�) � g cos(�)sgn(v); otherwise.
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Is it true that this problem has precisely one solution for all t > 0?
What value is implicitly given to sgn(0) in this formulation?
For what relation between � and  can we obtain the initial value problem in
(a) after appropriate rescaling of v and t?
Note: For the sake of simplicity, we ignored the distinction between the friction
coefficients at rest and at motion. Also note that the particle reaches a critical
point in finite time. According to the comments after Theorem 13.1.3 this
would have been impossible for a system that satisfies a Lipschitz condition
everywhere.

P20. (a) Set �(t;A) = t�1 ln keAtk. Show that �(A) = limt#0 �(t;A) = supt>0 �(t;A).
What happens to �(t;A), as t ! 1, and what is inft>0 �(t;A)? (Compare
Problem 4 of Sec. 10.2.)

(b) Discuss the analogous questions for t < 0, t " 0, and t! �1.

P21. Find recursion formulas for the coefficients of a regular perturbation expan-
sion, in the form of linear inhomogeneous variational equations, as mentioned
in Theorem 13.1.8 and the comments to that theorem.

P22. (a) For every real constant �, the function y(t;�) � �t��2 evidently satisfies
the implicit differential equation y = ẏt�ẏ2, named after Clairaut (1734). The
graphs of y(t;�) in the (t; y)-plane are straight lines with an envelope with
the equation y = yE(t) (say). Show that yE(t) also satisfies this differential
equation, with the same initial condition as its tangent in the starting point.
Why does not this contradict the Existence and Uniqueness Theorem 13.1.1?

(b) Generalize this to an arbitrary family of straight lines with an envelope.
Look also at the analogous question for the following family of parabolas,
considered by Cauchy (1824), y = �(t + �)2. (Show first that the family
satisfies the differential equation ẏ3 = 8y2 � 4tyẏ.)

Computer Exercises

C1. Write or study a program for Runge’s 2nd order method, according to Example
1.4.1, or with some other level of ambition. It is good, if it can be applied
to most of the non-stiff computer exercises of this section and Sec. 13.2, in
order to obtain results matching the resolution of the screen with rather short
computing time on a personal computer.
The program should be convenient to apply to e.g. different initial conditions,
different values of tol, and to different values of a small number (e.g. three) of
parameters of the differential system. The program should be able to provide
output in numerical and in graphical form.
The numerical output should be stored in such a form that it can be processed
further outside the program, e.g. for graphical output (other than the default
alternative included in the program), for interpolation (in order to obtain a
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neat table) or for finding intersections of the orbit with some line or plane, 15

or for the study of the step size sequence.
Read the texts of the exercises below in order to find hints about what should
be included in a program to be used not only for the demonstration of the
orbits, but also for the experimental study of a numerical method for ODEs.
Distinguish between what can be done in the general part of the program and
what should be done in its problem dependent parts of your program, and
think of the communication between them.
Think also of convenient program tools for the input of the parameters of the
problem and the method, for the post-processing of results that the program
has produced, and perhaps also for the interaction during a run. Concerning
the input: it is convenient to have a prepared set of default values of the
input data, which can be overwritten by an input from the keyboard or by a
driver program. The details will depend on your choice of language and the
possibilities for interaction.
Note that a rough guess of the size of the first step is needed. 16 The step size
control will usually soon find a suitable step size, even if the guess is off by
several powers of ten, but there exist exceptional cases, where the behaviour
of the program may require some analysis of some hidden difficulty in the
problem. The program sketched in Example 1.4.1, usually finds a good step
size faster, if the guess is too large than if it is too small.
We suggest that the program should be able to work in the following four
modes:
(i) Adaptive step size control, according to Sec. 1.4. In this step size control
the tolerance tol is related to the global error, in a way that will be explained
by Theorem 13.2.1 and the comments after Theorem 13.2.2. The number of
steps will be approximately proportional tol�1=2. At the time of writing,
these features distinguish our program from many other programs, where the
relation of the tolerance to the global error is more obscure. The number of
steps will, in that case, be approximately proportional to tol�1=3 for a 2nd
order accurate method.
(ii) Constant step size
(iii) According to a prescribed sequence of times t0; t1; t2; : : : ; usually ob-
tained from a previous run. (This is useful when you are interested in dif-
ferences between solutions with small changes of parameters or initial values.
See also comments after Theorem 13.1.8.)
(iv) Every time step defined by the sequence t0; t1; t2; : : : is divided into two
steps of half size. This is useful for the estimation of the global error, when the
exact solution is not known, and for the improvement of the results afterwards
by Richardson extrapolation, see x3.3.4. One extrapolation yields 3rd order
accuracy.
It is in most cases suitable to begin with tol = 10�3. You can then judge, for
what accuracy you will still get a reasonable computing time and a reasonable

15It was stated in Example 1.3.1 that linear interpolation is good enough for this purpose. This
is true only if Richardson extrapolation is no used.

16More sophisticated programs can choose the first step size without the user’s help.
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size of the output to be used at the post-processing.
You may also obtain good hints by looking at other codes for ODEs, e.g., those
contained in Hairer, Nørsett and Wanner [20] Run also some of the computer
exercises of this chapter with some professional package, such as LSODE,
EPISODE, DIFEX1 or DEABM. They are described in Hairer, Nørsett and
Wanner [20, p. 374 ff.].

C2. Apply the program to the equation ẏ = �my1+1=m, y(0) = 1.

(a) Run the program for m = 1
2 from t = 1 to t = 10000 with two different

tolerances. Plot log y, log h, N(t)=100 and the logarithm of the relative error,
divided by tol, all of them versus log t.
(b) Run also the case m = 1 with similar output over a longer time. Automatic
interrupt when y < 10�3 tol.

(c) Make some computer experiments related to problems P3 and P5.

(d) Write a program for systems of the form ẏ = Ar(y), see problem P4(a),
and run it for k1 = k2 = k3 = 1. Stop when y1 < 0:1.

(e) Run the system in P4(e) for � = 0:1 and � = 0:2. Compare the solutions
with each other and with the approximate expression obtained in P4(d). Then
consider the same system for � = 0. The third equation now becomes an
algebraic equation. Choose the positive root. The initial condition z3(0) must
be dropped. Compare the solution obtained for the three values of �,
COMMENT: This is an example of a singular perturbation problem. More
general problems of this type will be discussed later.

C3. Consider systems of the form ẏ = Ay, y(0) = , where A is a constant 2� 2
matrix. Run a few cases, including the following:

(a) Run ”the circle test” with Runge’s 2nd order method. This can be written
as a single complex equation, ż = iz, z(0) = 1. If your program can handle
complex variables conveniently, you may run it in this form, but you can also
transform it to an equivalent real system of the form ẏ = Ay, see problem P3.
Determine by some combination of experimental and theoretical work, how
small the tolerance and the step size have to be, in order that the circle should
not become ”thick” on your screen, even after 10 revolutions. Run it also with
a larger tolerance, so that it becomes ”thick” after two or three revolutions.
Does it spiral inwards or outwards, when it has become ”thick” ?
Is it true that the thickness depends much more on the linear interpolation
used in the graphics than on the truncation error of the method? Do your
numerical results in your file ”spiral” in the same way (outwards or inwards)
as the curve you see on your screen?
Perform the circle test also for Euler’s method.

(b) Reproduce Fig. 13.1.5. This equation can also be written as a scalar
complex equation. Notice that you can run all the 40 curves simultaneously by
a for-loop in the ”function”. This gives you a system of 40 complex equations
or 80 real equations. Can you handle the output from such a big system, or
do you prefer to cut it into smaller pieces?
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(c) Consider the differential system,ẏ = Ay + kyk2
2 � y; y(0) = [1; 0]T ; A =

�
0 �1
1 0

� :
What is eAt? Show that, if  < 0, the solution will spiral in towards the origin.
What happens if  > 0?.

Hint: Set y1 + iy2 = z. The system then becomes a scalar complex ODE.
Then set z = rei�, and you will get a real system for ṙ, �̇ that is easily solved
analytically.

Check your conclusions by running either the original system or the complex
scalar equation on a computer, for a few positive and negative values of ,
with graphical output in the form of a plane curve.

(d) Consider the system ẏ1 = y2; ẏ2 = y1. (This cannot be written as a scalar
complex equation.) Show that the paths are (part of) hyperbolas of the formy2

1 � y2
2 = . Take as initial points 16 equidistant points on the unit circle.

(e) Run the same system as in (b) a few cases with initial conditions of the formy1(0) = �1, y2(0) = 1 � Æ and y1(0) = �1 + Æ, y2(0) = 1, where 0 < Æ � 1.
Take e.g. Æ = 0:005 and Æ = 0:02.
Look at the orbits on the screen. One of the asymptotes seems to be ”attrac-
tive”, and the other is ”repulsive”. Explain why.
Look at the numerical output. Make a conjecture about how the shortest
distance from the origin depends on Æ, 0 < Æ � 1.
Prove the conjecture.

C4. Recall the shot problem, described in Sec. 1.4. We introduce dimensionless
variables by means of scale factors inspired by the case without air resistance,
which can be solved exactly. Set w0 =

pu2
0 + v2

0 , L = w2
0=g, � = R2L=m.

The new variables are x̄ = x=L, ȳ = y=L, ū = u=pgL;  = v=u, t̄ = tpg=L.
We take x̄ as independent variable (instead of t̄ that is now eliminated). Show
that the differential system then becomesdȳdx̄ =  ;

dūdx̄ = ��ūp1 +  2;
d dx̄ = �ū�2;

with initial conditions (say) ȳ(0) = 0; ū0 = cos(�0),  (0) = tan(�0). (You
may also add an equation for dt̄=dx̄.) Run the cases treated in Sec. 1.4.
This particular problem can be run efficiently with constant step size. Run it
also with two different step sizes and make Richardson h2- extrapolation. Use
linear inverse interpolation to find the landing point. (Alternatively, do this
with variable step size according to mode (iv) described in Exercise 1.)

comment: The interpolation error depends of the location of the point within
the step. A consequence is that the error of a value obtained by linear (inverse)
interpolation may not show the same proportionality to tol or h2 as the
errors at the points primarily computed by the integration routine. This can
be overcome by the use of higher order (inverse) interpolation.

(b) Make also shots with �0 = 0 from an “infinitely” high mountain. Use
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variable step size. Will ȳ(x) tend to �1 for a finite value of x? Make a
conjecture about this, and support it by computational and/or theoretical
evidence. Would it be better to use another independent variable in this
study? Try this too.

C5. Study experimentally (by numerical integrations) the sharpness of the bounds
for j�(t)� �(t)j obtained in the pendulum example 13.1.24, for some different
values of �0. You may use constant step size in this study. Use several step
sizes in order to be able to separate j�(t) � �(t)j that is small itself (if �3

0 is
small) from its truncation error.
Comment: If you estimate �(t)��(t), from the difference between the results
from separate numerical integrations for � and � it is advisable to have the
same step size sequences in both integrations. (Why?) There are, however,
several other ways to perform the study; you can, e.g., set up a differential
equation for �(t)� �(t). It is your choice.

C6. Treat the system (13.1.36) that describes a population with crowding and
toxins, with Runge’s 2nd order method. Compare with the results of Problem
P8. Start with y1(0) � tol, y2(0) = 0.
Run the following cases long enough to show the limits as t!1:a = b = 0:5; a = b = 0:1; a = 0:5, b = 0; a = 0:1, b = 0.
Plot y1 versus t on the same sheet for all the four cases.
Plot y2 versus y1 in the first two cases.

C7. (a) Run the Predator-Prey problem as in Example 13.1.11. Choose tol (or a
constant step size) so that the curves (see Fig. 13.1.6) become closed curves to
the accuracy of your screen or hard copy output. Determine how the length
of the periods depends on the initial value.

(b) Make a second run, and apply Richardson extrapolation to improve the
estimates of the periods. (See the comment of exercise C4.)

(c) A modified Lotka–Volterra model readsẏ1 = (a� �y1 � by2)y1; ẏ2 = (�+ dy1)y2:
Choose (say) � = 0:2, and run it with the same parameters and initial values
as before. Note that the qualitative character of the orbits changes a lot.

C8. Treat Problem P18 with Runge’s 2nd order method. You are likely to en-
counter some trouble with values of y > 1, due to the inevitable computa-
tional errors. How can you rewrite the problem in order to avoid this trouble
(without using the known exact solution)?

C9. Dry friction. Test by numerical experiments the result of Problem P19 above,
for some representative choices of  and �.

C10. We saw in problem P8 that the solution of the differential equation ẏ = y �
2t=y, y(0) = 1 is very sensitive to perturbations in the initial value.
Study what happens in the numerical solution (with the correct initial value)
up to t = 12 (say) with various tolerances that give decent computing times.
Make also some experiments with y(0) =

p
1� Æ; Æ > 0, and find out approx-
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imately, how the length of the interval of existence of a real solution depends
on Æ . Design a suitable termination criterion. Plot y versus t with several tol-
erances on one sheet, in linear scales. Plot on another sheet log jerrorj versust.

C11. The solution of the differential equation ẏ = t2 + y2, y(0) = 1 tends to infinity
at t = a, where a is to be determined to (say) 3 or 4 decimal places. (See also
Problem P10).

(a) Set y = 1=u, and solve the differential equation for u numerically. Inter-
rupt when u has become negative, and determine a by inverse interpolation.

(b) For a complicated system, the kind of transformation suggested in (a) may
be impractical, and we shall therefore see what can be done with a more direct
approach to the original equation and an appropriate termination criterion.
One criterion of a general nature is to stop when tn+1 = tn in the computer.
This criterion is worthwhile to have in the program, together with some suit-
able message, also for many other reasons. Determine how many steps it
needs, for various tolerances. How well is a determined? How big is y when
it stops?
Another idea is to use Aitken extrapolation of the sequence tn. Stop when two
successive extrapolated values differ by some fraction of tol. (The fraction is
to be tuned.) Determine how many steps it needs for various tolerances, and
how well a is determined. Does the cancellation in the denominator of the
Aitken formula cause trouble?

(c) Make some experiments, in order to see, if the two strategies described in
(b) work for other equations of the form ẏ = t2 + y; y(0) = 1, ( > 1, not
necessarily an integer).

C12. The numerical solution of the differential equation dy=dt = f(t) may be a
practical way to perform numerical quadrature, due to the well developed
techniques for the automatic control of stepsize in the packages for solving
ODEs. Test your program, and some more professional package, on the com-
putation of the slowly convergent integralZ 1

0

(t3 + t2 + 1)�1=2 dt;
to (say) 4 decimal places, and make a graph or a table that shows the variation
with t of the step size and the number of steps. Is it true that the latter grows
like a+ b log t, for t� 1?
Decide yourself to what extent one or two terms of an expansion like the one
in Example 3.1.9 are useful for large t, e.g., in order to determine when to
stop. How do you choose the tolerance and estimate the error? (See computer
exercise 1 of this section, suggestion (iv).)

C13. (a) Run the following initial-value problem problem with the 2nd order Runge–
Kutta method with a few tolerances,ÿ = 2y; y(0) = 1; ẏ(0) = �p2:
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You know the analytical solution, but you cannot be sure that the numerical
solution will in the long run behave in the same way, e.g., due to rounding
errors. Design a termination criterion, so that the computation is interrupted
with some informative text, if something evidently wrong happens, e.g., ify(t) � 0, or if ẏ(t) � 0, or if the number of steps exceeds 1000 (say).

(b) The problem ü = u2, u(0) = 1, u̇(0) arbitrary negative number, was
treated in Ex.13.1.12. Run this over a longer time and for a few more values
of u̇(0). Determine to 3 decimal digits (say), for a few of these initial values,
when u(t) becomes infinite. Make graphical output, both u versus t and in
the y1y2-plane, with y1 = u, y2 = u̇.

(c) Show that the graphs in th y1y2-plane have equations of the form 1
2y2

2 =
1
3y3

1 + , where ,  � � 1
3 , depends on the initial values.

Show how to determine at what time u(t) becomes infinite, by means of the
values of integrals of the form

R
(1

3u3 + )�1=2)du between appropriate limits.
Compute a few values numerically, and compare with the results obtained in
(b).

(d) Do the same things for the problem u̇ = u+ u2, u(0) = 1, u̇(0) < 0. Note
the similarities and differences between this problem and the problem treated
in (b).

C14. Geodesics. Consider the surface that is generated when a plane curve
[x(�); z(�)], x(�) > 0, is rotated around the z-axis.
Our terminology stems from the spheroid which approximates the earth, but
the extension to an arbitrary surface of revolution is hopefully obvious. For
the spheroid x = cos�; z = (1� �) sin�;
where the radius of the equator is the unit of length. The relation of the
parameter � to the geographic latitude � reads tan� = (1 � �) tan�. � =
3:367E� 3 for the earth, but you are advised to use a larger value at some of
the numerical experiments in order to distinguish more easily the effects due
to � from the effects of truncation errors etc..
The longitude is denoted by t. A dot means differentiation w.r.t. to t, while
a prime means differentiation w.r.t the parameter � (see the definition of the
plane curve).
It can be shown that, except for the meridians,the geodesics on this surface
of revolution satisfy the following differential equations:ṡ =

x
sin � ; �̇ =

x cot �u0 ; �̇ = �x0u0 ; (13.1.38)

where s is the arc length of the geodesic;�; 0 < � < � is the angle between the geodesic and the local southern direction;u is the arc length from the north pole along a meridian, i.e., du2 = dx2 +dz2.
More generally,ds2 = du2 + (xdt)2; du = �ds cos �; xdt = ds sin �: (13.1.39)



Computer Exercises 51

(Note that x > 0, ṡ > 0.)
A suitable graphical output may be a curve with the polar coordinates [t; r(�(t))],
where r(�) = x(�)=(1 + z(�)=k), where k is the distance from the south pole
to the equator plane (z = 0); k = 1 � � for the spheroid. This is the stereo-
graphic projection 17 of the geodesic to the equator plane, with the north pole
as center. If � = 0 these curves are circles, both on the sphere and on the
plane.
Determine from a given point a pencil of a few geodesics. Choose �(0), 0 <�(0) < �. It can be shown that sin �(t) = 0; 8t, and the geodesic stays away
from the poles. If, for some t, sin �(t) = 0 the geodesic follows a meridian for
all t.
Test your program on the unit sphere (� = 0), with adaptive step size control.
Then run the spheroid with the same step size sequence (!), and determine
the difference with a few digits of relative accuracy. Judge the reliability in
the usual way, i.e., by repeating these runs with all step sizes divided by 2 etc.
Formulate some natural questions and other more quantitative questions re-
lated to them, and find, by numerical experiments, preliminary answers to
them. For example� Are the geodesics on a spheroid always closed curves, as they are on a sphere?� Do all geodesics from one point meet again at some antipodal point, as they
do on the sphere?� Is it true that the absolute accuracy of the difference between two solutions,
produced as described, is much better than the absolute accuracy of the orig-
inal runs? How much better?
Save your program, for it will be extended in Sec. 13.7 to a boundary value
problem for finding the shortest path on the surface between two given points.
If you have time, try some theoretical analysis or some literature search, and
try also some surfaces of revolution other than spheroids.
comment: The first two equations of (13.1.38) follow from (13.1.39) and the
other definitions. The third one comes from an elegant application of the
Euler equations of the calculus of variations toZ ds =

Z p
(u̇)2 + x2 dt;

borrowed from de la Vallée–Poussin’s classic text [art. 421][10]. Here u is the
function to be determined, x is a function of u, and the result is simplified
by means of the formulas in (13.1.39), and finally the equation is divided by
sin �. 18

17If � = 0, the stereo-graphic mapping is conformal, and a circle is mapped onto a circle or a
straight line.

18de la Vallée–Poussin studies a more general class of surfaces using so-called geodetic polar
coordinates.
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13.2 Control of Step Size and Numerical Stability

In applied mathematics, a theoretical study of a continuous model of a system with
discrete structure, is often easier than a direct approach to the original discrete
problem; the study of error propagation is one example of this. In Sec. 13.1.3 the
error propagation in the numerical treatment of a single differential equation by
a one-step method was treated by a direct discrete approach, although eventually
a sum was approximated by an integral. The result is the approximate bound
(13.1.10), illustrated in Fig. 13.1.4. Later the same type of bound was obtained
in Theorem 13.1.22, see (13.1.33), for the change of the solution of a differential
system caused by a continuous perturbation function r(t; u), indicating that such a
function can be used as a model for the sequence of error pulses. This is, however,
not the whole truth. Unless certain restrictions are satisfied. the error propagation
mechanism of the numerical computations can namely be rather different from
this mechanism of the differential system itself, for which the (exact) variational
differential equation tells the story.

For one-step methods we assume, to begin with, thatkhf 0(y)k2 � 1: (13.2.1)

In Sec. 13.4 we shall derive the same continuous model for error propagation in
a different way for the study of multistep methods. For them we have to add the
requirement that they be strongly zero-stable (see Def. 13.2.3), a condition that is
automatically satisfied by consistent one-step methods.

For some numerical methods condition (13.2.1) can be relaxed considerably
and this opens the gate for the efficient application to an important class of dif-
ferential systems called stiff. This encourages a further development in x13.2.1 of
the continuous model to include other important features of practical computation.
The results in Theorem 13.2.1 and Fig. 13.2.1 have the same simple structure as
13.1.10 and Fig. 13.1.4, but a more realistic interpretation.

An introduction to numerical stability is given in x13.2.2. Implicit and linearly
implicit methods with applications to stiff and differential-algebraic systems, will
be discussed in x13.2.3.

13.2.1 Scale Functions and Step Size Control

The adaptive control of step size is an important issue in the numerical treatment
of ODEs. Unfortunately, in many cases, the assumptions used in the derivation of
(13.1.10). lead to a rather inefficient step size sequence. We shall now modify the
assumptions in a more useful way. Practical problems often contain the following
two complications:

A. Time steps of very different orders of magnitude may be needed in different
time intervals. We shall therefore introduce a function �(t) that describes a local
time scale of the motion. This is in the same spirit as many notions in other
branches of applied mathematics, such as halving time, half width etc. Roughly
speaking, the local time scale of a function should be the length of an interval
around t, where the value of the function changes notably.
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For example, the solution of the initial value problemẏ = �100(y� cos t); y(0) = 0;
reads y(t) = (cos t + 0:01 sin t � e�100t)=1:0001. At the start, y(t) � 1 � e�100t;
for (say) t > 0:05, y(t) � cos t. It is natural to set �(0) = 0:01, and �(t) � 1
for t > 0:05. An ideal step size would vary proportionally to �(t); we shall see
below how the factor of proportionality depends on the tolerated error and on the
numerical method.

In the theoretical discussion let, to begin with, �(t) be any positive, piecewise
continuous function. We then define a function �(t); called the age of the motion,
that measures small increments of time in the local time scale, i.e.,�(t) =

Z ta dx�(x)
: (13.2.2)

B. The size of different components of y(t) can differ by several orders of magnitude,
and an individual component can vary by several orders of magnitude along an
orbit. So we need another scale function too, a diagonal scaling matrix S(t)
for measuring errors etc.. The accuracy requirement may be in terms of relative
accuracy for each component. Sometimes it can be rather expensive to obtain high
relative accuracy for example near a point, where a component is zero. In some
problems high relative accuracy may be necessary also in such cases, but in other
problems it is not, and the computer should be able to take advantage of this.
In some packages, the user can, for each component yi; give a non-negative scale
factor si (or accept a default value given by the program) that defines a breakpoint:
relative accuracy is required when jyij > si and absolute accuracy is required whenjyij � si. The non-zero elements of the diagonal matrix S(t) are defined thus,Si(t) = max(jyi(t)j; si); i = 1 : s: (13.2.3)

The general strategy described here has been applied in several programs by one
of the authors. (In the program outlined in x1.4.3, si was set to a default value
10�3 for all i.) Note that the requirement for either pure relative or pure absolute
accuracy comes as particular cases, with appropriate choice of the factors si.

The exact formulation of all this may vary between implementations, which is
also the case for several other details of this discussion. For example: a smoother
alternative is to set Si(t) = jyi(t)j+si. See also the comments after Theorem 13.2.2.

19

If u(t) is the absolute global error, then the scaled global error v(t) (or the
”mixed absolute-relative” error) is defined by the equation,S(t)v(t) = u(t); (13.2.4)

19Hairer, Nörsett and Wanner compare their error estimate for the component yi with the
quantity jyij(Rtol)i + (Atol)i. Their notion is more flexible than ours, which is obtained for
(Rtol)i = tol;8i, (Atol)i = sitol.
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and similarly for the local error vector. Let l(t) be an estimate of the absolute
local error vector in the time step that leads to t. Our theoretical step control
strategy is to determine the step size h(t) so thatkS(t)�1l(t)k�(t)=h(t) � tol; (13.2.5)

where tol is a tolerance to be given by the user; tol is thus compared with the
scaled local error per the intrinsic unit of time. The following theorem shows, how
this leads to a connection of tol to a bound for the global error, in fact a more
natural or less obscure connection than most strategies for the step size control
have.

Introduce the scaled error vector v and the age � into (13.1.29), i.e.,u = Sv; dt = �d�; r(t) = l(t)=h(t);d(Sv)d� = �(JSv + l=h):
Since d(Sv)=d� = Sdv=d� + (�dS=dt)v, we obtain,dvd� = ��S�1JS � S�1Ṡ�v +

�hS�1l: (13.2.6)

This equation has the same structure as equation (13.1.29). By (13.2.5), the norm
of the last term is approximately equal to tol or a little smaller. So, we have the
following important consequence of Theorem 13.1.22:

Theorem 13.2.1.
Let S(t) be the scale function defined by (13.2.3), and let the step size control

be defined by (13.2.5), i.e. the error per local unit of time should be approximately
equal to tol. The age � of the motion is defined by (13.2.2). Assume that in a
neighborhood D of the orbit,���S�1f 0(y)S � S�1Ṡ� � ��: (13.2.7)

Then, at age �; the norm of the scaled global error, v(�), does not exceed  (�); whered d� = �� + tol;  (0) = kv(0)k = kS�1u(0)k: (13.2.8)

Hence20 kv(�)k � kv(0)ke��� +

�
tol�; if �� = 0;

tol e����1�� ; if �� 6= 0;.
(13.2.9)

In particular, if �� < 0, then kv(�)k �  (�) ! �tol=��; as � ! 1. See
Fig. 13.2.1.

The vector norm is arbitrary, and �(�) is the subordinate logarithmic norm.

20The bound (13.2.10) holds a fortiori if the step size is smaller than the value determined by
(13.2.5). The formula for the number of steps, N(t) is then an underestimate of the actual number
of steps.
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Figure 13.2.1. Scaled global error divided by tol versus age for �� =�1;�0:5; 0.

This theorem is valid for any positive continuous function �(t). In fact, even
an old step size strategy based on the local error per unit of (the ordinary) time,
i.e., � � �(0); � � t=�(0), is included, in spite that �(t) barely deserves to be called
an intrinsic time scale of the motion in that case.

In another classical strategy the tolerance is compared with an estimate of the
local error per step. This is not included; see, however, the comment after Theorem
13.2.2.

We shall mainly apply this to two classes of local time scales, � = � Iq and� = � IIq , specified below.
If needed, the result (13.2.9) can be applied with piece-wise constant �� with

the age measured from the most recent breakpoint. So we have the same situation
as in Fig. 13.1.4 and (13.1.10), but it allows more general interpretations:

1. The errors are scaled by a diagonal matrix S(t); which allows also ”mixed
absolute-relative errors”.

2. The independent variable is the age � instead of the ordinary time t.
3. �� is defined by (13.2.7). It is usually more reasonable to assume a uniformly

valid bound for �J than for J itself, provided that the local time scale has
been adequately defined.

Although the relation between local and global errors is very complicated,
this theorem can at least give you a hint how to choose tol, in order to meet your
requirements concerning the global error. You cannot expect it to give you a precise
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numerical bound for the global error in practice; mostly no precise estimates of the
logarithmic norm, � and � are easily available. The important thing is that for
a qualitative picture and for the correct orders of magnitude it is enough to have
rough ideas of � and ��. In simple cases, it is indeed possible to carry out a more
detailed analysis in these terms, see Example 13.2.1 and a few other examples, and
this can reveal unexpected features that may influence your view of the numerical
treatment of initial value problems and your language for the discussion of these
matters.

For the practical estimation of the global error we suggest instead that you first
run the problem with adaptive control, but you may choose tol 2p times larger than
you need, or a little less, where p is the order of accuracy, which is supposed to be
constant. Afterwards you make another run, where each step of the previous run is
divided into two equally large steps. 21

So, in the second run the step size is still variable though not adaptively
controlled. You can then either just plot an error curve for the second run, by
means of the difference between the results of the two runs, divided by 2p � 1; or
you can make a global Richardson extrapolation, see x3.3.4 and Example 13.2.1. In
the latter case you obtain better results, but it is sometimes not easy to obtain error
estimates that are both reliable and realistic.

This procedure is, for several reasons, probably better than making two adap-
tive runs with different tolerances, if your program allows this mode of operation.
The efficient implementation of this idea may be more complicated for programs
where the order is also adaptively controlled.

The local error l(t) is asymptotically proportional to hp+1, h! 0. We writekS�1l(t)k � jpjL(t; f; y)hp+1: (13.2.10)

We shall emphasize what happens in a particular motion and write shorter L(t) or L
instead of L(t; f; y). The error constant p is introduced as a kind of calibration.p is defined by the requirement that, in the case of the standard test equation ẏ = �y,
the local error should be asymptotically p(�h)p+1y.22

Next we define L�(t) = jpjL(t)�q(t); (13.2.11)�q here stands for either of two local time scales defined below, denoted � = � Iq ,� = � IIq . With this notation, the theoretical step control strategy (13.2.5) reads,L�(t)hp � tol: (13.2.12)

Let h1 be the step size that has just been used. If L�hp1 > tol, the step is to be
recomputed with step size h̄ = h1 � (L�hp1=tol)�1=p=�; (13.2.13)

21Compare the suggestions for the program in exercise C1 of Sec, 13.1.
22We have to exclude some methods, for which the order of accuracy is higher than p for this

particular differential equation; we believe that this exclusion is harmless.
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where � is a safety factor, e.g., � = 1:1, else the step is accepted, and the step sizeh = h1 min(h̄=h1; �) is suggested for the next step, where �, � > 1 is for preventing
a temporary small value of L�(t) from having an undesirable effect on the step size.

The safety factors �; � are to be tuned by the implementer.23 They account
for some approximations used in the error estimate and, above all, for the fact that
the value of L�(t) is based on information from the past, while it is to be used for
a step into the near future. In the program outlined in Sec.1.3 we chose � = 5. In
that program there is also a bound for the suggested reduction of the step size for
a recomputation; if necessary the recomputation can be repeated. Many programs
require upper and lower bounds for h itself etc.

The results are still valid for any positive function �(t). Now we shall specify
the notion of local time scale more, and see that it can be quite easy to apply.
Assume that we work with a numerical method of order p. We distinguish between
two different types.

Type I: Suppose that the local error in a step is approximately,l(t) = php+1y(p+1)(t); i:e:; L(t) = kS�1y(p+1)(t)k: (13.2.14)

This is the case for linear multistep methods and several other classes of methods.
There are then, in this Type, two alternative natural definitions of �(t); q

stands for quotient, and r stands for root.� Iq (t) = kS�1y(p)(t)k=kS�1y(p+1)(t)k; � Ir (t) = kS�1y(p)(t)k�1=p: (13.2.15)

For the sake of brevity we suppress in the notation the dependence of p. The
”dimension” of both measures is ”time”. For example, if y(t) = e�t then � Iq (t) =� Ir (t) = j�j�1; if y(t) = t�m; � Iq (t) and � Ir (t) are both proportional to t, see Example
13.2.3.24

By (13.2.11) and (13.2.15),L�(t) � kpS�1y(p)(t)k: (13.2.16)

Note that y(p)(t) appears here, not y(p+1)(t). The step size control of Type I is now
defined by (13.2.12).

By (13.2.15), we now have � Ir (t) � jL�(t)=pj�1=p, hence by (13.2.12),� Ir (t) � hjtol=pj�1=p: (13.2.17)

Type II: The situation is reversed here; suppose that a criterion for the step size
control is given in the form L�(t)hp � tol. Recall that the norm of the scaled
local error in a step is jpjL(t)hp+1. Here L, L� usually do not satisfy (13.2.14),
(13.2.16). (This is the situation, e.g., for embedded Runge–Kutta methods with
local extrapolation, see x13.3.2.)

23The use of � means de facto that tol is divided by �p.
24The dimension of L and L� are (time�p�1) and (time�p), respectively. The dimension of all

variants of � is time; the age, ��; p; tol, and the scaled global error are non-dimensional.
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The local units of time � IIq (t), � IIr (t) are not needed for the step size control,
but we shall see how they can be defined in this case, in order to make applications
of the theorems of this section possible, e.g., for the a priori estimation of global
error, the number of steps etc. See also Ex. 13.2.1.

We define �(t) = � IIq (t) by requiring that (13.2.5) should hold, i.e.,jpjLhp+1� IIq =h = tol = L�hp; (13.2.18)

hence � IIq = jL�=pj=L: (13.2.19)

We similarly define � IIr by the equation� IIr = jL�=pj�1=p: (13.2.20)

Recall that the last two equations are (approximately) valid in Type I too. Since
tol � L�hp we obtain, just like in Type I,h=� IIr � jtol=pj1=p: (13.2.21)

The functions � IIq , � IIr thus defined are certainly “local” time scales, but sometimes
they may not deserve the name “intrinsic” time scales.

We are now in a position to formulate a useful result that is valid in both
types.

Theorem 13.2.2.
Set �(t) equal to � Iq (t) or � IIq (t) in the step size control and in the previous

theorem. Put k = jtol=pj1=p:
Set �r equal to � Ir , � IIr in the two types. Introduce the age function �r(t) =R ta dx=�r(x), and let N(t) be the number of steps needed for the interval [a; t]. Thenh(t) � �r(t)k; N(t) � �r(t)=k:
Proof. The first relation was derived in (13.2.17) for Type I, and in (13.2.21) for
Type II. We use the first relation to establish the second relation:N(t) =

Xxi�t h(xi)h(xi) � Z ta dx�r(x)k =
�r(t)k :

Comments: (i) If �r were chosen as the independent variable in the ODEs

then both Type I and Type II would yield the constant (non-dimensional) step sizek. This variable transformation is not to be used analytically in practice, but it
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can help conceptually; in fact it can be said that the step size control recursively
achieves this transformation.

Typical values of k are between 0.01 and 0.1 times the number of function
evaluations in a step, if p is adequately chosen for the accuracy required; a higher
value of p when high accuracy is required. (ii) In the 1960’s there were animated

debates whether to compare the tolerance with the local error per step or with the
local error per unit of time. Our strategy gives a kind of Salomonic answer: we use
the local error per unit of time in the intrinsic local time scale, �q(t). Formally this
sounds like accepting the second opinion, but one can show (Problem P3) that, for
both types of step size control,kS�1l(t)k � k tol �r(t)=�q(t); (13.2.22)

where k is defined in Theorem 13.2.2. So, if �r(t)=�q(t) is constant during a motion,
this strategy gives the scaled local error per step a constant norm along an orbit.
That sounds more like accepting the first opinion, but the tolerance does not mean
the same. Note that tol is changed, the global error and the number of steps will
be changed proportionally to tol and tol1=p, respectively.

If we ask for a bound for the relative error, i.e. if jyij > si: 8i, then it can
be shown (problem P4) that, in Type I, �r(t)=�q(t) is indeed constant, if y(t) is an
exponential or a power (but this is usually not exactly the case).

Typically, �r(t)=�q(t) fluctuates between rather moderate bounds, and these
measures of local time scale usually do not depend heavily on p either if (say)
2 � p � 8. These notions have no high precision, but they are useful for decision.
The notions of age and local timescale describe features of a motion that are re-
lated to the amount of work and the step size needed in the numerical simulation,
respectively. The role of the tolerance is concentrated in the constant k, and so is,
to a large extent, also the dependence of the numerical method.

(This statement is a little exaggerated, for the definition of �r(t) does some-
what depend on the numerical method.)

Example 13.2.3 Runge’s 2nd order method studied from the point of
view of Type II:

Recall Runge’s 2nd order method for the autonomous system ẏ = f(y),k1 = hnf(yn); k2 = hnf(yn + 1
2k1); yn+1 = yn + k2:

The local error l(tn) readsyn+1 � y(tn + hn; tn; yn) =

�
1

8
f 00f2 � 1

6
y000�h3n + : : : ;

see Problem 7 of Appendix. For the test equation ẏ = �y this becomes � 1
6 (�h)3y.

Then, by the definition of the error constant and by Theorem 13.2.2, p = 2, jpj = 1
6 ,k =

p
6tol. Hence, by (??), L(t) = k 6

8S�1f 00f2 � S�1y000k.
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In the program outlined in Sec. 1.3.4 the step size is controlled by means of
the quantity

1

3
kk2 � k1k =

1

3
hkf(yn + 1

2hf)� f(yn)k = k1

6
h2f 0f + : : : k � 1

6
h2kÿk:

In the terminology of Type II, we therefore set L� = 1
6kÿk.

By (13.2.19), (13.2.20), (13.2.21), we then obtain,� IIq =
kS�1ÿkkS�1(y000 � 3

4f 00f2)k ; � IIr = kS�1ÿk�1=2; h = k� IIr :
In our experience, � IIq deserves to be called an intrinsic time scale unless the problem
is strongly non-linear, e.g., if (say) kf 00f2k > ky000k.

Now consider the application to the single equation ẏ = � 1
2y3, y(1) = 1, with

the solution y(t) = t�1=2, with relative error control, i.e., set S = y. Now� IIq =
4

7
t; �IIq =

7

4

Z t
1

dxx =
7

4
ln t; � IIr =

2p
3
t; �IIr =

p
3

2
ln t;h(t) =

p
6tol� IIr =

p
8tolt; N(t) =

ln tp
8tol

; f 00f2=y000 = 0:4:
Moreover, �(S�1JS�S�1Ṡ) = f 0(y(t))�ẏ(t)=y(t) = �y2 = �1=t hence, by (13.2.7),�� = �� IIq =t = �4=7 = �0:57. This example confirms the opinion expressed above
that it is usually more reasonable to use a bound for (the non-dimensional quantity)�(t)�(S�1JS � S�1Ṡ)—as we have done in Theorem 13.2.1—than to use a bound
for �(S�1JS � S�1Ṡ) = �1=t itself.

By Theorem 13.2.1 or Fig. 13.2.1, v(�), i.e., the estimated norm of the relative
global error, grows like �IIq tol, to begin with, (if there is no initial error), and

then it converges towards 7
4 tol. Hence the absolute error bound tends to zero like

7
4 tolt�1=2.

With constant step size h = h(1), the number of steps needed are to reach t
is hence (t� 1)= ln t times as large as with our theoretical step control strategy.

This case was run for three different values of tol, with a program, designed
(essentially) according to x1.3.4. The line named ”theor.”, is calculated according
to formulas above.

tol rel.err/tol N(104) N(104)
p

tol
4 10�4 1:36 192 3.84
10�4 1:40 372 3.72

1
4 10�4 1:37 744 3.72
theor. 1.75 3.26

The steps are about 15% shorter than predicted, and the relative error is also
a little smaller than predicted. The main reason is that the safety factor � = 1:2
used in the program, is not needed in a problem like this, where the trajectory
becomes smoother as time goes by.
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Global Richardson extrapolation, see x3.3.4, was also applied to this example,
i.e. the first run used adaptive step size control. In the second run, each step of
the first run was replaced by a pair of steps of half size. Denote the results of these
two runs by y(t;N), y(t; 2N); the extrapolated values are y(t;Ex) = y(t; 2N) �
1
3

�y(t; 2N)�y(t;N)
�
. In the long run Error(y(t;Ex)) � 0:5(tol)1=2Error(y(t; 2N)).

This was tested with the use of tol = 0:001 and tol = 0:0001 in the first runs.
The relative errors of y(t;Ex) became about 0:25 10�4 and 0:75 10�6, respectively.

The rule of thumb for the range of tolerances mentioned above becomes for
Runge’s 2nd order method (without extrapolation) 0:02 < k � p

6tol < 0:2, i.e.,
7 10�5 < tol < 7 10�3. For problems of moderate size the method can well be used
for smaller tolerances, if no higher order method is conveniently available.
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Figure 13.2.2. The functions ageq = �q, ager = �r, �r, �q for p = 2, and
for p = 5. See Example 13.2.4.

Example 13.2.4 (Study of a stiff linear system with the use of the Type I concepts)
Fig. 13.2.2 shows, for p = 2 and p = 5; the functions �Iq , �Ir , � Ir , � Iq for a linear sys-
tem ẏ = Ay. Here, A = TΛT�1, where Λ = diag(�100;�10;�1;�0:1), and T is a
random 4 � 4 matrix, i.e. the elements of T are independent random numbers in
the interval [0; 1], and y(0) is a random vector. We choose S(t))y(t).

The figure was obtained by computer with the use of the exact solution of
the system. Note the sharp plateaus, when � Iq (t) has reached the reciprocals of the
eigenvalues of �A, also called the time constants of the system. This happens,
approximately at t = 0; 0:1; 1; 10, a little earlier for p = 2 than for p = 5.

The curves for �r(t) show a smoother transition between the levels. This is
quite natural, since �r(t) is the geometric mean of the first p functions �q(t) whenS(t) = y(t).

Another interesting feature of this example is that the local time scale of the
motion is much larger than the smallest time constant of the system, when t is
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large. They become, respectively, 10 and 0:01. When this happens one says that
the motion has become stiff. A problem is said to be stiff, if there is a time interval,
where the motion is stiff.

The increase of the local time scale is explained by the following decompo-
sition of the solution y(t). Here tj is a column of the matrix T , i.e. the eigen-
vector of A belonging to the eigenvalue �j ; and j is a component of the vectorT�1y(0), j = 1; 2; : : : ; s, (s = 4). By (13.1.20) and (13.1.21), y(t) = exp(At)y(0) =T exp(Λt)T�1y(0), hence y(t) =

sXj=1

jtj exp(�jt) (13.2.23)

The term with �j = �100 dies out at about t = 0:05 (say). Similarly, the term with�j = �10 dies out at about t = 0:5, etc. Roughly speaking, the local time scale is
determined by the fastest of those terms which have not yet died out. �

The decomposition (13.2.23) is valid and interesting for general diagonalizable
matrices, and our discussion can be extended also to ODEs with complex eigenval-
ues. In that case, either the real part or the modulus of an eigenvalue is relevant,
depending on the context.

A linear system with constant coefficients was considered in the example.
The concepts introduced are most relevant in discussions of what happens to small
disturbances (errors). Therefore the natural generalization of the concept of time
constants to a non-linear problem is related to the variational equation (13.1.8).
Natural candidates to the name of time constants at a given time are then the
reciprocals of the eigenvalues of the Jacobian. The smallest time constant can often
be estimated by the reciprocal of some norm of the Jacobian, which is often time-
dependent. So, we must talk about local time constants in the definition of
stiffness in a non-linear problem.25

Stiff problems is an important class of problems, that requires special numerical
methods; else the step size control will make the time step much shorter than the
one predicted by Theorem 13.2.2. A stiff motion is namely surrounded by other
possible motions of the same system, for which the local time scale is more like the
smallest time constant. The numerical method must have good stability properties,
in order that the motion should not be kicked out to one of those tracks, where a
much smaller step size is required. We shall return to this question.

Example 13.2.5 TA study of a family of nonlinear ODEs in Type I:
differential equation,ẏ = �my1+1=m; y(1) = 1; (m > 0);
has the solution, y(t) = t�m. Note that

(�1)py(p)(t) = m(m+ 1)(m+ 2):::(m+ p� 1)t�m�p; (13.2.24)

25This is a useful generalization, although the usage of this terminology must be taken with a
grain of salt, unless the time scale of the variation of the local time constants is much larger than
the time constants themselves.
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so that � Iq (t) = t=bq; bq = p+m;� Ir (t) = t=br; br =
�m(m+ 1)(m+ 2):::(m+ p� 1)

�1=p:
Hence �(t) = b ln t, with b = bq or b = br. In this example, � Ir (t)=� Iq (t) is constant, so
the scaled local error will be constant during the motion. ( Actually, 2 < bq=br < 3,
for 0:5 < m < 1.) By Theorem 13.2.2,h(t) � kt=br; N(t) � br ln(t)=k; k = jtol=pj1=p:
Notice that the step size grows proportionally to time. The values of p; p and k
depend on the particular numerical method. We have�(J(t)) = f 0(y(t)) = �(m+ 1)y1=m = �(m+ 1)=t:
We require relative accuracy, i.e. S(t) = y(t) = t�m. Since S�1JS = J , we then
obtain, J � S�1Ṡ = �m+ 1t +

mt = �1t :
Note the importance of the term S�1Ṡ. Then, by (13.2.7), we can choose �� =
max(�� Iq (t)=t) = �1=bq. By Theorem 13.2.1, or Fig. 13.2.1, the estimated norm
of the relative global error, v(�); will grow like �tol, to begin with, (if there is no
initial error), and then it converges towards bqtol. Hence the absolute error bound
tends to zero like bqt�mtol.

With constant step size h = h(1) the number of steps needed are to reach t
is hence (t � 1)= ln(t) times as large as with our theoretical step control strategy.�
For example, for t = 104, we have (t�1)= ln(t) � 103.

�
Note that this conclusion is

independent of m; p; p and tol. The same conclusion was obtained (for m = 1
2 )

in Example 13.2.3 with a Type II strategy.
Note that the age, and hence the number of steps, grows proportionally to

log t. This is typical for a large class of problems where the motion approaches the
origin like some negative power of t.
13.2.2 Introduction to Numerical Stability

So far, we have discussed a theoretical strategy for the step size control. With
a few modifications, this has been used in actual programs, and the actual step
size sequences are often close to those predicted by theoretical calculations like the
above (when they can be done). Some of the differences between this theory and
practice are as follows:

A. Most programs put restrictions on the time step changes. (A simple case
is seen in the program for Runge’s 2nd order method outlined in Sec. 1.3.)
There are several reasons. It was mentioned above that a rapid change of the
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suggested step size may be due to a weakness of the error estimate. Another
reason is that the change of the step size causes some extra computation
(”overhead costs”), so it may sometimes, in particular for implicit methods,
be better to keep it unchanged for a while than to increase it by only a few
per cent.

B. When khf 0(y)k2 is not small, the error propagation in the numerical algorithm
can be very different from the error propagation in the differential system.
We shall now discuss what conditions a numerical method and the step size
produce should satisfy, in order that our theory should provide an adequate
step size control strategy.

The discussion will, for example, yield a condition for the theoretical step size
control to be applicable to Euler’s method, but it also shows that this method
(like most explicit methods) is unable to handle stiff motions. Moreover, some
numerical methods must be discarded altogether, although they look rather
promising if one only consider their local errors.

We first need a discrete analog to some of our previous results, e.g. (13.1.10)
and Theorems 13.1.23 and ??.

Lemma 13.2.6. Consider a sequence of non-negative numbers w0; w1; w2; : : : that
satisfy the inequality, wn+1 � anwn + bn; n � 0; where 0 � an � a; 0 � bn � b.

Then, wn �  n, where  n is a solution of a scalar difference equation,  n+1 =a n + b;  0 = w0, i.e.wn �  n =

( anw0 +
b(1� an)

1� a ; if a 6= 1;w0 + bn; if a = 1.
(13.2.25)

The behaviour of the sequence  n is illustrated by Fig. 13.2.1. If a < 1, wn �
maxfw0; b=(1� a)g, 8n � 0, limwn � b=(1� a).

If a = 1 +O(k); k ! 0; � fixed, then wn = O(b=k) +O(w0).

Proof. The proof is left for problem P5.

Here, k = jtol=pj1=p, as defined in Theorem 13.2.2. In typical applicationswn is the norm of a scaled global error, and an = 1 +�nhn +O(k2); a = 1 +��k �e��k. In particular, a = 1 corresponds to �� = 0. Also note that nk � �n, by
Theorem 13.2.2, so that an � e���.

The following two examples are typical and lead to interesting conclusions.

Example 13.2.7 Nonlinear stability analysis for Euler’s method.
Let y(t) be an exact solution of the autonomous differential system ẏ = f(y).

Euler’s method, with variable step size, yields the difference equation,yn+1 = yn + hnf(yn); y0 = y(0);
while y(t) satisfies the difference equation,y(tn+1) = y(tn) + hnf(y(tn)) + l(tn+1):
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where the local truncation error l(tn+1) is obtained by Taylor’s formula with the
integral formula for the remainder (12.X.4). For t = tn, h = hn,l(t+ h) = y(t+ h)� y(t)� hẏ(t) = h2

Z 1

0

(1� x)ÿ(t+ hx)dx � 1
2h2ÿ(t):

We use similar notations as before in this subsection, in particular Theorem 13.2.1
and Lemma 13.2.6. In order to make the treatment more transparent, we here
consider absolute error control only, i.e. S(t) � I and use a weighted max-norm
only.26 Set u� = y� � y(t�); w� = ku�k;
and recall that, by (13.1.14), f(yn) � f(y(tn)) = J(tn; un)un, where J(t; u) =R 1

0
f 0(y(t) + �u)d�, henceun+1 = un + hnJ(tn; un)un � l(tn+1): (13.2.26)

Hence, kun+1k = kI + hnJ(tn; un)kkunk+ kl(tn+1)k:
Assume that (i) the diagonal elements of hnf 0(y) are greater than �1 for ally in a neighborhood of y(tn), (so that Theorem 13.1.20 can be applied.)
(ii) one of our theoretical step control strategies (type 1 or 2) is used, (so that,

by Theorem 13.2.2, k = 2tol.
By Theorem 13.1.20, (13.2.7) and Theorem 13.2.2,kI + hnJ(tn; un)k � 1 + �hnJ(tn; un) � 1 + k�� � a; (13.2.27)

By (13.2.5) and Theorem 13.2.2,kl(tn+1)k � tolhn=�n � ktol � b:
By Lemma 13.2.6, and the discussion after the lemma, we obtain nk = �; an � e���,
and the same bound for kunk as was obtained for kv(�)k in Theorem 13.2.1.

These assumptions are satisfied over a given finite time interval [t0; T ] if tol is
small enough; it follows from the bounds that the global error is O(tol), hence the
solutions provided by means of our theoretical step size control strategies converge
uniformly to y(t) as tol ! 0.

In practical computation it is important to realize that for a fixed value of
tol the step size control may eventually lead to step sizes that violate the first
assumption, and afterwards the continuous model for error propagation cannot be
trusted for Euler’s method. This trouble characterizes stiff motions, when one uses
a method (like Euler’s method) that is not designed to handle such motions.

Since the assumptions are sufficient conditions only, one might hope that the
reality is not that bad. The linear system treated in 13.2.9 tells, however, that the
reality is indeed almost that bad; Euler’s method can still be used, but the step size

26This proof applies to the case of a constant diagonal matrix S. More general results will be
derived in Sec. 13.9.
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must satisfy a condition that that is close to the first of our assumptions, and that
is no good if the motion is stiff.

We return to non-stiff problems, and make the two above assumptions, and
set S(t) � 1. In the discussion around Theorem 13.2.1 we promised more than
a bound for the error; we held out the prospect that the true global error un of
the numerical method should be close to u(tn), i.e., the total effect at tn of all the
previously committed local errors (or perturbations) in a continuous model of the
error propagation.

We shall therefore estimate gn = un � u(tn); u(t) is defined by the non-linear
variational equation, u̇ = J(t; u(t))u� l(t+ h(t))=h(t), henceu(tn+1) = u(tn) + hnJ(tn; u(tn))u(tn)� l(tn+1) + 1

2h2nü(tn) + : : : :
Subtract this from (13.2.26):gn+1 = gn + hnJ(tn; u(tn))gn � 1

2h2nü(tn) + : : :+ hn(J(tn; un)� J(tn; u(tn)))un:
We assume that �J(t; u)�u is bounded, uniformly in t. Since u(t) = O(tol) =O(k); k ! 0; t fixed, and the same holds for u̇(t); ü(t); un; hn etc., we obtain, by
(13.2.27 the inequality, kgn+1k � (1 + k��) + O(k2))kgnk+ O(k3), and hence, by
Lemma 13.2.6, gn = O(k2) = O(tol2):
(while un = O(tol). This shows that, for our step size control, the true error agrees
well with the result of the continuous model for Euler’s method, as promised above.

Example 13.2.8 Nonlinear stability analysis for the implicit Euler method.
We still consider the nonlinear system ẏ = f(y), and our theoretical step size control
strategy.

The implicit Euler method, or the backward Euler method, is defined by
the formula yn+1 = yn + hf(yn+1). Since yn+1 occurs also on the right hand side,
a system of equations is generally to be solved in every time step, typically by
some iterative method, e.g., by some modified Newton method. In this example
we assume that the function f is such that the relevant solution can be accurately
obtained with no trouble. We shall return to this question for more general implicit
methods in Sec.13.2.4.

We shall see that the implicit Euler method can handle stiff problems, because
of its impressive stability properties. On the other hand, it is only 1st order accurate
(like the usual explicit Euler method), and the implicitness causes more computation
in each step, in particular for large systems,

The solution y(t) satisfies the difference equation,y(tn+1) = y(tn) + hf(y(tn+1)) + l(tn+1);
where the local truncation error l(tn+1) � � 1

2h2ÿ(t) The notations and derivations
are almost the same way as for the explicit Euler method, but the conclusions are
very different. Another difference is that we can here use any norm, (while the
discussion in the previous example was restricted to weighted maximum norms).
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The difference equation for u� = y� � y(t�) now reads,un+1 = un + hnJ(tn+1; un+1)un+1 � l(tn+1);
hence un+1 =

�I � hJ(tn+1; un+1)
��1�un � l(tn+1)

�: (13.2.28)

Recall that, by problem P12 of Sec.13.1, k(I � hJ)�1k � (1 � h�(J))�1 ifh�(J) < 1 for any norm. Assume that (??) holds with S(t) � I . Then k(I �hJ(: : :))�1k � (1� k��)�1 if k�� < 1. The latter restriction is harmless compared
to the analogous restriction needed for the explicit method.

By (13.2.5) and Theorem 13.2.2, l(t) � tolh(t)=�(t) = 1
2k2. For w� = ku�k

we then obtain the inequality wn+1 � awn + b; 8n � 0; w0 = 0, with a =
(1� k��)�1; b = 1

2k2(1� k��)�1.
If �� < 0 we obtain, by Lemma 13.2.6, kunk = kwnk � k=(2j��j) = tol=j��j; 8n,

i.e., the same bound as for the continuous model in Theorem 13.2.1, and this holds
with no restriction on the step size.

Also for �� = 0 and for �� > 0 we obtain approximately the same bounds as
in Theorem 13.2.1; in the latter case the assumption that k�� < 1 means a (mild)
restriction on the step size. All this is valid also for stiff problems.

Again, in the discussion around Theorem 13.1.2, we promised more than
bounds for un, and we shall therefore estimate gn = un � u(tn). Putrn = 1

2h2nü(tn) + hn(J(tn+1; un+1)� J(tn+1; u(tn+1))un+1 + : : : :
We assume that (say) k�J(t; u)=�uk < C, uniformly in t. Then krnk = (O(k3) +O(k2kgn+1k)), since un = O(k). By straightforward computation, we obtain the
difference equation, gn+1 = gn + hnJ(tn+1; u(tn+1)gn+1) + rn;
hence gn+1 =

�I � hnJ(tn+1; u(tn+1)
��1�gn + rn�

By straightforward computation, kgn+1k � (1� k�� �O(k2))�1(kgnk+O(k3)).
If �� < 0 we then obtain, by Lemma 13.2.6,gn = O(k2)=(j��j �O(k)) = O(tol2)=(j��j �O(k));

uniformly in tt. This confirms that in this case the continuous model for error
propagation is rather accurate, also for stiff problems with smooth solutions, and
for large t, with no step size restriction.

Similar conclusions also hold for 0 � ��k < 1, except that the bounds may
become infinite as t!1.

A nonlinear stability analysis can be worked out also for more complicated
numerical methods, but it is much harder. Much useful information can, however,
be obtained from the study of the linear model problem, ẏ = Ay; y(0) = , whereA is a s�s matrix that can be diagonalized by well conditioned linear transformation.
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This is called the linear stability analysis of a numerical method for ODEs. We
shall exemplify (in examples and problems) how the linear stability analysis can be
reduced to the analysis of the scalar test problem.ẏ = �y; � 2 C; y(0) = 1: (13.2.29)

(Note that any complex number can be an eigenvalue of a real matrix.)

Example 13.2.9
We shall study the behaviour of Euler’s method for the linear model problem.

We obtain the difference equation,yn+1 = (I + hnA)yn; y0 = : (13.2.30)

Assume that A can be diagonalized by a well conditioned transformation T , i.e.,T�1AT = Λ = diag(�j). If we set y = Tz, and d = T�1, then the differential and
difference equations becomeż = Λz; zn+1 = (I + hnΛ)zn; z(0) = z0;
respectively. Each of these vector equations falls apart into s scalar equations, where
we simplify the inital conditions, without loss of generality,w0 = �w; wn+1 = (1 + hn�)wn; w(0) = w0 = 1; (13.2.31)

where � 2 Spectrum(A), and w 2 C, (since a real matrix can have complex eigen-
values). Such a reduction of a linear system to scalar equations can be done for
most numerical methods, e.g., for all Runge–Kutta methods and linear multistep
methods.

In order to simplify the writing, we now restrict the discussion to the case
where A has a real negative spectrum, e.g., the matrix of Example 13.2.4, where the
spectrum is f�100;�10;�1;�0:1g. Note that if hn� < �1, the sequence fwng will
have sign changes, in spite that the exact solution w(t) has constant sign. 27.

It is even more remarkable that although w(t) is exponentially decreasing, the
inequality jwn+1j � jwnj; holds only if hn� � �2. Thus, the criterion for numerical
stability for Euler’s method is, in the case of real negative eigenvalues, thathn � hstab � 2j�maxj�1; (13.2.32)

where j�maxj�1 is the smallest time constant of the system. Then kzn+1k � kznk;8n �
0, hence kznk � kz0k;8n � 0, e.g., for weighted lp-norms, (though not for every
norm). We now return to the original variable y. It follows that kynk � kTkkznk �kTkkz0k, hence kznk � kz0k ) kynk � kTkkT�1kky(0)k: (13.2.33)

27Compare the first assumption of Ex.13.2.7.It here reads jhn�j < 1, which is only twice as
restrictive as the condition in (13.2.32)
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Theoretically yn is thus bounded for any non-singular T , but there are impor-
tant classes of problems, where one requires uniform boundedness over an infinite
family of ODE systems. Important examples are the huge ODE systems obtained
after a discretization in the space variables of a PDE. The order of these systems
increases without bounds, as the discretization become finer, and it can happen
that the condition number of T also increases without bounds. In such cases the
analysis of the scalar test problem can be misleading. That is why it is emphasized
that T should be well conditioned.

If hn > hstab for all n > n1 (say), then jwnj grows exponentially; after a few
steps the sequence fyng of Example 13.2.4 has very little in common with the exact
solution y(t).

The condition in (13.2.32) happens to be valid also for Runge’s 2nd order
method. For other explicit methods, and for many implicit methods, the coefficient
2 is to be replaced by some other value. We saw, however, in Example ?? that there
is no condition on the step size for the implicit Euler method if �(A) � 0. 28 and
this is the case for many other implicit methods.

With the automatic control of step size the solution is, however, not likely to
grow indefinitely, due to numerical instability, even if the method is not designed
to handle stiff problems efficiently. The step size control will instead restrict the
step size. Exactly what happens, depends on fine details in the implementation of
the control, for example how sensitive the approximate error estimate is to pertur-
bations. We shall try to describe it in principle.

In the beginning, the step size is small. A smooth and accurate solution is
produced. If the motion becomes smoother as time goes by, the step size increases,
and it can happen that the stability criterion is violated during a few steps. The
error then grows, although it remains (almost) on the tolerated level. The motion
is therefore kicked out a little to one of those tracks, mentioned at the end of
Example 13.2.4, where a smaller step size is required. So, the step size is reduced,
so that a smooth solution is produced again. Soon, the step size increases again etc..
The whole cycle is repeated again and again, so that the step size fluctuates around
the bound hstab set by the stability criterion. The results are still reliable. Note that
this is achieved by a well designed step size control, without any estimation of the
time constants. The only disaster that happens, if the automatic step size control
is well designed, is that the time steps may become very short, compared to the
intrinsic time scale of the motion. 29

At the time of writing the phenomena just described are still the subject of a
lively research, that has been timely reviewed by Hairer and Wanner [21, Section
IV.2]. Ideas from Control Theory, e.g., PID Control, have been applied by K.
Gustafsson, G. Söderlind and others.

For Euler’s method, p = 1, p = 2. By Theorem 13.2.2, k = 2tol and the
theoretical step size: htheo � 2tol�r. The smallest time constant of the system of

28By Theorem 13.1.13, this is, for an appropriate choice of norm, a milder condition than the
conditions on the spectrum of A used here.

29This should not make you believe that you have to buy a faster computer. You should instead
use another numerical method.
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Example 13.2.4 equals 0.01, and the local time scale is �r � t. Then, by (13.2.32),hstab = 0:02. The stepsize is therefore bounded by the stability property of Euler’s
method, i.e. h = hstab, when hstab < htheo, which in this case happens whent > 0:01=tol. For Runge’s 2nd order method, htheo � p

6tol�r is larger, whilehstab is the same, and hence the restriction of h due to the stability bound comes
earlier for the more accurate method.

Example 13.2.10
Our program for Runge’s 2nd order method (essentially constructed according

to exercise C1 of Sec. 13.1) was applied to the problem ẏ = 1 � y, y(0) = 0,t 2 [0; 100] with S = max(0:001; jyj). For tol = 0:0016 the first step size becameh = 0:01. The step size then grew rapidly, and at t � 12 it became 2:7 that exceedshstab = 2. This shows that the ”motion” has become stiff. The step size control then
makes the stepsize fluctuate between 1:8 and 2:2. The results are accurate enough.
The relative error fluctuates about 20% around 1:2 tol. The whole computation
was done in 86 steps till t = 100. Only 4 of them needed recomputation.

Note that the stiffness occurs when j1 � y(t)j � e�12 < tol=100. So in this
example the computation can be stopped when the motion becomes stiff, but this
is not always the case.

For smaller tolerances the behavior is similar, but the violation of the stability
condition is smaller. The relative error is close to tol all the time. For tol < 10�6

less than 0:5% of the steps are rejected.
A message given by these examples, is that we have to distinguish between

intervals, where a motion is not stiff and the step size can be predicted by Theorem
13.2.2, and intervals where it is stiff, and the step size may be restricted by the
numerical stability properties of the method.

The reduction of the study of the linear system, ẏ = Ay, to the scalar equations,w0 = �w; � 2 spectrum(A), which was done above for Euler’s method, can be done
in the same way for most numerical methods for ODEs. In general the solution
of the difference equation produced by the numerical method depends only on the
dimensionless parameter combination q = �h.

Definition 13.2.11.
The stability regionS of a numerical method for the initial value problem

for ODEs is the set of complex numbers q = �h, such that the application of the
method with a constant step size h to the scalar test equation ẏ = �y, produces a
sequence fyn(q)g that is bounded as n!1 , for any set of initial data.

For a k�step method, k � 1,jyn(q)j � maxfjy0j; jy1j; : : : ; jyk�1jg: (13.2.34)

More generally, the region S�; � > 0; is defined by the requirement thatjyn(q)j � �n maxfjy0j; jy1j; : : : ; jyk�1jg:
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When all solutions of the system ẏ = Ay are bounded for t > 0, it is natural
to generalize the conclusion of Example 13.2.6 to a requirement that�h 2 S; 8� 2 spectrum(A):
Remember the assumption that A can be diagonalized by means of a well-conditioned
matrix T .
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Figure 13.2.3. Upper half of the stability regions for Euler’s method,
Runge’s 2nd order method and Kutta’s Simpson’s rule (4th order). See Example
13.2.13.

Example 13.2.12
By (13.2.31), the stability region of Euler’s method is determined by the in-

equality, j1 + qj � 1. It is therefore a disc of unit radius in the complex q�plane,
with center at �1.

Example 13.2.13
When Runge’s 2nd order method is applied with constant step size h to the

test equation ẏ = �y, we obtain the difference equationyn+1 =
�
1 + q + 1

2q2
�yn; (q = �h)

hence S is defined by the inequality j1+ q+ 1
2q2j � 1. Its intersections with the real

axis are at 0 and �2, just like Euler’s method. The verification of these statements
is left as an exercise. See Fig. 13.2.3.
Kutta-Simpson’s rule is one of the most popular Runge–Kutta methods. It is 4’th
order accurate and has four stages, i.e. four function values are computed in each
step. Similarly S is defined by the inequality j1 + q + 1

2q2 + 1
6q3 + 1

24q4j � 1. More
about this method in Sec.13.3.
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Example 13.2.14
The implicit Euler method was introduced in Ex.13.2.8. The application to

the scalar test equation yields the difference equation yn+1 = yn + qyn+1, i.e.,yn+1 = (1 � q)�1yn, hence S is determined by the inequality j1 � qj � 1. It is
thus the exterior of a disk of radius 1 and center at 1. Note in particular that the
whole negative half-plane belongs to S. The step size is therefore not restricted by
stability reasons, if the eigenvalues of the Jacobian have negative real parts. We
saw in Ex.13.2.8 how these results are extended to non-linear systems.

On the other hand, S contains also a large part of the right half-plane. There-
fore, if the step size is too large in a problem where the (exact) motion is unstable,
the computations may produce a smooth solution with no indication of instability.
This can in some applications be rather dangerous. For example, if the purpose of
a computation is to find out whether a certain physical system is stable or not. The
implicit Euler method shares this property with most methods that are designed
for stiff ODEs. One must be aware of this. For most applications, however, this
does no harm.

In order to find S, it is helpful to draw the boundary locus. This is the set ofq 2 C such that the difference equation obtained when the method is applied to the
scalar test problem, ẏ = �y; h� = q, has (at least) one of its characteristic roots
on the unit circle. This condition is satisfied when q 2 �S, hence �S, if it exists,
is part of the boundary locus. For the simple methods that we have considered so
far, �S and the boundary locus are identical, but that is usually not the case. It
can even happen that S is void, in spite that the boundary locus is a smooth closed
curve. In other cases, the boundary locus may be a curve that intersects itself.
There are a number of technical matters concerning S and the boundary locus that
will be discussed in x13.2.3.

Different computational situations require different stability concepts. We
discuss only methods that with a sufficient number of in-data to a step, produce
a unique result (yn+1), provided that the step size is small enough. (The latter
precaution is needed for implicit methods, see x13.2.4)

Definition 13.2.15. 30

A method is zero-stable, if 0 2 S.
A method is strongly zero-stable if, for some Æ > 0, S contains the closed disk
with radius Æ and center at �Æ.
A method is weakly unstable if for any q, with <q < 0, there exists a solution of
the difference equation such that yn ! 1 as n ! 1. This notion is relevant for
multistep methods only.
Set yn(1) = limq!1 yn(q), assumed that the limit exists.
A method is 1-stable if the sequence fyn(1)g is bounded as n ! +1. In other
words: 1 2 S.
A method is strongly 1-stable if limn!+1 yn(1) = 0. In other words: S is the
complement of a bounded region.

30In older literature a zero-stable method was called stable, with no prefix. Other names have
also been used. Some authors use the term weakly zero-stable instead of weakly unstable.
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A method is A-stable if S includes the left half-plane fq : <q < 0g.
A method is A(�)-stable, 0 < � � �=2, if S includes the sector fz : j arg(�z)j < �g.
A k-step method, k � 1, is L-stable if it is A-stable, and if yk(1) = 0 for any
bounded initial values, y0; y1; : : : ; yk�1.

For several classes of methods, it can be shown that, as h ! 0, the sequencefyng converges on a finite interval to the solution of the differential equation, for any
differential system that satisfies very general conditions, if and only if the method is
consistent and zero-stable. The ”very general conditions” are roughly the conditions
for existence and uniqueness given in Theorem 13.1.1. We saw above special results
of this type for the explicit and the implicit Euler methods; more results will be
seen in Secs.13.3 and 13.4. For more complete results, we refer to the excellent
monographs of Butcher [4] and Hairer et al. [20].

The five stability concepts mentioned last are useful in the search for methods
for stiff problems.

A method that is not zero-stable is also called strongly unstable. For al-
most all well-conditioned initial value problems, it will, in floating point arithmetic,
produce solutions which quickly become useless, no matter how the step size has
been chosen; typically the results at any fixed time becomes worse when the step
size is small.31

Example 13.2.16 An example of strong instability.
One can show that the two-step method,yn+2 + 4yn+1 � 5yn = h�4f(yn+1) + 2f(yn)

�; (13.2.35)

is 3rd order consistent; in fact it has the smallest local truncation error among all
explicit two-step methods, see Sec. 13.4. Nevertheless it is useless.

For the scalar test equation the characteristic equation of the difference equa-
tion becomes �2 + 4� � 5 = q(4� + 2). If q = 0 the roots are �1 = 1; �2 = �5, hence
the method is strongly unstable. It can even be shown that S is void.

The solution of the difference equation is of the formyn = a(q)�1(q)n + b(q)�2(q)n; where �1(q) = 1 +O(q); �2(q) = �5 +O(q):
We may call the first term regular and the second term irregular. The latter is also
called a ”parasitic oscillation”. Let � = �1; h = 0:2, i.e., q = �0:2. With exact
initial conditions, i.e., if y0 = 1; y1 = eq , b(0:2) is only 5 10�6, but the parasitic
oscillation grows quickly, as shown by the upper line of Fig.13.2.4, where (due to the
rapid increase of the oscillations) logarithmic scale is used, and only the absolute
value of the error is shown. The lower line of Fig. 13.2.4 shows a computation
where y1 = �1(q), with full IEEE double precision. The parasitic oscillations are
here introduced by the rounding errors only. The figure shows that, with this low

31We always assume that the difference equation is used as a recurrence relation in floating point
arithmetic. There is a theoretical possibility to use techniques similar to certain procedures that
stabilize shooting methods for unstable boundary value problems; see Sec. 13.6, but the additional
work would be enormous, and the method is, also in this modification, of no practical interest.
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Figure 13.2.4. The equation ẏ = �y, is treated by a strongly unstable two-
step method, see Example 13.2.16, with step size h = 0:2, The error yn � exp(�tn)
is oscillating. We here see only the smooth variation of its amplitude (in logarithmic
scale), for two different values of y1, as described in the Example.

start, it takes some time for them to become visible, but they are amplified by the
factor �2 in every step.

Such a value for y1 that is much better than the value that is exact from the
point of view of the differential equation, can be found for this scalar test equation,
but it is impractical to try to find it for (say) a nonlinear system. Anyway, it only
delays the disaster. Also note that, since the amplitude of the parasitic oscillation
grows approximately like 5n = 5t=h; a reduction of the step size would make things
even worse, due to the strong instability. �
Example 13.2.17 (An example of weak instability.)

The two-step method, yn+2 � yn = 2hf(yn+1); (13.2.36)

is called the leap-frog method or the explicit midpoint method. It is based on the
simplest central difference formula for numerical differentiation and is 2nd order
consistent.

For the scalar test equation the characteristic equation of the difference equa-
tion becomes �2 � 1 = 2q�. If q = 0 the roots are �1 = 1; �2 = �1,

The solution of the difference equation is of the formyn = a(q)�1(q)n + b(q)�2(q)n;
where �1(q) = 1+q+: : : � eq �2(q) = �1=�1(q) � �e�q. As in the previous example,
we call the first term of yn regular and the second term a ”parasitic oscillation”.
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Figure 13.2.5. The equation ẏ = �y, is treated by the weakly unstable
leap-frog method, see Example 13.2.17, with h = 0:2 and y1 = exp(�h).

Let � = �1, h = 0:2, i.e., q = �0:2. With exact initial conditions, i.e., ify0 = 1; y1 = eq, it can be shown that b(q) � 1
6q3, but the parasitic oscillation grows

like the second term, i.e. by 20% in every step (like the function et), thus much
slower than in the previous example, see Fig. 13.2.5. If the instability is weak, the
size of the oscillations becomes smaller, if the step size is reduced.

A computation was also performed, where y1 = �1(q), with full precision,
macheps � 10�16. The parasitic oscillations are here introduced by the rounding
errors only, and they would not become visible in the figure until at t � 28. Such a
value of y1 can be found for the scalar test equation, but it is impractical to try to
find it if (say) a nonlinear system is to be treated.

Moving averages or other filtering techniques are often used to reduce an
oscillating component in a number sequence. In this context, with an unwanted
component of the form (�1)nkn, where kn varies slowly, a natural recipe is to
replace yn by ȳn = (1� 1

4
Æ2)yn =

1

4
(yn�1 + 2yn + yn+1);

as a post processing (or piecewise during the computation). A drawback is that
this changes the regular component too by � 1

4Æ2yn, which may be comparable in
size to the global truncation error of the numerical solution of the ODE. One can
compensate for this by computing 32ŷn = (1 +

1

4
Æ2)ȳn:

Note that the oscillations are growing only if <q < 0. The leap-frog method
has successfully been used for linear systems, ẏ = Ay, with purely imaginary eigen-
values. Such systems appear in mechanical problems, and in hyperbolic partial

32Notice the plus sign in the difference correction this time. In fact ŷn = (1 � 1

16
Æ4)yn.
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differential equations, if the spatial derivatives are approximated by means of cen-
tral differences.

Weakly stable methods are, however, avoided in problems where the Jacobian
has eigenvalues with negative real part. The technique with moving averages are
not used much in this context, but it is good to be aware of this possibility, in
problems of some other type.

We obtain the boundary locus by putting � = ei�; � 2 [0; 2�) into the char-
acteristic equation �2 � 1 = 2q�, hence q = i sin�. The boundary locus is thus the
straight line segment from �i to i, traversed up and down. A closer examination of
the characteristic equation reveals that S is the same, except that the end points�i must be excluded, because the root condition, Theorem 3.2.7, is not satisfied
there; � = �i are double roots. Such a stability region is called degenerate. �

It is important to realize that the background to the scalar test problem and
the stability region is a system of ODEs. Nobody is interested in integrating the
test equation itself with j�hj > 1 (say). The stability concepts give a helpful guid-
ance in more general situations, e.g. for nonlinear systems and variable stepsize,
although they do not exactly provide ”the truth, the whole truth and nothing but
the truth” in these cases. Since small perturbations in nonlinear systems are prop-
agated according to the linearized variational equation, it is natural to substitute
rough estimates of the eigenvalues of the Jacobian along the expected motion
for � in the test equation. For some classes of ODEs, inequalities are known for these
eigenvalues, e.g., the Jacobian may be known or expected to be negative definite,
hence its eigenvalues are negative.

Finally, it is sometimes believed that numerical methods are useless, e.g., when
the eigenvalues are positive, because �h is then outside S. That is a misunderstand-
ing. Methods that are consistent and strongly zero-stable provide results with good
relative accuracy, when applied to the equation ẏ = y, see Example 13.1.7. More
generally, if a motion is sensitive to perturbations in the ODEs, the results obtained
by the most popular numerical methods with a well designed step size control are
usually no more sensitive to perturbations than the solutions to the ODEs are
themselves. If a method is strongly zero-stable, the relevant region in the complexq-plane is the union of S and some small circle around the origin,(say) jqj < 0:1.

13.2.3 Linear Analysis of Numerical Stability

In this subsection we shall present graphical methods for the investigation of the
stability of numerical methods. 33 Some theoretical background is given. Sometimes
the graphical methods must be completed by algebraic algorithms (due to Routh,
Schur and others) that will be presented in Sec. 13.9.

At the application to the linear test equation,ẏ = �y; y(0) = 1; q = �h = const: 2 C; (13.2.37)

33The study of this subsection can be postponed until the reader feels motivated for it, e.g.,
in connection with the last sections of this chapter. Among other things, it contains exercises in
Computer Graphics, hopefully informative and amusing.
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see also Definition 13.2.1, most numerical methods yield a difference equation, the
characteristic equation of which is of the form,

Ψ(�; q) = 0; Ψ(�; q) �  k(q)�k +  k�1(q)�k�1 + : : :+  1(q)� +  0(q): (13.2.38)

where the  j(q) are real polynomials, the highest degree of which is (say) m. Thek characteristic roots are named �i(q); i = 1 : k. �i(q) is called an unstable root ifj�i(q)j > 1 or if �i(q) is a multiple root of unit modulus. 34 It happens that several
different methods yield the same characteristic polynomial Ψ(�; q), although they
yield different results on problems other than this test problem.

Example 13.2.18
A general linear multistep method for the differential system ẏ = f(y),y(0) = y0, is defined by the difference equationyn � kXi=1

�iyn+i � h kXi=0

�if(yn+i) = 0; (13.2.39)

where �i and �i are real parameters, h the step length. The formula (13.2.39)
is also called a linear k-step method. We shall study this class of methods more
thoroughly in Sec.1̃3.4, together with another class of methods, named one-leg
k-step methods, defined by a similar difference equation:yn � kXi=1

�iyn+i � hf� kXi=0

�iyn+i� = 0: (13.2.40)

The generating polynomials�(�) = �k � kXi=1

�i�k�i; �(�) =

kXi=0

�i�k�i; (13.2.41)

play a fundamental role in the theory of multistep methods. We shall always assume
that the polynomials � and � have no common factors. For the standard test prob-
lem ẏ = �y; y(0) = 1; �h = q, the linear multistep method and the one-leg method
with the same coefficients yield identical difference equations. The characteristic
equation now reads,

Ψ(�; q) � �(�) � q�(�) = 0; hence q = �(�)=�(�): (13.2.42)

For q = 1 the characteristic equation reads �(�) = 0. The boundary locus becomes
a single curve that is rather easily plotted after the computation of the rational
function q(�) = �(�)=�(�) for � = e2�ij=N , j = 0; 1; : : :N for some suitable value ofN . If �(�) has zeros on the unit circle, they must be determined, and the values
of �, for which jq(�)j become large, are to be omitted. Sometimes the choice of N
requires some trial and error; typically the uniformly distributed points on the unit

34Recall the root condition, Theorem 3.2.6.
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circle are mapped to a sequence of points which are unexpectedly far from being
equidistant.

Typically the boundary locus intersects itself many times, see e.g., Fig. 13.2.6.
We shall below discuss how to proceed in order to find the stability region in this
chaos. �

The map of the unit disk by the rational function �(�)=�(�) is usually much
larger than S, because it contains all q such that �(�) � q�(�) has at least one
zero in the unit disk, while the condition q 2 S requires that all zeros have to be
located there. Find these sets in Fig. 13.2.6. The correct expression for S in terms
of �(�)=�(�) is instead as follows:

Theorem 13.2.19. Let S be the stability region of the linear multistep or one-leg
method, generated by the polynomials �, �. Then the complement of the closed unit
disk is mapped onto the interior of the complement of S by the rational functionq = �(�)=�(�). A point on �S belongs to S, unless it is a cusp, i.e., the characteristic
equation has a multiple root for this value of q.

By the implicit function theorem for analytic functions, � and q are analytic
functions (a conformal mapping) of each other in the neighborhood of any point
(�0; q0) that satisfies Ψ(�0; q0) = 0, unless it is a branch point, i.e. a point, where�Ψ=�� = 0 or �Ψ=�q = 0. The first of these relations expresses that (13.2.38) has
a multiple root, when it is considered as an equation for � for a given q. The roots�i(q), i = 1; 2; : : : ; k are branches of an analytic function. Two or more branches
can meet, where �Ψ=�� = 0. �i(q) is continuous also at branch points, though it
may not be differentiable there. Take for example Ψ(�; q) � �2 � q. (Consider also
the different behavior in the example Ψ(�; q) � �2 � q2.)

There are exceptional cases, where some of the above statements are not
strictly true, for example, the points where  k(q) = 0. We can avoid dealing with
them as exceptional by considering the complex variables � and q as points on a
Riemann sphere and hence consider 1 as an ordinary point, (say) the north pole
of a stereo-graphic projection from the sphere to the equatorial plane; the origin is
the south pole. Neighborhoods, distances, continuity etc. are to be considered on
the sphere.

If  k(q) ! 0 as q ! q1 then �i(q) ! 1 for at least one i. We then say that�i(q1) = 1. The multiplicity of this root is k � k0, if the degree of of Ψ(�; q) drops
from k to k0, as q ! q1. The use of the Riemann sphere is convenient in many
other respects. It allows us, for example, to say that the function � = 1=q, defined
by the equation q� � 1 = 0 is continuous everywhere, also at q = 0. Similarly, the
continuity of the branches �j(q) holds without exceptions on the Riemann sphere.

(If you feel insecure about the handling of 1, it may help to introduce �̂ = 1=�
and/or q̂ = 1=q into the characteristic equation, and see what happens as �̂ ! 0
and/or q̂ ! 0.)

What we have said about �(q) holds, mutatis mutandis, also for the inverse
function. It has m branches denoted qj(�), j = 1 : m. The characteristic polynomial
when q = 1 consists of the terms of Ψ(�; q) which contain qm.
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We shall only consider consistent methods. Since y(h) = eq, one of the roots,
denoted �1(q) and called the principal root, should therefore approximate eq, whenjqj is small. We say that the order of linear consistency is p̄, if�1(q)� eq � ̄qp̄+1; ̄ 6= 0; q ! 0: (13.2.43)̄ is called the linear error constant. For most methods p̄ is equal to the usual
order of consistency p, defined in Sec. 13.2.1, e.g., for all linear multistep methods,
but there exist methods (of little practical interest) for which p < p̄.

By (13.2.33) we can also write �1(q) = e�0h where �0 = (1+ ̄qp̄)�. Set nh = t.
Then �1(q)n = e�0t�1 +O(q1+p̄�t)� = e�t(1 + ̄qp̄�t+ : : :) (13.2.44)

The last expression reveals that the global error is O(qp̄). The detailed proof is left
for Problem P10. For a consistent method p � 1, and hence p̄ � 1. A necessary
and sufficient condition for linear consistency thus reads�1(0) = 1; � 01(0) = 1: (13.2.45)

The stability region S is the set of complex numbers q such that the root condition
(Theorem 3.2.5) is satisfied by Ψ(�; q), considered as a polynomial in � with q as
a parameter. S is symmetric about the real axis, since we obtain conjugate values
for q for conjugate values of �.

We saw in Example 13.2.14 that the stability region of the implicit Euler
method is the exterior of a bounded region (actually a disk). This can also be
expressed by saying that 1 belongs to the interior of S. An example, where 1 is a
boundary point of S, is the �-method for � = 1

2 , for which S is the half-plane <q � 0,
see Problem P8. The term 1-stable introduced in Sec.13.2.2 is an expression for
this point of view.

For an explicit method the degree of  k(q) is less than m. Thus, for q = 1
at least one of the roots of Ψ(�; q) is infinite. It follows that an explicit method of
the class considered cannot be 1-stable. In other words: S for an explicit method
is a bounded set in C.

It follows from continuity considerations that a point q on the boundary �S
belongs to S, unless the characteristic equation has, for this value of q, a multiple
zero of unit modulus. One can show that the multiplicity cannot exceed 2 whenq 2 �S (but it can be higher at other parts of the boundary locus), and that the
presence of a double root is visible as a cusp on the boundary �S, i.e., a point from
which at most one ray points into S. Corners of �S belong, however, to S; you will
see later that each method in Fig. 13.2.6 has corner(s) on the boundary of �S.

So, S is a closed set on the Riemann sphere, if its boundary has no cusps.
This has some nice consequences. For example, in Sec. 13.1.4 a method is defined
to be A-stable if S includes the open left half-plane fq : <q < 0g. If there were a
boundary cusp on the imaginary axis, then there must also be points in the open
left half plane that do not belong to S. The conclusion is that for an A-stable
method, S includes the imaginary axis too.

A typical kind of cusp is shown in Fig. 13.2.6b for Ψ(�; q) = (� � 1)(� + 1)2 �
4q�3. The cusp at q = 0 is generated by a double root at � = �1. In this exampleS is the outer region. o, from the cusp only one direction points into S.
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Less typical cusps occur for the leap-frog method, (Example 13.2.17). Recall
that S is the open line segment from �i to i. The endpoints are cusps (of an unusual
kind), but the points between are not cusps, because two directions from them (up
and down) lead into S.
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Figure 13.2.6. (a) Boundary locus of a 10-step method. The small region
near the origin that contains a zero, is the stability region. (b) Boundary locus for
Ψ(�; q) = (� � 1)(� + 1)2 � 4�3q. The stability region is the outer region, except for
the origin that is a cusp.

The boundary locus, which was defined in Sec. 13.2.2, can also be characterized
as the conformal map to the q-plane of the unit circle of the �-plane, f� = ei� : 0 �� < 2�g. consists of one or more (at most m) curves that divide the q � plane into
several parts (e.g., six parts in Fig. 13.2.6a that shows the boundary locus of a certain
10-step method). Note the following important rule: The number of unstable
roots, counted with their multiplicity and including infinite roots, is constant within
each part. This follows from the continuity of �j(q). (These integers are shown in
Fig. 13.2.6a.) S is the small area marked with the digit 0. Notice that the boundary�S is composed by only a a few of the many pieces of the boundary locus.

Another important rule is due to the fact that, on the ”microscopic scale”, the
orientation is conserved at the conformal mapping from the �-plane to the q-plane.
We therefore look upon the boundary locus as a motion in the q-plane, along every
branch of q(�), (to be marked by arrows in a plot) generated by a counter-clockwise
motion along the unit circle in the �-plane. The neighborhoods of a short arc of the
unit circle outside and inside the circle are then mapped into, respectively, the right
and the left neighborhood of the corresponding arc of the boundary locus. If q is
moved from the right to the left of an arc of the boundary locus, the corresponding
move in the �-plane tells that the number of unstable roots is decreased by one. It
is not necessary to watch the plotting process in order to set the arrows correctly.
For a consistent method it follows from (13.2.43) that at least one branch of the
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boundary locus will, at the beginning, move from q = 0 upwards, closely to the
positive imaginary axis. In most cases this is enough for a correct setting of the
arrows along the whole boundary locus; check the arrows in Fig. 13.2.6a, and set
the arrows in Fig. 13.2.6b.

There is a hidden assumption in the last paragraph: We assume that a small
arc of the boundary locus corresponds to it only one small arc of the unit circle. We
continue on this assumption, because it has an important practical consequence:

If we know the number of unstable roots for one value of q only, then we
can, by the application of the rule of the previous paragraph, successively obtain the
number of unstable roots for all the parts that the complex plane has been divided
into by the boundary locus. For the 10-step method of Fig. 13.2.6a, we assume that
it is known that there are 3 unstable roots for q = 1. Starting from this fact, check
the markings in the figure, and then set the markings in Fig. 13.2.6b! In particular:
the stability region S is easily found; it is the union of the parts, where the number
of unstable roots is equal to zero. (In Fig. 13.2.6a there is only one such part.) It
can happen that there is no such part; S can be empty. S can also, for example,
degenerate into a line or a curve segment (see the next example), or into a point,
Hairer and Wanner [1991, p.263].

There are, however, exceptions from this, e.g. if F (�; q) contains only even
powers of �. The boundary locus is then circumscribed twice, hence the number of
unstable roots decreases by 2 instead of 1, when the locus is passed from the right to
the left. A less obvious exceptional case of the same type is found in Problem 20a.
Next example illustrates that it can also happen that the boundary locus is traversed
back and forth; the number of unstable roots is then the same on both sides. We
conjecture that the most general exceptional case are combinations of these types,
where the whole of the boundary locus (or at least each unicursal closed part of
it) is traversed the same number of times (where backwards is negative). If this is
true, it is enough to check the number of unstable roots for one more value of q, in
a different part, in order to determine the number of unstable roots in the wholeq-plane. (In the case of Fig. 13.2.6a, it was checked that there are 3 unstable roots
for q = �1, so if we believe the conjecture, we conclude that the marking is correct.)

We shall now limit the discussion to the simplest cases, where Ψ(�; q) is either
an affine function of q or an affine function of �. The linear multistep methods
belong to the former category; the Runge–Kutta methods belong to the latter.

The Runge–Kutta methods, which will be studied more deeply in Sec. 13.3,
yield at the application to the test equation ẏ = �y a difference equation of the formyn+1 = R(q)yn, where R(q) is a rational function, R(q) = F (q)=G(q), where the
polynomials F , G should have no common divisor. Hence we may write Ψ(�; q) =F (q)�G(q)�. Here F is a mth degree polynomial, while the degree of G is at mostm. (m is the number of stages of the method.) The classical Runge–Kutta methods
are explicit. In this case, G(q) � 1, i.e., R(q) is a polynomial.

Fig. 13.2.7 shows the boundary locus of two widely used Runge–Kutta meth-
ods. The former is Kutta’s Simpson’s rule, also called the classical fourth order
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Runge–Kutta method, m = p = 4,� =

4Xj=0

qj=j! = eq � q5=120� : : : : (13.2.46)

The latter is called Dopri5 (see Sec. 13.3), m = 6, p = 5, for which� =

5Xj=0

qj=j! + q6=600 = eq + q6=3600 + : : : : (13.2.47)

In order to plot the boundary locus in the general case, all roots of the mth degree
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Figure 13.2.7. Stability regions of two Runge–Kutta methods. (a) The
classical 4’th order Runge–Kutta method, also called Kutta’s Simpson’s rule. (b) A
popular 5’th order method called Dopri5. See also Sec.13.3.

algebraic equation F (q) � G(q)� = 0 are to be computed for � = e2�ij=N ; j =
0; 1; : : :N for some suitable value of N , to be chosen after some trial and error.

If we use a program that returns all roots of an algebraic equation, without
the use a first approximation suggested by the user, the ordering of the roots must
be inspected for every � and perhaps changed, otherwise the plot of the boundary
locus can become rather strange.

The following alternative approach has the advantage that it is not necessary
to know the coefficients of F and G. We shall see, in Sec. 13.3, that the numerical
value of R(q) is easily computed directly from the coefficients which define the
method. The algorithm starts a ”trip” at � = 1; q = 0, and follows a ”quasi-
continuous” variation of a root of the equation R(q) = �, i.e., one value of q is
determined for � = e2�ij=N ; j = 0; 1; : : : ;mN�1, using e.g. the secant method with
the previous values of q (or something better) as initial guesses. (A special rule is
needed at the first point.) Note that the unit circle will be traversed m times during
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the ”trip”. We will obtain m branches, and if we are lucky, they are all different,
and we have obtained the boundary locus, Fig. 13.2.7a.

It happens, however, that we do not find m different branches this way. For
example, in Fig. 13.2.7b the boundary locus consists of three separate curves. There
is no chance to find the small curves with q = 0 as a starting point. The algorithm
therefore must record the computed roots of the equation R(q) = 1. If less thanm different roots have been obtained (within a tolerance), all roots of the equationR(q) = 1 must be computed, and the algorithm has to make a new ”trip” (or
more), starting from one of the remaining roots. We refrain from a discussion of
the multiple root case.

For the Runge–Kutta methods it is easy to find S in a correct plot of the
boundary locus. Since the characteristic equation is linear in �, the number of
unstable roots (� for a given q) can be 0 or 1 only. Moreover, the boundary locus
cannot intersect itself. (It can have a sort of double cusp, at a point where �Ψ=�q =
0. It is easier to find examples of this, if one plots more general level curves, j�j = r,
for a method. This is sometimes of practical interest.)

In Fig. 13.2.7a, S is marked by a zero; it is the interior of the closed curve.
In Fig. 13.2.7b, S is the union of the interior of the three closed curves. A Runge–
Kutta method is always strongly zero-stable; the origin and the area ust to the left
of it belong to S. S can be unbounded, if R(q) is not a polynomial.
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Figure 13.2.8. The character of the cusp at q = 0 is not resolved well on
the boundary locus of the multistep method �(�) = (� � 1)(� + 1)4; �(�) = 16�5.The
map from 256 equidistant points on the unit circle in the �-plane is far from an
(interpolated) equidistant point set in the q-plane. The picture to the right is a
(linearly interpolated) magnified map of the 53 central points of the equidistant point
set. This gives a different view of the cusp, which fits better to what one may expect
from the analytic form of these characteristic polynomials.

* Se efter om följande rader fortfarande är av intresse. Line 5600.
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Sometimes the plotted boundary locus may not be accurate enough for dis-
playing certain interesting features of a method, and it may be necessary to magnify
part of the boundary locus, see Fig. 13.2.8. It happens, however, that this is not
good enough. Some algebraic criteria, due to Routh-Hurwitz, Schur, Sturm etc.,
may be helpful as a complement to the graphics. See Sec. 13.9 that also contains
a brief introduction to order stars, a very elegant and powerful tool for linear
stability analysis. Many questions concerning the relations between stability and
accuracy have been settled for a wide class of numerical methods, by the aid of this
tool.

13.2.4 Implicit and Linearly Implicit Methods.

* Incomplete
Now we shall use the concept of logarithmic norm for proving the existence

and uniqueness of a solution of a system of non-linear algebraic equations that may
not be easily brought to a form required by the theorems of Sec. 13.1. We first note
that such results are needed, because a nonlinear system can have more than one
solution, even if the Jacobian is non-singular everywhere. A simple example is the
system, ey1 cos y2 = b1; ey1 sin y2 = b2; (b1; b2) 6= 0:
The Jacobian determinant equals exp(2y1) 6= 0. The general solution is (y1; y2) =
(ln r; �), where (r; �) are the polar coordinates for the point with Cartesian coordi-
nates (b1; b2). y2 is determined only modulo 2�.

The result, Theorem 13.2.20, is in principle due to Desoer and Haneda [11].
Such systems may occur at every time step of the treatment of a stiff system of
ODEs by an implicit method. The systems can be written in the form F (y) = 0,
where F (y) = �hf(y)� y + ; (� > 0); (13.2.48)

where �;  and the time step h are constant during a time step. In practice a
damped and modified Newton method (see Sec. 12.1.6) usually works well. Since
global uniqueness is not to be expected for such systems, it can, however, happen
that an unwanted solution of the system is computed, unless the time step and the
error of the initial guess are small enough. The following theorem provides sufficient
conditions for existence and uniqueness.

Theorem 13.2.20.
Let y0 be a given point in Rs, and setDr = fy 2 Rs : ky � y0k � rg:

Consider the system F (y) = 0; where F : Dr ! Rs is in C1. Assume that

1. kF (y0)k < rÆ, (Æ > 0).

2. �(F 0(y)) � �Æ for y 2 Dr.
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Then, the system F (y) = 0 has exactly one solution y� in Dr, and y� =
lims!1 u(s), where 35 u(s) is the solution of the initial value problem du=ds = F (u),y(0) = y0.

Proof. We first prove uniqueness. Suppose that y1; y2 are two different roots in Dr
to the system F (y) = 0. By (13.1.14), we can write, F (y1) � F (y2) = J(y1 � y2),
where the matrix J is a neighborhood average of F 0. By (13.1.28) and Assumption
2, �(J) � �Æ. Then, by Theorem 13.1.25, statement C,kJ(y1 � y2)k � Æky1 � y2k:
Since J(y1� y2) = F (y1)�F (y2) = 0 this contradicts the assumption that y1 6= y2.
Hence there is at most one solution in Dr to the system.

In order to prove the existence, let u(s) be the solution of the initial value problemdu=ds = F (u); u(0) = y0, which exists for all s > 0, unless it leaves Dr at some
“time”, i.e., unless there exists an s0 > 0 such thatku(s0)� y0k = r; ku(s)� y0k < r;8s < s0: (13.2.49)

Since F (u(s)) satisfies the differential equation dF (u(s))=ds = F 0(u(s))F (u(s)), we
have dkF (u(s))k=ds � �(F 0(u(s)))kF (u(s))k � �ÆkF (u(s))k. It follows thatkF (u(s))k � kF (y0)ke�Æs < rÆe�Æs; (s < s0):

Then du=ds = F (u(s)) implies thatku(s0)� y0k � Z s0
0

kF (u(s)kds < Z 1
0

rÆe�Æsds = r;
but this contradicts (13.2.49). The contradiction shows that u(s) 2 Dr;8s > 0.
Then F (u(s)) converges exponentially to zero as s!1; hence there exists at least
one point y� where F (y�) = 0.

Summarizing our results, we conclude that the system F (y) = 0 has precisely
one solution y� in Dr, and that y� = lims!1 u(s).

Comment: In the application to (13.2.48) Assumption 2 becomes�(f 0(y)) � (1� Æ)=(�h) for y 2 Dr: (13.2.50)

Note that this is a very liberal assumption for the function f(y) (occurring in the
differential system ẏ = f(y).

Linearly Implicit metods. *** Incomplete

35We use the notation u(s) in order to avoid contamination with the notation y(t) used for
the solution of another initial value problem, namely ẏ = f(y), which is connected with our first
application of this theorem.
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13.2.5 Stiff and Differential-Algebraic Systems.

Example 13.2.21
Pyrolysis example, Incomplete, to be revised.

The following equations are based on a model for chemical pyrolysis studied by
Datta [9]. (We have simplified the coefficients.)ż1 = �10�9z1 � 107z1z3;ż2 = 10�9z1 � 109z2z3;ż3 = 10�9z1 � 107z1z3 + 103z4 � 109z2z3;ż4 = 107z1z3 � 103z4;z1(0) = 0:002 z2(0) = 0 z3(0) = 0 z4(0) = 0:
(a) Find a relation of the form a1z1(t) + a2z2(t) + a3z3(t) + a4z4(t) = , and use
this to eliminate z4.

(b) Find a transformation of the form zi = 10biyi that brings this system (after
the elimination of z4) to the form, given in Problem 7 of the BDF package, see the
version in amods.m. (Make a modification, if you believe it is necessary.)

NOTE. This scaling is advantageous for the analysis of what is going on in
the problem. It is also easier in this form to guess how to set the scale factor
vector scavec, the components of which define the breakpoints between the use of
absolute and relative error estimates for the components of the solution. Find in
the file arcon..., how scavec is used.

(c) Run Problem 7 with BDF, the default case. Make the step size variation (log h
or log h=t) visible on the screen by an appropriate choice of the plot constants. Note
the number of steps.

(d) The following questions are only about rough estimates. Sometimes the order
of magnitude is enough. Have the graphs from your computer run available or, if
you have not solved (c) , the enclosed graph from a run done with another program.
You are allowed to use them to inspire and to support your assumptions, but try
to explain as much as possible by a theoretical analysis of the equations.

Note that y1 is practically constant during a long time. How long ? This
makes it rather easy to explain from the equations what is going on, until y2 andy3 reach their maxima. y2 seems to vary linearly for a long time. Why, and what
is the rate? Why and when does the linear variation stop?y3 seems to be the first variable to become stiff. When? It seems to try to ap-
proach a steady state, but then it becomes almost proportional to y2. Why? What
is the factor of proportionality, and why? Use this to explain the (approximate)
max-value of y2.

How small is the left hand side of the 3rd equation compared to the largest
terms on the right hand side when 10�3 < t < 102? (When a variable becomes
stiff, its differential equation becomes approximately an algebraic equation.) What
is the smallest time constant of the system? How is the step size variation in this
interval?
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When y1 starts to change, the other variables also show a different behaviour.
When 105 < t < 109 the graphs of all variables are approximately straight lines
in the log-log-diagram. The variables are therefore almost proportional to some
powers of t. What powers? Try to explain why. First, note that the ratio y3=y2

becomes almost constant again. How large is it now? Why?
Some terms in the equations can be neglected in this interval, and the system

can then be (approximately) solved by analytic techniques. When t > 2 109, the
graphs are no longer almost straight lines. What is the reason for the change?

If you find some other interesting features in this example, you are welcome
to report them!

13.2.6 Other Special Types of Differential Systems.

* Incomplete
Singular points 0/0

Other discontinuities Filippov
Termination criteria Aitken extrapolation and modifications
Hamiltonian systems snd symplectic methods
Delay-differential systems
Systems with invariants

Review Questions

R1. Describe the theoretical step size strategy of the text, its concepts, assump-
tions and results, in particular Fig 13.2.1.

R2. What is, in this text, meant by the time constants of a system, the local time
scale of a motion, a stiff motion and a stiff problem? Consider also a non-linear
problem. Give an example of a stiff problem.

R3. Define the stability region of a numerical method for the initial value problem
for ODEs. How is the study of the numerical solution of ẏ = Ay (under
a certain condition) reduced to the study of the scalar test equation. (It is
sufficient to explain it for Runge’s 2nd order method).

R4. Define zero-stability, strong zero-stability, strong instability, weak instability,1�stability, strong 1�stability, A-stability, A(�)-stability,

R5. Tell what is likely to happen to the step size variation, when Euler’s method,
or some other method with a bounded stability region, is applied to a stiff
problem with our theoretical step control strategy . You may assume that the
Jacobian is negative definite.

R6. Describe Runge’s 2nd order method and the implicit Euler method. Give the
formulas for their stability regions, and sketch the regions. Are the methods
(strongly) zero-stable, (strongly) 1�stable, A-stable ?
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R7. Give the main features and results of the nonlinear error analysis of the explicit
and the implicit Euler methods.

Problems

P1. (a) Is it true that the basic formulas for Runge’s 2nd order method, given
for the non-autonomous system ẏ = f(t; y), y(0) given, yield the same results
as the formula you obtain, when you apply the method to the autonomous
system ẏ1 = 1, ẏ2 = f(y1; y2), y1(0) = 0, y2(0) = y(0)? Motivate your answer.

P2. (a) Show that the application of Runge’s 2nd order method to the systemẏ = Ay yields the formula yn+1 = (1 +Ah+ 1
2A2h2)yn.

(b) Consider the inhomogeneous scalar problemẏ = �y + (�� �)e�t; y(0) given; (13.2.51)

and the system ż = Az; z(0) = (1; y(0))T , withA =

� � 0�� � �� :
Show that z2(t) = y(t). If � 6= �, show that Runge’s 2nd order method yields
different results in the two problems, already in the first step, even if y(0) = 1).

(c) Equation (13.2.51), y(0) = 1, with the solution y(t) = e�t is a useful test
problem for the study of numerical methods. Now we shall use it for the study
of Runge’s 2nd order method with constant step size. Set p = �h, q = �h,t0 = 0, t = tn = nh, and notice that pn = �t. Show thatyn+1 = (1 + q + q2=2)yn + (p� q)(q=2 + ep=2)epn;
(d) Verify that the only solution of this recurrence relation with the initial
condition y0 = 1 reads yn = bepn + (1� b)(1 + q + q2=2)n;, whereb =

(ep=2 + q=2) � (p� q)ep � (1 + q + q2=2)
:

Show that the global relative error equals (b� 1)(1� (1 + q + q2=2)ne�pn).

P3. (a) Show that the relationsN 0(t) � 1h(t) ; hn+1 � hnhn � h0(tn);
are valid for any reasonably smooth step size sequence.

(b) Show that if h(t) � pt+ q for t 2 [a; b], thenN(b)�N(a) � ln(b+ q=p)� ln(a+ q=p)p :
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How is this simplified when q=p� a < b?
(c) Suppose that h(t) � 0:1t for 10�5 � t � 105. How many per cent does the
step size increase from a step to the next? Estimate the total number of steps
for the whole computation.

(d) Assume that h(t) � k�(t), where �(t) is smooth, and k is independent oft. Show that (hn+1 � hn)=h2n � � 0(t)=�(t). Note that the right hand side is
independent of tol, but it may depend strongly on t. A value of k is given in
Theorem 13.2.2 for the theoretical control strategy, but the result just derived
holds under more general conditions.

P4. Derive the formula given in Sec. 13.2.3, according to which the norm of the
scaled local error is proportional to �r(t)=�q(t) during a motion (if the orderp is constant). Show also that �r(t)=�q(t) is constant if y(t) is an exponential
or a power function.

P5. (a) Derive Lemma 13.2.1 (in the beginning of x13.2.1) and the formulas given
immediately after the lemma.

(b) Extend Lemma 13.2.1 to the case of piecewise constant parameters a; b.
Do the analogous extension in Theorem 13.2.1.

P6. (a) Derive the expression, given in Example 13.2.13, for the stability regionS of Runge’s 2nd order method. Show that S is symmetric around the line<q = �1, and determine the exact coordinates of the top of S.

(b) Show how the discussion of the linear problem ẏ = Ay, where A is a
constant diagonalizable matrix, can be reduced to the study of the scalar test
equation ẏ = �y, y(0) = 1, �h = q.

P7. Let A be the tridiagonal matrix of Example 10.3.4.

(a) Show in two ways that Euler’s method produces bounded solutions to the
system, dydt = �Ay ( > 0);
if 0 < h � 1

2 . The first way is to apply Gershgorin’s Theorem to find
an interval that contains the spectrum of A, and use this to show that the
spectrum of �hA lies in S of Euler’s method for all h 2 [0; 1

2 ]. In the second
way you first show that kI � hAk1 � 1, for all h 2 [0; 1

2 ]. Is this true for
variable step size?

(b) Is the same true for Runge’s 2nd order method?

(c) Show that all solutions of the ODE system are bounded, as t!1, by the
use of �1(A) .

(d) Show that all solutions of ODE system tend to zero, as t!1, by the use
of the knowledge about the spectrum of A.

P8. The �-method is a one parameter family 36 of methods defined by the equation,yn+1 � yn = h��f(yn+1) + (1� �)f(yn)
�; 0 � � � 1:

36Some authors substitute 1 � � for �.
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(a) Show that S is a disk if � < 1
2 , a half-plane if � = 1

2 , and the exterior of a
disk if � > 1

2 . Determine the intersections of the disks with the real axis.

(b) Show also that the method is 2nd order accurate for the standard test
equation ẏ = �y, if � = 1

2 , and only 1st order accurate for other values of �.
(We shall later see that this holds for any differential system.)

(c) Let a � method with 1
2 � � < 1 be applied to the standard test equation

with jqj = j�hj � 1. Show that the sequence y1; y2; y3; : : : have damped
oscillations. For � = 1

2 , however, the damping is very weak and disappears asq !1.

P9. (a) For the problem of Example 13.2.5, i.e. ẏ = �my1+1=m, y(1) = 1, (m > 0),
show that if the relative error is considered all the time, then jh(t)f 0(y(t))j �
(1 + 1=m)k 8t, where k = jtol=pj1=p. So, although the step size grows
proportionally to time, this problem does not require a method designed for
stiff problems. (In the past, there was a common misconception that the
presence of different time scales during a motion makes the problem stiff,
but it is rather when the local time scale becomes very much larger than the
smallest local time constant, the motion becomes stiff.)

(b) For the standard scalar test equation ẏ = �y, y(0) = 1, (� 2 R), with the
mixed absolute-relative error strategy, show that h reaches the stability limit
for Runge’s 2nd order method when y(t) � 0:0015tol. (The circumstances
are very different in a system with eigenvalues of different order of magnitude).

P10. In the study of numerical methods, one often encounters estimations of the
following type. Let�(q) = aqp+1 + bqp+2 +O(qp+3); jqj � 1; nq = z = O(1):
(a) Show that (eq � �(q))n = eq0n whereq0 = q � (1� q)�(q) +O(qp+3); (jqj � 1):
(b) Show that

(eq � �(q))n � ez � �zez�aqp + (b� a+ za2=2)qp+1 + :::�; (13.2.52)

where  = 0 for p > 1, and  = 1 for p = 1. For example, when the test
equation ẏ = �y, is used in the study of a p0th order method, one sets q = �h,z = �t. The result is also valid if � is a matrix, a; b are scalars, and kqk � 1.

(c) Apply this result to ”the circle test”, i.e. the test problem ẏ = iy, y(0) = 1,
step size h. The orbit is the unit circle of the complex plane. (See also Prob.
1.3.3.) Show that the global error for Runge’s 2nd order method is approx-
imately teit(ih2=6 + h3=8 + : : :), and that the step size with the theoretical
strategy becomes constant, h =

p
6tol. Note that the radial error is positive

and an order of magnitude smaller than the tangential error. How is tol to be
chosen in order that the error should be less than 10�3 after 10 revolutions?
Suppose that the orbit is plotted with a straight line segment for each step.
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Figure 13.2.9. Boundary locus for two multistep methods, see P 11.

At what value of t does the global error become larger than the (local) inter-
polation error of the plotting?
Also show that he global error for Euler’s method isteit(h=2 + (t=8� i=3)h2 + : : :);
so that, for this method, the radial error is positive and much larger than the
tangential error. Also show that h = 2tol with the theoretical strategy.

P11. (a) The left half of Fig. 13.2.9 shows the boundary locus for a consistent linear
8-step method, about which it is known that �(�) has one unstable root. FindS, if it exists. Is the method zero-stable?

(b) The right half of Fig. 13.2.9 shows the boundary locus of the linear 3-step
method generated by the polynomials, �(�) = (� � 1)(�2 + 1); �(�) = 2�3.

Find S,if it exists. Is the method consistent? Is it zero-stable? Is it strongly
zero-stable? Is it 1-stable?

P12. Set r(z) =

kXi=0

aizi; s(z) =

kXi=0

bizi; (13.2.53)

A linear k-step method can also be expressed in the following form, wherer = 1�E�1 is the backward difference operator:r(r)yn+1 = hs(r)f(yn+1):
For a one-leg method the corresponding equation readsr(r)yn = hf�s(r)yn�:
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(a) Prove the formula �(�) = �k�1r(1 � ��1), and the analogous formula for
the polynomials � and s.
(b) Show how to plot the boundary locus, when the coefficients of r and s are
given, without calculating the coefficients of � and �.

(c) The most widely used methods for stiff problems are probably the BDF
methods, based on the truncated expansion of the differentiation operator
given in section 3.2: hD = lnE = � ln(1�r), i.e.,r(r) = r+ 1

2r2 +
1

3
r3 + : : :+ 1krk; s(r) = 1:

Compute �(�); �(�), for the BDF method, for a few values of k.(See also
Exercise C7 of this section, and Sec. 13.4.)
Show that, for k = 1, the BDF method is identical to the trapezoidal method.
What is its stability region?

Computer Exercises

C1. Vacant. (Old problem is moved to Sec.13.1, C10).

C2. Run the inhomogeneous test equation,ẏ = �y + (� � �)e�t; t 2 [0; 3]; tol = 10�3;
and compare the actual global error divided by tol with the bounds obtained
in Theorem 13.2.1 and problem P2. Take � = �2, � = �2;�0:5;+0:5, y(0) =
1, and make also one run with y(0) = 0.

C3. A generalization of the classical dog curve problem. A dog chases a rabbit.
The dog is smarter than usual, for it looks ahead of the dog by an angle
equal to � radians. The speed of the rabbit is 1; the speed of the dog isb > 1. The motions can be described in the complex plane as follows. LetzD(t); zR(t) be the positions at the time t of, respectively, the dog and the
rabbit; zR(t) = (1 + a=16) + it, i.e. the rabbit runs along a straight line. For
the dog we obtain the differential equation:z0D = bei� zR � zDjzR � zDj ; zD(0) = a=16:
If necessary this can be replaced by two real equations. A chasing is ter-
minated, e.g. when jzD � zRj < 2tol or t = tend. Run five cases, � =
0:8� 0:2a; a = 0; 1; 2; 3; 4, and plot them on the same sheet. Try different
values of b.
Note: A variant is to write zR = zD + rei�, and solve the real differential
equations for r; �, or a single equation with either r or � as the independent
variable.
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C4a. (Move to Sec. 13.8 ?????) Consider the initial value problem ẏ = j1� yj1=2,y(0) = 0, 0 � t � 5.

(a) Find the exact solution y(t), and compute f 0(y). For what value of t does
the solution become singular. Note that the solution is not unique to the right
of the singular point.

(b) Solve the problem numerically by the implicit Euler method, with a few
fixed step sizes, e.g. h = 0:01; 0:02; 0:04; 0:08. In every step you have to solve
a quadratic equation. Solve this by the algebraic formula; which root should
you choose? Try Richardson extrapolation to the results, and compare with
the exact solution.

(c) Also try explicit Euler with these step sizes, and Runge’s 2nd order method
with adaptive step size control.

C4. * Bör utvidgas !!!!!!
Study the problem ẏ = 1000(cos t � y), y(0) = 0, 0 � t � 1. (see also p.
XXX). Run it with the implicit Euler method (h=0.01 and 0.02), with the
explicit Euler method (the same fixed stepsizes), and with Runge’s second
order method (adaptive control). Try Richardson extrapolation of the results,
and compare with the exact solution. Explain the different behaviour of the
methods.

C5. Heat equation. Unfinished.

C6. a) Reconstruct Fig. 13.2.3 and/or Fig. 13.2.7(b). The latter shows the stability
region for the Runge–Kutta method Dopri5, see Eqn.(13.2.47).

b) Plot the level curves j�j = r, for Kutta-Simpson’s method for a few values
of r. See Eqn.(13.2.46). Find to (say) two decimal places a value of r, such
that the level curve intersects itself.

C7. Plot the stability regions of the BDF methods for 2 � k � 7. (See Problem
P12.) Give a (non-rigorous) answer to the following questions by a look at
the plots. For which of these values of k is the method zero-stable? For which
values is it 1-stable? For which values is it A-stable?

C8. (a) The two-step method yn+2 + 4yn+1 � 5yn = h�4f(yn+1) + 2f(yn)
�

was
discussed in Example 13.2.16. Plot the boundary locus. It looks very normal,
but show that the stability region is void. Note that �(�) has one zero at 1 !

(b) Make a numerical experiment with this method on the initial value problemẏ = y2, y(0) = 0:1, h = 1. You need one more initial value; choose y1 equal
to the value of y(0:1) correct to 5 decimals. (See also Example 13.2.11 and
Fig. 13.2.4.) Would you recommend this method to your best friend?

(c) Make a similar numerical experiment for the leap frog method. It was
studied in Example 13.2.17.

(d) A two-step method with degenerate stability region. (Unfinished).

C9. (Arenstorf orbits; a restricted 3-body problem of Astronomy.) The following
2nd order complex equation is a simple model for the motion of a satellite of
negligible mass in the gravitational field of the earth (mass=1�m) and the
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moon (mass=m). The earth E and the moon M rotate in a circle around
their mass center. The motion takes place in the plane of this circle. It is
studied in a coordinate system that rotates with the earth and the moon.
The location at time t of the satellite is described by a complex number,z(t) = x(t) + iy(t): E = �m; M = 1 �m; (hence the mass center is at the
origin.)
The satellite is therefore influenced by a centrifugal force and a Coriolis force
in addition to the gravitational forces from the earth and the moon. The
equation reads, in dimensionless form, (after a scaling of space and time): 37z̈ = z � 2iż � (1�m)(z �E)jz �Ej�3 �m(z �M)jz �M j�3:
We choose (according to Hairer et al.[20, pp. 128 and 197], m = 0:012277471,z(0) = 0:994; ż(0) = �i(2:0015851063790825 + 0:0301475231782543a):
For a = 0 and a = 1, the orbits should become (very different) closed curves.
For 0 < a < 1 the motion looks rather chaotic. The motion is, however, very
sensitive to perturbations. Run it with tol = 10�3, 10�4, until t = 18, fora = 0, a = 1, and some value between. Then take a = 0, with tolerances 10�3,
10�4, 10�5; : : :. What tolerance and how many steps are needed for a = 0 in
order that the orbit should look closed on the screen,

(a) at the first return to the neighborhood of the starting point?

(b) also at the second return to the neighborhood of the starting point?

You are likely to give up case (b), due to lack of time, if you try to solve it
with Runge’s 2nd order method. After this you will appreciate that there are
problems for which a method of high order of accuracy is needed, even if the
requirements for final accuracy is modest.

An experiment on a VGA screen with the 5th order Runge–Kutta method
dopri5, see Sec.1̃3.3, with an adequate step size control and an adequate (cu-
bic Hermitean) interpolation for the graphics, showed that the final accuracy
in case b) required a small tolerance, tol = 10�7. 681 steps (4086 function
evaluations) were needed. How far do you get with 4086 function evaluations
with Runge’s 2nd order method when tol = 10�7?

13.3 One-Step Methods

We have several times encountered Runge’s 2nd order method, see Sec. 13.1.1. It
reads, for a non-autonomous system, ẏ = f(t; y), ,k1 = hnf(tn; yn);k2 = hnf(tn + 1

2hn; yn + 1
2k1); (13.3.1)yn+1 = yn + k2:

37If your program cannot handle a complex system, rewrite it as a real system.
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This method is an example of a one-step method; more specifically, it is an explicit
two-stage second order accurate Runge–Kutta method.

The idea behind most one-step methods, is that (tn; yn) and a suggested value
for the step size hn = tn+1 � tn are the only input data to the step, where yn+1 is
computed, and the error committed is estimated. If the error is acceptable, a new
step size is suggested for the next step, otherwise a new step size is suggested for
a recomputation of yn+1. The one-step method is characterized by an increment
function Ψ and a step size h such thatyn+1 = yn + hΨ(tn; yn;h):

A one step method can be implicit. Then this relation has, to begin with,
the form yn+1 = yn + hΨ�(tn; yn; yn+1;h). If Ψ� satisfies the regularity conditions
specified in Ch.1̃2, and if h is small enough, this vector equation can be solved, and
the form yn+1 = yn + hΨ(tn; yn;h) is still valid. See also x13.2.x.

Denote by y(t; tn; yn) the trajectory of the system ẏ = f(t; y), which passes
through the point (tn; yn). We say that that the order of consistency equals p,
iff yn+1 � y(tn + h; tn; yn) = O(hp+1). If p � 1 the method is consistent. We shall
discuss consistent methods only.

If Ψ satisfies a Lipschitz condition, the method is automatically zero-stable,
see the end of x13.3.1. This is the case for all explicit one-step methods in practical
use. In non-stiff intervals, the order of consistency then becomes the order of
accuracy; the global error is O(hp). In stiff intervals, however, it turns out that
the order of consistency does not tell the whole truth about the order of accuracy,
and several implicit one-step methods which seem attractive, by older criteria, are
no longer recommended. A brief introduction to the important order reduction
phenomenon is therefore given in x13.3.4.

The best known one-step methods for non-stiff problems are the explicit Runge–
Kutta, or in short explicit RK-methods. They will be studied in x13.3.1, in par-
ticular the order conditions. The practical step size control is treated in x13.3.2,
where examples of so-called embedded RK-methods are given.

Linear stability is discussed in x13.3.3 for both explicit and implicit RK-
methods. Some of the most interesting implicit RK-methods, namely the collo-
cation and the DIRK methods, will be discussed in x13.3.4 together with a brief
introduction to the order reduction. Miscellaneous topics, e.g., dense output will
be presented in x13.3.5 and in the remaining subsections there is an introduction to
other types of one-step methods, in particular Rosenbrock methods and the Taylor
series method.

Our standard references are, in the present section, Hairer, Nørsett and Wan-
ner [20], in particular Ch.II, and Butcher [4], where most of the omitted proofs can
be found.

13.3.1 Runge–Kutta Methods and Their Classical Order

Conditions.

The idea of the explicit Runge–Kutta methods is that the calculations within a
step proceeds in several stages. In each stage a value of f(t; y) is computed in a
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strategically chosen point near the trajectory. yn+1 � yn is a linear combination
of these values, chosen in order that the expansion of this into powers of h should
equal as many terms as possible of the corresponding expansion of y(tn + h; tn; yn).

A general explicit Runge–Kutta method with r stages 38 readsk1 = hnf(tn; yn);k2 = hnf(tn + 2h; yn + a21k1);k3 = hnf(tn + 3h; yn + a31k1 + a32k2);: : : ;kr = hnfn(tn + rh; yn + ar1k1 + � � � ar;r�1kr�1);yn+1 = yn + b1k1 + b2k2 + � � �+ brkr:
The method is thus characterized by a tableau, AbT (13.3.2)

Here A is a strictly lower triangular r � r matrix, i.e., all elements above and on
the main diagonal are zero. bT 2 Rr is a row, and  2 Rr is a column; 1 = 0.

Note that if f(t; y) is independent of y, theny(tn + h)� y(tn) =

Z tn+1tn f(t)dt; yn+1 � yn =

rXi=1

bif(tn + ih):
In other words, the parameters bi; i should be the weights and the nodes in an accu-
rate quadrature formula. The first methods of Runge, Heun and Kutta were results
of attempts to generalize well known quadrature formulas to ordinary differential
equations.

As stated earlier, we require that a general purpose numerical method should
give the same results when applied to a non-autonomous system as for the au-
tonomous system obtained for the vector (t; y) if the system is augmented by the
equation ṫ = 1. It can be shown (Problem 13.3.cA1) that this is the case iffi = ai1 + ai2 + : : : ai;i�1, i = 1 : s, and

P bi = 1, i.e., in vector-matrix nota-
tion,  = A1; bT1 = 1 where 1 = [1; 1; : : : ; 1]T : (13.3.3)

We assume that this holds and can therefore in the following restrict most of the
discussion to the autonomous system ẏ = f(y).

We now display the tableaux39 for Runge’s 2nd order method and for two
famous explicit methods with 4 stages, due to Kutta 1905, The latter are con-
structed as generalizations of classical quadrature rules namely Newton’s 3/8 rule

38In most texts the number of stages is denoted by s. We cannot use this, since s has been
reserved for the number of differential equations in a system.

39The zeros on and above the main diagonal of A are usually omitted from such tableaux. Here
we print them, in order to emphasize that A is an r � r matrix.
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and Simpson’s rule, respectively.

0 0 0
1
2

1
2 0

0 1

0 0 0 0 0
1
3

1
3 0 0 0

2
3 � 1

3 1 0 0

1 1 �1 1 0
1
8

3
8

3
8

1
8

0 0 0 0 0
1
2

1
2 0 0 0

1
2 0 1

2 0 0

1 0 0 1 0
1
6

1
3

1
3

1
6

The last of them has been particularly popular for a long time, and has been called
the classical Runge–Kutta method or even “the” Runge–Kutta method. Nowadays
they are often named Kutta’s 3/8 rule and Kutta’s Simpson’s rule, respectively.
One can show, by formulas and tables given below, that they are both 4’th order
accurate. They have the same stability region, and the difference in performance is
small.

The values yn+aj1k1 +aj2k2 + : : :+ajjkj ; j = 2 : r�1; are approximations toy(tn + jh), but these are typically much less accurate than the approximation yn+1

for y(tn + h), and they are therefore (typically) of little use for the interpolation of
the solution.

During the computer age a lively activity has been devoted to the design of
higher order explicit RK-methods. This is a very hard task, since the number of
order conditions for a method of order p equals the number of elementary differen-
tials (or rooted trees) of order � p, and this grows rapidly. We quote a table from
Sec. 12.5:

1 2 3 4 5 6 7 8 9 10
1 1 2 4 9 20 48 115 286 719

(13.3.4)

By adding five values of this table, we find that there are 17 order conditions
for p = 5. This rises to 1205 for p = 10.

It is beyond the scope of this text to discuss the creative process of designing
a RK-method that satisfies given demands for accuracy and stability. We shall,
however, present algorithms and tables, which can be used for determining the
order of accuracy of any suggested method, and for finding the principal error term
when the order is 4 or less.

An interesting and difficult question is how many stages (r) are necessary to
construct an explicit RK-method of order p. The question if there might be a fifth
order method with five stages was not answered until the mid-sixties, and then the
(negative) answer was given independently by Ceschino and Kuntzmann [5] and
Butcher. That six stages are needed for p = 5 partly explains the popularity of the
classical four-stage method; it takes two more stages to gain one order of accuracy.
Butcher has then contributed with the results for higher order methods shown in
the following table. They are called the Butcher barriers.

At the time of writing, the highest order obtained for an explicitly constructed
RK-method is 10. Hairer [1978] achieved this using 17 stages. It was mentioned
above that 1205 order conditions have to be satisfied for this. It is remarkable that
this can be done by a method with only 17 � 18=2 = 153 parameters.
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Table 13.3.1. Maximal order of explicit Runge–Kutta methods.p 2 3 4 5 6 7 � 8s 2 3 4 6 7 9 > p+ 2

For an implicit Runge–Kutta method (IRK) the defining formula ?? is almost
the same, and the tableaux 13.3.2 is the same. The difference is that A can now
be a filled matrix, not necessarily triangular. If A is a lower triangular matrix, but
at least one diagonal element aii 6= 0, we have a diagonally-implicit RK-method
(DIRK).

The numerical computation of the r vectors k1; k2; : : : ; kr is laborious for a
general IRK, even if the huge system is can be transformed to a system where, in
each step, r smaller systems of the form y��hf(y) = v has to be solved, see x13.2.4.
It is simpler for a DIRK; the system is directly of this simpler form. If aii is the
same for all i, it is even simpler, since � is the same for all the smaller systems,
although the right hand side v is different. Such methods are called SDIRK (S
stands for singly).

The following are the tableaux for the implicit Euler method, the implicit

midpoint method and a two stage SDIRK-method, which is of order 3 for  = 3�p3
6 .

1 1

1

1
2

1
2

1

  0

1�  1� 2 
1
2

1
2

We shall now discuss the classical order conditions for non-stiff applications,
for both explicit and implicit methods. You are advised to take a look at Section
12.5 first, since we shall use the notations and some results concerning multilin-
ear mappings, Fréchet derivatives, elementary differentials and rooted trees. Re-
call that Taylor’s formula reads, with vector-valued arguments and functions, e.g.,y0; k; f(y) 2 Rs,f(y0 + k) = f(y0) + f 0(y0)k + 1

2f 00(y0)(k; k) + : : : : (13.3.5)

Also recall that, by Eqn. (??), the formal Taylor expansion of the solution y(t)
around t = tn 2 R readsy(tn + h) = y(tn) +

X
t

h�(t)�(t)!
�(t)F (t)y(tn): (13.3.6)

Here the variable t runs through the set of all rooted trees; �(t) is the order of
the tree, and �(t) is another combinatorical parameter. F (t) is an elementary
differential tabulated below for low order trees, together with all other relevant tree
functions. (Note that t and t denote very different concepts.)

It is conceivable that the vector yn+1 produced by a step of length h with an
arbitrary RK-method, also admits a formal expansion into powers of h, that can be
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rearranged as a sum over all rooted trees; to find its exact form is a non-trivial task,
see Hairer et al., Ch.II, Theorems 2.11 and 3.2. The final result is not as messy as
you might have expected, see Table 13.3.1.

Each term contains a factor bTΦ(t;A), where A; bT come from the tableau of
the RK-method. The integer-valued factor (t) and Φ(t;A) 2 Rr will be given in
Table 13.3.2. The expansion readsyn+1 � yn =

X
t �(t)�p+1

h�(t);�(t)!
�(t)(t)bTΦ(t;A)F (t)yn +O(hp+2): (13.3.7)

By matching the coefficients of this expansion with (13.3.6), i.e., the Taylor expan-
sion of the exact solution, we obtain the following theorem.

Theorem 13.3.1. The classical order of an RK-method is the largest integer p,
such that (t)bTΦ(t;A) = 1

for all rooted trees t of order � p.
The local error yn+1 � y(tn + h; tn; yn) readshp+1

(p+ 1)!

X
t; �(t)=p+1

�(t)
�(t)bTΦ(t;A)� 1

�F (t)(yn) +O(hp+2):
The local error in a step is thus bounded by Chp+1, where C is expressible in terms
of bounds for the partial derivatives of order p+ 1 or less, uniformly for y in some
closed region D.

Of course, the expansion (13.3.7) can be used, only as long as all partial deriva-
tives of f needed for the computation of F (t)(yn) exist. So, if f 2 Cq(D) only, whereq < p, we can only state that the local error is O(hq+1).

Note that the knowledge of �(t) is not needed for the determination of the
order, but the principal error term requests �(t) for the trees of order p+ 1.

Before we go into the details about trees, tree functions and elementary dif-
ferentials, we shall take a look at global error bounds and convergence. We have
already such bounds for the continuous model for the error propagation in Theo-
rems 13.1.23 and 13.2.1. In order to prove convergence we shall now consider the
actual discrete error propagation; recall the staircase curve (Fig. 13.1.3).

Theorem 13.3.2. Let D � R � Rs be a neighborhood of the trajectory
(t; y(t; t0; y0))j t0 � t � b. Suppose that �(f 0(y)) � ��; 8y 2 D, and that, for somep � 1 all elementary differentials of f , of order up to p are continuous in D.

Let (ti; yi); 0 � i � N; h = max(ti � ti�1), be the point sequence obtained by
means of the explicit RK-method (13.3.2); the order of consistency is p; p � 1.

Then the local error has a bound of the form Chp+1, as long as h; N are
small enough for this sequence to remain in D. Set C 0 = C exp(���h) if �� > 0,
otherwise C 0 = C.



100 Chapter 13. Ordinary Differential Equations

Then, the global errors are, for t = ti, bounded bykyi � y(ti; t0; y0)k � (C 0hp e��(t�t0)�1�� ; if �� 6= 0;.C 0hp(t� t0); if �� = 0;

The order of accuracy of the method thus equals p. If f 2 Cq(D) only, where
1 � q < p, the order of accuracy is typically reduced to q.

As h! 0 the solutions produced by the method converge uniformly to the exact
solution y(t; t0; y0).

The proof is omitted, since it is very similar to the proofs of (??) and Theorem
13.1.23. See also Fig. 13.1.4.

Example 13.3.3 The truncation error of Runge’s 2nd order method
See Example 13.2.1. (Some additional comments should perhaps be made

here.) For the sake of brevity we write f; f 0; : : : for f(yn); f 0(yn); : : :: We obtain,
by the definition of the method and (13.3.x+1)yn+1 = yn + f(yn + 1

2hf)h = hf + hf 0 1
2h+ 1

2hf 00(1
2hf; 1

2hf)

= yn + ẏh+ 1
2 ÿh2 +

1

8
f 00(f; f)h3 + : : :

= y(tn + h) +
�1

8
f 00(f; f)� 1

6
y000�h3 + : : :

(We regret that we must use dashes also for a time derivative here.) In the simple
program outlined in Example 1.3.2 the term 1

8f 00(f; f) is considered less important
than 1

6y000(t) and is therefore neglected. This is the simplification of the error es-
timate, referred to in a comment to the program outlined in Example 1.3.2. It is,
of course, not generally valid, but it is all right for linear autonomous systems, and
seems acceptable in several analyzed non-linear test examples too, e.g., Example
13.1.6 (??). So far it has worked so well in practice that we do not even think it is
necessary to have a safety factor. (You can instead choose a tolerance on the low
side of your demands, if you feel insecure.)

The program uses, in the step size control, 1
3kk2�k1k � khf 0 1

2hfk = 1
6kÿkh2:

with a scaled max-norm. Note that this is, no estimate of the local ’ error but, in
accordance with the theory of Sec. 13.6.1 (???), a (simplified) estimate of the error
per local unit of time, where the local unit of time means �q(t) = kÿ(t)k=ky000(t)k.
13.3.2 On the Computation of Elementary Differentials and

Tree Functions.

We shall now describe two algorithms for the computation of �(t); (t); F (t);Φ(t;A)
for a rooted tree t that is composed by simpler rooted trees,
for which these functions are known. In fact, given the trivial values of these
functions for t = t11 (one single vertex), the algorithms are sufficient for computing
the functions for any rooted tree. Results obtained by these algorithms are collected
in Table 13.3.2.
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The first algorithm is, in principle, taken from Hairer, Nørsett and Wanner,
loc. cit., Ch.II, Eqns. (2.17)–(2.19).

Algorithm I. (m); m � 1. Suppose40 that t is created, when t1; t2; : : : tm
are set on a common new root. Then�(t) = 1 +

mXk=1

�(tk);(t) = �(t) � (t1) � (t2) � � � (tm)F (t) = f (m)
�F (t1); F (t2); : : : ; F (tm)

�
Φ(t) = AΦ(t1): �AΦ(t2): � : : : : �AΦ(tm)

We here use the Matlab notation :� for the elementwise multiplication of vectors
(arrays). In order to reduce the number of parentheses, we make the convention that
the multiplication of a matrix by a vector has a higher priority than the elementwise
multiplication.

The function �(t) is not changed by Algorithm I(1). Otherwise we refer to
Butcher, loc. cit., or Hairer, Nørsett and Wanner concerning the computation of�(t). Also note that, by Theorem 13.3.2, �(t) is not needed for the determination of
the classical order of an RK-method, but it is needed for finding the error constants.

Next algorithm can be derived from Algorithm I, (Problem 6), but we give it
a name, because it is used so frequently in the formation of new rooted trees and is
more convenient than the direct application of Algorithm I.

Algorithm II. Given a rooted tree t0, consisting of m�1 trees t1; t2; : : : tm�1

connected to its root. (Algorithm I(m-1) can thus be applied to t0.) A new tree t
is created by connecting one more vertex to the root of t0. Then:�(t) = 1 + �(t0);(t) = (t0)�(t)=�(t0);F (t) = f (m)(F (t1); F (t2); : : : F tm�1); f);

Φ(t) = Φ(t0): � :
Example 13.3.4 Examples of trees, and applications of the algorithms.

Denote by �(q) the number of rooted trees of order q. By (12.5.11???), we
have, for q � 1, �(q) = 1; 1; 2; 4; 9; 20; : : :. The trees with �(t) = q � 3 are
recursively obtained as follows. We use two subscripts for a tree; the first one is the
order �(t).

Suppose that q � 3; the cases q = 1 and q = 2 are trivial. The trees of orderq obtained by the application of Algorithm II to the trees tq�1;� , nu = 1 : �(q � 1),
are named tq� . For example, for � = 1 we find, by induction in q, that the tree
tq;1 is a root directly connected to q� 1 vertices. Moreover, for this particular tree,(t) = �(t) = q; F (t) = f (q)fq ; Φ(t;A) = :q .

40When t has only one subscript, this has nothing to do with the order of the tree. When there
are two subcripts, however, the first of them equals the order.
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Similarly, the trees of order q obtained by the application of Algorithm I(1)
to the trees tq�1;� ; � = 1 : �(q � 1), are named tq;�+�(q)��(q�1).
There is no conflict in the choice of names, as long as �(q) � 2�(q � 1) � 0. Forq = 3 : 10 this quantity takes the values 0; 0; 1; 2; 8; 19; 56; 147, according to the
table in (12.5.11)??? This time we find, for � = �(q � 1) that So, tq;�(q) is “the tall
tree” with all q vertices on the trunk. For this particular tree, (t) = q!; F (t) =
(f 0)q ; Φ(t;A) = Aq�2. Further applications of algorithms I(1) and II are seen in
the upper part of Figure 13.3.1.
We do not give a general proof that the 2�(q � 1) trees of order q thus obtained
by these algorithms are all different, but it is easy to check this, when they have
been computed. It is, e.g., easy to see that all trees in Table 13.3.2 are different.
For if two trees were equal, they would have the same (�(t); (t); �(t), and you see
at a glance that this is not the case. If this test turns out to be insufficient for an
extension of the table, there are several other simple tests.
You now find that Algorithms II and I(1) are sufficient for computing the trees and
the tree functions, up to q = 4. For q = 5, we have seen how to find t5;� for � = 1 : 4
by Algorithm II, and for � = 6 : 9 by Algorithm I(1). Now, only t55 is missing, but
Algorithm I(2) can map the pair t21; t21 to a new tree of order 5 that we are free
to call t55. See the lower part of Fig. 13.3.1.
Now all trees up to q = 5 are known; the reader is advised to draw them; in Sec. 12.5
you see examples of different “topologically equivalent” graphs for the same tree.
Also check a few of the results in Table 13.2.3 ( except �(t5;�)). We ignore the
computation of �(t); as mentioned above, this function is not needed for the deter-
mination of the order.
We proceed to q = 6. Algorithm II yields t6;1:9, and since �(6) � �(5) = 11,
Algorithm I(1) yields t6;12:20. Now, only t6;10 and t6;11 are missing. Again Al-
gorithm I(2) helps for mapping the pair t21; t31 to t6;10, and for mapping the pair
t21; t32 to t6;11. See the lower part of Fig. 13.3.1.Tree F (t) Φ(t;A) (t))

t6;10 f 00(f 0f; f 00(f; f)) A: �A(: � ) 36
t6;11 f 00(f 0f; f 0f 0f) A: �A2 72�

Table 13.3.2 Rooted trees and elementary differentials etc. up to order 5.
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t11 f 1 1 1
t21 f 0f  2 1

t31 f 00(f; f) : �  3 1
t32 f 0f 0f A 6 1

t41 f 000(f; f; f) : � : �  4 1
t42 f 00(f 0f; f) A: �  8 3
t43 f 0f 00(f; f) A(: � ) 12 1
t44 f 0f 0f 0f A2 24 1

t51 f iv(f; f; f; f) : � : � : �  5 1
t52 f 000(f 0f; f; f) A: � : �  10 6
t53 f 00(f 00(f; f); f) A(: � ): �  15 4
t54 f 00(f 0f 0f; f) A2: �  30 4
t55 f 00(f 0f; f 0f) A: �A 20 3
t56 f 0f 000(f; f; f) A(: � : � ) 20 1
t57 f 0f 00(f 0f; f) A(A: � ) 40 3
t58 f 0f 0f 00(f; f) A2(: � ) 60 1
t59 f 0f 0f 0f 0f A3 120 1

13.3.3 Error Estimation and Step Size Control

It is hard to apply the expression for the local error as given in Theorem 13.3.1, Two
other procedures have been used. The first one is based on the Richardson idea,
Sec. 3.3.5; in fact it was used for error estimation without (active) extrapolation
by Runge as early as 1895. The second one, which is indirectly based on the error
expression, is called the technique with embedded RK-formulas.

The oldest and most straightforward device for the control of the local error is
step doubling and Richardson extrapolation. Suppose we compute starting from
(xn; yn) two steps with step size h=2 using a Runge–Kutta method of order p giving
a value yn+1. We then compute, again starting from (xn; yn), one step with step
size h to obtain ỹn+1. Theny(xn) = yn+1 + 2�h

2

�p+1

+O(hp+2)y(xn) = ỹn+1 + hp+1 +O(hp+2);
and subtracting we obtainyn+1 � ỹn+1 = 2�h

2

�p+1

(2p � 1) +O(hp+2):
Hence an approximation ŷn+1 of order p+ 1 isŷn+1 = yn+1 + en+1; en+1 = (yn+1 � ỹn+1)=(2p � 1): (13.3.8)
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Figure 13.3.1. Applications mentioned in the text of Example13.3.4. In
the upper part, Algorithm II maps the trees of the 1st row to the trees on the 2nd
row, half a step to the right, while Algorithm I(1) maps the trees of the 2nd row
to the trees of the 1st row, half a step to the right. The lower part shows three
applications of Algorithm I(2).

Here en+1 gives a simple estimate of the error in the unextrapolated value yn+1. The
solution is then advanced either from yn+1 or ŷn+1. In the latter case this is called
local extrapolation.

The error estimate in (13.3.8) can be used to automatically adjust the step
size as follows. Let ln = ken+1k be a measure of the local error. A common policy
is to keep the local error per unit step below a given tolerance �,ln � �(xn+1 � xn) = �h: (13.3.9)

The new step size h0 is chosen to satisfy this condition for the next step. This leads
to the choice h0 = h���hln �1=p ; (13.3.10)
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where � � 1 (typically � = 0:9) is a preset safety factor. If the criterion (13.3.9)
is not satisfied for the current step, this step is rejected and the computations ofyn+1 repeated with the new step size h0. In several programs the user is asked to
set upper and lower bounds for the permissible step size. Further, h is usually not
allowed to increase or to decrease too fast.

Using (13.3.8) with the classical fourth order Runge–Kutta method we need
8 + 3 = 11 function evaluations to proceed two (half) steps from yn to ŷn+1. (Note
that the function evaluation of f(xn; yn) can be shared by the two different steps
sizes.) This is an overhead of of 3=8 = 37:5%.

It is more efficient to use Runge–Kutta formulas which simultaneously give
approximations to the local error. The idea is to use a pair of Runge–Kutta methods
characterized by the tableau

02 a213 a31 a32
...

...
...

...s ar1 ar2 � � � ar;r�1b1 b2 � � � br�1 brb̂1 b̂2 � � � b̂r�1 b̂r
The pair of formulas are usually constructed so that the methodsyn+1 = yn +

sXi=1

biki; ŷn+1 = yn +

rXi=1

b̂iki;
have orders p and q = p + 1. The difference of the two results then provides an
error estimate. Such formulas are called embedded Runge–Kutta methods.

The idea of using such formulas was first proposed by Merson. The most
well-known of his methods is given by the five stage method

0
1
3

1
3

1
3

1
6

1
6

1
2

1
8 0 3

8

1 1
2 0 � 3

2 2bi 1
10 0 3

10
2
5

1
5b̂i 1

6 0 0 2
3

1
6

It can be shown that ŷn is a fourth order method. Although yn is in general only
a third order method, for a linear differential equations with constant coefficientsf(x; y) = Ay + bx it becomes effectively fifth order. An estimate of the local
truncation error is given by the differenceln+1 =

1

30
(�2k1 + 9k3 � 8k4 + k5); (13.3.11)
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see Lambert [1973, pp. 131–132]. Two steps here take ten function evaluations
against the eleven required by the step doubling process described previously. How-
ever, we have to continue with the fourth order estimate whereas with Richardson
extrapolation we can use local extrapolation to get a fifth order estimate. Also,
when applied to a nonlinear differential equation it frequently grossly overestimates
the error which leads to a poor step-size control. In spite of this the method has
been used successfully, e.g., in the NAG subroutine library.

Another popular embedded Runge–Kutta method is the method of order
4(5)41 developed by Fehlberg [15] which requires six function evaluations per step.
The first five of these combine to produce a fourth-order method and all six give
a fifth order method. A method with the same coefficients has been implemented
as a method of order 5(4) in a much used program called RKF45 by Shampine and
Watts [1977]. However, it suffers from the disadvantage that the two formulas are
based on the same quadrature formula, which leads to poor step-size control for
some problems.

Fehlberg devised his methods so that the error terms for the lower order resulty1 were minimized. Practical results indicate that local extrapolation is preferable.
If this is used, then the error terms of the higher order result ŷ1 should instead
be minimized. This is done in a more recent seven stage method of order 5(4) by
Dormand and Prince given below, called dopri5.

0

1
5

1
5

3
10

3
40

9
40

4
5

44
55 � 56

15
32
9

8
9

19372
6561 � 25360

2187
64448
6561 � 212

729

1 9017
3168 � 355

33
46732
5247

49
176 � 5103

18656

1 35
384 0 500

1113 � 125
192 � 2187

6184
11
84bi 35

384 0 500
1113 � 125

192 � 2187
6184

11
84 0b̂i 5179

57600 0 7571
16695

393
640 � 92097

339200
187
2100 1=40

This method is also constructed so that asi = bi for all i, and therefore the next to
last evaluation of f in a current step can be re-used for the first evaluation in the
the following step. This method seems to be the most efficient of the methods of
order 5(4), and is suitable for tolerances down to about 10�7.

Another well known Runge–Kutta code with step size control is DVERK of
order 6(5) with 8 stages. This method, due to Verner, is based on a pair of formulas
of order 5 and 6. It is available in the IMSL Library. Fehlberg has made a method
of order 7(8) with 13 stages. It has been much used for high precision computations,
e.g., in astronomy. Excellent results have also been obtained by the 8(7) method of

41the first integer is the order of the accepted value; the second is the order of the other value
used in the error estimate.
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Prince and Dormand [14]. Material about several methods of Dormand and Prince
is found also in Hairer, Nørsett, and Wanner [20, Sec. II.5]; the 1st edition of that
book (1987) contains additional material. which also includes a subroutine DOPRI8
implementing the Prince and Dormand method with step size control. These codes
are preferable for tolerances between approximately 10�7 and 10�13.

For a code to be efficient over a wide range of accuracy requirements, it is
important to be able to vary the order of the formulas being used. Such variable-
order codes must estimate the error that would have resulted in using formulas of
different orders. Most codes that implement Runge–Kutta methods, however, are of
fixed order. Variable-order codes are common for multistep methods, see Sec. 13.3.

13.3.4 Linear Consistency and Stability Analysis for

Runge–Kutta Methods

Consider a general RK-method with r stages, implicit or explicit.ki = hf(yn + ai1k1 + ai2k2 + � � �+ airkr); i = 1 : r: (13.3.12)yn+1 = yn +
rXj=1

bjkj ; tn+1 = tn + h: (13.3.13)

Set,as above, A = [aij ]ri;j=1:
1T = (1; 1; : : : ; 1); kT = (k1; k2; : : : ; kr); bT = (b1; b2; : : : ; br):

For the scalar test equation y0 = �y with q = �h, we obtain
k = qyn � 1 + qAk; yn+1 = yn + bTk, hence

k = qyn � (I � qA)�1 � 1yn+1 = (1 + qbT (I � qA)�11)yn � R(q)yn: (13.3.14)R(q) is called the stability function. The stability region S of an RK-method is
thus the set fq : jR(q)j � 1g. You read in x13.2.3 how to construct S.

It follows, e.g., from the expression of the matrix inverse in terms of determi-
nants, that R(q) is a rational function of q. The denominator is det(I � qA), which
is a polynomial of degree � r. The numerator is also a polynomial of degree � r.

The exact solution of the scalar test equation reads yn = e�tn = eqn, henceyn+1 = eqyn. The consistency of a method is thus related to how well the power
series expansion of R(q) approximates eq , though the notion linear consistencyp̄; p̄ � p, was introduced in x13.2.3, since it can happen that a method is more
consistent for the special test equation than for a general nonlinear system.

The Padé approximants studied in x3.4.3 are, in this sense, the best rational
approximations to a power series. In fact, Example 3.4.1 is concerned with the Padé
approximants just to the exponential. Theorem 3.4.2 shows that the remainder of
the Padé approximant fm;n, where m;n are the degrees of the numerator and the
denominator, respectively, is Cm;nqm+n+1. The Padé approximants are ordered in
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the so-called Padé table where m;n are the row and column indices, respectively.
ixPadé table

There are exceptions where Cm;n = 0, but Hairer and Wanner [21, Eq. (IV.3.30)]
show that there are no such exceptions for the exponential.

The conclusion is that p � p̄ � 2r for every RK method.. 42 We shall see
below that, for every r > 0, there exists a IRK method, based on collocation, such
that p = 2r, hence m = n = r.

One can show that the rational functions on the main diagonal of the Padé
table, i.e. if m = n = r, are A-acceptable, and the approximants in the first and
the second subdiagonals, i.e., m = n� 1 and m = n� 2, are even L-acceptable. All
the other Padé approximants are not even A-acceptable; the approximants above
the main diagonal are, of course, not even zero-acceptable. 43

If a method is explicit, then A is subtriangular, hence Ar = 0, and we can
write

(I � qA)�1 =
r�1X�=0

(qA)� ; R(q) = 1 +
rX�=1

bTA��11q� :
hence R(q) is a polynomial of degree r for an explicit RK-method. It follows thatp � p̄ � r for explicit RK methods, but it was mentioned above that p = r is
achieved for r � 4 only.

The stability region S of an explicit RK method is bounded, since jR(q)j ! 1
as jqj ! 1.

13.3.5 Collocation and Order Reduction.� Preliminary text.
Choose points tn+h�i, i = 1; 2; : : : ; r. For t 2 (tn; tn+1), define an r’th degree

polynomial  (t) by the equations,h 0(tn + h�i) = ki; (i = 1 : r); (tn) = yn;
By Lagrange’s interpolation formula we haveh 0(tn + h�) =

rXi=1

kiÆi(�); (13.3.15)

where Æi(�) is the (r� 1)-degree polynomial uniquely determined by the conditionsÆi(�j) = Æij , j = 1 : r, well known from the theory of interpolation, although with
a different notation. Note that, for any polynomial of degree r or less,rXi=1

p(i)Æi(�) = p(�) ; e:g:;X i = 1rÆi(�) = 1:
42Recall that the order of consistency equals the order of the local error minus one.
43We hope that this terminology can be understood.
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Now integrate (13.3.15) from 0 to �i: (tn + h�i) = yn +

rXj=1

aijkj ; where aij =

Z �i
0

Æj(�) d�:
Now we require that the autonomous differential system y0 = f(y) should be satis-
fied by  (t) in the points t = tn + h�i, i = 1 : r, which we call collocation points.

In fact, this exemplifies a very old and general idea called collocation that
has numerous applications to partial differential equations and integral equations.
We shall meet it again. We shall now see thathere the collocation idea leads to an
IRK method. Henceh 0(tn + h�i) = hf( (tn + h�i)); i = 1 : r;
i.e. ki = hf(yn +

rXj=1

aijkj): (13.3.16)

Now we can construct an implicit RK-method by setting,yn+1 =  (tn+1); bi =

Z 1

0

Æi(�) d�
for by the integration of (13.3.15) from 0 to 1, we obtain,yn+1 � yn =

rXi=1

biki; (13.3.17)

which, together with (13.3.16), defines the method, withi = �i; i = 1 : r:
For the extension of this to non-autonomous systems we need to show thati =

rXj=1

aij :
First, we saw above that

Prj=1 Æj(�) = 1, It follows thatrXj=1

aij =

Z �i
0

rXj=1

Æj(�) d� = �i = i:
Under appropriate differentiability assumptions concerning f , we have 0(t) = f(t;  (t)) +O(hr); (tn � t � tn+1):

One may expect that the accuracy of yn+1, becomes higher, if the �i are the abscissae
of the Gauss quadrature formula over the interval (0; 1). In fact, it can be shown
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(see Hairer et al. Theorem II.7.9) that the order of consistency becomes 2r, which,
as mentioned, is the highest attainable order for r-stage RK-methods. This method
therefore realizes the diagonal element Prr in the Padé table. Similarly, it can be
shown that the order of consistency equals 2r � 1 for methods which are based on
the two Radau quadrature formulas with, respectively �1 = 0 or �r = 1, while the
remaining � are chosen to produce the highest possible order of accuracy. Note that
the collocation interpretation is not suitable for all RK-methods.

It is remarkable that the method based on Gauss quadrature is A-stable. This
compares very favorably with linear multistep methods, or one-leg methods, whereA-stability implies p � 2. In many other contexts high order of consistency is bought
at the price of deteriorated stability properties. The price here is the complexity of
the nonlinear system with r � s unknowns which has to be solved at each step.� More material is to be added. For the time being the reader is referred to
Hairer–Nørsett–Wanner: Sec.II.7 (Collocation Methods), Sec.IV.5 (Gauss...,Radau...,Lobatto...).

The stability function does not define an RK-method uniquely, e.g. the Simp-
son’s rule and the 3/8 rule of Kutta have the same truncated power series as stability
function. Butcher, loc. cit,, seems to make a more direct statement about which of
the published Gauss etc. rules are derived from collocation.� Some material will be added about order reduction, The demonstration
of this phenomenon by means of Prothero–Robinson’s inhomogeneous test equationẏ = �(y � �(t)) + �̇(t); y(t0) = �(t0); <� � 0:
will be exemplified. A merger of extracts from Tables IV.5.13 and IV.15.1 is to be
included.

13.3.6 Miscellaneous about Runge–Kutta Methods� Very preliminary text about dense output for RK methods.
A typical problem with RK-methods is that the steps are rather large and that

the estimates of y(tn+jh) at the intermediate stages are usually less accurate than
the estimate of y(tn+1). So it is not easy to interpolate the results to the accuracy
they deserve. Usually, the local errors of the interpolation do not need to be (much)
smaller than the global errors of the available values.

Dense output is required in many cases, such as graphical output, event loca-
tion (i.e., finding an intersection with some hyperplane or treating a discontinuity
etc.). Another application is to use (say) one or two steps with an accurate RK
method for obtaining starting values for a long run with a multistep method. (By
the way, multistep methods provide, by their definition, a natural dense output.)

The methods which are derived from collocation are exceptional, though even
for them the local accuracy of the collocation polynomials is usually not higher thanO(hr+1), although some of these methods (Gauss, Radau, etc.) are more accurate
at the endpoints of the step.

Since accurate estimates of y(t) as well as ẏ(t) are available, it seems natural
to apply cubic (or quintic) Hermite interpolation (see Ch.4̃) to the computed results
in one step (or two adjacent steps].
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As an alternative to this, one has, for some RK methods, derived an estimate
of the form y(tn + �h) � yn +

rXj=1

bj(�)kj :
For example, for Kutta’s Simpson’s rule one has found thatb1(�) = � � 3�2

2
+

2�3

3
; b2(�) = b3(�) = �2 � 2�3

3
; b4(�) = ��2

2
+

2�3

3
;

provides a dense output solution with local error O(h)4. It is continuous, but the
derivative may have O(h3) discontinuities.

For some methods, additional stages have been added, for providing the re-
quested accuracy, see [20, Sec. II.6].

13.3.7 Introduction to Rosenbrock Methods� Preliminary text.
The Rosenbrock methods can be seen as linearly implicit variant of of the DIRK

methods, although they are older. The idea is to avoid the non-linear systems that
most methods for stiff systems require; they are replaced by linear systems; the
traditional Rosenbrock require J = f 0(yn), i.e., the exact Jacobian at the beginning
of a step.

An r-stage Rosenbrock method is, for a non-autonomous system, given by the
formulas ki = hf�yn +

i�1Xj=1

�ijkj�+ hJ iXj=1

ijkj ; i = 1 : s (13.3.18)yn+1 = yn +

rXj=1

bjkj ;
where �ij ; ij ; bj are the determining coefficients, and J = f 0(yn)
In the i’th stage, a linear system is solved with the unknown ki and with

matrix I � hiiJ . The analog to the SDIRK methods,i.e., methods with the sameii for all i are of particular interest.
The reader is referred to Hairer, Nørsett and Wanner, Sec. IV.7, concerning

order conditions, examples and references to test results. You find 6 examples of
4-stage methods of (classical) order 4; 1 of them is L-stable, 3 others are A-stable,
and remaining method are very nearly A-stable. A Rosenbrock method is said to
be nearly as simple to code as an explicit RK method.

The stability function is the same as for DIRK method where the elements of
the tableau matrix A are equal to �i;j + i;j . matrix

Rosenbrock methods that allow an inexact Jacobian, also called W-methods,
were introduced in 1979 by Steihaug and Wolfbrandt. The number of order con-
ditions grows much faster, and the stability investigation is very complicated, see
Hairer et al. loc. cit.
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13.3.8 The Taylor-Series Method� Preliminary text.
In Example 3.1.2 we solved an initial-value problem by substituting a power

series y(x) =
P1n=0 nxn with undetermined coefficients. ¿From the differential

equation a recursion formula for the computation of the coefficients was derived.
We now show how this method can be extended to a stepwise process. If the solution
is sufficiently smooth we have by Taylor’s formulay(x+ h) = y(x) + hy0(x) +

h2

2
y00(x) + � � � (13.3.19)

+
hpp! y(p)(x) +

hp+1

(p+ 1)!
y(p+1)(�):

Euler’s method can be viewed as an approximation of the first two terms in this
expansion. If we can evaluate higher derivatives of y, we can obtain a method of
order p by neglecting the remainder term in (13.3.19) and using the formulayn+1 = yn + hy0n +

h2

2
y00n +

h3

3!
y000n + � � �+ hpp! y(p)n : (13.3.20)

The first neglected term can be used as an estimate of the local discretization error.
Following Euler we express the derivatives of y(x) in terms of the partial

derivatives of f(x; y). Starting with the differential equation y0(x) = f(x; y(x)) we
differentiate both sides with respect to x to obtainy00 = fx + fyy0 = fx + fyf; (13.3.21)

where we have used the notation fx = �f=�x and fy = �f=�y. Differentiating
again we obtain y000 = fxx + fxyy0 + fy(fx + fyf) + (fxy + fyyy0)f (13.3.22)

= (fxx + 2fxyf + f2fyy) + (fx + fyf)fy: (13.3.23)

For higher derivatives the formulas soon become very complicated. For an au-
tonomous system fx = fxy = fxx = : : : = 0, and the formula simplifies consider-
ably. On the other hand, for systems y and f are vectors, and so fx is a vector, fy
a matrix, etc.

If f(x; y) is composed of elementary functions it is often possible to obtain sim-
ple recursion formulas for the successive derivatives using an extension of Newton’s
series approach. If we introduce the Taylor coefficients of y(x) and f(x; y(x)) atxn Yi =

1i!y(i)n ; Fi =
1i!f(x; y(x))(i)n ;

we can write (13.3.20) yn+1 =

pXi=0

hiYi:
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Differentiating y0 = f(x; y(x)) we get the relation

(i+ 1)Yi+1 = Fi; i = 0; 1; 2; : : : :
If f(x; y) is an algebraic composition of elementary functions we can find formulas
for recursively generating the Taylor coefficients Fi and Yi. We have, for example,f = p� q =) Fi = Pi +Qi;
where Pi and Qi are the Taylor coefficients of p and q. Similarly, by the Cauchy
formula f = pq =) Fi =

iXj=0

PjQi�j :
For the Taylor coefficients Fi of f = p=q we write p = fq, and use the Cauchy

formula Pi =
Pij=0 FjQi�j . Solving for Fi w getFi =

1Q0

�Pi � i�1Xj=0

FjQi�j�:
which is a recursion formula for Fi. Recursion formulas can also be derived for the
Taylor coefficients of many elementary functions, see Hairer et al. [1987].

Example 13.3.5
Determine the first six Taylor coefficients for the function which is the solution

to the initial value problem y0 = 1 + xy + y2:
Using the formulas above for the Taylor coefficients of a sum and product leads to
the recursion Y0 = y(xn), Y1 = F0 = f(xn; yn),

(i+ 1)Yi+1 = Fi = Yi�1 +X0Yi +

iXj=0

YjYi�j ; i = 1; 2; 3; : : : ;
where X0 = xn. In particular if we take xn = 0, y(0) = 0, we obtain Y0 = 0, Y1 = 1,

2Y2 = Y0 +X0Y1 + 2Y0Y1 =) Y2 = 0;
3Y3 = Y1 +X0Y2 + 2Y0Y2 + (Y1)2 =) Y3 = 2=3;
4Y4 = Y2 +X0Y3 + 2(Y0Y3 + Y1Y2) =) Y4 = 1=6 = 0;
5Y5 = Y3 +X0Y4 + 2(Y0Y4 + Y1Y3) + (Y2)2 =) Y5 = 3=2 = 0:

Thus y(h) = h+
2

3
h3 +

1

6
h4 +

3

2
h5 + : : : :

Notice that the computation of the recursion formulas for the Taylor coefficients
need only be done once. The same recursion formulas can be used at each step (the
numerical values of the Taylor coefficients are of course different at each step).
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The Taylor series method was used a great deal in hand computation, but was
less popular during the first years of the computer age. Since then, programming
techniques and languages have been improved, and the popularity of the method
has risen again. If f(x; y) is the composition of a sequence of algebraic operations
and elementary functions it is easy to write subroutines, which recursively compute
the Taylor coefficients. There exist programs which automatically generate such
subroutines from a Fortran statement for f(x; y).

It is difficult to make a general comparison between the efficiency of Taylor
series methods and the methods previously mentioned. An advantage of the Taylor
series approach is that the order of the method and the step size can be varied
simply in order to get the required precision. It can also be executed in interval
analysis and developed to provide reliable error bounds, see Volume I, Sec. 2.5.3 and
Moore [28].� I intend to add more about the techniques used by D. Barton, I. M. Willers,
and R. V. M. Zahar, see Rice [2] Also something will probably be added about the
use af automatic differentiation and interval analysis.

Other types of series expansions have also been used with success in differential
equation problems–for example, Chebyshev series, see Fox and Parker [1968].

13.3.9 Rosenbrock Methods

Review Questions

1.

Very preliminary. Many important types of problems are still missing.
Run a few of the computer exercises of the two previous sections with an es-

tablished Runge–Kutta code for non-stiff problems. Choose in particular problems,
where your experience with the 2nd order RK method was unsatisfactory.

Problems

1. Use the classical RK-fourth order method to compute an approximation toy(0:2), where y(x) is the solution to the differential equation y0 = x+ y withy(0) = 1. Compute with six decimals, for two different step sizes, h = 0:2 andh = 0:1. Extrapolate. Compare with the exact result.

2. Determine the order of the two RK-methodsa) yn+1 = yn + k2; ŷn+1 = yn +
1

6
(k1 + 4k2 + k3);

where k1 = hf(tn; yn);



Problems C k2�! A+B, where y3 is decreased by the amount 115k2 = hf(tn +
1

2
h; yn +

1

2
k1);k3 = hf(tn + h; yn � k1 + 2k2):

3. We want to compute values of the functiony(x) =

Z 1
0

e�t2t+ xdt
for a sequence of values of x > 1. We can proceed in the following way: y(x)
is computed for x = 1 using some method for numerical integration; one findsy(1) = 0:6051. Show that y satisfies the differential equationy0 + 2xy = �1=x+

p�:
By solving the differential equation numerically with initial value y(1) =
0:6051, more values can be computed. Determine y(1:4) by means of Kutta’s
Simpsons rule with h = 0:2 and h = 0:4, and perform Richardson extrapola-
tion.

4.

5. A Lipschitz constant for the increment function of an RK-method. Consider
the application of the RK-method defined the tableau (13.3.2’), where the
matrix A is not necessarily triangular, to an autonomous system ẏ = f(y) with
two different input vectors y0; y0 + Æy0. Let ki; ki + Æki be the corresponding
intermediate vectors, and let y1; y1 + Æyi be the output vectors. Denote by L
a Lipschitz constant for f .
Set jAj = [jaijj]; jbjT = [jbj1; jbj2; : : : ; jbjr]; Æk = [kk1�l1k; kk2�l2k; : : : ; kkr�lrk]T .
Show that, with componentwise inequalities,Æk � hLkÆy0k1 + hLjAjÆk
If the spectral radius of hLjAj is less than unity, show that Lh = LjbjT (I �hLjAj)�11 is a Lipschitz constant for the increment function of the RK-
method.
Apply this to obtain an alternative derivation of Theorem 13.3.2, with the
condition kf 0(y)k � L instead of �(f 0(y)) � ��, and with C instead of C 0.

6. (Newton (1671). Derive the Taylor series approximation up to terms of orderh6 for the initial value problemy0 = 1� 3x+ y + x2 + xy; y(0) = 0:
7. Determine a Taylor series expansion for the solution of the equation y0 = y2,y(0) = 1, about x = 0. Use this approximation to compute y for x = 0:2 andx = 1:2 to four decimals. Compare with the exact solution,and explain why

the second case (x = 1:2) was unsuccessful.



116 Chapter 13. Ordinary Differential Equations

Notes and References

13.4 Multistep Methods

One-step methods only use information from the previous point (xn; yn) to compute
the approximation of yn+1. In contrast in multistep formulas we assume that we
know approximations yn; yn�1; : : : ; yn�k+1 to the exact solution at the k pointsxn�j , j = 0; 1; : : : ; k � 1.

A general linear multistep method for the differential equation y0 = f(x; y),y(0) = y0, is defined by the difference equationkXi=0

(�iyn+i � h�ifn+i) = 0; (13.4.1)

where �i and �i are real parameters, h the step length and fi = f(xi; yi). The
formula (13.4.1) is also called a linear k-step method. This class includes all the
previously considered classical linear multistep methods, in particular the midpoint
method, Euler’s method and the trapezoidal method. The yn can be computed
recursively from (13.4.1) if in addition to the initial value y0, k � 1 more valuesy1; : : : ; yk�1 are given. If �k 6= 0 the method is implicit, and then this may be true
only for sufficiently small h.

13.4.1 The Adams Methods

An important class of linear multistep methods dates back to work by Adams about
1855. Following Adams we consider the integrated form of the first order differential
equation (13.1.1) y(xn+1) = y(xn) +

Z xn+1xn f(t; y(t))dt:
We now replace the function f(t; y(t)) in the integral by the polynomial pk�1(t) of
degree k � 1 interpolating the values

(xi; fi); i = n� k + 1; : : : ; n;
where fi = f(xi; yi). Assume that the points are equidistant, xi = x0 + ih, and
use Newton’s interpolation formula for equidistant interpolation (see (3.4.9) we can
write this polynomialpk�1(t) = pk�1(xn + sh) =

k�1Xj=0

(�1)j��sj �rjfn;
where r denotes the backward difference operator, see Sec. 3.2.1. Inserting pk�1(t)
and integrating we get the numerical formulayn+1 = yn + h k�1Xj=0

jrjfn; j = (�1)j Z 1

0

��sj �ds:
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Note that the coefficients j do not depend on the order k. Inserting numerical
values for we get the family of explicit Adams methods of increasing orderyn+1 � yn = h�1 +

1

2
r+

5

12
r2 +

3

8
r3 +

251

720
r4 + : : :�fn: (13.4.2)

The backward differences can be expressed in function values using rjfn = (1 �E�1)jfn, and we obtain in particular for k = 1; 2; 3; 4 the methods of order up top = 4. yn+1 = yn + hfn;yn+1 = yn +
h
2

(3fn � fn�1);yn+1 = yn +
h
12

(23fn � 16fn�1 + 5fn�2);yn+1 = yn +
h
24

(55fn � 59fn�1 + 37fn�2 � 9fn�3);

The first formula here is the explicit Euler method. An attractive feature of these
methods is that independent of order k only one evaluation of the function f is
needed at each step.

By interpolating also the point (xn+1; fn+1) we obtain a family of implicit
formulas. In the equidistant case the corresponding interpolation polynomial equalsp�k(t) = p�k(xn + sh) =

kXj=0

(�1)j��s+ 1j �rjfn+1:
Inserting this into the integral we obtainyn+1 = yn + h kXj=0

�jrjfn+1; �j = (�1)j Z 1

0

��s+ 1j �ds;
which gives the family of implicit Adams methods of increasing order p = k+ 1yn+1 � yn = h�1� 1

2
r� 1

12
r2 � 1

24
r3 � 19

720
r4 � 3

160
r5 � : : :�fn+1: (13.4.3)

Expressed in function values the methods up to order p = 5 areyn+1 = yn + hfn+1;yn+1 = yn +
h
2

(fn+1 + fn);yn+1 = yn +
h
12

(5fn+1 + 8fn � fn�1);yn+1 = yn +
h
24

(9fn+1 + 19fn � 5fn�1 + fn�2);yn+1 = yn +
h

720
(251fn+1 + 646fn � 264fn�1 + 106fn�2 � 19fn�3);
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The first two formulas here are the implicit Euler method, and the trapezoidal
method, respectively. For an operator derivation of the Adams methods see Problem
9 of Section 3.2.

The local errors in the Adams methods are approximately equal to the first
neglected term in the series. Note that the coefficients �j decrease much faster thanj , and hence the implicit Adams methods have smaller local error.

Multistep methods need a special starting procedure to compute the k�1 extra
starting values yk�1; : : : ; y1. These can be obtained, e.g., by using a Runge–Kutta
method of appropriate order. However, the usual practice is to simply start with
a multistep method of order one and a very small step size, and then successively
increase the order and step size. We discuss this in greater depth in Sec. 13.4.4.

If f is a nonlinear function, then using the implicit Adams methods one has
to solve a nonlinear system at each step. This can be done by fixed point iteration.
We writeyn+1 = h�kfn+1 + un; un = yn + h��k�1fn + : : :+ �0fn�k+1

�;
where un is known and iteratey(m+1)n+1 = h�kf(xn+1; y(m)n+1) + un; m = 0; 1; 2; : : : : (13.4.4)

If the step size h is small enough y(m+1)n+1 converges to the solution yn+1 of the
implicit formula. A sufficient condition for convergence ish�k�f�y  < 1: (13.4.5)

A good initial approximation for the implicit Adams method of order p+ 1 can be
obtained by using the explicit Adams method of order p. The explicit formula is
called a predictor, while the implicit formula is called a corrector. The whole
procedure is called a predictor-corrector method.

The stopping of the iterations may be controlled by comparing the differencey(m+1)n+1 � y(m)n+1 to some preset tolerance. In this case usually a maximum of three
iterations are allowed. Another possibility is to use a predetermined number of
iterations. The latter is more common, and it is advisable to choose a step length
such that one iteration will suffice. These codes usually recompute the function

value f(xn+1; y(1)n+1) (note that this value is needed for the next step) and hence use
two function evaluation per step.

More generally we could consider the integral equationy(xn+1) = y(xn�i) +

Z xn+1xn�i f(t; y(t))dt:
Taking i = 0 we get the Adams methods. With i = 1 we obtain the Nyström
methods. Inserting the polynomial pk�1(t) and integrating we obtain the explicit
methods yn+1 = yn�1 + h k�1Xj=0

�jrjfn;
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or yn+1 = yn�1 + h�2fn+1 +
1

3
r2fn � 1

3
r3fn � 29

90
r4fn + : : :�:

The special case yn+1 = yn�1 + 2hfn;
is the explicit midpoint method which we recognize from Sec. 13.3.3. Implicit
Nyström methods can be similarly derived. The Nyström methods are in general
not useful since they suffer from a weak instability as exemplified by the explicit
midpoint method.

13.4.2 Local Error and Order Conditions

With the multistep method (13.4.1) we associate the linear difference operatorLhy(x) =

kXi=0

(�iy(x+ ih)� h�iy0(x + ih)); (13.4.6)

where y(x) is an arbitrary function, continuously differentiable on an interval that
contains the values x+ih for i = 0; 1; : : : ; k. We say that the order of consistency
is p, if p is the largest integer such that LhP (x) vanishes identically for any pth
degree polynomial. An equivalent definition is:

Definition 13.4.1.
The method (13.4.1) is said to be of order p, if for all y with continuous

derivatives of order p+ 1 it holds thatLhy(x) � p+1hp+1y(p+1)(x); h! 0: (13.4.7)

If p � 1, the multistep method is said to be consistent.

Expanding y(x + ih) and its derivative y0(x + ih) in Taylor series about x,
inserting these into (13.4.6), and collecting terms givesLhy(x) = 0y(x) + 1hy0(x) + : : :+ phpy(p)(x) + : : : ;
where 0; 1; : : : ; p; : : : are constants. The order of the method is given by the first
non-vanishing term in this expansion. Hence, the value of p and the constant p+1

can be determined by using as test functions the polynomials xq=q!, q = 1; : : : ; p+1,
which leads to the following order conditions:

Theorem 13.4.2.
The multistep method (13.4.1) is of order p, if and only if, the following con-

ditions are satisfied:kXi=0

�i = 0; kXi=0

�iiq � q kXi=0

�iiq�1 = 0; q = 1; : : : ; p: (13.4.8)
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The constant p+1 is given byp+1 =
1

(p+ 1)!

� kXi=0

�iip+1 � (p+ 1)

kXi=0

�iip� 6= 0: (13.4.9)

Definition 13.4.3.
By the local truncation error of a multistep method (13.4.1) at xn+k we mean

the error y(xn+k)� yn+k, where y(x) is the exact solution of y0 = f(x; y), y(xn) =yn, and yn+k is the numerical solution obtained from (13.4.1) by using the exact
starting values yi = y(xi) for i = n; n+ 1; : : : ; n+ k � 1.

For k = 1 this definition coincides with the definition of the local error for
one-step methods. The local error is essentially equal to ��1k Lhy(x), see Hairer et
al. [20, Chap. III.2].

The generating polynomials�(�) =
kXi=0

�i�i; �(�) =
kXi=0

�i�i; (13.4.10)

play a fundamental role in the theory of multistep methods. We haveLhex = (�(eh)� h�(eh))ex:
Hence, the method is of order p if and only if�(eh)� h�(eh) � hp+1; h! 0: (13.4.11)

In particular, consistency is easily shown to be equivalent to the equations�(1) = 0; �0(1) = �(1):
To compare the local errors of multistep methods of the same order we could

use the constant p+1 in (13.4.9). However, that is not a suitable measure of ac-
curacy, since multiplication of (13.4.1) by a constant will change p+1. It can be
shown that a more relevant measure isC = p+1=�(1); �(1) =

kXi=0

�i; (13.4.12)

which is called the error constant of the method (13.4.1).

Example 13.4.4
For the Adams methods we have�(�) = �k � �k�1; �0(�) = k�k�1 � (k � 1)�k�2;

and hence consistency gives �0(1) = 1 = �(1). It follows that for these methodsC = p+1.



13.4. Multistep Methods 121

13.4.3 Linear Stability Theory

In Sec. 13.2.2 we used the simple differential equation problemy0 = �y; y(0) = 1; (13.4.13)

where � is a complex constant, as a test problem for studying the stability of
numerical methods for initial value problems. The stability region S of a numerical
method was defined in Def. 13.1.17 as the set of complex values of q = �h for
which all solutions yn of the test problem (13.4.8) remain bounded as n!1. If S
contains the origin, the method is zero stable.

A linear multistep method is zero-stable if and only if all solutions of the
difference equation kXi=0

�iyn+i = 0 (13.4.14)

are bounded for all positive n. The solution yn can be interpreted as the numerical
solution for the differential equation y0 = 0. We find that yn = �nj satisfies (13.4.14)
if and only if � is a root of �(�) defined in (13.4.10). Further, if �j has multiplicitymj > 1, then a solution is yn = pj(n)�nj , where pj(n) is a polynomial of degreemj � 1. Thus we have the following result:

Theorem 13.4.5.
Necessary and sufficient for stability of the linear multistep method (13.4.1)

are the following root conditions:

i. All roots of �(�) should be located inside or on the unit circle jzj � 1;

ii. The roots on the unit circle should be simple.

Example 13.4.6
For the explicit and implicit Adams methods �(�) = �k � �k�1, and besides

the simple root � = 1 there is a root � = 0 of multiplicity k � 1. Note that by the
consistency condition �(1) = 0, there is always one root equal to 1. For the Adams
methods all the other roots are at the origin.

The relevance of the stability concept defined above is shown by the following
theorem, which summarizes several theorems proved in Henrici [22, Chap. 5]. A
hint to a proof is given by Problems 5 and 6 (c) of this section.

Theorem 13.4.7.
Suppose that y(x) is a p + 1 times differentiable solution of the initial-value

problem, ẏ = f(x; y), y(0) = y0, p � 1, ky(p+1)(x)k � K0, and that f(x; y) is
differentiable for all x; y. Suppose further that fyng is defined by the equationsyn = y(xn) + �n; n = 0 : k � 1;
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(�iyn+i � h�if(xn+i; yn+i)) = �n; k � n+ k � (b� a)=h:
If the multistep is stable and satisfies (13.4.7), then there exist constants K1;K2; h0

such that for all xn 2 [a; b], h � h0,kyn � y(xn)k � �p+1hp(xn � a)K0 +

nXi=0

k�ik)�K1eK2(xn�a): (13.4.15)K1 depends only on the coefficients of the method, while K2 also contains an upper
bound for k�f=�yk.

In view of this result, the integer p is called the order of accuracy of the
method.

It is sufficient to consider the trivial case f(x; y) constant in order to show that
stability and consistency are necessary for such a result, with p > 0. A corollary of
the theorem and this remark in a more precise formulation is that

Consistency + Stability () Convergence

Convergence here includes uniform convergence in [a; b], when h! 0, for all f which
satisfy the assumptions made in Sec. 13.1.1, as well as a requirement that the effect of
perturbations of the initial values should tend to zero when the perturbations do so
themselves. The formulation given above occurs in numerous other applications of
finite-difference methods to ordinary and partial differential equations where these
three concepts are defined appropriately for each problem area. “Consistency”
usually means that the difference equation formally converges to the differential
equation as h ! 0, while “convergence” is related to the behavior of the solutions
of the difference equations.

If the termination of the iteration in an implicit multistep method is con-
trolled by a tolerance on the residual, then an error bound can be obtained by
Theorem 13.4.7. If a predictor-corrector technique with a fixed number of itera-
tions is used, then this theorem does not guarantee that the k�nk do not grow.
The stability of such a scheme can be different from the stability of the corrector
method.

Predictor-corrector methods are considered in an extension of the multistep
methods, named multivalue methods; see Gear [18, Chap. 9]. This extension is
important in several other respects, but it is beyond the scope of this presentation.

It is important to distinguish between the stability question of the differential
equation (see Figs. 13.1.2a and 13.1.2b) and the stability questions for the numerical
methods. The former is well-conditioned—e.g., if eL(b�a) is of moderate size, whereL is an upper bound for the logarithmic norm, defined in Sec. 13.1.4. Compare the
general distinction between an ill-conditioned problem and an unstable algorithm
in Sec. 2.4.5.

For a multistep method to be of order p it has to satisfy the p + 1 order
conditions (13.4.8). For a k-step method we have 2k + 1 free parameters, if we
scale the coefficients so that �k = 1. It therefore seems that order p = 2k should
be possible to attain. However, because there is a conflict between consistency and
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stability these methods are not zero-stable are therefore not of practical interest.
Stability requirements impose the following restrictions on the attainable order of
multistep methods, the so called “first Dahlquist-barrier”:

Theorem 13.4.8.
The order p of a zero-stable linear k-step method satisfies:p � 8<: k + 2; if k is even;k + 1; if k is odd;k; if �k=�k � 0 (if the method is explicit);

A zero-stable method with p = k+2 is called an optimal method. An example
of an optimal method is the Milne–Simpson methodyn+2 = yn + h1

3
(fn+2 + 4fn+1 + fn);

for which p = 4, k = 2. However, the Milne–Simpson method like all optimal
methods is only weakly stable and may show an exponential error growth of the
type illustrated for explicit midpoint method. This severely limits its use as a
general purpose method.

Example 13.4.9
The method yn+2 = �4yn+1 + 5yn + h(4fn+1 + 2fn)

is the only explicit 2-step method with order p = 3. The characteristic equation�(�) = �2 + 4� � 5 = 0

has the two roots �1 = 1 and �2 = �5, and hence is not zero-stable.

The midpoint method exemplifies that K2 may be positive even though L is
negative in (13.4.15). Hence if b� 1 is large, the error bound of Theorem 13.4.7 (as
well as the actual error) can be large unless h and the perturbation level are very
small. Therefore, the stability concept just defined is not always sufficient. This is
true in particular for stiff problems, see Sec. 13.3.4.

13.4.4 Variable Step and Order

For efficiency it is necessary to vary the step size and order used with multistep
methods during the integration. To change the order in the family of Adams meth-
ods is simple. We can increase or decrease the order one step by just adding or
deleting a term in the formulas in Eqs. (13.4.3) and (13.4.5). Since the number of
function evaluations per step is independent of the order, the order can be chosen
such that the new step size is maximal, consistent with the local error criterion.
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Changing the step size, on the other hand, is not as simple as with one step
methods. In the derivation of the classical multistep methods in Sec. 13.4.1 it was
assumed that numerical approximations yn; : : : ; yn�k+1 are available at equidistant
points xn�j = xn � jh, j = 0 : k� 1. One possibility, used already by Adams, is to
use interpolation to reconstruct initial values on an equidistant net, whenever the
step size is changed. This technique is no longer used, since the resulting formulas
are not very stable even in case the change is restricted by

1

2
= ! � hn=hn�1 � Ω = 2; hn = xn+1 � xn:

Instead we now outline how to directly derive Adams methods for variable step
sizes. We now use Newton’s general interpolation method, which can be writtenp(t) =

k�1Xj=0

 j�1Yi=0

(t� xn�i)! f [xn; xn�1; : : : ; xn�j ]
=

k�1Xj=0

 j�1Yi=0

t� xn�ixn+1 � xn�i!Φ�j (n);
where we have introduced the scaled divided differences

Φ�j (n) =

 j�1Yi=0

(xn+1 � xn�i)! f [xn; xn�1; : : : ; xn�j ]:
The explicit Adams method can then be writtenyn+1 = yn +

Z xn+1xn p(t)dt = hn k�1Xj=0

gj(n)Φ�j (n);
where gj(n) =

1hn Z xn+1xn j�1Yi=0

t� xn�ixn+1 � xn�i dt:
It is fairly easy to see that recursion formulas can be developed for computing the
scaled divided differences Φ�j (n). Recursion formulas can also be derived for gj(n),
although these are more complicated, see Hairer et al. [1987, III.5]. The cost of
computing these integration coefficients is the biggest disadvantage to permitting
arbitrary variations in step size for the Adams methods.

Formulas for the implicit Adams methods can be similarly developed. Hereyn+1 = yn +

Z xn+1xn p�(t)dt;
where p�(t) = p(t) +

k�1Yi=0

(t� xn�i)f [xn+1; xn; : : : ; xn�k+1]:
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Hence, yn+1 = y(p)n+1 + hngk(n)Φk(n+ 1);
where y(p)n+1 is the value predicted by the explicit Adams method, and

Φk(n+ 1) =

k�1Yi=0

(xn+1 � xn�i)f [xn+1; xn; : : : ; xn�k+1]:
13.4.5 Backward Differentiation Methods

The multistep methods derived above were all based on numerical integration. We
now derive a formula based instead on numerical differentiation. Let q(x) be a
polynomial which interpolates the values yi, i = n � k + 1 : n + 1. Then we can
write qk(t) = qk(xn + sh) =

kXj=0

(�1)j��s+ 1k �rjyn+1:
To determine yn+1 we require thatq0(xn+1) = f(xn+1; yn+1):
This leads to the implicit backward differentiation formulaskXj=1

Æ�jrjyn+1 = hfn+1; Æ�j = (�1)j dds��s+ 1j �js=1 =
1j :

These methods can also be derived using the formulahD = � ln(1�r) =

1Xj=1

1jrj ;
see the table in Sec. 3.2.2.

The BDF family of multistep methodsryn+1 +
1

2
r2yn+1 +

1

3
r3yn+1 + : : :+ 1krkyn+1 = hf(xn+1; yn+1) (13.4.16)

has been used with success on stiff differential equations. In particular, for k = 1; 2,
we obtain yn+1 � yn = hf(xn+1; yn+1);

3

2
yn+1 � 2yn +

1

2
yn�1 = hf(xn+1; yn+1):

For k = 1 we recognize the implicit Euler method. As k increases the local trun-
cation error decreases, but the stability properties become worse. For k > 6 these
methods are unstable and therefore useless.
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The fixed point iteration in (13.4.4), however, is no good on stiff problems,
since the convergence condition (13.4.5), means exactly that the fastest components
limit the rate of convergence and thus also the step size which can be used. This
is unacceptable, and instead one uses some modification of Newton’s method. For
example, for the BDF methods we have to solve a system of equations of the formF (yn+1) = yn+1 � h�0f(xn+1; yn+1)� �n = 0; (13.4.17)

where �n is a constant that groups the terms from the previous points. Newton’s
method for this system is

(I � hJ)(ym+1n+1 � ymn+1) = �ymn+1 + h�0f(xn+1; ymn+1) + �n = 0;
where J =

��f�y�n+1
:

Here to compute the Jacobian matrix J 2 Rs�s we must evaluate s2 partial deriva-
tives �fi=�yj , 1 � i; j � s, which often can be costly.

The BDF methods generalize more easily to variable step size than the Adams
methods. The interpolation polynomial q(t) of degree k that interpolates (xi; yi)
for i = n+ 1; n; : : : ; n� k + 1 can now be written using divided differencesq(t) =

kXj=0

j�1Yi=0

(t� xn�i+1)y[xn+1; : : : ; xn�j+1]:
Differentiating with respect to t and putting t = xn+1 we getq0(xn+1) =

kXj=1

j�1Yi=1

(xn+1 � xn�i+1)y[xn+1; : : : ; xn�j+1] = f(xn+1; yn+1):
13.4.6 Differential-Algebraic Systems

(To be written.)

Problems

1. (a) Show that for coefficients in the Adams methods it holds that�0 = 0; kXi=0

�i = k:
(b) Show by induction using the result in (a) that (13.4.4) can be written asyn+1 = y(p)n+1 + hkrkfn+1;
where y(p)n+1 is the value obtained by the predictor.
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2. Determine S of:

(a) the Euler method yn+1 = yn + hf(xn; yn);

(b) the backward Euler method yn+1 = yn + hf(xn+1; yn+1);

(c) What is the order of accuracy of the latter method?

(d) Are the methods stable?

3. (a) Design a third order method for the solution of a differential equationy0 = f(x; y) based on the explicit Adams formulas (13.4.3). Apply it toy0 = y2, h = 0:1, and compute y3 and y4 wheny0 = 1:0000; y1 = 1:1111; y2 = 1:2500

are given. Use four decimals. Compare with the exact results.

(b) Improve the value of y3 using an implicit Adams formula of (13.4.3)
truncated after the second term. Go on from this value, compute y4 using
the explicit formula, compute f4, and improve y4 using the implicit method
(predictor-corrector technique). Improve y4 by another iteration.

(c) What is the approximate convergence rate for the iterations in (b)?

4. Show that �1 and �2 can be determined so that p = 3 for the multistep methodyn+1 = �4yn + 5yn�1 + h��1f(xn; yn) + �2f(xn�1; yn�1)
�:

Calculate the error constant p+1 in equation (13.4.9).

5. The explicit midpoint method applied to the test equation gives the difference
equation yn+1 = yn�1 + 2hqyn:
(a) Show that the characteristic equation has the two rootsu1 = z + (1 + z2)1=2; u2 = �1=u1; (z = hq):
(b) Show that for x = nh, nz = nhq = qx,un1 = eqx(1�z2=6+O(z3));
so that if jzj � 1 then un1 is close to the correct solution eqx.

(c) Show that un2 = (�1)nu�n1 = (�1)ne�qx(1�O(z2));
and hence if q < 0, then un2 produces exponentially growing oscillations, even
though the solution to the differential equation decreases exponentially! This
explains the weak instability seen previously.

6. (a) Show that all solutions of the difference equationyn+1 � 2�yn + yn�1 = 0

are bounded, as n!1, if �1 < � < 1, while for any other � in the complex
plane there exists at least one solution which is unbounded.
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(b) Let A be a diagonalizable matrix. Give, in terms of the eigenvalues ofA, a necessary and sufficient condition for the boundedness as n ! 1 of all
solutions of the difference equationyn+1 � 2Ayn + yn�1 = 0

7. Consider the application of the linear multistep method, defined by the poly-
nomials � and �, to the usual test problem y0 = qy, y(0) = 1.

(a) Show that if �j is a simple root of �, then the difference equation has a
particular solution which is close to yn = �nj e�jqxn , xn = nh, where the so
called growth parameter �j is given by�j =

�(�j)�j�0(�j) :
(b) Show that if �j = 1 and the method is consistent, then �1 = 1.

(c) Compute the growth parameters for the midpoint method and compare
with the results of Problem 6.

(d) Compute the growth parameters for the Milne–Simpson’s methodyn+1 = yn�1 +
1

3
h�fn+1 + 4fn + fn�1

�:
Is the method weakly stable?

8. The following results were obtained for the problemy0 = x2 � y2; y(0) = 1;
using the modified midpoint method with different step sizes:h = 0:05 : 0:83602; h = 0:1 : 0:83672:
Compute a better value by extrapolation.

9. Determine S of backward Euler methodyn+1 = yn + fn+1:
Is it A-stable? Is it L-stable? What is the order of accuracy of this method?

10. Show that the second-order backward differentiation methodryn +
1

2
r2yn = hfn

is A(0)-stable. (Actually it is A-stable.)

11. (a) Show thatrj = (1�E�1)j , E�j = (1�r)j . Set r̃k = (rk; rk�1; : : : ; r; 1),Ẽk = (E�k; E�k+1; : : : ; E�1; 1). Determine a matrix Pk such that r̃k =ẼkPk, and show that P�1k = Pk . (The latter can be shown with almost no
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computation.) Find a recurrence formula for the construction of the matrixPk; k = 1; 2; 3; : : : :
Set ã = (ak; ak�1; : : : ; a0)T , �̃ = (�0; �1; : : : ; �k), and show that r̃k � ã =Ẽk � �̃ and Pkã = �; Pk�̃ = a. (P stands for Pascal.)

(b) Compute �(�); �(�), for the BDF method, for k � 3.

13.5 Extrapolation Methods

13.5.1 Extrapolated Euler’s Method

In Euler’s method for the initial-value problemy0 = f(x; y); y(0) = y0; (13.5.1)

one seeks approximate values y1; y2; : : : to the exact solution y(x1); y(x2); : : : by
approximating the derivative at the point (xn; yn), xn = x0 +nh, with the difference
quotient (yn+1 � yn)=h. This gives the recursion formulayn+1 = yn + hf(xn; yn); y0 = y(0): (13.5.2)

The weakness of Euler’s method is that the step size must be chosen quite small in
order to attain acceptable accuracy.

Example 13.5.1
For the initial value problemy0 = y; y(0) = 1;

the solution is computed with Euler’s method first with h = 0:2 and then withh = 0:1, and is compared with the exact solution y(x) = ex:xn y(xn) yn hfn error yn hfn error

0 1.000 1.000 0.200 0.000 1.000 0.100 0.000
0.1 1.105 1.100 0.110 -0.005
0.2 1.221 1.200 0.240 -0.021 1.210 0.121 -0.011
0.3 1.350 1.331 0.133 -0.019
0.4 1.492 1.440 0.288 -0.052 1.464 0.146 -0.028
0.5 1.649 1.610 0.161 -0.039
0.6 1.822 1.728 -0.094 1.771 -0.051

The error grows as x increases and is approximately proportional to h.

The following theorem gives a theoretical basis for the use of repeated Richard-
son extrapolation in connection with Euler’s method.
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Theorem 13.5.2.
Denote by y(x; h) the result of the use of Euler’s method with step length h

on the differential equation problem (13.5.1). Then for the global error there is an
expansion of the formy(x; h)� y(x) = e1(x)h+ e2(x)h2 + � � �+ � � �+ eq(x)hq +O(hq+1): (13.5.3)

Proof. See Hairer et al. [1987, II.8]. The proof is related to the fact that there is a
similar expansion for the local error of Euler’s method. From Taylor’s formula we
know thaty(x+ h)� (y(x) + hy0(x))h =

h
2
y00(x) +

h2

3!
y000(x) + � � �+ � � �+ hqq! y(q)(x) +O(hq+1):

In an extrapolation method based on Euler’s method a basic step size H , and
a sequence of integers n1 < n2 < n3 < : : : are chosen. This defines a sequence of
step sizes hi = H=ni; i = 1; 2; 3; : : : :
Denote by Ai;1 = yhi(x0 + H) the result of the numerical method using the step
size hi. We eliminate as many terms as possible from the error expansion (13.5.3)
by computing the interpolating polynomial p(h) such thatp(hi) = Ai;1; i = j; j � 1; : : : ; j � k + 1;
and extrapolate to the limit h ! 0. The integration then proceeds from the point
(x0 +H;Ajk), where Aj;k = p(0).

By the above theorem repeated Richardson extrapolation can be performed
using the Aitken–Neville algorithm (see Sec. 4.2.3).Ai;k+1 = Ai;k +

Ai;k �Ai�1;k
(ni=ni�k)� 1

; i = 2; 3; : : : k = 1; : : : ; i� 1: (13.5.4)

The values Ai;k then represents a numerical method of order k.
Several step sequences can be used. The classical choice used by Romberg are:

1; 2; 4; 8; 16; 32; 64; 128; : : : ;
For this sequence the denominators in (13.5.4) are

(ni=ni�k)� 1 = 1; 3; 7; 15; 31; : : : :
If the round-off error in y(x; h) has magnitude less than �, then the resultant error
in an extrapolated value is less than 8:26�.
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Example 13.5.3
In the table below the value Ai;0 is the result for x = 1 of integrating the

differential equation y0 = �y with initial condition y(0) = 1 and step size hi =
0:25 � 2�i. This corresponds to taking H = 1 and ni = 4; 8; 16; 32.A00 = 0:316406

27203A10 = 0:343609 :370812
12465 �758A20 = 0:356074 :368539 :367781
5981 �168 12A30 = 0:362055 :368036 :367868 :367880

We accept A33 = 0:367880 and estimate the truncation error as jA32 � A33j =
12 � 10�6. The correct value is y(1) = e�1 = 0:367879.

The above sequence and the related

1; 2; 3; 4; 6; 8; 12; 16; : : : :
have the advantage that for numerical quadrature, i.e., y0 = f(x) many function
values can be saved and reused for larger ni. However, for differential equations the
most economical sequence is simply the harmonic sequence

1; 2; 3; 4; 5; 6; 7; 8; : : : :
Above we used the result of the extrapolation after a basic step H as new

starting value for the rest of the integration. This is called active extrapolation.
Another way is passive extrapolation. This means that the results of extrapo-
lation are accepted as output data, but that they are not used in the remaining of
the calculation. Thus a passive extrapolation can be performed after the problem
has been solved from start to finish with a sequence of step sizes. The result of Ex-
ample 13.5.3 can be viewed as the result of passive extrapolation performed several
times at x = 1.

Example 13.5.4
See the table in Example ??. Denote by ỹ the result of one passive Richardson

extrapolation: x y(x; 0:1)� y(x; 0:2) ỹ ỹ(x)� y(x)

0 0.000 1.000 0.000
0.2 0.010 1.220 -0.001
0.4 0.024 1.488 -0.004
0.6 0.043 1.814 -0.008

The accuracy in ỹ(x) is much better than in y(x; 0:1). If one wants an improved
result in an intermediate point–e.g., x = 0:3—then one gets a suitable correction
by interpolating linearly in the second column, i.e.,ỹ(0:3) = y(0:3; 0:1) +

1

2
(0:010 + 0:024) = 1:348:
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The error in ỹ(0:3) is �0:002.

Figure 13.5.1. Passive extrapolation for two different initial step sizes.

One might think that active extrapolation should always be preferable, but
with certain types of systems, passive extrapolation is better because it is numeri-
cally more stable. Note that passive extrapolation can only be used under conditions
that the changes in step size are done in the same way for the different initial step
sizes. A situation where passive extrapolation is permissible for two different initial
step sizes h0 and h0=2 is illustrated in Fig. 12.6.1.

Repeated Richardson extrapolation can be used more generally to improve a
numerical method. Given the differential equation 13.5.1 and a numerical method
of order p, which we write yn+1 = yn + hΦ(xn; yn; h). Denote by y(x; h) the result
of the numerical method at x using the step size h. Then extrapolation can be
applied if it can be shown that the global error for the method has an asymptotic
expansion of the formy(x; h)� y(x) = ep(x)hp + ep+1(x)hp+1 + � � �+ � � �+ eq(x)hq +O(hq+1):
13.5.2 The Explicit Midpoint Method

Euler’s method together with repeated Richardson extrapolation is simple to use
and, in some applications, also economically satisfying. Even more efficient ex-
trapolation methods can be developed based on symmetric methods, whose error
expansion only involve even powers of h,yh(x) � y(x) = ep(x)hp + ep+2(x)hp+2 + � � �+ eq(x)hq +O(hq+2); (13.5.5)

(p even). Then each extrapolation step takes the formAi;k+1 = Ai;k +
Ai;k �Ai�1;k

(ni=ni�k)2 � 1
; i = 2; 3 : : : k = 1; : : : ; i� 1: (13.5.6)

and will increase the order by 2.
The explicit midpoint method or leap-frog methodyn+1 = yn�1 + 2hf(xn; yn); n = 1; 2; : : : :

is a symmetric method of order two. By symmetry we mean that if we replaceh$ �h; yn+1 $ yn�1
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then yn�1 = yn+1 � 2hf(xn; yn), i.e., we get back the original method. It is a
two-step method, since it requires two values from the past, namely yn�1 and yn,
in the step where yn+1 is computed. It therefore requires a special formula for the
calculation of y1. This should be chosen so that it does not destroy symmetry,
because otherwise error terms involving also odd power of h would be introduced.
It was shown by W. B. Gragg in 1963 that if Euler’s methody1 = y0 + hf(x0; y0)

is used as starting formula then for x = x0 + nh and n even yn has an expansion
of the form y(x; h) = y(x) + 1(x)h2 + e2(x)h4 + e6(x)h6 + � � � :

If the harmonic sequence 2; 4; 6; 8; 10; 12; : : : is chosen the denominators in
(13.5.6) become

(nj=nj�k)2 � 1 = 3; 8; 15; 24; 35; : : : :
One extrapolation will give a method of order four using only five evaluations off . Note that a more accurate starting formula than Euler’s method will give worse
extrapolated results!

The following example shows that the stability properties of the modified
midpoint method are not generally acceptable.

Figure 13.5.2. Oscillations in the modified midpoint method solution.

Example 13.5.5
Apply the modified midpoint method to the equation y0 = �y, y(0) = 1,

with h = 0:1. The exact solution is y(x) = e�x, and y(0:1) = 0:904837. In Fig.
12.6.2 the numerical solution corresponding to y1 = 0:90 is shown by black circles,
while the solution corresponding to y1 = 0:85 is shown with white circles. Note
that the perturbation of the initial value gives rise to growing oscillations with a
growth of approximately 10% per step. This phenomenon is sometimes called weak
instability.
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In more realistic examples the oscillations become visible much later. For
example, if y1 = e�0:1 correct to ten decimals, we have

Table 13.5.1. Error in solution of ẏ = �y by the modified midpoint method.xn 0 0.1 : : : 5.0 5.1 5.2 5.3y(xn) 1 0:90484 : : : 0:00674 0:00610 0:00552 0:00499yn 1 0.90484 : : : 0:01803 �0:00775 0:01958 �0:01166yn � y(xn) 0 0.00000 : : : 0:01129 �0:01385 0:01406 �0:01665

The oscillations can be damped by applying the following symmetric smooth-
ing formula for certain points where n is evenŷn =

1

4
(yn�1 + 4yn + yn+1):

Because of symmetry this smoothing step will not introduce terms of odd powers
and the asymptotic error expansion of ŷn is again of the form (13.5.6). Another
way of writing the smoothing step isŷn = (yn�1 + yn + hf(xn; yn)):
This finally leads to the following modified midpoint method as the basis for
Richardson extrapolation.

Algorithm 13.1. (W. B. Gragg).

Let N be even, take h = H=N , and computey1 = y0 + hf(x0; y0); (13.5.7)yn+1 = yn�1 + 2hf(xn; yn); n = 1; 2; : : : ; N ; (13.5.8)ŷN =
1

2
(yN�1 + yN + hf(xN ; yN )): (13.5.9)

Again it can be shown that ŷN has an error expansion of the form (13.5.5).
A simple proof of this is based on rewriting the method as a one-step algorithm in
terms of odd and even indices,uk = y2k; vk = y2k+1:
The method can then be written u0 = v0 = y0,�uk+1vk+1

�
=

�ukvk �+ 2h f�x2k + h; vk + hf(x2k; uk)
�

1
2

�f�x2(k+1); uk+1

�
+ f(x2k; uk)

�! ;k = 0; 1; : : : ; N=2. This mapping from (uk; vk) to (uk+1; vk+1) can be shown to be
symmetric since exchanginguk+1 $ uk; vk+1 $ vk; h$ �h; xk $ xk+2
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gives back the original formula.

Example 13.5.6
For the initial-value problem y0 = y2, y(0) = 0:25 we get with h = 0:5, N = 2,n xn yn hf(xn; yn)

0 0 0.25 0.03125
1 0.5 0.28125 0.039550781
2 1.0 0.329101562 0.054153919

and ŷ2 =
1

2
(0:28125 + 0:329101562 + 0:054153919) = 0:332252741:

Performing similar computations for N = 4,8 and forming the extrapolating
scheme we getA00 = 0:3322 52741

265; 468A10 = 0:3330 49146 0:333314614
70; 726 1; 162A20 = 0:3332 61325 0:3333 32051 0:3333 33213

Since the exact solution of the problem is y(x) = 1=(4 � x), we have y(1) =
0:333333333. The error in the extrapolated error is thus 1=600 of the error iny(1; 1=8).

Problems

1. Given the initial value problem y0 = 1 + x2y2, y(0) = 0. Compute y(0:5) by
Euler’s method with repeated Richardson extrapolation. Use four decimals.

2. In a computation with Euler’s method, the following results were obtained
with various step sizes: h = 0:05 h = 0:1 h = 0:2

1.22726 1.22595 1.22345

Compute a better value by extrapolation.

3. (a) Determine an explicit expression for yn when Euler’s method is applied to
the test problem y0 = �y; y(0) = 1:
(b) For which values of h is the sequence fyng10 bounded?

(c) Compute limh!0(y(x; h)� e�x)=h.
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13.6 Second Order Equations and Other Special
Problems

13.6.1 Second-Order Differential Equations

Equations of the form y00 = f(x; y; y0) (13.6.1)

with initial conditions y(x0) = y0; y0(x0) = z0;
are often encountered in, e.g., astronomy and mathematical physics. The equation
can be expressed as a set of two simultaneous first order differential equations� y0z0� =

� zf(x; y; z)

� ; � y(x0)z(x0)

�
=

� y0z0

� : (13.6.2)

This system can be solved by the methods developed previously in this chapter.
Often a simplified version of (13.6.1) occurs, where the right hand side does

not depend on y0, y00 = f(x; y): (13.6.3)

For such systems many special methods have been developed. A simple finite-
difference approximation to (13.6.3) is obtained by replacing the derivatives in the
differential equation and initial condition by symmetric difference approximations.
If we put fn = f(xn; yn), a method defined by the following relations:yn+1 � 2yn + yn�1 = h2fn; y1 � y�1 = 2hz0 (13.6.4)

This method is the simplest member of the Störmer family of methods, and we
shall call it the explicit central difference method. The local error is obtained
from the Taylor expansiony(xn+h)�2y(xn)+y(xn�h) = h2y00(xn)+

h4

12
y(4)(xn)+

h6

360
y(6)(x0)+� � � : (13.6.5)

The value y�1 can be eliminated by means of the first equation with n = 0.
The starting procedure is, thereforey1 = y0 + hz0 +

1

2
h2f0;

which is just the first terms in the Taylor-expansion of y1. Then yn+1, n � 1 can be
computed successively by means of yn+1 = 2yn � yn�1 + h2fn. Note that at each
step there is an addition of the form O(1) +O(h2); this gives unfavorable rounding
errors when h is small. If we put ui�1=2 = (yi � yi�1)=h and rewrite the method as

1h(yn+1 � yn) =
1h (yn � yn�1) + hfn

then the method can be defined by the formulas u1=2 = z0 + 1
2hf0, andyn = yn�1 + hun�1=2; un+1=2 = un�1=2 + hfn; n � 1: (13.6.6)
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This summed form of the method is mathematically equivalent, but numerically
superior to the difference method (13.6.5). An alternative is to store y in double
precision, while single precision is used in the computation of f , which is usually
the most time-consuming part of the work. If such partial double precision is
used, then the advantage of the summed form is reduced. See also Example 2.3.4
for a solution when double precision is not available.

Because of symmetry the following expansion holds for the explicit central
difference methody(x; h) = y(x) + 1(x)h2 + 2(x)h4 + 3(x)h6 + � � �
(As usual, the rounding errors are ignored in this expansion, and certain conditions
about the differentiability of f have to be satisfied). The expansion shows that the
global error is O(h2) and that higher accuracy can be obtained with Richardson
extrapolation according to the scheme (13.6.6).

The method (13.6.4) and its summed form (13.6.6) can be extended to equa-
tions of the form of (13.6.1) if one putsy0n � 1

2h (yn+1 � yn�1) =
1

2
(un+1=2 + un�1=2);

but in this case the method becomes implicit.
Note that another extrapolation method is obtained by applying the modified

midpoint method, Algorithm 13.5.2, directly to the first order system (13.6.2). This
avoids the problem with rounding errors, which motivated the summed form of
Störmer’s method.

There are other ways to improve the order of accuracy of the method (13.6.4).
This method is a special case of multistep methods of the formkXi=0

(�iyn+i � h2�ifn+i) = 0;
cf. (13.4.1). The family of methods for whichkXi=0

�iyn+i = yn+2 � 2yn+1 + yn
is frequently referred to as Störmer–Cowell methods. The best known such
method is Numerov’s method or the implicit difference correction method:yn+1 � 2yn + yn�1 = h2

�fn +
1

12
(fn+1 � 2fn + fn�1)

�
(13.6.7)

A sufficiently accurate starting procedure is obtained from the formula

2hy00 = 2hz0 = (y1 � y�1)� 1

6
h2(f1 � f�1) +O(h5);

see Problem 1.
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By expressing the higher derivatives in (13.6.5) in terms of central differences
we obtain the expansionyn+1 � 2yn + yn�1 = h2

�fn +
1

12
∆2fn�1 � 1

240
∆4fn�2 + � � �)�:

Numerov’s method is obtained by taking the first two terms of the right hand
side. Note that taking further terms is not practical since these contains unknown
expressions fn+2 etc.

In Numerov’s method one can proceed in the following way. If we putvi = yi � 1

12
h2fi;

then the difference equation then takes the form, similar to (13.6.4)vn+1 � 2vn + vn�1 = h2fn; (13.6.8)

although in order to compute fn = f(xn; yn) one has to solve for yn from the
equation yn � h2 1

12
f(xn; yn) = vn:

The summed form is similar to (13.6.6) with y replaced by v and a more accurate
starting procedure. The error expansion for Numerov’s method has the formy(x; h) = y(x) + 1(x)h4 + 2(x)h6 + � � �
and Richardson extrapolation can be applied.

If the differential equation is nonlinear, Numerov’s method requires some it-
erative method. For the linear case, see Problem 2. Starting values can then be
obtained from the explicit method obtained by using a backward difference cor-
rection yn+1 � 2yn + yn�1 = h2

�fn +
1

12
(fn � 2fn�1 + fn�2)

�
(13.6.9)

The estimate here is less accurate, and therefore the global error of this method is
only O(h3).

In the deferred difference correction method due to L. Fox one first
computes a sequence yn by solving the difference equation (13.6.4). Using this
sequence one computes a correction termCn = h2 1

12
(fn+1 � 2fn + fn�1):

An improved solution ŷn is then obtained by solving the difference equationŷn+1 � 2ŷn + ŷn�1 = h2f(xn; ŷn) + Cn:
The procedure can be iterated and more sophisticated formulas for the correctionCn can be used. The global error of the solution produced by this methods also isO(h4). The deferred correction method is very useful in solving certain boundary
value problems, see Sec. ??.
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13.7 Boundary Problems

In this section we shall consider two point boundary-value problems for a second
order scalar differential equation y00 = f(x; y; y0) (13.7.1)

with boundary conditions y(a) = � y(b) = �; (13.7.2)

We assume that f has continuous partial derivatives of arbitrary order in the
closed interval [a; b]. More generally, we also consider boundary-value problems
for a system of first order equationsy0 = f(x; y); y 2 Rs�s; (13.7.3)

with boundary conditions given in two points a and br(y(a); y(b)) = 0; (13.7.4)

where r(y; z) is a vector of s, possibly nonlinear, functions. Often the boundary
conditions are linear r � Ay(a) +By(b)�  = 0:
The boundary value problem (13.7.1)–(13.7.2) can be reduced to this form, by the
standard substitution y1 = y, y2 = y01. The boundary conditions correspond toA =

�
1 0
0 0

� ; B =

�
0 0
1 0

� ;  =

��� � :
In contrast to the initial-value problem, it can happen that the boundary-value

problem has several or even no solution. Sufficient conditions given in the literature
for the existence of a unique solution are often astonishingly poor. For example, it
is often assumed in the case of linear boundary conditions that the matrix A+B is
nonsingular, which is not the case in most common applications. For the practically
important special case of a single second order equation, better results exist.

In free boundary problems b is unknown, and we have s+ 1 equations of
the form (13.7.4). We introduce a new independent variable t = (x � a)=(b � a),
and put zs+1 = b� a; x = a+ tzs+1; 0 � t � 1;
Then this reduces to a standard boundary problem for z(t) = y(a + tzs+1). We
have the s+ 1 differential equationsdzdt = f(a+ tzs+1; z(t))zs+1; dzs+1dt = 0;
with boundary conditions which now can be written r̂(z(0); z(1)) = 0. Eigenvalue
problems are considered in Sec. 13.7.3.

In the following two different types of methods will be described, shooting
methods and finite difference methods.
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13.7.1 The Shooting Method

There is also an initial-value problem for (13.7.1):y00 = f(x; y; y0); y(a) = � y0(a) = ; (13.7.5)

If  is fixed, then the value of y at x = b can be considered as a function of —say,g(). The boundary-value problem (13.7.1)–(13.7.2) can then be writteng() = �: (13.7.6)

In the shooting method, one solves this equation with, for example, the secant
method; see Sec. 5.4. One guesses a value 0, and computes (approximately) g(0)
by solving the initial-value problem of (13.7.5) using one of the methods described
earlier in this chapter. One then chooses another value, 1, computes g(1) in the
same way, and then, iterates according tok+1 = k � �g(k)� �� k � k�1g(k)� g(k�1)

; k = 1; 2; : : : : (13.7.7)

One can show that g() is linear in  when (13.7.1) is a linear differential
equation, even if the coefficients depend on x. In this case, 2 is the solution to to
(13.7.6)—aside from the discretization errors and rounding errors in the computa-
tion of g(0) and g(1).

Note that there are several variations of the shooting method. We can, e.g.,
consider the initial value problem y(b) = �, y0(b) = , integrate in reverse time
direction and match the boundary condition at x = a. This is called reverse
shooting. Another possibility is to integrate from both boundaries, and matching
the solutions at an interior point x = m by continuity condition on y(x). The latter
approach is similar to the idea of multiple shooting described in detail below.

The shooting method can also be applied to the more general boundary-value
problem (13.7.3)–(13.7.4). Let y(x; p) be the solution to the differential equationy0 = f(x; y) with initial conditionsy(a) = p; p 2 Rs�s:
Then the boundary-value problem is equivalent to the system of s equationsF (p) � r(p; y(b; p)) = 0: (13.7.8)

If the differential equation and boundary conditions are linear, then y(x; p) andF (p) become affine functions of p. Hence (13.7.8) becomes a linear system.Ap+By(b; p)�  = 0: (13.7.9)

In this case the problem has a unique solution, unless the corresponding homoge-
neous problem has a “non-trivial” solution.

The following example shows that the initial-value problem is ill-conditioned,
even when the boundary-value problem is well-conditioned.
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Example 13.7.1 ((Stoer–Bulirsch))
Consider the system � y1y2

�0
=

�
0 1

110 1

�� y1y2

�
with boundary-values y1(0) = 1; y1(10) = 1:
The general solution to the initial value problem y1(0) = 1, y01(0) = �10 + p isy(x; p) = (1� p

21
)e�10x� 1�10

�
+

p
21
e11x� 1

11

� :
Hence y1(10) = 1 corresponds top

21
=

1� e�100e110 � e�100
� 3:5 � 10�47:

With floating point arithmetic one may well obtain, say y01(0) = �10+10�9 instead;
this would give y1(5) � e5510�9=21 � 3:7 � 1013 instead of 2e�55 � 2:6 � 10�24.(!!)

Example 13.7.2 ((Troesch))
The exact solution of the boundary value problemy00 = � sinh(�y); y(0) = 0; y(1) = 1;

becomes infinite for x � 1:03 if � = 5. The solution of the corresponding initial
value problem y(0) = 0, y0(0) = p becomes infinite for x < 1 if p > 8e�� � 0:054.
The correct value is p = 4:57504614 � 10�2. Obviously it may be very difficult to
find a sufficiently good initial value for p.

In such cases, the method described in Sec. 13.7.2 can be more advantageous.
Another possibility is to use the multiple shooting method. In multiple shooting
the interval [a; b] is divided into m subintervals [xi�1; xi], i = 1; : : : ;m,a = x0 < x1 < � � �xm = b:
(Here m should be much smaller than the number of grid points needed in the
numerical method for solving the initial value problem.) Let y(x;xk ; pk) be the
solution of the initial value problemy0 = f(x; y); y(xk) = pk; x 2 [xk ; xk+1];k = 0; 1; : : : ;m� 1. These m initial value problems are solved simultaneously. The
continuity conditions,Fi(pi; pi+1) = y(xi+1;xi; pi)� pi+1 = 0; i = 1; : : : ;m� 1:
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now appear as boundary conditions, in addition to the conditionFm(p1; pm) = r(p1; pm):
Boundary and continuity conditions can now be written F (p) = 0. The Jacobian isF 0(p) =

0BBBBB�G1 �I 0 � � � 0 0
0 G2 �I � � � 0 0
0 0 G3 � � � 0 0� � �
0 0 0 � � � Gm�1 �IA 0 0 � � � 0 B

1CCCCCA ;
where Gk =

�Fk�pk ; A =
�r�p1

; B =
�r�pm :

Several decisions are to be made in the application of multiple shooting method:

1. Choice of starting trajectory ŷ(x), e.g., some function that satisfies the bound-
ary conditions.

2. Subdivision of the interval; it is often suitable to choose xi+1 from the initial
approximation ŷ(x) such thatky(xi+1;xi; ŷ(xi))� ŷ(xi+1)k � kŷ(xi+1)k:

3. Choice of iterative method, e.g., some modified Newton method. Pivoting for
size can be essential in the solution of the linear systems encountered in each
iteration!

Example 13.7.3
For the problem in Example 13.7.2, with � = 5 we can choose ŷ(x) as linear

function. A better initial solution can be determined form the linearized problemy00 = 25y.

(This is a particular case of the problem defined by (13.7.10) and (13.7.12) in
the next section). When shooting is applied to this system, one obtains a system of
2p equations for the vector y(0). The system is nonlinear if the differential equation
is nonlinear. The techniques of Sec. 12.2.4 which do not require derivatives can then
be applied. It is also possible to use techniques where derivatives are needed, e.g.,
Newton’s method, but then one has to solve also the variational equation of the
system y0 = f(y; t); see Sec. 13.1.2.

13.7.2 The Finite Difference Method

We first consider the boundary value problem (13.7.1)–(13.7.2) for a single second
order equation. Divide the interval [a; b] into N equal parts and put h = (b�a)=N .
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Let yi denote the desired estimate of y(xi), xi = a+ ih. Replace derivatives in the
differential equation as in Sec. 13.6.1 by symmetric difference approximationsvy0n � yn+1 � yn�1

2h ; y00n � yn+1 � 2yn + yn�1h2
:

In this way, the differential equation is transformed into a nonlinear system of
equations yn+1 � 2yn + yn�1 = h2fn; n = 1; 2 : : : ; N � 1;
where fn = f�xn; yn; yn+1 � yn�1

2h �:
Together with the boundary conditions y0 = �, yN = � this system can be written
in matrix form Ay = h2f � r; (13.7.10)

whereA =

0BBBBB��2 1 0 � � � 0 0
1 �2 1 � � � 0 0
0 1 �2 � � � 0 0� � �
0 0 0 � � � �2 1
0 0 0 � � � 1 �2

1CCCCCA ; r =

0BBBBBB��
0
0
...
0�
1CCCCCCA ; y =

0BBBBBB� y1y2y3
...yN�2yN�1

1CCCCCCA :
Thus A is a band matrix (and in fact a tridiagonal matrix in this example.)
If the differential equation is linear, then the system of equations is linear and
tridiagonal—thus it can be solved by very little work. Note that the matrix of the
system is not A, since f depends on y and y0.

For the error, even in the nonlinear cases, we havey(x; h) = y(x) + 1(x)h2 + 2(x)h4 + 3(x)h6 + � � � ;
and Richardson extrapolation can be used with correction terms ∆=3;∆=15;∆=63; : : :.
Example 13.7.4

The boundary-value problemy00 + y = x; y(0) = 1; y(
1

2
�) =

1

2
� � 1

has the exact solution y(x) = cosx� sinx+ x. The difference equation becomesyn+1 � 2yn + yn�1 � h2yn = h2xn; n = 1; 2 : : : ; N � 1:
The solution of the system of equations for N = 5 and N = 10 and the result ŷ of
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Richardson extrapolation is given by the following table:

2x=� y(x) y(x; 0:1�) y(x; 0:05�) ∆=3 ŷ(x) error

0 1.000000 1.000000 1.000000 0 1.000000 0
0.1 0.988334 0.988402
0.2 0.956199 0.956572 0.956291 �94 0.956197 �2
0.3 0.908285 0.908337
0.4 0.849550 0.849741 0.849597 �48 0.849549 �1
0.5 0.785398 0.785398
0.6 0.721246 0.721056 0.721199 +48 0.721247 1
0.7 0.662541 0.662460
0.8 0.614598 0.614224 0.6145505 94 0.614599 1
0.9 0.582463 0.582395
1.0 0.570796 0.570796 0.570796 0 0.570796 0

The methods for improving accuracy described in Sec. 13.6.1, can also be used
for boundary value problems. In particular, for equations of the form y00 = f(x; y)
Cowell’s method gives O(h4) accuracy with about the same amount of computation
as the O(h2)-method just described.

If the equation is nonlinear, then one can use some modified Newton method.
As a first approximation one can—in the absence of a better proposal—choose a
linear function satisfying the boundary condition, i.e.y(0)i = �+ (� � �)=N; i = 0; 1; : : : ; N:

In boundary value problems one often encounters differential expressions of
the form ddx�p(x)

dydx�: (13.7.11)

These can be approximated at xn by

1h�pn+1=2

�yn+1 � ynh �� (pn�1=2

�yn � yn�1h ��
(13.7.12)

with global error of of the form 1(x)h2 + 2(x)h4 + : : :.
With boundary conditions of the form b0y(b) + b1p(b)y0(b) = b2 one can intro-

duce an extra point, xN+1 = b+ h, and approximate the condition byb0yN +
p1(yN+1 � yN�1)

2h = b2;
and similarly for the condition at x = a. One can also put b between two grid
points. The form of the boundary conditions only affect the first and last rows in
the matrix A in (13.7.10).

For systems of first-order equations y0 = f(x; y) the trapezoidal method can
be used yn+1 � yn =

1

2
h�f(yn; xn) + f(yn+1; xn+1)

�; n = 1; 2; : : : ; N:
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With linear boundary conditions Ay(a) +By(b) =  one obtains a nonlinear system
of simple structure.

If no natural initial approximation is available an embedding technique,
described in Sec. 12.1.7, is often useful. One can introduce a parameter in the
differential equation, or sometimes it may be sufficient to use the step size h of the
difference method as a parameter, i.e., one starts with a very crude grid, and refines
it successively in using, e.g., the previously obtained solution and interpolation as
initial approximation for the solution on the next finer grid.

13.7.3 Eigenvalue Problems

Many important eigenvalue problems in applied mathematics have the form

(p(x)y0)0 � q(x)y + �r(x)y = 0; (13.7.13)

subject to homogeneous boundary conditionsa0y(a)� a1p(a)y0(a) = 0; b0y(b) + b1p(b)y0(b) = 0; (13.7.14)

where � is a scalar parameter to be determined. This is called a Sturm–Liouville
problem. Note that y(x) has to be normed to be uniquely determined.

A more general form of the eigenvalue problem isy0 = f(x; y; �); Ey(a) + Fy(b)�  = 0: (13.7.15)

By introducing y0(x) = � (constant); ys+1 =

Z xa yT ydx
and the differential equationsy00 = 0; y0s+1 = yT y;
this can be reduced to the standard form above for ỹ = (y0; y1; : : : ; ys+1)T .

Example 13.7.5
For which value of � does the boundary-value problemy00 + �y = 0; y(0) = y(1) = 0;

have solutions other than y = 0?
The general solution to the differential equation isy(x) = a cos�x+ b sin�x; � =

p�;
¿From y(0) = 0 it follows that a = 0. Further since y(1) = 0 we have � = n�,n = 0;�1;�2; : : :. Thus the eigenvalues are� = n2�2; n = 1; 2; 3; : : : :
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Note that n = 0 gives the trivial solution y = 0; n = �k gives the same solution asn = k. The solution of the differential equation when � is an eigenvalue are called
eigenfunctions. In this example the eigenfunctions y(x) = b sinn�x belong to the
eigenvalue � = n2�2.

Eigenvalue problems occur in most areas of classical and modern physics (for
eigen-vibrations, etc.) Example 13.7.5 comes up, e.g., in the computation of wave
numbers for a vibrating string. Some other important problems in partial differen-
tial equations from physics can be reduced, by separation of variables, to eigenvalue
problems for ordinary differential equations.

The difference method according to Sec. 13.7.2 gives an approximation to the
eigenvalues which satisfies�(h) = �+ 2h2 + 3h3 + 4h4 + � � � ;
where 3 is zero in some cases (among others, in Example 13.7.3). Note the regu-
larity assumptions made in Sec. 13.6.1.

Example 13.7.6
For the problem in Example 13.7.5, the difference method with h = 1=3 gives

the system of equations �2y1 + y2 + �h2y1 = 0y1 � 2y2 + �h2y2 = 0:
This is a homogeneous system of equations, two equations and two unknowns, which
has a nontrivial solution if and only if �h2 is an eigenvalue of the matrix�

2 �1�1 2

� :
Thus �h2 � 2 = �1, with solutions�1 = 9; (Exact value �2 = 9:8696);�2 = 27; (Exact value 4�2 = 39:48):
The higher eigenvalues cannot even be estimated using such a course grid.

By similar calculations with various values of h we get the following results
for the smallest eigenvalue:h Richardson Error

1
2 8
1
3 9 ∆= 5

4 = 0:8 9.8 �0:0696
1
4 9.3726 ∆= 7

9 = 0:4791 9.8517 �0:0179

A second Richardson extrapolation will cancel the O(h4) error term and gives� = 9:8517 +
1

3
0:0517 = 9:8689

correct to four decimal places. Motivate this extrapolation!
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There are computational methods for solving eigenvalue problems for much
larger matrices; see Sec. 10.10. By using Richardson extrapolation one can, how-
ever, obtain good accuracy with a reasonable number of points. The same general
procedure can be used with differential expressions of the form of (13.7.13) with the
difference expression of the form of (13.7.12).

The shooting method can also be used on eigenvalue problems, see Problems
3 and 4 below.

Problems

1. (a) Put hy00 = A�Æ(y0 +Bh2y00) +RT ;
and determine A and B so that the remainder term is of as high order as
possible. Give an asymptotically correct expression for RT .

(b) Let y(x) be the solution to the differential equation problemy00 = f(x)y; y(0) = �; y0(0) = �:
Put y(kh) = yk, k = �1; 0; 1; : : :. With Numerov’s formula and the formula
in (a), one gets a system of equations for determining y�1 and y1. Give
an asymptotically correct expression for the error in the determination of y1

obtained from this system of equations.

(c) Apply the formula in (b) to compute y(0:1) with h = 0:1 in the casey00 = exy; y(0) = 0; y0(0) = 1:
2. For what positive values of the step size h does Numerov’s method produce

bounded solutions when applied to the differential equationy00 = �y?

3. Consider the application of Numerov’s method to the linear equationy00 = p(x)y + q(x):
Show that with the notation of (13.6.8)fn =

�p(xn)vn + q(xn)
�=�1� h2

12
p(xn)

�:
4. Write programs for the solution of y00 = f(x; y) with the difference method

(13.6.4) and the summed form (13.6.5). Apply them to the equation y00 = �y,
compare with the exact solution, and print out the errors. Perform a series of
numerical experiments in order to get acquainted with the accuracy obtained
with Richardson extrapolations and see the effect of rounding errors.
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5. Consider the initial-value problemy00 = (1� x2)y; y(0)� 1; y0(0) = 0:
(a) Show that the solution is symmetric about x = 0.

(b) Determine y(0:4) using Numerov’s method without any special start for-
mula, with step lengths h = 0:2 and h = 0:4. Perform Richardson extrapola-
tion.

6. The function y(x) is defined by the problemy000 = yx; y(0) = 0; y0(0) = 1; y00(0) = 1:
To determine y(1) one putsy000(xn) � �Æ3ynh3

=
yn+2 � 2yn+1 + yn�1 � yn�2

2h3
;

where xn = nh, and derives the recursion formula y0 = 1,yn+2 = 2yn+1 + 2h3xnyn � 2yn�1 + yn�2; n � 2:
The initial values y1; y2; y3 needed in the recursion formula can be obtained,
for example, by using the classical Runge–Kutta method with step h.

(a) What is the order of accuracy of the method?

(b) We give below computed values y(hk) = y(1; hk) using the above method
and step lengths h0 = 0:1, hk = h0=2k, k = 0; 1; : : : ; 7:

1:54568; 1:54591; 1:54593; 1:54592; 1:52803; 1:50045; 1:51262; 1:48828:
What is puzzling about these results? Explain what the trouble is.

7. In using the shooting method on the problemy00 =
1

2
y � 2(y0)2y ; y(0) = 1; y(1) = 1:5;

the following results are obtained using y0(0) = p:p = 0 : y(1) = 1:543081; p = �0:05 : y(1) = 1:425560:
What value of p should be used on the next “shot”?

8. (From Collatz [7].) The displacement u of a loaded beam of length 2L satisfies
under certain assumptions the differential equationd2ds2

�EI(s)d2uds2

�
+Ku = q(s); �L � s � L;

with boundary conditionsu00(�L) = u000(�L) = 0; u00(L) = u000(L) = 0:
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For a certain beam we have:I(s) = I0(2� (s=L)2); q(s) = q0(2� (s=L)2); K = 40EI0=L4:
One wants to know the displacement at s = 0.

(a) Introduce more suitable variables for this problem, and write it as a system
of two second-order equations with boundary conditions. Prove, and make
use of the symmetry property u(s) = u(�s). (Assume that the system has a
unique solution.)

(b) Propose a difference approximation for this problem, where h = L=N , N
an arbitrary positive integer. Count the number of equations and unknowns.
Verify that for N = 1 one getsu(0) = 13=280 = 0:046429;  = q0L4=(EI0):
(c) In a computation one obtainedN = 2 : u(0) = 0:045752; N = 5 : u(0) = 0:045332:
Perform Richardson extrapolation, first with N = 1 and N = 2, and then
with N = 2 and N = 5.

(d) How should one number the variables to get a small band width in the
matrix?

9. (a) Compute approximately, the smallest eigenvalue � for which the problemddx�(1 + x2)
dydx�+ �y = 0; y(�1) = y(1) = 0

has a nontrivial solution. Use a difference method with step size h = 2=3
and then h = 2=5, and perform Richardson extrapolation. (Hint:Utilize the
symmetry of the eigenfunctions about x = 0.)

(b) Use the same difference method with h = 1=5 to solve the differential
equation with initial-values y(0) = 1, y0(0) = 1, for � = 3:50 and � = 3:75.
Use inverse interpolation to compute the intermediate value of � for whichy(1) = 0, and make a new computation with the value of � so obtained. Then
improve the estimate of the eigenvalue using Richardson extrapolation.

(c) Compute the next smallest eigenvalue in the same way.

10. One seeks the solution of the eigenvalue problemddx�� 1

1 + x�dydx�+ �y = 0; y(0) = y(1) = 0

by integrating, for a few values of �, an equivalent system of two first-order
differential equations with initial values y(0) = 0, y0(0) = 1, with the classical
Runge–Kutta method. Computations using three different �, each with three
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different step sizes, gave the following values of y(1) � 104:h � 6:76 6:77 6:78

1
10 16.126 5.174 �5:752
1
15 16.396 4.441 �6:490
1
20 15.261 4.304 �6:627

Compute, for each value of �, a better value for y(1) using Richardson ex-
trapolation. Then use inverse interpolation to determine the value of � which
gives y(1) = 0.

11. The eigenvalue for a stretched circular membrane is

1r ddr�r dudr �+ �u = 0;
with u(1) = 0, u(0) and u00(0) finite.

(a) Set up a difference equation with grid pointsri =
2i+ 1

2N + 1
= r0 + ih; i = �1; 0; 1; : : : ; N; h =

2

2N + 1
:

(Thus the origin lies between the two grid points r�1 and r0.)

(b) Determine the smallest eigenvalue, first for N = 1 and then for N = 2.
Perform Richardson extrapolation under the assumption that the global error
is proportional to h2.

(c) For large values of N , one would like to use a standard program for comput-
ing eigenvalues of symmetric matrices. How does one put the above problem
in a suitable form?

Remark: The origin is a singular point for the differential equation, but not
for its solution. The singularity causes no trouble in the above treatment.

12. Show that (13.7.6) is a first-degree equation when (13.7.1) is a linear differ-
ential equation, even if the coefficients depend on x. Show also that multiple
shooting yields a linear system for the determination of y(0) when the differ-
ential equation is linear.

13.8 Qualitative Theory and Separably Stiff
Equations

13.8.1 On Lyapunov Stability Theory

We shall in this section prove and generalize some results mentioned in Sec. 13.1.
The reader is advised to repeat x13.1.4 and the later part of x13.1.5 (from Theorem
13.1.12).

We shall, in real two-dimensional examples, occasionally use an established
terminology for a critical point, based on the eigenvalues of the Jacobian. For the
linear system ẏ = Ay we have the following:



13.8. Qualitative Theory and Separably Stiff Equations 151� If they are real and of the same sign, the point is a stable or unstable node.� If they are real and of opposite sign, the point is a saddle point.� If they are conjugate complex with a non-zero real part, the point (or rather
an orbit in its neighborhood) is a stable or unstable spiral point.� If they are pure imaginary, the point is a neutrally stable center.� If A is singular, one or both eigenvalues are zero, the critical point is not
unique. The orbits are rays or, if A = 0, just the critical points.

If you are not familiar with this terminology, see Problem 9.
By Theorem ?? the behavior in the neighborhood of a critical point of a non-

linear system is approximately the same, except that a neutrally stable center can
also become a stable or unstable spiral point in the nonlinear case. There is also
a case named elliptic sector that has no counterpart in a linear problem; see
Problem 5.

We omit a detailed discussion of the case of a singular A, where one has to
consider, whether or not the Jacobian has the same rank at the critical point as in
its neighborhood.

The above definitions of stability etc. are essentially due to Lyapunov. In
some texts our notions are named uniform stability etc., since one considers also
a more general case, where Æ may depend on the initial time a, so that Æ is not
uniformly bounded away from zero.

Notice that, in the unstable linear autonomous case, the solution is bounded, if
the initial value is restricted to the subspace spanned by the eigenvectors belonging
to the eigenvalues with negative real parts. Some authors use the term conditionally
stable for this case, and applies this notion also to the nonlinear case, where in
general the set of exceptional initial values will be a nonlinear manifold. We shall
not use this terminology.

Lyapunov’s name is also associated with a technique for investigating stability.
For the sake of simplicity, we restrict the presentation to autonomous systems. A
more general treatment is found in Lefschetz [26]. We begin by a generalization of
two notions earlier used for quadratic forms only.

Definition 13.8.1.
A real-valued function V (y) is positive definite in an open environment Ω

of a critical point p of the system ẏ = f(y), if

(a) V (y) and V 0(y) are continuous in Ω,

(b) V (p) = 0,

(c) V (y) > 0 for y 2 Ω; y 6= p.V (y) is negative definite if �V (y) is positive definite.
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Definition 13.8.2.
A positive definite function V (y) is called a Lyapunov function, if V 0(y)f(y) �

0 in Ω.

Recall the definitions of stability and asymptotic stability (in the sense of
Lyapunov), see Definition 13.1.1 inx13.1.4.

The importance of V 0(y)f(y) is explained by the following equation:dV (y)=dt = V 0(y)dy=dt = V 0(y)f(y); for y = y(t);
i.e. V (y(t)) is non-increasing along any trajectory in Ω.

Theorem 13.8.3 ((Lyapunov)).
If there exists a Lyapunov function V (y) in some neighborhood Ω of a critical

point p, then the critical point is stable.
Set V 0(y)f(y) = �W (y). If W (y) is positive definite in Ω, then the critical point is
asymptotically stable.

Proof. Let C� = fy : ky � pk = �g, and set v� = inffV (y) : y 2 C�g. SetÆ(�) = inffkyk : V (y) = v�g. Therefore, if ky0k < Æ� then V (y(0)) < v�. SinceV (y(t)) does not increase. It follows that V (y(t)) < v�;8t > 0, hence y(t) cannot
reach C�. The stability of the critical point p is proved.

Now we shall prove the asymptotic stability, i.e., prove that limt!1 V (y(t)) =
0. It is sufficient to prove that for any (t1; v1), such that V (y(t1)) � v1, there
exists a t2, such that V (y(t2)) � v1=2, because this condition similarly implies that
there exists a t3 such that V (y(t3)) � v1=22. This argument can be repeated. So,
for any n, there exists a tn+1 such that V (y(tn+1)) � v1=2n. This clearly implies
asymptotic stability.

The proof is indirect, i.e., suppose that, for some (t1; v1),V (y(t1)) � v1; and V (y(t)) > v1=2; 8t > t1:
Let � > 0 be the infimum of W (z) for all z such that v1=2 < V (z) < v1. Take
any t2 > t1. For any � 2 [t1; t2], v1=2 � V (y(�)) � v1, due to the monotonicity ofV (y(t)). By the mean value theorem, there exists a � , such thatV (y(t1))� V (y(t2)) = �V̇ (y(�)) � (t2 � t1) = W (y(�)) � (t2 � t1) � �(t2 � t1):
Now choose t2 such that �(t2 � t1) = v1=2. Then v1 � V (y(t2)) � v1=2, i.e.,V (y(t2)) � v1=2; but this contradicts the supposition. The contradiction shows
that there exists a t2, such that V (y(t2)) � v1=2, and we found above that this
implies asymptotic stability.

It is typically not trivial to construct a Lyapunov function for a given problem.
The most common type of Lyapunov function is a norm (or, e.g., some power of a
norm). The technical details are worked out by means of the theory of logarithmic
norms that yields estimates, valid not only for sufficiently large t and in a sufficiently
small neighborhood of a critical point etc..
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Quadratic Lyapunov functions are typically equivalent to inner-product norms.
There are, however, important cases, where norms are not successful, in particular
for the study of periodic solutions. See, e.g., Example 13.8.6, where a Lyapunov
function is found by energy considerations of a type that can be useful in many
problems. In problem P6 (the predator-prey problem) a rather special explicit
construction of a different type is possible.

We shall prove the formula for �2(A) that was announced but unproved in
Theorem 13.1.8. It is generalized to an arbitrary inner- product norm. We first
derive a formula for the matrix norms and logarithmic norms, subordinate to lp-
norms, for a diagonal matrix D,

Let D = diag (di), maxi jdij = jdi0 j. ThenkDukpp =
Xi jdiuijp � maxi jdijpkukpp:

Equality is obtained, e.g., when u = ei0 , (one of the basis vectors). Hence kDkp =jdi0 j. Now substitute I + �D for D. Then kI + �Dkp = j1 + �di� j, where i� is the
same for all sufficiently small � (though not necessarily equal to i0). Then, by the
definition of logarithmic norm, �p(D) = <di� ; which must be equal to max<di. It
follows that the formulaskDkp = max jdij; �p(D) = max<di; (13.8.1)

are valid for any lp-norm. The same derivation also holds for weighted lp-norms.

Theorem 13.8.4.
Let H be a positive definite Hermitean matrix. Then (u; v) = uHHv is an

inner product in Cs, and kuk =
p

(u; u). Then the subordinate logarithmic norm
equals�(A) = max

(u;u)=1
<(u;Au) = maxf� : det(AHH +HA� 2�H) = 0g; (13.8.2)�(A) < 0 $ AHH +HA negative definite (13.8.3)

For the l2-norm H = I, and �2(A) = maxi di; (13.8.4)

where di denotes an eigenvalue of the Hermitean part B = 1
2 (A+AH) of A,

�
Note

that (13.8.4) contains max di, not max jdij:�
Proof. In order to derive (13.8.2), consider the equationkI + �Ak2 � 1 = max

(u;u)=1
((u+ �Au; u+ �Au)� 1):

The second member equals the maximum of

(u; u) + �(Au; u) + �(u;Au) + �2(Au;Au)� 1 = ��2<(Au; u) +O(�)�:
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The first member can be written (kI + �Ak+ 1) � (kI + �Ak � 1). Hence

(2 +O(�))kI + �Ak � 1� = 2 max
(u;u)=1

<(Au; u) +O(�);
The first part of (13.8.2) follows, as �! +0. The proofs of (13.8.3) and the second
part of (13.8.2) are left for Problem 5.

Finally, the l2-norm is an inner product norm, where (u; v) = uHv. Hence�2(A) = maxkuk2=1
<uHAu = maxkuk2=1

uHBu;
where B = 1

2 (A+AH ) is the Hermitean part of A. Let T be a unitary matrix that
diagonalizesB, i.e., THBT = diag (di); and set u = Tv. Note that kvk2 = kuk2 = 1.
Then uHBu = vHTHBTv = vHdiag (di)v =

Xi dijvij2 � maxi di:
The same type of argument as was used in the derivation of (13.8.1) then shows
that �2(A) = maxkuk2=1

uHBu = maxi di:
(The maximum is obtained for u = Tei; where ei is one of the basis vectors.)

The logarithmic norm can also be used to derive inequalities with reversed
sign to the inequalities given earlier. The derivations are analogous. In some cases
simple substitutions are enough. The details are left for Problem 10. There are
similar modifications of other properties of �(A).

Theorem 13.8.5.

A. If u̇ = Ju+ r then kuk0 � ��(�J)kuk � krk for t � 0.
If ��(�J) � �, and krk � �, then ku(t)k �  (t), where  0 = � � �; (0) � ku(0)k. Moreover, keJtk � e��(�J)t; 8t � 0.

B. For any choice of norm, ��(�A) � min<�(A), and, for any � > 0, there is
a norm such that ��(�A) � min<�(A) � �.

C. �(A) + �(�A) � max<�(A) �min<�(A),�2(A) + �2(�A) = max<�(B) �min<�(B), where B is the Hermitean part
of A.

We are now in a position prove the second part of Theorem ?? that was not
proved in Sec. 13.1.

Proof. We consider nonlinear systems of the form ẏ = Ay + g(t; y), where A is a
constant matrix, and kg(t; y)k=kyk ! 0, uniformly in t, as y ! 0.
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In the second part, it is assumed that A has at least one eigenvalue with a
positive real part, and we shall prove that the origin is unstable for the nonlinear
system. We can then make a coordinate transformation y = Tu; g = Th, that
brings the operator A to block diagonal form, T�1AT = blockdiag(J1; J2), where
(say) <�(J1) � �1 > 0; <�(J2) � �2 < �1:
The transformed system reads, in partitioned form,u01 = J1u1 + h1(t; u); u02 = J2u2 + h2(t; u):
Our proof is indirect. Suppose that the origin is stable, i.e., for any positive �, we
can find a Æ > 0 such that kui(0)k � Æ; i = 1; 2, implies that kui(t)k � �; 8t > 0.
For any � > 0 we can, by Theorems 12.2.15B and 12.2.13, choose norms so that��(�J1) � �1 � �; �(J2) � �2 + �:
Next we choose two numbers � and �, both less than 1

8 min(�1 ��2; �1). For later
use, note that �1 � � � 2� � �2 + � + 2�; �1 � � � 2� � 5�1=8:
Finally � should be small enough that khi(t; u)k � �(ku1k + ku2k); i = 1; 2.
This is possible due to the assumption originally made for kg(t; y)k. Then, by
Theorem 13.8.5 (statement A) and formula (13.8.13),ku1k0 � (�1 � �)ku1k � �(ku1k+ ku2k);ku2k0 � (�2 + �)ku2k+ �(ku1k+ ku2k):
It follows thatku1k0 � ku2k0 � (�1 � � � 2�)ku1k � (�2 + � + 2�)ku2k� (�1 � � � 2�)(ku1k � ku2k):
We choose ku1(0)k = Æ � �, u2(0) = 0. Then ku1(t)k � ku2(t)k � 0 for t � 0.
Hence, (ku1k � ku2k)0 � 5

8�1(ku1k � ku2k). We obtain,ku1(t)k � ku2(t)k � Æe5�1t=8 !1 t!1:
This contradicts our hypothesis that the origin is stable.

13.8.2 On Periodic Solutions of ODEs and Related Questions.

Example 13.8.6 * Se tillatt beteckningarna blir konsekventa med Exercise C7.**
The equation for a damped or undamped pendulum reads (after a scaling of the
time variable): �00+a�0+sin� = 0, (a � 0). We can write this in the form ẏ = f(y),
if we set y = [y1; y2]T = [�; �0]T , f(y) = [y2; �ay2 � sin y1]T . We shall give the



156 Chapter 13. Ordinary Differential Equations

main features of a study of the stability of the critical point at y = 0. The details
are left for Problem 10d.

The sum of the potential and the kinetic energy is E(y) = 1�cosy1 + 1
2y2

2 . We
choose V (y) = E(y)+�y1y2, where � is a small positive quantity. Then V 0(y)f(y) =��y1 sin y1 � (a� �)y2

2 � a�y1y2.
In the damped case, a > 0, we choose � � a: V 0(y)f(y) is a negative definite

function in a sufficiently small neighborhood Ω, since we obtain a negative definite
quadratic form, if y1 sin y1 is replaced by y2

1 . Then, by the corollary above, the
origin is asymptotically stable. The orbit in the y-plane spirals in towards the origin.
Phase plane plots for pendulums, damped and undamped, are shown in Fig. 13.8.3,
in connection with exercise C???).

If we had chosen � = 0, the quadratic form, which approximates V 0(y)f(y),
would have become semi-definite only. That does not prove asymptotic stability.

In the undamped case, a = 0, we take � = 0 and find that V 0(y)f(y) = 0,
hence the origin is stable. Note that this means that dV (y(t))=dt = 0, hence V (y) is
constant during the motion. (This is not unexpected, since in this case V (y) equals
the total energy.) If the starting point is sufficiently close to the origin, the motion
will be periodic along a closed level curve for V (y). See Fig. 13.2.5. If we let the
starting point approach the origin, the period of the the solution tends to the period
for the linear approximation, ẏ = Ay, where A is the Jacobian at the critical point.
(In this example the period of the linear system is 2�.)

At a simulation the period can be computed by means of the times for the
intersections between the orbit and some ray. (For larger systems there will be a
plane or a hyperplane instead of a ray.) �

** Se till att det inte blir fr mkt upprepning här. **
In numerical analysis a primary interest is to estimate the difference between

a perturbed solution z(t) and an unperturbed solution y(t) of a system of ODEs.
In the particular case where we consider the effect of a perturbation at the initial
point only, the variable transformation u(t) = y(t)� z(t) makes the origin a critical
point for a differential system for the function u(t). (Note however that this system
usually becomes non-autonomous even if the original system for y is autonomous.)
We usually discuss this in terms of a norm ku(t)k, and in the next section techniques
will be developed, based on the notion of logarithmic norms, to make this type
of analysis efficient. A norm is a particular kind of Lyapunov function, except
that differentiability is not required, e.g., the max-norm and the l1�norm are not
differentiable everywhere.

A positive definite quadratic form is a frequently used type of Lyapunov func-
tion. Since such a form is the square of an inner-product norm, its usage as a
Lyapunov function is equivalent to the use of an appropriate norm. For the dis-
cussion of asymptotic stability and for most questions encountered at the study of
numerical methods the restriction to norms does not seem hindering, but norms are
sometimes too crude for the delicate case of non-asymptotic stability.

In the problems with periodic solutions that we have encountered so far, there
has been a whole family of periodic orbits. There is another type of periodic solu-
tions in nonlinear problems, called limit cycles.
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Figure 13.8.1. (a) Two stable limit cycles for Example 13.8.7. Integration
forwards in time; motion is counter-clockwise. (b) An unstable limit cycle is found
by integration backwards in time; motion is clockwise

Example 13.8.7
The complex differential equationż = iz � 0:5z(jzj � 1)(jzj � 2)(jzj � 3);

which can be written as a system of two real differential equations, provides a simple
example of limit cycles. Set z = rei�, and separate real and imaginary parts:r0 = �0:5r(r � 1)(r � 2)(r � 3); �0 = 1: The first of these equations can be
discussed like Example ??. There are unstable critical points at 0 and 2, while 1
and 3 are stable critical points. The second equation shows that a uniform rotation
is superimposed on the development of r(t).

So, for 0 < jz(0)j < 1, r increases towards 1, while � increases monotonically.
The orbit is a spiral that approaches the unit circle from the inside. See the left
part of Fig. 13.8.1.

Similarly, for 1 < jz(0)j < 2 the orbits approach the unit circle from the
outside. The unit circle is therefore said to be a stable limit cycle. The circlejzj = 3 is also a stable limit cycle, for initial values jz(0)j > 2. The point r = 2 is an
unstable critical point for the real differential equation for r. Therefore the circlejzj = 2 becomes an unstable limit cycle for the complex differential equation.

If the problem is run backwards in time, the situation is opposite; the circlejzj = 2 becomes a stable limit cycle, while the other two become unstable. See the
right part of Fig. 13.8.1. �

The previous simple example should not make you believe that limit cycles are
always circles. Fig. 13.8.2 shows the limit cycle of a famous problem in chemistry,
named the Brusselator problem that is described by the system,y01 = a+ y2

1y2 � (b+ 1)y1; y02 = by1 � y2
1y2;
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Figure 13.8.2. The Brusselator problem with a limit cycle, see Exercise C6.

see also Exercise C6. A derivation is found in [20, p. 112].
Limit cycles play a central role in the theory of autonomous ODEs in R2,

due to the following classical theorem from around 1900. We quote the formulation
of [20, p. 113]. A proof is found in [6].

Theorem 13.8.8 (The Poincaré–Bendixson Theorem).
Each bounded solution of an autonomous system ẏ = f(y) in R2 must

(i) tend to a critical point for an infinity of points ti !1; or

(ii) be periodic; or

(iii) tend to a limit cycle.

The complicated formulation of the first alternative is related to the possibility
of a critical point on the limit cycle.

There may be limit cycles also in larger systems of ODEs. For example, a
three- dimensional version of the Brusselator is discussed in [20, p. 117], where an
introduction to Hopf bifurcations is also given. A stiff 3D problem with a limit
cycle is the Oregonator, see next subsection, and exercise C9.

There is, however, no general result like the Poincaré–Bendixson theorem.
For instance, a motion in three dimensions can become chaotic, and its limiting
set can have a fractal structure, a so-called strange attractor. A famous example
of this is due to E. N. Lorenz, see Fig. 13.8.3 and Exercise C7. A very illuminating
discussion and a numerical study is presented by Hairer et al. [20, p. 120 ff.].
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Figure 13.8.3. The Lorenz problem with a butterfly-like strange attractor.
The equations are given in Exercise C7.

13.8.3 Singular Perturbations and Separably Stiff Equations.

The iteration used in the proof of Theorem 13.1.3 was based on the rewriting of the
differential equation dy=dt = f(y) in terms of an integral operator that is bounded
and, under appropriate conditions, contractive. Would it have been possible to use
a different iterative scheme? For example, let y0(t) be a solution of the algebraic
equation f(t; y(t)) = 0, and definef(t; yi(t)) =

dyi�1(t)dt ; i = 1; 2; 3 : : : (13.8.5)

(with appropriate conditions that make yi(t) unique).
The answer is ”No”, because the differential operator ddt is an unbounded

operator, at least in any function space that contains exponentials y(t) = e�t for
some arbitrarily large values of j�j, (since for such functions k ddtyk = j�jkyk). The

differential operator ddt is a bounded operator in some particular function spaces
only, such as the space of polynomials of a fixed degree or a space of so-called band-
limited functions, i.e. Fourier transforms of functions with a compact support.

Nevertheless the iterative scheme (13.8.5) is interesting for special classes of
differential systems, called separably stiff systems or singular perturbation prob-
lems. First consider a special case:ẏ = �(y � e�t); � 2 C: (13.8.6)
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This equation has the particular solution y(t) = (1� �=�)�1e�t Let y0(t) = e�t.
Then yi(t) = ie�t where 0 = , �(i � )�e�t = i�1�e�t, i = 1; 2; 3; : : :, i.e.,i = + i�1�=�. By inductioni = �1 +

�� +
�2�2

+ : : :+ �i�i�! (1� �� )�1;
if j�j < j�j, i.e., yi converges towards the particular solution mentioned above. Note
that, if <(�) < 0 any solution of (13.8.6) will approach this particular solution at
the rate of e�t as t increases.

When the iteration formula (13.8.5) is applied to the more general equationẏ = �(y � g(t)); y(a) = ; <(�) < 0; (13.8.7)

with y0(t) = g(t), each iteration yields a new term in the expansion,y(t) � g(t) + ��1g0(t) + ��2g00(t) + : : :+ ��k+1g(k�1)(t) + : : : : (13.8.8)

We first note that this is (at most) a particular solution of (13.8.7), but it can then
approximate any solution when <(�)(t � a) � �1. Moreover, it is common that
this expansion is semiconvergent only (in the sense of Sec. 3.1.8). The expansion
is to be truncated, when the terms do not decrease rapidly any longer, in absolute
value. Another derivation of the expansion is indicated in Problem 13.7.8, together
with a remainder. It shows that the first neglected term provides a useful error
estimate, as long as the second neglected term is much smaller, in absolute value,
than the first, i.e., if jg(k)(t)=g(k+1)(t)j � j1=�j or, in other words, if the local
time scale �q(t; g; k) � j1=�j. It is worth noting that it often happens, in the
applications we have in mind, that this expansion is not alternating, and that, for
a fixed t, �q(t; g; k) ! 0 slowly, as k ! 1. Take, for example, g(t) = 1=t. Then�q(t; g; k) = t=(k + 1), and the expansion readsy(t) � 1t � 1�t2 +

2!�2t3 � : : :� (k � 1)!�k�1tk + : : : :
This reminds of the alternating semiconvergent expansion studied in Example 3.2.14,
but now the most interesting case is when � < 0; t > 0, i.e., when all terms are
positive. Now the first neglected term is a useful error estimate only if k+ 1 � j�tj.

Note, assume that � < 0 thatg(t+ ��1) � g(t) + ��1g0(t) +
1

2
��2g00(t) + : : : :

By comparison of this with the expansion (13.8.8), we find that the graph of y(t)
can be looked upon as a translation g(t� j�j�1) of the graph of g(t), with an error
of O�j�� j�2

�
, where � is the local time scale of g(t), provided that the transient

proportional to e�(t�a) has died out, i.e. for t � a > j�j�1 ln 1=tol, or t � a >j�j�1 ln j�j depending on the criterion used for deciding that a term is negligible.
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Equation (13.8.8) is valid also if we substitute a matrix A for �, such that<� < 0 and j�� j � 1 for all eigenvalues of A. Now consider a nonlinear system,
where � corresponds to 1=j�j, �ẏ = F (t; y); � > 0: (13.8.9)

Assume that F (t; y) and its partial derivatives of low order are bounded, and that
there exists a solution y0(t) of the reduced problem F (t; y) = 0, such that the
Jacobian J(t) = �F=�y at y = y0(t) is non-singular and has a negative logarith-
mic norm �(J(t)) < �� < 0. (In fact, the non-singularity follows from the latter
assumption, see Theorem ??.) Let then y1(t) be defined by the equation�y00(t) = F (t; y1(t)): (13.8.10)

Take the total derivative of the equation F (t; y0(t)) = 0 with respect to t, i.e.,�F=�t+ J(t)y00 = 0. This determines y00(t). By Taylor’s formula, we can now write
(13.8.10) as follows:�y00(t) = F (t; y1(t)) � F (t; y0(t)) = J(t)(y1(t)� y0(t)) +O(ky1 � y0k2): (13.8.11)

It can then be shown thaty1(t) = y0(t) + �J(t)�1y00(t) +O(�2): (13.8.12)

and that y2(t) � y1(t) = O(�2). It is then conceivable that y(t) � y1(t) = O(�2),
when a transient, that decays faster than e��(t�a), has died out.

If (13.8.9) is a single nonlinear equation, J(t) � �� < 0 then we conclude from
(13.8.12) that y(t) = y1(t) +O(�2) = y0(t� �=jJ(t)j) +O(�2) (13.8.13)

i.e. the graph of y(t) is approximately a translation of the graph of y0(t), after the
transient, but the delay �=jJ(t)j depends on time.

A few things are worth to be noted for the case of a single equation:

(a) The left hand side of (13.8.11) is smaller than the absolute value of each of
the terms J(t)y1(t), J(t)y0(t), by a factor that can be described as the ratio
of the smallest local time constant of the system to the local time scale of the
approximate solution y0(t). So, when the solution of a single differential equa-
tion has become stiff, the differential equation describes a moving approximate
balance between positive and negative terms on the right hand side.

(b) The graphs of y(t) and y0(t) intersect at points where ẏ(t) = 0. (Why is that
no contradiction to ”the translation point of view”?)

(c) The asymptotics is valid only when the delay �=jJ(t)j is much smaller than
the local time scale. In particular, it becomes unreliable when t approaches a
point, where J(t) is zero.
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These points of view, applied to individual equations of a system, where the
other variables are considered as driving terms, can often provide a good insight in
what is going on in the system. This makes it natural to extend the use of the term
stiffness to individual variables or subsystems of a larger system.

The function defined by a few iterations according to (13.8.5) is close to a
solution of (13.8.10) if �� �(t). If �� < 0, it is attracting to other solutions of the
same system, as t increases. If the Jacobian has a positive eigenvalue, the iterative
process may still be semi-convergent, but the resulting function is repelling to
the other solutions of the system. In non-linear problems the expressions for the
successive iterates quickly become messy, but Problem 13.7.8 indicates that rather
simple bounds can be obtained.
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Figure 13.8.4. The solution of ẏ = a(1=t� y), y(1) = 0 for a = 100; 10; 5.

Example 13.8.9
Fig. 13.8.3 shows the solution of ẏ = a(1=t� y), y(1) = 0 for a = 100; 10; 5.

The curve y = 1=t is not drawn, but it proceeds from the upper left corner through
the top point of the leftmost curve and continues then immediately to the left of the
leftmost curve. It is seen that, after the transient, the other two curves are delayed
about a�1 after the left curve, as predicted above. �
Example 13.8.10

Fig. 13.8.2 shows the solution of “the rectifier equation”�dydt =
�
(sin 2�t)2 � y2

�; y(0:1) = 0:5; (13.8.14)

for � = 0:0001; 0:01; 0:02. The reduced problem has two solutions: y0(t) = � sin 2�t.
Note that fy(t; y) = �2y=�, hence y0(t) = j sin 2�tj is attracting, while the branchy0(t) = �j sin 2�tj is repelling. The points where y0(t) = 0 are branch points, where
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Figure 13.8.5. Solution of “the rectifier equation”.J(t) = 0. The smallest time constant is �=jyj, the local time scale is approximately
1

2� , and y(t) � j sin 2�(t� �=(2y))j, except in the transient and in the neighborhood
og the branch-points. It appears that the asymptotics becomes unreliable wheny = O(

p�), where y(t) has a minimum, with a sharp turn.
It may be conjectured that

min y(t) � p�; (�! 0):
It is not quite trivial to determine  by an asymptotic analysis. If one does it
numerically instead, by running the problem for different values of � (Computer
exercise 13.7.5), one should avoid to choose tol > � (say). It has happened also
with widely used programs for stiff problems and a careless choice of tol that the
computed solution becomes close to sin 2�t instead of j sin 2�tj. This can be very
misleading, in particular since the erroneous solution is much smoother and looks
more trustworthy than the correct solution! Roughly speaking, the step size has
become so big for t > 0:25 that the computed points never come close enough toy = 0, for the program to recognize the change of local time scale. It may also fail
to recognize the repelling nature of the wrong branch for y < 0, since S of many
numerical methods for stiff problems contains part of the right half plane where<�h > 0. �

Many problems in Chemical Kinetics and other branches of Applied Mathe-
matics can be brought to the formdyidt = ��1i Fi(t; y1; y2; : : : ; ym); yi 2 Rni ; (13.8.15)

0 < �1 � �2 � : : : �m; n = n1 + n2 + : : :+ nm;
by appropriate scaling transformations. They are called separably stiff problems.
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The �i are assumed to be constant during the time interval under considera-
tion, but there are problems, where one had better divide the given interval into two,
with different scaling and partitioning. Set E = blockdiag[�1I; �2I; : : : ; �mI ], whereI denotes unit matrices of various orders, n1; n2; : : :. Finally, set � = max(�i=�i+1).

The Jacobian of the ODE system, becomes J = E�1F 0(y) (with an obvious
notation). We assume that F 0(y) is a ”bounded” matrix, i.e. its elements are small
compared to the ratios �i+1=�i. Matrices of this type are called graded matrices.
We further assume that there exists a factorization, F 0 = LR, where L; R are,
respectively, lower and upper block triangular matrices, where the partitioning is as
indicated in the ODE system (13.8.15). The diagonal blocks of L should be unit
matrices.

A fundamental assumption is that the eigenvalues of R have strictly nega-
tive real parts, except for the eigenvalues of the lowest block. Then, one can show,
(Dahlquist [8] that if � is small enough, the eigenvalues of the Jacobian are close to
the eigenvalues of the diagonal block matrices ��1i Ri.

It is too technical to discuss in detail how small is ”small”?. Essentially, the
smallest eigenvalue of ��1i Ri should be larger than the largest eigenvalue of ��1i+1Ri+1,
for i = 1 : m� 1, by a factor that mainly depends on the size of the elements in the
first subdiagonal blocks of L.

The system (13.8.15) can also be written as follows:�i dyidt = Fi(t; y1; y2; : : : ; ym); yi 2 Rni ; (13.8.16)

This is a generalisation of the classical case of singular perturbation. The classical
case will now be discussed for an autonomous system,�ẏ1 = F1(y1; y2); y1 2 Rn1 (13.8.17)ẏ2 = F2(y1; y2); y2 2 Rn2

We refer to this as the complete problem, in contrast to the reduced problem that is
obtained for � = 0.

0 = F1(ỹ1; ỹ2); ỹ1 2 Rn1 (13.8.18)dỹ2dt = F2(ỹ1; ỹ2); ỹ2 2 Rn2

This is a differential-algebraic system of equations (DAE). We want to estimate
the difference x = y�ỹ, and employ therefore results of a generalisation of the theory
of logarithmic norms. We shall only sketch the derivations, which are similar to
those in the DB manuscript, Sec 12.2.3, that was handed out in Part 1 of this
course. Set �Fi=�yj = Aij , and assume that�(Aii) � �ii; kAijk � �ij if i 6= j:
We further assume that �ii < 0; i = 1 : m � 1. This implies the fundamental
assumption introduced above. It is often useful to let the bounds �ij depend ont but, for the sake of simplicity, we here give them constant values that should
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be valid when t is large. We now subtract (13.8.18) from (13.8.17), and introduce
the notation Āij for a neighborhood average of the sub-Jacobian Aij , like in Eqn.
(12.2.4) of DB. We obtain, after some simplification,�ẋ1 = Ā11x1 + Ā12x2 � � ˙̃y1 (13.8.19)ẋ2 = Ā21x1 + Ā22x2:
The block triangular factorization mentioned above here yieldsR1 = A11; R2 = A22 �A21A�1

11 A12:
Good approximations to the eigenvalues of the full Jacobian are given by the eigen-
values of the smaller matrices ��1A11 and R2. The latter approximation is inde-
pendent of �.

Now we return to Eq.(13.8.19). Let �1 be an upper bound of k ˙̃y1k. We find,
after proceeding similarly to the derivation of Theorem 12.1.2 that kxik � �i, whereeps�̇1 = �11�1 + �12�2 + ��1 (13.8.20)�̇2 = �21�1 + �22�2:
Set

A =

� ��1�11 ��1�12�21 �22

� :
We now assume that the eigenvalues of A have negative real parts. Then
(�1(t); �2(t))T ! �� = �A�1(�1; 0)T = O(�), as t ! 1. A vector inequality,
analogous to Eq.(12.1.6), valid for finite t, can also be obtained. It can be shown
that if ỹ2 has the correct initial value, i.e. if �2(t0) = 0, then �2(t) = O(�) 8t > t0.
By means of the first row of (7), we can then obtain the following important result.

Theorem 13.8.11.
Assume that �1(0) = O(1). Outside a fast transient (or boundary layer) of

length (width) (�=j�11j) ln(1=�), the solution of the reduced problem becomes an O(�)-
accurate solution of the complete problem.

The behavior of the solution shows that, after the first transient, there is no
need for short time steps, even with a classical explicit numerical method, if the re-
duced problem is applied, and if an O(�)-accurate solution is satisfactory. Problems
17 and 18 of Sec.12.2 indicate a possibility to obtain corrections to the solution
of the reduced problem, i.e. more terms in a singular perturbation expansion of
the ”outer solution”. Such an expansion easily becomes messy, and the use of a
numerical method with good stability properties is recommended, so that a step
size h can be used that is, in principle, determined by the local time scale of the
orbit, i.e. khf 0(y)k should be allowed to be large.

It is, however, not necessary to apply such a method to the second row of
(13.8.17), because that is not a stiff equation. For this reason, such systems are
called separably stiff problems. The general ideas of this note can be generalised
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to systems of the type in (13.8.15), which may also be called separably stiff, although
the frontier between ”the stiff part” and the ”non-stiff part” changes with t.

Recall the assumption that the eigenvalues should have strictly negative real
parts except for the eigenvalues related to the last lines of (13.8.15) or (13.8.17).
There are, however, problems where, this assumption is not valid in certain subin-
tervals, see e.g., Example D20.2 (Oregonator). An important requirement of a
program for stiff equations, is that it is able to detect when this happens, and to
reduce the step size appropriately. The program described below seems to be rather
reliable in this respect.

It is often of interest to find out which variables in an ODE system will become
zero in the limit, without extensive calculations. The following three propositions
may be useful to that purpose. The Comparison Theorem, DB Sec.12.2.2, is then
useful for finding the speed of convergence, and also for other conclusion concerning
the behavior of a variable. The proofs are omitted.

Proposition 13.8.12.
Let g : R ! R be a monotonic and bounded function for all t � 0. Then g(t)

converges to a finite limit as t ! 1. If,in addition, g̈(t) is bounded for all t � 0,
then ġ(t) ! 0 as t!1.

This proposition can be applied to an individual equation of a differential
system. The other variables are then treated like given functions of t. The assumed
boundedness of g can often be established in various ways, e.g. by a combination
of the Positivity Theorem (see DB Sec.12.2.2) and linear relations between the
variables (see the example below). The boundedness of g00 can often be established
by means of the following proposition. It covers, for example, autonomous systems,y0 = f(y), where the components of f(y) are polynomials of the components of y
— an important class of differential systems in Chemical Kinetics, Mathematical
Ecology and many other areas.

Proposition 13.8.13.
Let y(t) be a solution of the ODE system dy=dt = f(t; y). Assume thatky(t)k � K 8t � 0. Assume that f; �f=�y; �f=�t are bounded for kyk � K,

uniformly in t. Then ÿ(t) is bounded for all t � 0.

Note that ÿ = fyẏ+ft. (A stronger version of this proposition may sometimes
be needed.)

Proposition 13.8.14.
Let a; Æ be positive constants, let P be a real-valued function such that P (0) =

0; P (u) > 0 for u > 0, and let u be a positive-valued function that satisfies an initial
value problem of the form u̇ = �f1(t; u) + f2(t; u); u(t0) > 0, where f1(t; u) �P (u)t�1+a, and f2(t; u) = o(t�1+a), uniformly when u 2 [0; Æ].-Then u(t) ! 0, andu̇(t) = o(t�1+a) as t!1.
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Example 13.8.15
The following set of autocatalytic chemical reactions 44 is based on a study

of H.H.Robertson (1966). It is one of the standard test problems for numerical
methods for stiff ODEs, sometimes with different coefficients.Y k1�! Z;X + Z k2�! Y + Z;X +X k3�! Z;

Consider the case withk1 = 0:04; k2 = 2 104; k3 = 1:5 107:
A system of ODEs for this system of reactions is derived, according to the law of
Mass Action, see Problem P3 of Sec.,13.1. More general accounts of this are found
in Hairer, Wanner and Nörsett [], p.115 or in Lin-Segel, [], Sec. 10.1. The former text
also mentions a number of simplifications to be done in common special situations.

Denote by z1; z2; z3 the concentrations of,respectively, the species X;Y; Z.
Then the differential equations with initial conditions read,ż1 = �k2z1z3 � 2 k3z2

1 + k1z2 (13.8.21)ż2 = k2z1z3 � k1z2 (13.8.22)ż3 = k3z2
1 : (13.8.23)z1(0) = 0 z2(0) = 1 z3(0) = 0:

Note that ż1 + ż2 +2ż3 = 0, hence we have a linear invariant: z1(t)+z2(t)+2z3(t) =
const: = 1.

Put z1 = 10�4y1; z2 = y2; z3 = y3; 10�4 = �. Then the equations
become (Exercise �ẏ1 = �2y1y3 � 0:3y2

1 + 0:04y2 (13.8.24)ẏ2 = 2y1y3 � 0:04y2ẏ3 = 0:15y2
1

with initial conditions y1(0) = 0 y2(0) = 1 y3(0) = 0:
Now the linear relation reads, �y1(t)+y2(t)+2y3(t) = 1. By the Positivity Theorem
(Theorem 3.1.5), yi(t) > 0 8 t > 0; i = 1; 2; 3. By the linear relation, we then obtain,

0 < y1(t) � ��1; 0 < y2(t) � 1; 0 < y3(t) � 0:5; 8t > 0: (9)

(A better bound for y1(t) is obtained below.)
In the terminology of singular perturbations, we first look for the inner so-

lution, approximately valid during the transient. Set t = ��; yi(t) � ŷi(�). Let

44This is a little different from Problem P4 of Sec. 13.1.
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transient. Then dŷ1=d� = 0:04� 0:3ŷ2

1;
hence ŷ1(�) !p

0:04=0:3 = 0:365148. Note that the partial derivative of the right
hand side equals�0:6ŷ1 ! �0:22, hence the length of the transient is approximately�� ln �=0:22 = 42�. Another estimate of the width is obtained by setting ŷ1(�) �
0:04� until 0:04� 0:3ŷ2

1 = 0, which happens at � � 9�. (Sketch roughly the graph
of ŷ1(�), and interpret these two estimates.)

Since dŷ2=d� � ��0:04ŷ2 � �0:04�, ŷ2 decreases only by 1:7� during the
transient. Similarly ŷ3 � � during the transient. The Jacobian of the system is a

graded matrix: J =

0��(2y3 + 0:6y1)��1 0:04��1 �2y1��1

2y3 �0:04 2y1

0:3y1 0 0

1A :
Note that this matrix is singular — we have the same dependence between the

rows in the Jacobian as in the ODE system. In the terminology of the discussion
above A11 = �(2y3 + 0:6y1) < 0 and the numerically large eigenvalue is approx-
imately ��1A11. The rank is 2, except that it becomes 1, when y1 = 0, and we
shall see that this happens at the critical point that the solution converges to. This
turns out to be quite common in chemical systems and has as a consequence that
the convergence towards the critical point is not exponential but only like t� for
some positive number . We shall see that  = 1 in this example.

The matrix of the non-linear system to be solved at every step in a numerical
solution is I � hJ (see the description of the BDF method below), and this is,
fortunately, non-singular for any reasonable step size h!

We shall now consider the outer solution. We therefore modify (13.8.24) by
putting � = 0 and ignoring the initial condition for y1. We drop the subscript O
that Lin and Segel use for the outer solution. Hence y1 is the positive root of the
quadratic �2y3y1 � 0:3y2

1 + 0:04y2 = 0; where 2y3 = 1� y2;
i.e. y1 =

0:08y2

(1� y2) +
p

(1� y2)2 + 0:048y2

: (13.8.25)

Note that this bound for the outer solution y1 is much better than (9). It is derived
for the reduced problem but, by the above theorem, it also holds (approximately)
for small positive �. Since y2 = 1� 2y3, we have ẏ2 = �2ẏ3, henceẏ2 = �0:3y2

1; y2(0) = 1: (13.8.26)

If we plug in the above expression for y1 here, we obtain a single separable ODE that
can be solved by quadrature, at least numerically. We omit the details. Instead,
we note that the assumptions of Prop.2 are satisfied by (13.8.26). So ÿ is bounded.
Then, by Prop.1, ẏ2 ! 0, hence y1 ! 0. It then follows from the quadratic equation
that y2 ! 0. Finally, the linear relation now shows that y3 ! 0:5.
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We also see from the quadratic (or its solution) that y1=y2 ! 0:04, i.e., y2 �
25y1,45 as the system approaches the critical point. Then, Eqn.(10) becomes, ẏ2 ��0:48 10�3y2

2 . The solutions are, for large values of t,y2 � 2083:3=t; y1 � 83:33=t; (y1 � 0:04y2): (13.8.27)

It can be shown that the smaller non-zero eigenvalue of J is approximately � =�0:024y1 as the critical point is approached. Note that � ! 0 from the negative
side. If the system like (13.8.24) is integrated numerically, however, it can happen
that, for very large t, y1 may become negative, due to truncation and rounding
errors, and then � becomes positive. Instabilities due to this have been observed in
extremely long runs, in particular with a large tolerance.

The conclusions of the previous paragraphs were concerned with the reduced
problem, and they are therefore at leastO(�)-accurate for the complete problem. We
can, however, obtain sharper results by discussing the complete problem (13.8.24)
directly. The equation for ẏ3 shows that y3 is monotonic, and we already know thaty3 and ÿ are bounded. Then, by Proposition 1, ẏ3 ! 0, and hence y1 ! 0. By the
application of Prop.3 to the equation for ẏ2, we then find that y2 ! 0, and finally
the linear relation shows that y3 ! 0:5. 46 �

** Use the following material for text and problem on the Oregonator.
Study the Oregonator equations (Problem 1), and calculate its Jacobian. It

is interesting to see where and when the numerically large eigenvalue changes sign,
and to relate that to the behavior of the solution and the step size. Report your
observations.
Run it first with tend=0.2, in order to see the details during an ”outbreak”. Then
run it with tend=20, to see the periodic nature of the solution of this problem. (The
latter run may take about 5 times longer time than the former.) Make another set
of runs in order to estimate the accuracy.
Make plots (or hand drawings) that show the step size variation, one with details
within the outbreak and the other for the large features. In what subintervals
would you consider the system to be stiff? Determine the period of the solution to
a few per cents accuracy. NOTE. This model made some sensation in Theoretical

Chemistry , and it also caused some trouble for some of the first programs for stiff
problems, which were not prepared for the situation, that a system can become
non-stiff again, after a stiff interval.

Move this to Ch 13.4:

On the BDF Method and the Program BDF

Program BDF is a solver for stiff systems of ODEs,y0 = f(t; y); (13.8.28)

45check that it should not be 12.5.
46In my lecture notes it is remarked that y1 bounded, Prop.2applic. implies y2 bounded. I must

look at this.
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Figure 13.8.6. The Oregonator problem with a limit cycle, see Example ??
and Exercise C6.

based on the widely used Backwards Differentiation Formula (BDF), For constant
stepsize this reads, �r+

1

2
r2 + : : :+ 1krk� yn = hf(tn; yn): (13.8.29)

Here r is the backwards difference operator, defined for functions and sequences
by the relations, ry(t) = y(t)� y(t� h); ryn = yn � yn�1:
The two definitions are identical if y0 = y(t0), yn = y(t0 + nh), n = 1; 2; 3; : : :.

We shall use some results and some terminology, developed in the following
three papers, which were handed out in Part I of this course:
(i) DB, Sec 4.6, Calculus of Difference Operators.
(ii) G. Dahlquist, The Integration Method of the OLEG Package,
(iii) Th. Ekman, A Portable Interactive Package for the Numerical Treatment of
ODEs., i.e. the OLEG report. The BDF method is a one-leg collocation method.
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Our implementation is a modification of the OLEG package. The step size h is
automatically controlled, but (similarly to OLEG) it (where p = k for BDF, whilep = k + 1 for OLEG, see below). Note that the left hand side of (2) is a truncated
operator power series for the differential operator hD = lnE = � ln(1 � r). It
therefore equals the derivative at tn of the local k’th degree polynomial Y (t), which
is determined by the conditions Y (tn � jh) = yn�j , j = 0 : k. In OLEG the
collocation parameter is chosen optimally, in the sense that the order of accuracyp becomes as high as possible for an one-leg k-step method, i.e. p = k+ 1. In BDF,
the collocation parameter is chosen more with the consideration of the stability
properties desirable for stiff problems, see the enclosed plots of stability regions.
The order of accuracy is p = k for the k-step BDF method. For non-stiff problems,
it is therefore less efficient than the OLEG method with the same value of k. On
the other hand OLEG is unable to treat stiff problems. The stability region of thek-step BDF method is, for every k, the exterior of some closed bounded region, but
it is zero-stable for k � 6 only. Our implementation can be used for k � 5, but we
do not recommend it for k = 5, unless very high accuracy is requested. The most
important difference from the OLEG package is the treatment of algebraic system
of equations encountered at every step. By (13.8.29), it is of the form,yn � hnf(tn; yn) = terms known from the past; (13.8.30)

where  = (1 + 1=2 + 1=3 + : : : + 1=k)�1. It cannot be solved by the predictor-
corrector scheme used in OLEG, unless khnf 0(y)k � 1. This is an unacceptable
restriction for stiff problems. Therefore a Newton-like method is used. The JacobianI�hn�f=�y is computed and inverted only once every arc. Prediction is obtained
by the extrapolation of the local k’th degree polynomial from the previous step.
There is only one iteration at every step plus an extra iteration at the last step of
every arc, in order to check that the scheme works satisfactorily. This program has
inherited most of the post-processing facilities of OLEG.

The package is started by the MATLAB command bdf. If you use a UNIX
system, note that you cannot use ctrl-z to leave the keyboard mode. Instead there
is a command cz that calls an mfile that does it. The interrupt commands k, b

etc. cannot be used, unless you can produce a mexfile by linking the C-program
getch.c to this package. There may be a few more differences.

look at these for problems and computer exercises:

D20.1(0.2) (a) Look into the files rmods.m and amods.m, in order to find out what
equations are treated in Problems 1,2,5,6 and 7, and the default settings of the
parameters. Do you recognize the example treated above? Are there any changes?

You are also advised to look at the file globals.m in order to see the notations
used. For example, the order of accuracy p is denoted by pp. What is meant by
yout, difout, tout, yshort, tshort? (Don’t hand in your answer to the last
question.)

(0.8) (b) Run Prob.2, default case, with a diary. What is plotted? As post-
processing, plot the relative step size h=t, (use the vector tshort) and make a
table of the solution at t = 10n; n = �5;�4; : : :, until tend. (There is an m-file for
such interpolations.) Then make an extra run, with a smaller tolerance, (or with



172 Chapter 13. Ordinary Differential Equations

stepctrl=2) in order to estimate the accuracy.
Explain why the solutions for different values of b approach each others. Look

into the outfile and compare the max value of y1 and the behavior of the solution for
large values of t with the theoretically results derived above. Describe quantitatively
and approximately the variation of the step size, when t is large, and how the number
of steps grows with t.
Review Questions

R1. (a) Determine y0(t); y1(t), so that, under conditions to be stated, the functionỹ(t) = y0(t) + �y1(t) is at an O(�2)-distance from a particular solution to the
ODE system �ẏ = F (y), 0 < � � 1 that is attractive for other solutions that
start in its neighborhood.

(b) For a single ODE of the form �ẏ = F (y), 0 < � � 1, show that, under
appropriate conditions, the solution y(t) is approximately an O(�)-delay of a
solution of the reduced problem, i.e. the algebraic equation obtained for � = 0.
Give an example, where the conditions are no longer valid in the neighborhood
of some points, and tell what happens.

R2. Derive the non-homogeneous linear variational equation associated with a dif-
ferential system dy=dt = f(t; y; p); y(a) = (p), where p is a vector of param-
eters.
What is the nonlinear variational equation? Exemplify how it is used.

R3. Consider a differential system ẏ = f(y). Formulate a general theorem, that
guarantees that a motion that starts in a domain V will remain there forever.
Exemplify how the theorem is to be applied on a domain with singular points
on the boundary, e.g., a closed circular cone. Formulate and exemplify the use
of its corollaries, in the text called the Comparison theorem and the Positivity
Theorem.

R4. (a) Consider the linear autonomous system ẏ = Ay. Formulate in terms of
the spectrum of A necessary and sufficient conditions for the stability and
asymptotic stability of the origin.

(b) Give the main features of an example that shows that a nonautonomous
linear system can have unbounded solutions, even if, for every t, the eigenval-
ues of A(t) are less than some negative constant.

R5. (a) Define the basic notions of the Lyapunov stability theory: stability, asymp-
totic stability, Lyapunov function. Formulate, in terms of Lyapunov functions,
the basic theorems about the stability and asymptotic stability of a critical
point.

(b) Exemplify the distinction between stability and boundedness for a nonlin-
ear ODE.

(c) Show, with a reference to a theorem in the text (i.e. the corollary of The-
orem ??) that a critical point is asymptotically stable for a non-linear system,
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if it is asymptotically stable for the linear approximation. Does the statement
remain true, if you remove the words ”asymptotically”? Give a proof or a
counterexample.

R6. Give an example of a problem with a limit cycle. Draw a simple phase plane
sketch. What is the difference between a limit cycle and a periodic solution
of the type exemplified by the undamped pendulum and the predator-prey
problem? Quote the Poincaré–Bendixson theorem.

Problems

P1. The different types of neighborhood to a critical point in R2 may be illustrated
on single complex equations of the form ż = �z with � = �1; 0; 1; �1 +i; i; 1 + i, and real systems of the form ẏ = Ay, with matrices of the form��1 0

0 �2

� �� 1
0 �;�

where one should distinguish between � positive, negative or zero. (There
are in all something like 16 types). Draw some sketches with or without a
computer, and/or consult a modern text on ODEs, or Strang [36].
For the system ẏ = Ay in R2, find out how the trace and the determinant ofA provide almost complete information about the type of a critical point.

P2. (a) Determine the stability type (or instability) of the origin for ẏ = ay3 and
for the complex equation ż = iz + ajzj2z; a 2 R. Write the latter system
as a real system in both Cartesian and polar coordinates. Use the latter for
settling the stability question, and sketch the solution, for a positive and a
negative value of a.

(b) Determine the stability or instability of the origin for the system y01 =y2 � y3
1 ; y02 = 0. Is it true that this shows that the origin can be stable for

a nonlinear system, even though it is unstable for the linear approximation?

(c) Consider the equation ẏ = �y2 + r(t), y(0) = �, (� > 0). Find upper and
lower bounds for y(t), valid for all t > 0, if 0 � r(t) < �? Can you get a lower
bound, if you only know that jr(t)j < �? (This is related to trouble that has
been encountered at the numerical solution of stiff problems, when the system
has similar properties for small values of kyk as this scalar example.)

(d) Work out the details of Example ?? (the pendulum). Study also the
(in)stability of the other critical points.

P3. (Gomory, Lefschetz). Consider the system y01 = y1, y02 = �y2. Show that
the orbits are hyperbolas, which are, in polar coordinates, described by the
equation r2 sin 2� = const:] By the transformation by reciprocal radii, we
obtain a curve family, r2 = const:] sin 2�. Sketch these curves. Show that
they satisfy the system y01 = y3

1 � 3y1y2
2, y02 = 3y2

1y2� y3
2 . This exemplifies the

elliptic sector type of critical point mentioned in Sec. ??.
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P4. Set B = (I �A)�1(I +A).

(a) For real inner product norms, show that if �(A) < 0 then kBk < 1.

Hint: First show that y = Bx ) y � x = A(y + x). Then show thatkyk2 < kxk2, if x 6= 0.

(b) Show by an example that this is not generally true for the max-norm.

(c) Set m = (1 + �(A))=(1 � �(A)). For inner product norms, show thatkBk � m, if 0 � �(A) < 1, while this is not generally true if �(A) < 0.

P5 Let (u; v) = uHHv, juk2 = (u; u), and let k � k; �(�) be, respectively, the
subordinate matrix norm and the subordinate logarithmic norm.

(a) Show that �(A) < 0 $ AHH + HA negative definite, and that �(A) =
maxf� : det(AHH +HA� 2�H) = 0g.
Hint: Apply the results proved in Theorem 13.8.4. For the latter statement,
either use the Lagrange multiplier rule, or reduce the problem to the l2-case
for the matrix RAR�1, by the Cholesky decomposition H = RHR and the
substitution w = Ru.

(b) Show that kAk2 = maxf� : det(AHHA� �H) = 0g.
P6. Consider the predator-prey problem.y01 = ay1 � by1y2; y02 = y1y2 � dy2; (a; b; ; d � 0):

(a) Show that an orbit that starts in the first quadrant will remain there.

(b) Show that the origin is a saddle point, and that p = (d=; a=b) is a stable
center for the linear approximation (around p), and determine the period of
the solutions of the linear approximation.

(c) If you divide the two differential equations, you obtain a single equation,dy2=dy1 = : : :. Show that its general solution is F (y) = const:, where F (y) =a ln y2 � by2 � y1 + d ln y1. Show that F (p) � F (y) is a Lyapunov function.
For what values of k does the equation F (y) = k represent closed orbits in the
first quadrant? of the problem? How can you be sure that they are closed?

P7. Vacant

P8. Consider the matrix differential equation,U̇ = J(t)U; U(0) = I:
Note that U(t+ �) =

�I + �J(t)�U(t) + o(�), and that 47kI + �Jk = 1 + ��(J) + o(�); dkU(t)k=dt � �(J(t))kU(t)k:
Similarly, show that det(I + �J) = 1 + � trace (J) + o(�), and thatd(detU(t))=dt = traceJ(t) det U(t):
Note that if ẏ = f(t; y), J(t) = f 0y(t; y(t)), then traceJ(t) =

P �fi=�yi =
div f at y = y(t).

47I + �J is called an infinitesimal perturbation of the unit matrix in the direction of the matrixJ .
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Show that these results hold for the matrix differential equation U̇ = UJ(t)
too. Hint: See Sec. 13.1, problem P10.

P9. There are many variations of Theorem ??. The following can be useful in the
study of certain types of stiff problems, when g(t) is positive and sufficiently
smooth, and ����the local time-scale of g(t)�� �1. Assume that dkuk=dt ���(kuk � g(t)), (�� < 0; t � a).

(a) Show thatku(t)k �  k(t) + maxa�x�t g(k)(x)(��)�k + Ce��(t�a);
where C = ku(0)�  k+1(a)k;  0(t) = 0;  k(t) =

k�1Xp=0

g(p)(t)(��)�p:
(cf. (13.8.8).)

Hint: Show this first for k = 0. Then derive a similar differential inequality
for ku(t)k �  k(t), where g(t) is replaced by something else.

(b) Since  k(t) is independent of a, it seems strange that the maximization
mentioned in the result should be over the whole interval [a; t]. Try to im-
prove this. Also show that the first neglected term is a good error estimate ifjg(k)(t)=g(k+1)(t)j � j1=�j.
* There are some question marks to P8 in the Ch. 9,12–14 book.

P10. Derive a bound for the difference between a solution y(t) of the differential
system, �ẏ = f(t; y); (0 < �� 1); (13.8.31)

and the solution z(t) of the reduced problem, f(t; z) = 0, in terms of � and
upper bounds for k�f=�tk and �(�f=�y) in some suitably defined domain.
The latter is called �� and is assumed to be negative. Show that this difference
is O(�) for t > (�=j��j) ln(1=�), i.e. ”after a fast transient” or ”outside a thin
boundary layer”.

Hint: By the chain rule, �f=�z ż(t)+�f=�t = 0. Rewrite the reduced problem
as a differential system:�ż(t) = f(t; z) + �ż(t); (0 < �� 1).

Problems and Computer Exercises

C1. Treat Problem 13.1.8 (A population with crowding and toxins) with Runge’s
2nd order method. Start with y1(0) � tol, y2(0) = 0.

Run the following cases long enough to show the limits as t!1:a = b = 0:5; a = b = 0:1; a = 0:5; b = 0; a = 0:1; b = 0.
Plot y1 versus t on the same sheet for all the four cases.
Plot y2 versus y1 in the first two cases.
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C2. Treat Problem 13.1.2 with Runge’s 2nd order method. You are likely to en-
counter some trouble with values of y > 1, due to the inevitable computational
errors. How can you rewrite the problem in order to avoid this trouble (with-
out using the known exact solution)?

C3. Test experimentally the result of Problem 3 above, for some representative
choices of � and �.

C4. Solve by computer the equation ẏ = t2 � y2, y(0) = 1. Choose the tolerance
so that you can rely on 4 decimal places. Plot the difference between y(t) and
the approximations mentioned above in Problem 4.

C5. Solve by computer the ”rectifier problem”, (13.8.14). In particular, determine
the minimum value of y(t). Choose tol and various values of �, so that you
can test the hypothesis that min y(t) � Cp�. If it seems true, estimate C to
about 1% relative accuracy. (Extrapolate appropriately to � = 0.)

Hint: Remember that the right hand side is zero at the minimum point.
Also prove theoretically that y(t) > 0; 8t > 0:1.

C6. The Brusselator problem is a chemical system with a limit cycle. A sim-
ple version, see Hairer, Wanner and Nörsett [20, p. 112]: is described by the
system, y01 = a+ y2

1y2 � (b+ 1)y1; y02 = by1 � y2
1y2:

Choose a = 1; b = 3, and show that the critical point is unstable for this
choice. Compute one orbit with the origin as starting point, and another orbit
that starts near the critical point. You will find that both orbits approach the
same limit cycle. Estimate its period to about 1% relative accuracy.

C7. Lorenz’s example of a chaotic motion. See Fig. 13.7.5b. The following equa-
tions occurred in Theoretical Meteorology, see Hairer et al. [20, p. 117]:y01 = ��y1 + �y2; y02 = �y1y3 + ry1 � y2; y03 = y1y2 � by3;
with initial conditions: y1(0) = �8, y2(0) = 8, y3(0) = r � 1.
Take e.g. b = 8=3, � = 10, r = 28, and run the problem over the interval
0 � t � 30, with tol = 0:001 and 0:002. Plot y1 versus t. You are likely to
find big differences in the results.
Plot also the projections of the orbit into the coordinate planes, and try to
obtain an idea of the behavior of the orbit in R3.
Finally plot the intersection of the orbit with the plane y3 = r� 1, a so-called
Poincaré section, a useful picture for the theoretical analysis of a non-linear
system.

C8. The equation of an undamped pendulum �̈+ 1� sin�� = 0 can be rewritten as
a system, ẏ1 = 1�y2, ẏ2 = � sin(�y1). The upper part of Fig. 13.8.7 is a phase
plane plot with 14 orbits for this system.
Similarly, the equation of a damped pendulum �̈ + 1� �̇ + 1� sin� = 0 can be
written in the form, ẏ1 = 1�y2, ẏ2 = � 1�y2 � sin(�y1). The lower part of the
same figure is a phase plane plot with initial values, y1(0) = 0, y2(0) = 2

pa
for 15 values of a: a = 1 : 1 : 10 and 12 : 2 : 20.
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Figure 13.8.7. Phase plane plots in the y1 y2-plane for the undamped
pendulum (upper picture) and the damped pendulum (lower picture) of Problem 8.

(a) Run the undamped case with y1(0) = 0, y2(0) = �0:05; 0:95; 1:95. Deter-
mine the periods to about 1% accuracy, and compare with the results of “the
theory of small oscillations”. Explain theoretically and in physical terms the
change of the character of the orbits that occurs at y2(0) = 2.

(b) For the damped pendulum, determine by numerical experiment (to about
1% relative accuracy) the initial speeds needed at the bottom point in order
that the pendulum should be able to do 1, 2, 3, 4, 5 complete revolutions, be-
fore it starts to oscillate back and forth around the bottom point.

Hint: Run the system backwards in time from one (or more) appropriate
starting point(s). Repeat the run with other tolerances and slightly different
starting points in order to estimate the accuracy.

C9. The Oregonator...

C10. (a) Run the systemy01 = (1 + ay1)(y2 � y1); y02 = 1
2y1 � y2; y03 = y2;

with initial values y1(0) = 0; y2(0) = 1; y3(0) = 0, for a few values of the
parameter a. Choose the tolerance and the final value of t, so that limt!1 y3(t)
can be determined to three correct decimals. The result will probably surprise
you.
Make a conjecture about lim y3(t), and try to prove it. Try also to generalize
the result to a more general system of ODEs.
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(b) The following example may give a hint to the proof of the conjecture.
The differential equation ẏ = �eyy is separable, but the expression for the
exact solution is rather difficult to handle. Show instead by a rather simple
manipulation of the differential equation that

R1
0
y(t)dt = 1� e�y(0).

13.9 More about Logarithmic Norms, Difference
Equations and Stability Criteria.

* An introduction is needed. Ref. to Sec. 3.1.

13.9.1 Difference Equations and Matrix Power Boundedness

Inledning! Gallra bort en del nedan
* The next lines should be changed with ref. to the end of Sec. 13.1.
A simple and useful upper bound of �2(A) is obtained by the combination of

(13.8.4) with Theorem 13.1.25, statement B:�2(A) = max<�(B) � �1(B); (13.9.1)

where B is the Hermitean part of A.
For some classes of matrices, an efficient (or almost efficient) norm can be

found more easily than by the construction used in the proof of Theorem 10.2.9.
This may have other advantages as well, e.g. a better conditioned T . Consider
a weighted max-norm kxkw = maxi jxji=wi = kT�1xk1, where T = diag (wi).
Then �w(A) = �1(T�1AT ) = maxi <aii +

Xj; j 6=i jaij jwj=wi: (13.9.2)

Note that �(T ) = maxwi=minwi.
Set Ã = [ãij ], where ãii = <aii, ãij = jaij j for i 6= j. Note that �(A) = �(Ã),

when �(�) is subordinate to k � kw, i.e., a weighted max-norm or a weighted l1-
norm. Also note that the inequality �w(A) � � is equivalent to the inequalitiesÃw � �w; w > 0.

If A is irreducible, a modified form, see Problem 14, of the Perron–Frobenius
Theorem (Theorem 10.2.12) tells us that there exists a positive eigenvector w, such
that Ãw = �(Ã)w, hence the logarithmic norm �w(�) is efficient for the matrix Ã.
It is in general not efficient for A itself, since �(A) may be less than �(Ã), but still
it can be useful also for A.

The latter result can be extended to some reducible matrices. e.g. to any
upper triangular n�n matrix A, such that <aii < <ann = �(A) for all i < n. Then
a positive vector w such that Ãw � �(A)w can be found by solving the inequalities<(ann � aii)wi � Pj; j>i jaij jwj , for i = n � 1; n � 2; : : : ; 1. As in the analogous
case discussed in Sec. 10.2.4 one may obtain a smaller value of �(T ) by choosing wi
larger than necessary, for some i. (For example: the usual max-norm is efficient, ifA is very strongly diagonally dominant and<aii < <ann.) 48

48Interesting applications are to matrices where the elements are norms or logarithmic norms of
submatrices of some matrix. See, e.g., (13.8.22).
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In the application of these results to yield improved bounds for the solution
of ODEs there is one more complication: if the Jacobian varies with time then the
matrix T is also likely to do so. It is sufficient to study a pseudo-linear system, since
a general non-linear system can be reduced to this case, as in Theorem 13.1.23.

Theorem 13.9.1.
Consider the pseudo-linear systemdudt = J(t; u)u+ r(t; u):

Let T (t) be a smooth non-singular matrix-valued function. In addition to a given
norm k � k, we consider a time-dependent vector norm kykT = kT�1yk. Assume
that, for every t 2 [a; b], there exists a real-valued function ��(t), and a convex
domain Dt � Rs, such that�T (J(t; w)) + �(�T�1T 0(t)) + �(T�1T 0(t)) � ��(t); �(T (t))kr(t; w)k � �(t);8w 2 Dt. Then ku(t)k �  (t), where  (t) is a solution of the scalar differential
equation, d dt = ��(t) + �(t);  (a) � ku(a)k;
as long as the bounds obtained from this 49 guarantee that u(t) 2 Dt. (See e.g. (??),
if �� and � are constant.)

Proof. Set u = Tz. Then T ż + T 0z = JTz + r, i.e.,ż = (T�1JT � T�1T 0)z + T�1r:
Hence, kz(t)k � �(t), where� 0 = (�T (J) + �(�T�1T 0))� + kT�1rk; �(a) � kz(a)k:
Now set � = kTk�. Note that kuk = kTzk � kTkkzk � kTk� = �. Also note thatkTk0 � �(T�1T 0)kTk, since dT=dt = T (T�1T 0). Then�0 = kTk0� + kTk� 0 � �(T�1T 0)kTk� + (�T (J) + �(�T�1T 0))kTk� + �(T )krk;
i.e., �0 � (�(T�1T 0) + �T (J) + �(�T�1T 0))� + �(t) � ��(t)� + �(t):
Hence ku(t)k � �(t) �  (t), where  (t) is defined above. The argument is valid as
long as ku(t)k 2 Dt.

49See Theorem 3.1.10.



180 Chapter 13. Ordinary Differential Equations

Example 13.9.2
The application of this theorem is particularly simple, when T (t) is a diagonal

matrix. Consider the differential systemu̇ = J(t)u; where J(t) =

�� 1
2 t�1 2t�3� 1

2 t � 1
2 t�1

� :
Set T = diag(1; q), where q = 1

2 t2. After straightforward computation,T�1JT = t�1

�� 1
2 1�1 � 1

2

� ; T�1T 0 = t�1diag(0; 2):
Set kykT = kT�1yk2. Then �T (J) = mu2(T�1JT = 1

2 t�1, �T (T�1T 0) = t�1 max(0; 2) =
2t�1, �T (�T�1T 0) = t�1 max(0;�2) = 0, hence��(t) = t�1(� 1

2 + 2 + 0) =
3

2
t�1:

The differential equation  ̇ = 3
2 t�1 has the solution  (t) = t3=2. The theorem

thus gives a warning that ku(t)k may be unbounded, in spite that the eigenvalues
of of T�1JT , and hence also of J , are t�1(� 1

2 � i).
This warning is correct, although the growth is overestimated. Actually, it is

easily verified that the exact solution reads,u(t) = 1

� t�3=2� 1
2 t1=2

�
+ 2

�
2t�3=2 ln t�t1=2(1� ln t)� :

This expression also shows that the solution of a linear differential system with
variable coefficients may not exhibit oscillatory behavior, even though it has complex
conjugate eigenvalues.

Recall that we, in problem P10 of Section 3.1, saw a system that had the
opposite type of behavior; the solutions were bounded, even though the logarithmic
norm was positive for every t > 0. (The logarithmic norm converged fast enough
to zero, as t!1.) �

Notice the similarities and the differences of this theorem and Theorem 13.2.1
(where, in a way, S(t) corresponds to T (t)). One difference is the presence of the
term �(T�1T 0) in the condition for ��. This is due to the fact that the norm k � kT
is here only an internally used aid for the derivation of a sharp bound that is to be
expressed in terms of the original (external) norm k�k. In Theorem 13.2.1, however,
the matrix S performs a transformation to a norm that is used also in the result.
The other characteristic feature of Theorem 13.2.1, namely the transformation of the
independent variable (”age” instead of ”time”), can be used as a preprocessing also
to an application of Theorem 13.9.1 or Theorem 13.1.23, whenever it is appropriate.

Recursion formulas of the typeyn+k = f(yn; yn+1; : : : ; yn+k�1; n); (13.9.3)
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play a large part in the numerical solution of differential equations. Its solution is
uniquely determined when k initial values y0; : : : ; yk�1 are given, and these can be
chosen arbitrarily—at least if the function f is defined in the whole space. Such
recursions can also be written in the form of a kth order difference equation

∆kyn = g(yn;∆yn; : : : ;∆k�1yn; n): (13.9.4)

The properties of such equations were discussed in Sec. 3.2.3.
We next consider nonhomogeneous linear systems of first-order differ-

ence equations, written in vector-matrix form:yn+1 = Anyn + xn;
where yn; xn 2 Rs and An 2 Rs�s. If the initial value y0 is given, then by induction
we obtain yn = Pn;0y0 +

nXj=1

Pn;jxj�1; (13.9.5)Pn;j = An�1An�2 : : : Aj ; Pn;n = I: (13.9.6)

This is a discrete analog of (13.1.20), (which may make the formula for the contin-
uous case more intelligible).

If the matrices Ai are non-singular then we may write Pn;j = PnP�1j . In
particular, if all Ai are equal to A, thenyn = Any0 +

nXj=1

An�jxj�1; (13.9.7)

This formula holds, of course, also in the scalar case.
The following analog to Theorem ?? is easily proved by induction.

Theorem 13.9.3.
The solutions of a ”pseudo-linear” system of difference equations,un+1 = A(n; un)un + r(n; un);

satisfy the inequality, kun+1k � kA(n; un)k � kunk+ kr(n; un)k: Let Dn be a convex
domain in Rs, and assume thatkA(n;w)k � an; kr(n;w)k � bn; 8w 2 Dn:
Then, kunk �  n, where  n is a solution of a scalar difference equation,  n+1 =an n + bn;  0 = ku0k, as long as the bound derived from this guarantees thatun 2 Dn.

** Change to a reference to Lemma 13.2.1.
If an = a; bn = b, independently of n, thenkunk �  n =

(anku0k+
b(1� an)

1� a ; if a 6= 1;ku0k+ bn; if a = 1.
(13.9.8)
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If a < 1, kunk � maxfku0k; b=(1� a)g, n � 0.

Proof. The proof is left for Problem 3.

The natural relation is via a step size parameter h, such that nh = t; a =e��h. In particular, a = 1 corresponds to �� = 0.

Example 13.9.4
In the analysis of numerical methods for differential equations, see e.g., Sec. 13.4,

one sometimes encounters a vector sequence that satisfies a difference equation of
the form, yn+1 = (A+ hBn)yn + rn; n = 0; 1; 2; : : : ;
where h is a step length. We want to estimate kynk.

Assume that, for some lp-norm, kBnk � K, krnk � hp+1, 8n, and that A
is a constant matrix with spectral radius equal to 1, such that the eigenvalues of
unit modulus are non-defective. Then, by Theorem 10.2.9, there exists a normkykT = kT�1yk, such that kAkT = 1, for the subordinate matrix norm. ThenkBnkT � K1, where K1 = �(T )K; �(T ) = kTk � kT�1k;
and �(T ) is the condition number. It follows thatkyn+1kT � (1 +K1h)kynkT + hp+1kT�1k:
This is the situation treated by Theorem 13.9.3, with an = a = 1 + K1h; bn =b = hp+1kT�1k. By (13.9.8),kynkT � (1 +K1h)nky0kT +

(1 + K1h)n � 1K1h hp+1kT�1k
Since kyk � kTk � kykT ; kykT � kT�1k � kyk, we can return to the original norm:kynk � kTk�(1 +K1h)nky0k � kT�1k+

(1 +K1h)n � 1K1
hpkT�1k�

Finally, we use the definition of condition number and the following relations,

1 +K1h � eK1h; nh = t; eK1t � 1 � K1teK1t; for t � 0;
in order to the obtain the result that was referred to in Section 3.4.kynk � �(T )eK1t(ky0k+ thp): (13.9.9)

If we had not used to the T -norm internally, the result is likely to have become
less sharp, in many cases even useless. Still the positive constant K1 is for many
applications a weak point of this result. A stronger bound may be obtained by the
use of a sequence of similarity transformations Tn according to the following general
theorem that is a discrete analog of Theorem 13.9.1. For the sake of simplicity it is
formulated for a linear system, but the generalization to a pseudo-linear system is
straight-forward (see Theorems 13.9.1 and 13.9.3). Recall that kAkT = kT�1ATk.
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Theorem 13.9.5.
Consider the linear system yn+1 = Anyn + rn. Let Tn be a sequence of non-

singular matrices. Then kynk �  n, where  n is defined by the difference equation n+1 = �(T�1n+1Tn)kAnkTn n + �(Tn+1)krnk;  0 = �(T0)ky0k:
If �(T�1n+1Tn)kAnkTn � a, and �(Tn+1)krnk � b, then the bounds given in (13.9.8)
are valid, and the behavior of  n is illustrated by Fig. 13.1.3.

Proof. The proof is left for Problem P3.

The question whether a matrix sequence fAng10 is bounded or not is often of
interest, e.g. in the application of (13.9.7). We also saw in the previous example
that it is interesting to know whether there is a norm such that kAk � 1. The
following theorem, that is a discrete analog of Theorem ??, shows, among other
things, that these two questions are equivalent.

Theorem 13.9.6 (Power Boundedness of a Single Matrix).
Let A be a given square matrix with spectral radius �(A). The following state-

ments are equivalent:

(i) The sequence fAng10 is bounded.

(ii) All eigenvalues of A are located inside or on the unit circle, and there are no
defective eigenvalues on the unit circle.

(iii) There exists an operator norm such that kAk � 1.

Proof. We shall establish the equivalence by showing that (i) implies (ii), (ii)
implies (iii), and (iii) implies (i). In order to show that (i) implies (ii), we first
consider a Jordan box Jm(�) = �I +N , where Nm = 0.kJm(�)nk1 =

min(n;m�1)Xp=0

�np�Np�n�p =

min(n;m�1)Xp=0

�np�j�jn�p � nm�1j�jn:
It follows that kAnk can be bounded only if, for every eigenvalue �, j�j � 1, andm = 1 if j�j = 1. This is, in other words, condition (ii).

Next, (ii) implies (iii), by Theorem 10.2.9. Finally, (iii) implies (i), sincekAnk � kAkn � 1.

Difference equations of order k can be written as a system of first-order differ-
ence equations. After the substitution zn := (yn; yn+1; : : : ; yn+k�1)T , the difference
equation yn+k+a1yn+k�1 + : : :+akyn = 0 can be written in the vector-matrix formzn+1 = Azn; A =

0BBBB� 0 1 0 � � � 0
0 0 1 � � � 0
...

...
...

...
0 0 0 � � � 1�ak �ak�1 �ak�2 � � � �a1

1CCCCA ; (13.9.10)
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where the matrix A is a companion matrix. In the literature such matrices
appear in different forms, depending, e.g., on the naming of the coordinates of zn
or the coefficients of the difference equation, see, e.g., Problem 10.1.7 With our
convention, the difference equation and the matrix A have the same characteristic
equation, i.e. the roots of the characteristic equation of the difference equation
are the eigenvalues of its companion matrix. The eigenvector belonging to the
eigenvalue � reads (1; �; �2; : : : ; �k�1)T . It is unique, hence any multiple eigenvalue
of a companion matrix A is defective. The verification of these statements is left
for Problem 1.

Theorem 13.9.7.
The following root conditions are necessary and sufficient, for the bounded-

ness of all solutions of the difference equationyn+k + a1yn+k�1 + : : :+ akyn = 0;
or equivalently the power boundedness of the companion matrix (13.9.10), as n!1:

(i) All roots of the characteristic equation should be located inside or on the
unit circle;

(ii) The roots on the unit circle should be simple.

Proof. This follows from Theorem 13.9.6, since any multiple eigenvalue of a com-
panion matrix is defective.

In many areas, notably in the analysis of finite difference methods for partial
differential equations, it is important to know, if there is a constant C, such thatkAnk � C hold for an infinite family of matrices. It turns out that statement (ii)
of Theorem 13.9.6 is not sufficient, and statement (iii) must also be modified, as
shown by the following example and theorem.

Example 13.9.8

A matrix family is defined by A(Æ) =

�
1� Æ Æ1=2

0 1� Æ�, 0 � Æ � 1, where using

(10.2.14) A(Æ)n =

�
(1� Æ)n n(1� Æ)n�1Æ1=2

0 (1� Æ)n � :
For each Æ statement (ii) of Theorem 13.9.6 is satisfied, but that tells only thatkA(Æ)nk � C(Æ). We see, ketBk � C; 8B 2 F ; 8t � 0:
however, that

maxÆ kA(Æ)nk1 � kA(1=n)nk1 � (1 +
pn)(1� 1=n)n � n1=2e�1 !1; n!1:
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(Since all norms in a finite-dimensional space are equivalent the same final con-
clusion holds in nay norm.) This is not due to the fact that 1 � Æ is a defective
eigenvalue of A(Æ), for if we replace one of the diagonal elements of A(Æ) by (1� 1

2Æ),
then no member of the matrix family has a defective eigenvalue, but kA(Æ)nk would
become even larger. (Note that A(0) = I .)

The following important theorem gives necessary and sufficient conditions for
the power boundedness for a family of matrices, cf. Theorem 13.9.6.

Theorem 13.9.9 (The Kreiss Matrix Theorem: Discrete Case).
Consider a matrix family F � Rs�s for a fixed s. The following four state-

ments are equivalent.

(a) There exists a constant C such that for all A 2 F and all n = 1; 2; 3; : : :,kAnk � C:
(Note that the bound C must be the same for all A 2 F .)

(b) There exists a constant C1 such that for all A 2 F and all z 2 C with jzj > 1,
the resolvent (A� zI)�1 exists andk(A� zI)�1k � C1jzj � 1

; resolvent condition:
(c) There exist constants C2; C3, and to each A 2 F , a matrix S such that the

condition number �(S) � C2 and B = S�1AS is upper triangular withjbij j � C3 min(1� jbiij; 1� jbjj j); for i 6= j:
(d) There exists a constant C5 and, for each A 2 F a matrix T , such thatkAkT � 1; �(T ) � C5:

Proof. Sketch. The general plan is to show that (a) )(b) )(c) )(d) )(a). We

first note that for each A 2 F the eigenvalues are located in the closed unit disc,
hence for jzj > 1, A� zI is invertible andk(A� zI)�1k = k 1Xn=0

Anz�n�1k � C 1Xn=0

jzj�n�1 =
Cjzj � 1

:
Hence (a) ) (b). The proof that (b) )(c) is the most difficult part, and we refer to
Richtmyer and Morton [29]. The proof that (c) )(d) is a more complicated variant
of the proof of Theorem 10.2.9, and again we refer to Richtmyer and Morton [29]
for details. Note the important assumption about �(T ). (This is automatically
satisfied in the single matrix case.) Finally, (d) )(a), sincekAnk � �(T )kAnkT � C5kAknT = C5:
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In recent applications of this theorem to the study of difference methods to
partial differential equations, the resolvent condition (b) is the easiest one to verify.
It is therefore interesting that LeVeque and Trefethen has found a direct proof that
(b))(a), with C = 2esC1 based on the representation of An by a Cauchy integral.
(Note that the resolvent appears in this integral.) Their proof is reproduced in
Hairer and Wanner [21, p. 349].

There is a continuous version of this theorem that can be heuristically derived
from the above discrete version as follows. (Historically, the continuous version was
found first.) Set A = ehB, nh = t. Then An = etB , kAk � eh�(B), and the outside
of the unit disk in the discrete case corresponds to the positive half-plane, <z > 0
in the continuous case.

Theorem 13.9.10 (The Matrix Theorem: Continuous Case).
Consider a matrix family F � Rs�s for a fixed s. The following four state-

ments are equivalent.

(a) There exists a constant C such thatketBk � C; 8B 2 F ; 8t � 0:
(b) There exists a constant C1 such that for all B 2 F and all z 2 C with <z > 0,

the resolvent (B � zI)�1 exists andk(B � zI)�1k � C1<z ; resolvent condition:
(c) There exist constants C2; C3, and to each B 2 F , a matrix S such that the

condition number �(S) � C2 and K = S�1BS is upper triangular withjkij j+ C3 max(<kii; <kjj) � 0; for i 6= j:
(d) There exists a constant C5 and, for each B 2 F a matrix T such that�T (B) � 0; �(T ) � C5:

13.9.2 More Results on Stability Theory

There are other algebraic criteria and algorithms than given in Sec. 13.2.3 for the
investigation of the root condition of a polynomial, perhaps most useful at the study
the the root condition and related matters, for algebraic equations containing pa-
rameters. They can be used either numerically (floating point operations on vectors
of polynomial coefficients) or algebraically (symbolically). There is a short discus-
sion of these two approaches to problems with two parameters, in Example 13.9.20.
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We first consider an analogous problem connected with the left half-plane
This problem has an interest in its own right for differential equations, but it means
more to us that the two problems can be transformed into each other by a Möbius
transformation,z =

� + 1� � 1
; � =

z + 1z � 1
; j�j < 1 $ <z < 0; j�j > 1 $ <z > 0; (13.9.11)

and we setR(z) =

�z � 1

2

�k��z + 1z � 1

�;) �(�) = (� � 1)kR�� + 1� � 1

�; (13.9.12)

and similarly for �(�); S(z). The polynomials R and S have no common factors (like� and �). In the theory of multistep methods these formulas are called the Greco-
Roman transformation. It can be seen as a linear coordinate transformation in
the linear space of multistep methods (�; �) that provides many simplifications, see
Problem 18 and Sec. 13.4.

We need some notions and notations. C+ = fq : <q > 0g. C̄+ is the closure
of C+. It includes also the imaginary axis and 1. Similarly, C� = fq : <q < 0g.
The degree p of a polynomial is denoted deg p.
Definition 13.9.11.

A k-th degree polynomial p, with zeros �j , j = 1; 2; : : : ; k is called a Hurwitz
polynomial, if �j 2 C�, 8j. The closure of the set of Hurwitz polynomials are the
polynomials for which �j 2 C̄�, 8j. 50

The following simple necessary condition is often helpful for the proof that a
given polynomial is not a Hurwitz polynomial.

Theorem 13.9.12.
A necessary condition for a real polynomial to be a Hurwitz polynomial is that

all coefficients are different from zero and have the same sign. This condition is
sufficient for linear and quadratic polynomials only. For the closure of Hurwitz
polynomials, a coefficient is also allowed to be zero.

Proof. In the factorization Q(z � �j), a root �j is either negative, or it occurs
together with its complex conjugate in a factor of the form (z��)(z��̄) = z2+az+b
where a > 0, b > 0. The expansion of the product will therefore have positive
coefficients only. The statement about sufficiency will appear as a consequence of the
necessary and sufficient conditions presented in Theorem 13.9.13 or, more explicitly,
in Problem 9 (a). The last statement follows from continuity considerations.

A rational function f is called a positive function, if <z > 0 ! <f(z) > 0.
In other words: it maps C+ into itself. A useful property follows directly: The

50Note hat the closure of Hurwitz polynomials also includes polynomials with multiple zeros on
the imaginary axis. These do not satisfy the analog of the root condition.
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function f Æ g, defined by the equation f Æ g(z) = f(g(z)), is positive if f and g
are so. Notice that 1=z is a positive function, since < 1=z = <z̄=jzj2 = <z=jzj2.
Hence if the function f is positive then 1=f is also positive. In particular, the
rational function S=R is positive if R=S is positive.

When the attribute real is added to terms like polynomial, rational function,
positive function etc., it means that it is real on the real axis. In other words, it
has real coefficients, when expanded about a point in R.

Since �(�)=�(�) = R(z)=S(z), it follows from Theorem 13.2.19 that the func-
tion q = R(z)=S(z) maps C+ onto the interior of the complement of S. In particu-
lar, a linear multistep method is A-stable, iff R(z)=S(z) is positive real. This leads
to a connection between Hurwitz polynomials and positive functions.

If R=S is a positive rational function, then the polynomial R � qS is a Hur-
witz polynomial for any constant q 2 C�. An even more important connection is
expressed by the following theorem.

Theorem 13.9.13.
Let p0(z) = 0zk+2zk�2 +4zk�4 � � � ; p1(z) = 1zk�1 +3zk�3 +5zk�5 � � � ;

be two real polynomials. Set p(z) = p0(z) + p1(z), and assume that p0 and p1 have
no common divisor. Then p is a Hurwitz polynomial, if and only ifp0=p1 is a positive function: (13.9.13)

Proof. We first note, that the statement in (13.9.13) is, by the second and fourth
statements of (13.9.11), equivalent to the condition jp0(z)=p1(z)+1j=jp0(z)=p1(z)�
1j > 1, i.e. jp0(z) + p1(z)j=jp0(z)� p1(z)j > 1;, i.e.jp(z)j > jp(�z)j;8z 2 C+: (13.9.14)

This strict inequality immediately shows that p(z) 6= 0 for z 2 C+. Moreover, whenz is pure imaginary, the real part is equal to either p0(z) or p1(z) (depending on
the parity of k) and the other is the imaginary part. Anyway, a pure imaginary
zero of p(z) would be a common zero of p0(z) and p1(z), and this contradicts the
assumption. Hence the ”if” part is proved.

The converse is more interesting. Assume that p(z) is a Hurwitz polynomial.
A root �j is either negative, or it occurs together with its conjugate, both in C�. We
have p(z) = 0

Q
(z � �j) and shall establish relation (13.9.14). Then jp(z)=p(�z)j

is a product of factors either of the form,jz � �j=j � z � �j = jz � �j=jz + �j > 1; 8z 2 C+;
or of the form ���� (z � �)(z � �̄)

(�z � �)(�z � �̄)

���� =

����z � �z + �̄ ���� ����z � �̄z + � ���� > 1; 8z 2 C+:
(Draw a picture with five points: z 2 C+; � 2 C�; �̄; ��; ��̄:) This proves
(13.9.14) and hence the ’only if’ part.
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The division algorithm, described at the end of Sec. 3.4.1 (Continued frac-
tions), applied to the polynomials p0(z), p1(z) defined above, yields a sequence of
alternatingly odd or even polynomials,pm(z)pm+1(z)

= dmz +
pm+2(z)pm+1(z)

; m = 0; 1; 2; : : : ; n� 1; deg pm+1 = deg pm � 1:
Since the algorithm is, in fact, identical to the Euclid algorithm for finding common
divisors of the polynomials p0 and p1, it will, if the assumption of the theorem
is satisfied, terminate when pm+1 has become a non-zero constant. If 0 > 0, a
repeated use of Theorem 13.9.14 (below) tells that p0=p1 is a positive function,
hence p = p0 + p1 is a Hurwitz polynomial, if and only if dm > 0 for all m, the
Routh criterion. This algorithm, the Routh algorithm, is easily programmed,
with vectors for the polynomial coefficients, see Problem 17. If dm = 0, within a
tolerance, then pm is the greatest common divisor of p0 p1. This should be examined
further. It contains the zeros of p on the imaginary axis, (these are common zeros
of p0 and p1), but it may also contain real zeros, symmetrically located with respect
to the imaginary axis.

use of positive scaling factors
The Routh criterion was developed by Routh in 1877, with a completely dif-

ferent derivation. An extension to polynomials with complex coefficients was made
in 1946 by E. Frank. See Problem 16 for a different approach, due to Hurwitz 1895.

Theorem 13.9.14.
Let f(z) = az + g(z), where g(z) is regular in C+ and bounded at 1. Thenf(z) is a real positive function, if and only if a > 0, and g(z) is either a positive

function or identically zero.

Proof. The ”if” part is obvious; we shall prove the deeper ”only if” part. First
note that, since g(z) is bounded, arg f(z) = arg a + arg z + o(1), as z ! 1. We
then note that <w > 0 $ j argwj < �=2. It follows that j arg f(z)j < �=2; for allz, such that j arg zj < �=2, if and only if arga = 0, i.e., iff a > 0. It then follows
that lim infz!iy <g(z) = lim infz!iy <f(z) � 0 � 0 for z 2 C+ and for all real y,
(including y = �1). Then, by the minimum principle for harmonic functions; see
Dinghas [13, p. 303], <g(z) > 0 in C+, unless g(z) = 0 everywhere.

Theorem 13.9.15.
A rational function f = u=v can be a positive function only if jdeg u�deg vj �

1. If jdeg u� deg vj = 1, the leading coefficients of u and v have a positive ratio.

Proof. Suppose that f(z) � az�; z ! 1. Analogously to the previous proof we
have arg f(z) = arg a+� arg z. If j�j > 1 the right hand side covers an open sector
of width greater than � and a positive function cannot do this. The rest is proved
like the beginning of the previous proof.



190 Chapter 13. Ordinary Differential Equations

Results of a similar type can be obtained by a substitution like z := 1=z or by
applying the ideas of the proof. (See Problems.)

The Routh algorithm provided a clear criterion for the positiveness of an odd
rational function. For more general rational functions the following result has for
a long time been well known in circuit theory, where positive functions play an
important role in the study of passive circuits.

Theorem 13.9.16.
A rational function R(z)=S(z), where R; S have no common divisor, and

where the leading terms of R and S are different from zero, is a positive function,
iff

(i) <�R(iy)=S(iy)
� � 0, for all real y, such that S(iy) 6= 0;

(ii) R+ S is a Hurwitz polynomial.

Proof. Think of a boundary locus construction q = R(z)=S(z) with z traversing the
imaginary axis from �i1 to i1 (instead of � traversing the unit circle). Condition
(i) tells that C� is to the left of the boundary locus, and hence the number of
unstable roots of the equation R(z) � qS(z) = 0 is the same for all q 2 C�.
Condition (ii) tells that this number is 0, by a test at the point q = �1.

For a real rational function Condition (i) can also written <R(iy)S(�iy) � 0.
We can also formulate this P (y2) � <R(iy)S(�iy) � 0; (13.9.15)

where P is a polynomial of kth degree at most. It often simplifies the matters to
use also the necessary condition that both R and S belong to the closure of Hurwitz
polynomial, (although it should be possible to derive these from the others).

Example 13.9.17
Consider the real function f(z) = R(z)=S(z), whereR(z) = az + b; S(z) = z + d; jj+ jdj > 0; ad� b 6= 0:R and S are in the closure of Hurwitz polynomials, hence all non-zero coefficients

have the same sign, and the other conditions imply that there is at least one non-
zero coefficient in both the denominator and the numerator. Condition (13.9.15)
becomes P (y2) = <(aiy+b)(�iy+d) = ay2+bd, and this adds no new constraints,
nor does Condition (ii).

A necessary and sufficient condition for the positiveness of a function (az +b)=(z+d), that is not identically a constant or 0=0, is that the non-zero coefficients
have the same sign.

Next we shall find the positivity condition for the real function,R(z)S(z)
� z + a0b2z2 + b1z + b0

; b2 6= 0;
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where r; s have no common divisor. All non-zero coefficients must have the same
sign. Since a1 = 1, they must be non-negative and b2 > 0. Condition (i) then tells
that either b0 > 0 or a0 > 0 The function R=S is positive at the same time as S=R.
We consider S=R in order to apply Theorem 13.9.14. We haveS(z)=R(z) = b2 + (b1 � b2a0)z + b0)=(z + a0):
By Theorem 13.9.14, and the first part of this example, we obtain the following
necessary and sufficient conditions:b2 > 0; b0 + a0 > 0; b1 � b2a0 � 0;
(in addition to the condition s(�a0) 6= 0 for no common divisor.)

Finally we consider R(z)S(z)
� z2 + a1z + a0b2z2 + b1z + b0

;
with no common divisors. We have the non-negativity conditions for all coefficients,
and Condition (i) adds the strict inequalities b0 + a0 > 0; b1 + a1 > 0. Condition
(13.9.15) becomes after a short calculation, if we set y2 = t; a = a1b1�a0� b0; b =a0b0, P (t) = t2 + at+ b � 0; 8t � 0: (13.9.16)

Note that minP (t) = P (0) = b, if a � 0, or b � 1
4a2 if a < 0. Since we have

the condition b = a0b0 � 0 already, we finally have, in addition to the previous
conditions, the new condition b � a2=4 if a < 0.

For rational functions of higher degree, a classical device, named Sturm
chains, can be applied to check the validity of the inequality (13.9.15), after it
has been rephrased as proving thatP (0) � 0; p(t) � P (t) + � 6= 0; t 2 (0;1); (13.9.17)

where � is to be chosen a little larger than what is needed to compensate for the
errors of the elements of the two sequences, due to rounding.

Theorem 13.9.18. Sturm chains.
Let p be a polynomial with derivative p0. Set p0 = p, p1 = p0, and consider the

Euclid algorithm, pi�1 = qipi � pi+1; i = 1; 2; : : : ;m:
Here qi is the quotient at the division pi�1=pi, hence deg pi+1 < deg pi. The al-
gorithm terminates when pm+1 = 0; pm is the greatest common divisor of the
polynomials p; p0. The sequence of polynomials p0; p1; : : : ; pm is called a Sturm
chain.

If p(b) 6= 0, p() 6= 0, then the number of distinct roots of the equation p(t) = 0
in the open real interval (b; ) equals the difference between the number of sign
changes in the sequence p0(b); p1(b); : : : ; pm(b) and in the sequence p0(); p1(); : : : ; pm().
A multiple root is counted as one root.
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For  = 1 the leading coefficient of the polynomial pi is to be substituted forpi(). Similarly for b = �1, with appropriate choice of signs.

Comment: A zero in these sequences can be ignored at the counting of sign
changes. If, e.g., pi(b) = 0, i > 0, the recurrence relation shows that there is exactly
one sign change in the subsequence pi�1(b), pi(b), pi+1(b), both for p(b) = � andp(b) = ��, unless two consecutive numbers in the sequence are zero, but in that
case the whole sequence would be zero, and this is this is inconsistent with the
assumption.

Proof. For a complete proof, see, e.g., Gantmacher [17, Vol. 2, p. 175],

Example 13.9.19
The following is a classical application of Sturm chains for the separation of

the real roots of an algebraic equation. Given p(t) = 5t5 � 3t3 � 2t+ 1. The Sturm
chain becomes (rounded to 4 decimals):p1(t) = p0(t) = 25t4 � 9t2 � 2p2(t) = 1:2t3 + 1:6t� 1p3(t) = 42:3333t2 � 20:8333t+ 2p4(t) = �1:8339t+ 1:0279p5(t) = �3:6221:
The number of sign changes are

4 3 2 1 1
for t = �1 0 0:5 1 1 :

After counting the number of ”lost sign changes” we conclude that p(t) has 1 neg-
ative and 2 positive zeros. �
Example 13.9.20

Consider the situation which occurred in Example 13.9.17, i.e., we want to
find conditions for p(t) = t2 + at+ b to be positive for t � 0. A necessary condition
is b � 0. In an algebraic treatment, the Sturm chain becomes p(t); p1(t) = 2t +a; p2(t) = a2=4� b. At t = 0 the sign sequence is ( +; a; a2=4� b), and at t = 1,
it is (+; +; a2=4� b).

If a2=4� b < 0, there is 1 sign change at both places, for all a.

If a2=4� b > 0, there is no sign change at t = 1, and so is the case at t = 0
if a > 0, but if t = 0; a < 0, there are two sign changes.

We reach the same conclusion as in Example 13.9.17: p(t) > 0 for t � 0 iff b > 0,
and a > 0 or b > a2=4�.
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In a problem with (say) two parameters, it is not hard to work entirely with
a numerical version of the Sturm algorithm, instead of a symbolic version, if the
purpose is to obtain a plot of the the set f(a; b) : p(t; a; b) > 0 8t > 0:g. It is not
hard to find suitable stepsize control, interpolation techniques, etc., for a program
that you can be happy with yourself in an interactive environment. You can even
allow yourself to use one or two big values of t, (though not so big that you risk
overflow) instead of having a special branch in your code for handling 1. It is
less trivial to design software that works well under any conditions (good step size
control, good criteria for deciding whether a quantity of small absolute value is to
be counted as positive or not, signals for ill-conditioned cases, etc.). It seems likely
that the complexity grows more slowly with deg p with this approach, than with
symbolic computation with automatic handling of the inequality logic. (We are
still discussing a two parameter problem.) This particular example seems easy both
ways. This discussion is applicable to the other algorithms in this section.

There is also a criterion due to Schur 1916, that directly tests whether or not
all zeros of a polynomial are located inside the unit circle, without the Greco-Roman
transformation.

Theorem 13.9.21 (The Schur criterion).
Let P (�) = 0�n + 1�n�1 + : : :+ n, and set P̂ (�) = ̄n�n + ̄1�n�1 + : : :+ ̄n.

We write P 2 Sch, iff all zeros of P are strictly inside the unit circle. Let p0(�) be
a kth degree polynomial, and define recursively,pi+1(�) =

p̂i(0)pi(�) � pi(0)p̂i(�)� :
The algorithm terminates when jpi(0)j � jp̂i(0)j.

The following statements are the basis of the algorithm:

(i) (pi 2 Sch) $ �pi+1 2 Sch) ^ (jpi(0)j < jp̂i(0)j)�,
(ii) p0 2 Sch, iff pi is equal to a constant at the termination.

Proof. Sketch. If jp̂i(0)j > jpi(0)j, then deg pi+1 = deg pi � 1. The statement (i) is
proved by the Rouché theorem of complex analysis, that tells that �pi+1(�) and pi(�)
have the same number of zeros inside the unit circle, if j � pi(0)p̂i(�)j < jp̂i(0)pi(�)j
on the unit circle. Since jp̂i(�)j = jpi(�)j on the unit circle, the latter condition is
equivalent to the inequality jp̂i(0)j > jpi(0)j.

If P (�) = 0 then P̂ (1=�̄) = 0, and vice versa. If degP > 0, the modulus of the
product of the zeros of P equals jP (0)=P̂ (0)j. Hence pi cannot belong to Sch, if the
termination criterion jpi(0)j � jp̂i(0)j is satisfied, before pi has become a constant.

13.9.3 Order Stars and Comparison Theorems

To be written.



194 Chapter 13. Ordinary Differential Equations

Problems and Computer Exercises

1. From the classical Perron–Frobenius theorem (Theorem 10.2.12) we have the
following: If P is a matrix with strictly positive elements, then P has a positive
eigenvalue r, that we call the Perron value, with the following properties:

(i) r is a simple root of the characteristic equation.

(ii) r has a strictly positive eigenvector w, that we call the Perron vector.

(iii) If � is any other eigenvalue of P , then j�j < r.
The first two properties hold also for a matrix A that is irreducible and has
non-negative elements, but the inequality of Property (iii) becomes j�j � r.
(a) Find a 2� 2 irreducible matrix with non-negative elements that does not
possess Property (iii), unmodified. Also find a 2� 2 matrix with non-negative
elements that does not possess Properties (i) and (ii).

(b) Derive from these results a modified form concerned with max<� instead
of max j�j, for any irreducible matrix B, such that bij � 0, when i 6= j.
Hint: Apply the Perron–Frobenius theorems to a matrix A = I + �B with
positive elements, and let �! 0.

(c) Let A and B satisfy the respective conditions stated above. Take the
coordinates of the Perron vector of A as weights in a weighted maximum
norm. Prove that the subordinate matrix norm is efficient for the matrix A.
Then formulate and prove the analogous result for the subordinate logarithmic
norm of the matrix B.

(d) Let A = [aij ] be irreducible, and let C = [ij ] be a complex matrix, such
that jij j � aij , then �(C) � �(A), where �(�) denotes the spectral radius.
Formulate and show the analogous result for the matrix B, (where the non-
negativity is required for the off-diagonal elements only).

Hint: Use the norms discussed in (c).

(e) Find a weighted max-norm that produces an efficient logarithmic norm for
the matrix 0��3 4 6

0 �2 5
0 0 �1

1A :
Comment: This matrix is reducible, but it can be handled according to the
remarks after Theorem ??.

2. (a) Set A2m =

�
0:5 0
1:5 0:1� ; A2m+1 = AT

2m; m = 0; 1: 2; : : : :
Show that the spectral radius of A2m+1A2m is greater than unity, and that the
recurrence relation yn+1 = Anyn has solutions that are unbounded as n!1;
in spite that the spectral radius �(An) = 0:5; 8n.

(b) Set B(t) = lnAn, n � t < n+1, n = 0; 1; 2; : : :. Show that the eigenvalues
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ofB(t) are strictly less than�0:6 for all t � 0, and that nevertheless the systemẏ = B(t)y has solutions that are unbounded as t!1.

(c) B(t) is in this example discontinuous. Try to modify the example so thatB(t) obtains a continuous derivative everywhere.

(d) Let A(t) = A+ B(t), where all eigenvalues of A have negative real parts,
and

R1
0 kB(t)kdt is finite. Show that all solutions of the system ẏ = A(t)y are

bounded. Try also to relax the conditions on A and B(t).
Hint: Use the corollary of Theorem ??.

3. (a) Verify the statements made above concerning the companion matrix de-
fined by (13.9.10), its characteristic equation, eigenvalues, eigenvectors etc.

Hint: An easy way to find the characteristic equation and the eigenvector is
to solve the equation Az = �z from the top to the bottom. The last equation
gives the condition that � must satisfy!

(b) Similarly, find the inverse of the companion matrix A is by solving the
equation Ax = y from the top to the bottom. This gives you x = A�1y.

(c) Let � be a double eigenvalue of a companion matrix. Show that a prin-
cipal vector is (0; 1; 2�; : : : ; (k � 1)�k�2)T . Formulate a generalization to
eigenvalues of higher multiplicity.

(d) Prove Theorem 3.2.4 (the general solution of a single linear difference
equation with constant coefficients), by the application of the Jordan Normal
Form to the equation yn = Any0.

(e) Rewrite analogously the differential equation y(k)+a1y(k�1)+: : :+aky = 0.

(f) What bounds do you obtain for the roots of an algebraic equation by the
consideration of the maximum norm or the subordinate logarithmic norm of
its companion matrix? Consider also the l1-norm and weighted variants of
both norms, e.g. with weights wi = i, for some suitable choice of .

4. Does (13.9.9) remain valid, if the condition on rn is replaced by the more
liberal condition, krnk � hp+1(1 +K1h)n+1?

5. Let T (t) be a real orthogonal matrix for every t, with the derivative T 0(t).
Show that �2(�T�1T 0) = 0. (The application of Theorem 13.9.1 is thus as
simple and sharp as it should be in this case.)

Hint: Show that T�1T 0 is a skew-symmetric matrix.

6. (a) Show that kI � hT�1T 0(t)k � 1 + h�(�T�1T 0(t).
(b) Prove Theorems 13.9.3 and 13.9.5, by imitating the proofs of Theorem
13.1.10 and Theorem 13.9.1, respectively. You may need the inequality kTn+1kkTnk�1 �kkTn+1T�1n .

7. The Mathieu equation reads, ü + (a + b cos 2�t)u = 0; see, e.g., Coddington
and Levinson [6, pp. 218–220]. Determine experimentally, if a = 1, for what
values of b all solutions of this equation are bounded. (Or, more ambitiously,
find the “stability region” for (a; b) 2 R2.)

Hint: Rewrite the equation as a system, and start at t = 0. Note that its
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fundamental matrix U(t) satisfies the conditions,U(t) = U(t� 1)U(1) = : : : = U(t�)U(1)n;
where t = n + t�, 0 � t� < 1. The spectrum of U(1) is therefore the crucial
thing. Note that detU(t) = 1, according to Problem 22. So, the question is
reduced to finding out experimentally for what values of b, a certain condition
is satisfied by U(1). What condition?

8. Vacant. Check in Sec.4.6. or 3.2.

9. (a) Show that all solutions of the difference equationyn+1 � 2�yn + yn�1 = 0

are bounded, as n!1, if �1 < � < 1, while for any other � in the complex
plane there exists at least one solution which is unbounded.

(b) Let A be a diagonalizable matrix. Give, in terms of the eigenvalues ofA, a necessary and sufficient condition for the boundedness as n ! 1 of all
solutions of the difference equationyn+1 � 2Ayn + yn�1 = 0

10. (a), (b) (c) See Problems 9 and 10 of Sec. 8.5 in the old Dahlquist-Björck
(unfinished).

11. Difference equation for power series coefficients of a rational function, and the
partial fraction decomposition. Relate to Padé, epsilon and Shanks.(unfinished)

12. (a) Assume that the matrices An are non-singular, and that all solutions of
the linear system un+1 = Anun satisfy the inequalitykunk � k0kujk; 8j; 0 � j � n:
Set Pn = An�1An�2 : : : A1, see (13.9.5) and Problem 13 of Sec. 13.1. Show
that kPnP�1j k � k0.

(b) Assume that Bn(u) is a matrix such thatkBn(u)k � 1; 8n � 0 if kunk � 2(n):
Show that all solutions of the pseudo-linear system un+1 =

�An + Bn(u)
�un

satisfy the inequality, kunk � 0ku0k + 0

Pnj=1 1kuj�1k, as long as this
inequality implies that kunk � 2(n).

(c) A difference analog of the Gronwall–Bellman Lemma: Let fgng, fkng, be
two scalar sequences, such that kn � 0, 8n � 0, and setKj = (1 + kj�1)(1 + kj�2) � � � (1 + k0):
Assume that a (scalar) sequence fyng for n � 0 satisfies the inequality yn �gn +

nXj=1

kj�1yj�1. Show thatyn � gn +
nXj=1

(Kn=Kj)kj�1gj�1;
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Show also that if kn = k and gn = g for all n > 0, then yn � (1 + k)ng. Apply
the result to find a simple bound for kunk in Problem (a).

Hint and note: See the hint and note of Problem 13 of Sec. 13.1.

13. Check the following in 13.2 or 13.4. (a) Plot the stability regions of the BDF
methods for 1 � k � 7...

(b) Check in Ch3, Sec 13.2, 13.4??

14. Some multistep plots with exceptions: 2-step methods with degenerate S, or
rotating twice (unfinished).

15. Runge–Kutta plots with complications: several level curves for Kutta-Simpson;
the boundary locus not unicursal. (unfinished.)

16. (a) With the notations of the description of the Routh’s algorithm in Sec. 13.8.3,
show that, if 0 > 0, then the first conditions that come out of the Routh al-
gorithm, applied algebraically, are1 > 0; 12 � 03 > 0; 3(12 � 03) + 1(05 � 14) > 0; : : : ;
and show that j > 0, for 1 � j � 3 are consequences, if we set j = 0 forj > 3.

(b) Test by the Routh algorithm the suspicion that the polynomial z5 + z4 +mz3 + z2 + nz + 1 cannot be a Hurwitz polynomial for any values of the pa-
rameters m; n.

Hint: When one works algebraically it often simplifies to divide the denom-
inator or the numerator by a factor that has to be positive, if the rational
function is a positive function. Moreover, the algebra can be simplified by
appropriate substitutions.

17. (a) Hurwitz showed in 1895 the criterion for a kth degree to be a ”Hurwitz
polynomial” is that the first k principal minors of the matrix H with elementshij = 2j�i, i; j = 1; 2; : : : k, should be positive. Here the � are the polynomial
coefficients; the notation is the same as in Problem 15 and Theorem 13.9.13,
with the conventions that 0 > 0, and � = 0 for � < 0 and � > k. Note
that each row contains the coefficients of either p0(z) or p1(z). Write down
the matrix for k = 5.
Interpret the Routh algorithm as an elimination process for bringing the ma-
trix H to upper triangular form.

(b) Is it true that the condition 4 > 0 together with the three inequalities
mentioned in Problem 15 (a), are sufficient for the Hurwitz property, if k = 4?

(c) Is it true, that it does not matter for the application of the Hurwitz crite-
rion, if the coefficients are ordered as in our description, with 0 as the lead-
ing coefficient, or the other way around, with k as the leading coefficient?
Is the analogous thing true for the Schur algorithm?
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18. (a) Write a program for the Routh algorith m for a polynomial with numer-
ically given coefficients, as described in Sec. 13.8.3, and test it on suitable
polynomials, including cases where there are roots on the imaginary axis.

(b) Write a program for the Schur algorithm, as described in Sec. 13.8.3, and
test it on suitable polynomials, including cases where there are roots on the
unit circle.

(c) Write a program for the Sturm chain, as described in Sec. 13.8.3, and test
it on suitable polynomials. Test also the sensitivity to perturbations of the
coefficients.

19. (a) Convince yourself about the validity of the relations in (13.9.11) and
(13.9.12) which are not definitions.

(b) The following is a short MATLAB program for the Greco-Roman trans-
formation. It computes by recurrence relation the k � k matrix called gr

which maps the coefficient vector of R(z) to the coefficient vector of �(�). The
vectors are column vectors with the leading coefficient last.

gr = 1; a1 = 1;

forn = 1 : k;
bg = [0; a1]� [a1; 0]; z = zeros(1; n);

c = [gr; z] + [z; gr]; a1 = bg; gr = [bg; c];

end;

Read the program, and make sure you understand the algorithm. A semicolon
(inside brackets) means partitioning in the vertical direction, while a comma
means means partitioning in the horizontal direction. Note that there is dy-
namic memory allocation, e.g., a1 is a column, the length of which increases
from 1 to k. Is it true that the inverse of gr equals 2�kgr ?
Note that the algorithm actually computes all transformation matrices for the
orders n = 1; 2; : : : ; k. Test it on some simple cases, either in Matlab or after
translation to another language.

20. Order Star Problem. Unfinished.

which are functions of t,
We shall now collect some formulas that are useful, when one works with other

norms than the ones treated in Sec. 13.1. Let T be a non-singular matrix, and letk � k be any vector norm. Then it is easily seen thatkukT = kT�1uk: (13.9.18)

satisfies the three conditions for a vector norm, stated at the beginning of Sec. 6.2.5.
Next, set u = Tv. Then kBukTkukT =

kT�1BTvkkvk
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Since T is non-singular, maxu means the same as maxv. It follows that the subor-
dinate matrix norm is kBkT = kT�1BTk:
For B = I + �A we then obtain, kI + �AkT = kT�1(I + �A)Tk = kI + �T�1ATk,
and it follows from the definition of the subordinate logarithmic norm that�T (A) = �(T�1AT ): (13.9.19)
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Appendix A

Calculus in Vector Spaces

We shall introduce some notions and notations from the calculus in vector spaces
that will be useful in this and in later chapters. A more general and rigorous
treatment can be found, e.g., in Dieudonné [12]. Our presentation is also much
influenced by Butcher [4, Chapter 1], whose purpose is rather similar to ours, but
his discussion is stricter. In these books the reader may find some proofs that we
omit here. There are, in the literature, several different notations for these matters,
e.g., multilinear mapping notation, tensor notation, or, in some cases, vector-
matrix notation. None of them seems to be perfect or easy to handle correctly
in some complex situations. This may be a reason to become familiar with several
notations.

A.1 Multilinear Mappings

Consider k + 1 vector spaces X1, X2; : : :, Xk, Y , and let x� 2 X� . A functionA:X1�X2 : : :�Xk ! Y is called k-linear, if it is linear in each of its arguments xi
separately. For example, the expression (Px1)TQx2 + (Rx3)TSx4 defines a 4-linear
function, mapping or operator (provided that the constant matrices P , Q, R, S
have appropriate size). If k = 2 such a function is usually called bilinear, and
more generally one uses the term multilinear. , , , ,

Let X� = Rn� , � = 1, 2, . . . , k, Y = Rm, and let eji be one of the basis vectors
of Xi. We use superscripts to denote coordinates in these spaces. Let aij1;j2;:::;jk
denote the ith coordinate of A(ej1 ; ej2 ; : : : ; ejk). Then, because of the linearity, theith coordinate of A(x1; x2; : : : ; xk) readsn1Xj1=1

n2Xj2=1

: : : nkXjk=1

aij1;j2;:::;jkxj1

1 xj2

2 : : : xjkk ; x� 2 X� : (A.1.1)

We shall sometimes use the sum convention of tensor analysis; if an index occurs
both as a subscript and as a superscript, the product should be summed over
the range of this index, i.e., the ith coordinate of A(x1; x2; : : : ; xk) reads shorteraij1;j2;:::;jkxj1

1 xj2

2 : : : xjkk . (Remember always that the superscripts are no exponents.)

201
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Suppose that Xi = X , i = 1, 2, . . . , k. Then, the set of k-linear mappings
from Xk to Y is itself a linear space called Lk(X;Y ). For k = 1, we have the
space of linear functions, denoted more shortly by L(X;Y ). Linear functions can,
of course, also be described in vector-matrix notation; L(Rn;Rm) = Rm�n, the
set of matrices defined in Section 6.2. Matrix notation can also be used for each
coordinate of a bilinear function. These matrices are in general unsymmetric.

Norms of multilinear operators are defined analogously to subordinate matrix
norms. For example,kA(x1; x2; : : : ; xk)k1 � kAk1kx1k1kx2k1 : : : kxkk1;
where kAk1 =

m
maxi=1

n1Xj1=1

n2Xj2=1

: : : nkXjk=1

jaij1;j2;:::;jk j: (A.1.2)

A multilinear function A is called symmetric, if A(x1; x2; :::; xk) is symmetric with
respect to its arguments. In the cases mentioned above, where matrix notation can
be used, the matrix becomes symmetric, if the multilinear function is symmetric.

We next consider a function f :X ! Y , not necessarily multilinear, where X
and Y are normed vector spaces. This function is continuous, at the point x0 2 X
if kf(x) � f(x0)k ! 0 as x ! x0, (i.e. as kx� x0k ! 0). The function f satisfies
a Lipschitz condition in a domain D � X , if a constant �, called a Lipschitz
constant, can be chosen so that kf(x0) � f(x00)k � �kx0 � x00k for all points x0,x00 2 D.

The function f is differentiable at x0, in the sense of Fréchet, if there exists a
linear mapping A such thatkf(x)� f(x0)�A(x� x0)k = o(kx� x0k); x! x0:
This linear mapping is called the Fréchet derivative of f at x0, and we writeA = f 0(x0) or A = fx(x0). Note that (the value of) f 0(x0) 2 L(X;Y ). (Considered
as a function of x0, f 0(x0) is, of course, usually non-linear.)

These definitions apply also to infinite dimensional spaces. In the finite di-
mensional case, the Fréchet derivative is represented by the Jacobian matrix, the
elements of which are the partial derivatives �f i=�xj , also written f ij , in an estab-
lished notation, e.g., in tensor analysis; superscripts for coordinates and subscripts
for partial derivation. If vector-matrix notation is used, it is important to note that
the derivative g0 of a real-valued function g is a row vector, sinceg(x) = g(x0) + g0(x0)(x � x0) + o(kx� x0k):
We suggest that the notation gradient, or grad g is used for the transpose of g0(x).

A differential reads, in the multilinear mapping notation, df = f 0dx or df =fxdx. In tensor notation with the sum convention, it reads df i = f ijdxj .
Many results from elementary calculus carry over to vector space calculus,

such as the rules for the differentiation of products. The proofs are in principle the
same.
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If z = f(x; y) where x 2 Rk, y 2 Rl, z 2 Rm then we define partial derivativesfx, fy with respect to the vectors x, y by the differential formuladf(x; y) = fxdx+ fydy; 8dx 2 Rk; dy 2 Rl: (A.1.3)

If x; y are functions of s 2 Rn, then a general version of the chain rule readsf 0(x(s); y(s)) = fxx0(s) + fyy0(s): (A.1.4)

The extension to longer chains is straightforward. These equations can also be used
in infinite dimensional spaces.

Consider a function f : Rk ! Rk, and consider the equation x = f(y). By

formal differentiation, dx = f 0(y)dy, and we obtain dy =
�f 0(y)

��1dx, provided
that the Jacobian f 0(y) is non-singular. In Section 13.2.4, we shall see sufficient
conditions for the solvability of the equation x = f(y), so that it defines, in some

domain, a differentiable inverse function of f , such that y = g(x), g0(x) =
�f 0(y)

��1
.

Another important example: if f(x; y) = 0 then, by (A.1.4), fxdx + fydy =
0. If fy(x0; y0) is a non-singular matrix, then, by the implicit function theorem
(see Dieudonné [12, Section 10.2]) y becomes, under certain additional conditions,
a differentiable function of x in a neighborhood of (x0; y0), and we obtain dy =�(fy)�1fxdx, hence y0(x) = �(fy)�1fxjy=y(x).

One can also show that

lim�!+0

f(x0 + �v)� f(x0)� = f 0(x0)v:
There are, however, functions f , where such a directional derivative exists for anyv but, for some x0, is not a linear function of v. An important example is f(x) =kxk1, where x 2 Rn. (Look at the case n = 2.) The name Gateaux derivative is
sometimes used in such cases, in order to distinguish it from the Fréchet derivativef 0(x0) previously defined.

If f 0(x) is a differentiable function of x at the point x0, its derivative is denoted
by f 00(x0). This is a linear function that maps X into the space L(X;Y ) that
contains f 0(x0), i.e., f 00(x0) 2 L(X;L(X;Y )). This space may be identified in
a natural way with the space L2(X;Y ) of bilinear mappings X2 ! Y ; if A 2L(X;L(X;Y )) then the corresponding Ā 2 L2(X;Y ) is defined by (Au)v = Ā(u; v)
for all u; v 2 X ; in the future it is not necessary to distinguish between A and Ā.
So, f 00(x0)(u; v) 2 Y; f 00(x0)u 2 L(X;Y ); f 00(x0) 2 L2(X;Y ):
It can be shown that f 00(x0): X2 ! Y , is a symmetric bilinear mapping, i.e.f 00(x0)(u; v) = f 00(x0)(v; u). The second order partial derivatives are denotedfxx, fxy, fyx, fyy. One can show thatfxy = fyx:

If X = Rn, Y = Rm, m > 1, f 00(x0) reads fpij(x0) = fpji(x0) in tensor notation.
It is thus characterized by a three-dimensional array, which one rarely needs to store
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or write. Fortunately, most of the numerical work can be done on a lower level, e.g.,
with directional derivatives. For each fixed value of p we obtain a symmetric n� n
matrix, named the Hessian matrix H(x0); note that f 00(x0)(u; v) = uTH(x0)v.
The Hessian can be looked upon as the derivative of the gradient. An element
of this Hessian is, in the multilinear mapping notation, the pth coordinate of the
vector f 00(x0)(ei; ej).

We suggest that the vector-matrix notation is replaced by the multilinear
mapping formalism when handling derivatives of vector-valued functions of order
higher than one. The latter formalism has the further advantage that it can be
used also in infinite-dimensional spaces (see Dieudonné [12]). In finite dimensional
spaces the tensor notation with the summation convention is another alternative.

Similarly, higher derivatives are recursively defined. If f (k�1)(x) is differen-
tiable at x0, then its derivative at x0 is denoted f (k)(x0) and called the kth derivative
of f at x0. One can show that f (k)(x0) : Xk ! Y is a symmetric k-linear mapping.
Taylor’s formula then reads, when a, u 2 X , f : X ! Y ,f(a+ u) = f(a) + f 0(a)u+ 1

2f 00(a)u2 + : : :+ 1k!
f (k)(a)uk +Rk+1; (A.1.5)Rk+1 =

Z 1

0

(1� t)kk!
f (k+1)(a+ ut)dtuk+1;

it follows that kRk+1k � max
0�t�1

f (k+1)(a+ ut) kukk+1

(k + 1)!
:

After some hesitation, we here use u2, uk, etc. as abbreviations for the lists of input
vectors (u; u), (u; u; : : : ; u) etc.. This exemplifies simplifications that you may allow
yourself (and us) to use when you have got a good hand with the notation and its
interpretation. Abbreviations that reduce the number of parentheses often increase
the clarity; there may otherwise be some risk for ambiguity, since parentheses are
used around the arguments for both the usually non-linear function f (k): X !Lk(X;Y ) and the k-linear function f (k)(x0): Xk ! Y . You may also write, e.g.,
(f 0)3 = f 0f 0f 0; beware that you do not mix up (f 0)3 with f 000.

The mean value theorem of differential calculus and Lagrange’s form for the
remainder of Taylor’s formula are not true, but they can in many places be replaced
by the above integral form of the remainder. All this holds in complex vector spaces
too.

In the following subsections we show some relevant applications of these no-
tions to numerical mathematics.

A.2 Taylor Coefficients for the Solution of a System
of Ordinary Differential Equations.

Let y be a function of the real variable t, that satisfies the autonomous differential
system ẏ = f(y), f : Y ! Y .51 We shall derive recursion formulas for the derivatives

51A differential system of equations is said to be autonomous if it does not explicitly contain
the independent variable.
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of the solution y(t) with respect to t. We use dots for differentiation with respect
to t of order less than 3, and we set ÿ = z.

By repeated application of the chain rule, the time derivatives of y(t) are
expressed in terms of the derivatives of f with respect to the vector y. In the tables
below the results are given first in the multilinear mapping notation with primes
for differentiation with respect to y (as above). In the last line of the tables, the
same vectors are expressed in tensor notation.ẏ z = ÿ ż = y(3)f(y) f 0(y)ẏ f 00(y)ẏ2 + f 0(y)ÿf f 0f f 00f2 + (f 0)2ff j f jkfk f jklfkf l + f jkfkl f lz̈ = y(4)f 000(y)ẏ3 + 3f 00(y)(ÿ; ẏ) + f 0(y)żf 000f3 + 3f 00(f 0f; f) + f 0f 00f2 + (f 0)3ff jklmfkf lfm + 3f jkmfkl f lfm + f jkfklmf lfm + f jkfkl f lmfm

Note that, at some places, we have here omitted the obvious argument y. We
often do so when there is no doubt about the argument.

The individual terms on the third and fourth lines of these tables are called
elementary differentials. The qth order derivative of y is a linear combination
of the qth order elementary differentials with integer coefficients. They are funda-
mental in the theory of one-step methods for ordinary differential equations; see
Section 13.3.

These matters can easily become rather messy. J. Butcher and others have
made the analysis more transparent by employing an one-to-one correspondence
between the qth order elementary differentials and a rooted tree with q vertices.
We denote a rooted tree by t; its order, that is the number of vertices, is denoted�(t), and the corresponding elementary differential is denoted F (t). The qth order
trees are denoted tq1, tq2; : : : :

Table 11.5.1 displays up to order 4 the elementary differentials and trees.
(analogous to the tree t32). It corresponds to the elementary differential (f 0)3f .
Study the table, and see Problem 7. Note the monotonic ordering of the labels along
the branches, and see how well the tensor notation corresponds to this labeling. F (t)
denotes the elementary differential, which corresponds to the tree t, e.g., F (t21) =f 0f . A tree t can be labeled in several ways. A parameter named �(t) equals, in a
certain sense, the number of essentially different monotonic labelings of t; �(t) = 1
for all trees in the figure, except for �(t42) = 3. (Pure permutation of the labels
of leaves on the same branch is not “essential”.) The precise definition of �(t) is
rather subtle, and we refer to Hairer, Nørsett and Wanner [1993, Ch.2 ] or Butcher
loc. cit. for more detailed information. We give in x13.3.1 a table with �(t) and
some other data for �(t) � 5.



206 Appendix A. Calculus in Vector Spaces

Table A.2.1. Elementary differentials and the corresponding trees up to
order �(t) = 4.

order t graph F (t)

1 t11 f f j
2 t21 f 0f f jkfk
3 t31 f 00f2 f jklfkf l

t32 (f 0)2f f jkfkl f l
4 t41 f 000f3 f jklmfkf lfm

t42 f 00(f 0f; f) f jkmfkl f lfm
t43 f 0f 00f2 f jkmfkl f lfm
t44 (f 0)3f f jkfklmf lfm

With these notations, the formal Taylor expansion of the solution y(t) aroundt = t0 readsy(t0 + h) = y(t0) + y0(t0)h+
1

2!
y00(t0)h2 +

1

3!
y000(t0)h3 + : : :

= y(t0) + hfy(t0) +
h2

2!
h2f 0fy(t0) +

h3

3!
(f 00f2 + (f 0)2f)y(t0) + : : :

= y(t0) +
�hF (t11) +

h2

2!
F (t21) +

h3

3!

�F (t31) + F (t32)
�

+ : : :�y(t0):
More generally, the Taylor expansion becomes,y(t0 + h) = y(t0) +

X
t

h�(t)�(t)!
�(t)F (t)y(t0); �(t) � 1: (A.2.1)

This expression is useful for the design and analysis of numerical methods. If
you want to use a Taylor expansion for computing the numerical solution of a
system, however, you had better use the techniques of automatic differentiation,
see Section 3.1 and Section 13.3.
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The number of elementary differentials for q = 1 : 10 are as follows:

1 2 3 4 5 6 7 8 9 10
1 1 2 4 9 20 48 115 286 719

(A.2.2)

Much more about this can be found in Butcher, loc. cit., and Hairer, Nørsett and
Wanner, loc. cit..

The formulas for an autonomous system, ẏ = f(y), include also the non-
autonomous case, i.e. a system of the form ẏ = f(t; y), for if we add the trivial
equation ṫ = 1 to the latter system, then we obtain an autonomous system for the
vector (t; y), (written as a column). Nevertheless, since the variable t plays a special
role, it is sometimes interesting to see the formulas for the non-autonomous system
more explicitly. Recall that fty = fyt.ẏ = f(t; y)z = ÿ = df(t; y(t))=dt = ft + fyẏ = ft + fyfż = (ft + fyf)t + (ft + fyf)yf = ftt + fyft + 2fytf + fyyf2 + fyfyf;
Problems

4. Consider the multilinear operator A defined by (A.1.1), and suppose thatX� = Rn, 8�. What is kAk if a weighted max-norm is used in Rn?

5. Write a program for the approximate computation of the Hessian of a real-
valued function, by central differences.

6. Consider an autonomous system, ẏ = f(y), f : Rs ! Rs. Such a system has
an infinity of solutions y(t), but we shall see in Section 13.1 that, for given� 2 R, � 2 Rs, there is, under very general conditions on the function f ,
only one solution for which y = � for t = � . Denote this solution by y(t; �; �).
Runge’s 2nd order method, introduced in Section 1.3, reads k1 = hf(yn),k2 = hf�yn + 1

2k1

�
, yn+1 = yn + k2. Show thatyn+1 � y(tn + h; tn; yn) = h3

�
1
8f 00ẏ2 � 1

6y000�+O(h4):
(This is called the local error.) Also show that k2 � k1 = 1

2h2ÿ+O(h3). (The
vector k2�k1 is used for the choice of step size in the algorithm of Section 1.3.
See also Section 13.2.)

7. (a) Draw the tree t44, and write down the corresponding elementary differen-
tial in multilinear mapping notation and in tensor notation.

(b) Given all trees of order q � 1, two ways of producing (different) trees of
order q are as follows. You can either put one more vertex on the first level
above the root (and label it with the next character in the alphabet), or you
can create a new root (labeled j) below the old one and change the other
labels. Note that for q = 3 and q = 4 these operations yield all trees. Find the
rules, how the elementary differentials are modified at these tree operations.

(c) For q = 5, however, the operations in (b) produce together 8 trees, instead
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of 9, according to the table in Example A.2. What does the missing tree look
like? Find the corresponding elementary differential.

Comment: There is more material about this in Section 13.3. How many miss-
ing trees are there for q = 6? Find the trees and the elementary differentials.

8. Consider a function f : X ! X , dimX > 1. Do expressions like f 00(x0)f 00(x0)
and f 00(x0)f 00(x0)f 00(x0) ever make sense?
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Adams methods, 116–119
explicit, 117
implicit, 117

Aitken–Neville algorithm, 130
automatic differentiation, 114
autonomous form (system), 2

backward difference
correction, 138

backward differentiation
methods, 125–126

band matrix, 143
BDF methods, see backward differen-

tiation methods
bilinear, 201
boundary value problem, 139–145
Brusselator problem, 157, 176

central difference method, 136
summed form, 136

chaotic motion, 176
companion matrix, 184
comparison theorem, 21
critical point

of autonomous system, 10
stable, 19
unstable, 19

deferred difference correction, 138
dense output, 110
derivative

directional , 203
Fréchet, 203
Gateaux , 203
higher, vector-valued , 203
partial , 203

difference equations, 178–186

pseudo-linear, 181
differential equations

second-order, 136–138
differential-algebraic problems, 52, 86
differentials

elementary, 205, 208
directional derivative , 203
dopri5, 106
Dormand–Prince methods, 106

eigenvalue problems, 145–147
elementary differentials, 205, 208
elliptic sector, 173
embedded RK-formulas , 103
embedding technique, 145
error

constant, 56, 79
global, 5
local, 5
propagation, 10–24
scaled global, 53

Euler’s method, 4
with Richardson extrapolation, 129

explicit midpoint method, 74, 119, 132–
135

extrapolation methods, 129–135

finite difference methods, 142–145
Fréchet derivative, 202
free boundary problems, 139

Gateaux derivative , 203
generating polynomials, 77, 120
Greco-Roman transformation, 187

MATLAB program for, 198
Gronwall–Bellman lemma, 42
Gronwall–Bellman’s lemma
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difference analog, 196
growth parameter, 128

Hessian matrix, 204
Hopf bifurcations, 158
Hurwitz polynomial, 187–189, 197

implicit function, 202
initial value problem

definition, 1
existence and uniqueness, 7–10
uniqueness of solution, 7

interval analysis, 114
inverse function, 202

Jacobian , 202lp-norm, 153
leap-frog method, see explicit midpoint

method
limit cycles, 156
linear multistep method, 77
linearly implicit, 111
Lipschitz

condition, 7, 202
constant , 202

local error
of multistep method, 120

local time constant, 62
logarithmic norm, 24–52, 84–155l1-norm, 25l2-norm, 25

(weighted) max-norm, 25
properties, 26, 30
subordinate, 153

Lotka–Volterra model, 17, 48
Lyapunov function, 152

Mathieu’s equation, 195
matrix

banded, 207
power boundedness, 178–186
tridiagonal, 207

matrix theorem
continuous case, 186
discrete case, 185

method

A-stable, 72A(�)-stable, 72L-stable, 721-stable, 72
strongly 1-stable, 72
strongly zero-stable, 72
zero-stable, 72

midpoint method
modified, 134

Milne–Simpson’s method, 123, 128
multilinear, 201

symmetric mapping, 204
multistep methods, 5, 116–126

variable step and order, 123–125
multivalue methods, 122

numerical stability
introduction, 63–76
investigation of, 76–78

Numerov’s method, 137
Nyström methods, 118

odes
qualitative theory, 19

one-leg methods, 77
one-step methods, 4, 94–107
order

of accuracy, 122
of consistency, 79, 119

order conditions, 119–120

partial derivative, 202
partial double precision, 137
pendulum, 155, 173, 176
pendulum equation, 29
Perron–Frobenius theorem, 178, 194
Poincaré–Bendixson theorem, 158
positive definite function, 151
positive function, 187
positivity theorem, 22
power boundedness

of family of matrices, 185
of single matrix, 183

predator-prey problem, 17, 48, 174
predictor-corrector method, 118
pseudo-linear system, 179
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rectifier problem, 176
Richardson extrapolation, 103, 137, 143,

146
active, 131
passive, 131
step sequences, 130
with Euler’s method, 129

Riemann sphere, 78
root conditions, 121, 184
rooted trees, 205, 208
Rosenbrock methods, 111
Rouché theorem, 193
Routh

algorithm, 189, 197, 198
criterion, 189

Runge’s 2nd order method, 4, 59, 94,
100

Runge–Kutta methods, 81
embedded, 105
error estimation, 103–107
explicit, 107
Fehlberg, 106
linear consistency(, 107
linear consistency), 108
linear stability(, 107
linear stability), 108
Merson, 105
stability function, 107

saddle point, 151
scale functions, 52–63
Schur

algorithm, 198
criterion, 193

shooting method, 140–142
multiple, 141–142

singular point, 7
spiral point, 151
Störmer’s methods, 136
Störmer–Cowell’s methods, 137
stability

of critical points, 23
of multistep methods

theorem, 121
theory, 121–123

region, 70

step doubling, 103
step size control, 52–63
stiff problems, 52, 61–62, 86
strange attractor, 158
Sturm chain, 191, 192
Sturm–Liouville problem, 145
sum convention, 201

Taylor coefficients
differential equations, 205
recursion for, 112

Taylor series method, 112–114
Taylor’s formula, 204
tensor, 201
trees

rooted, 205

variational equation, 10–24
fundamental matrix solution, 15
linearized, 11

vector-matrix notation, 201
velocity field, 3


