
Deciding Reachability under Persistent x86-TSO

PAROSH AZIZ ABDULLA, Uppsala University, Sweden
MOHAMED FAOUZI ATIG, Uppsala University, Sweden
AHMED BOUAJJANI, University of Paris, France

K NARAYAN KUMAR, Chennai Mathematical Institute and CNRS UMI RelaX, India

PRAKASH SAIVASAN, The Institute of Mathematical Sciences, India

We address the problem of verifying the reachability problem in programs running under the formal model

Px86 defined recently by Raad et al. in POPL’20 for the persistent Intel x86 architecture. We prove that this

problem is decidable. To achieve that, we provide a new formal model that is equivalent to Px86 and that has

the feature of being a well structured system. Deriving this new model is the result of a deep investigation of

the properties of Px86 and the interplay of its components.

CCS Concepts: • Theory of computation→ Verification by model checking; • Software and its engi-
neering→ Formal software verification;

Additional Key Words and Phrases: model checking, program verification, TSO memory model, persistent

memories

ACM Reference Format:
Parosh Aziz Abdulla, Mohamed Faouzi Atig, Ahmed Bouajjani, K Narayan Kumar, and Prakash Saivasan. 2021.

Deciding Reachability under Persistent x86-TSO. Proc. ACM Program. Lang. , POPL (January 2021), 33 pages.

1 INTRODUCTION
Emerging Non-Volatile Random-Access Memories (NVRAM) provide the best of two worlds, namely

the efficiency of DRAM, and the data persistency across failures of a non-volatile store [Intel 2019c;

Liu et al. 2020]. In particular, NVRAMs offer byte addressability, i.e., they can be addressed directly

by the CPU through read and write operations, thus giving programs direct and low-latency access

to persistent data, without any assistance from the operating system. Upon a crash, the volatile

state of the system, including the DRAM content and process registers are lost while, in contrast,

the NVRAM state is preserved. This is why NVRAMs are often referred to as Persistent Memories
(PMs). The combination of efficiency and persistency is a very attractive feature, breeding interest

in PMs, and spurring research both in industry and academia [ARM 2018; Intel 2019b; Liu et al.

2020; Raad et al. 2020, 2019]. Leading chip manufacturers such as Intel and ARM have started to

integrate the technology in their chips [ARM 2018; Intel 2019b]. Developers are creating systems

that directly manipulate PMs such as data bases [Arulraj and Pavlo 2017], key-value stores [Xia

et al. 2017], and custom programs [Cohen et al. 2018].

The support for recoverability offered by PMs comes at a price, namely, that the programmer

needs to provide a recovery code which retrieves the data that has persisted since before the crash,

Authors’ addresses: Parosh Aziz Abdulla, Uppsala University, Sweden, parosh@it.uu.se; Mohamed Faouzi Atig, Uppsala

University, Sweden, mohamed_faouzi.atig@it.uu.se; Ahmed Bouajjani, University of Paris, France, abou@irif.fr; K Narayan

Kumar, Chennai Mathematical Institute and CNRS UMI RelaX, India, kumar@cmi.ac.in; Prakash Saivasan, The Institute of

Mathematical Sciences, India, prakashs@imsc.res.in.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2021 Copyright held by the owner/author(s).

2475-1421/2021/1-ART

https://doi.org/

Proc. ACM Program. Lang., Vol. , No. POPL, Article . Publication date: January 2021.

https://doi.org/

2 P. A. Abdulla, M. F. Atig, A. Bouajjani, K N. Kumar, and P. Saivasan

✓

�

thread

thread
persistency

stage
pending
bufferprogram pending

stage

persistency buffer

✓

�

pending
buffer

persistent
memory

memory

✓

�
thread

✓

�

store
buffer

thread

store
buffer

(a) (b)

Fig. 1. (a) The classical TSO semantics. (b) The Px86 (persistency) semantics [Raad et al. 2020].

and use this data to recreate a state from which the computation can continue. Consistent recovery

making the occurrence of crashes completely transparent to the applications is hard to ensure, and

in general, while PMs allow to recover some data, the content of the recovery state may not be

consistent with the program view. In fact, many systems that implement persistency allow write

operations to persist, i.e., become persistent, in an order which may differ from the order in which

they are issued by the program, which may lead to observing inconsistent states. To help ensure

consistent recovery, specific persistency barriers are used to restrict the persistency order, i.e., to

oblige the write operations to persist in a given order.

The consistency issue makes the use of PM architectures extremely hard, and therefore, there

is a crucial need of formal methods for reasoning in a principled way about their behaviors, as

well as of tools for automated program verification, in order to help programmers develop their

applications and ensure their correctness.

A first step towards this end is to define abstract memory models of PM’s that prescribe faithfully

their visible behaviors in reaction to any sequence of write and read operations performed by their

users. A PM architecture is typically designed as an extension of some existing architecture with an

additional persistency mechanism. Then, the memory model of a PM (or its semantics) is determined

by a combination of both the consistency model corresponding to the semantics of the original

architecture, and the persistency model that defines the order in which write instructions may

persist [Pelley et al. 2014]. A case in point is the recent Intel chip that augments the x86 architecture

with persistent memory [Intel 2019a], resulting in an extension of the classical Total Store Order

(TSO) semantics [Sewell et al. 2010]. The manner in which data is persisted in the chip does not

conform to TSO, and program runs, along which crashes occur, follow a weaker memory model

than TSO. This is reflected in the operational model defined in [Raad et al. 2020], called there Px86.

Fig. 1 (a) and (b) depicts the classical and persistency x86-TSO models respectively.

In the classical TSO model, FIFO store buffers, one per thread, are used to store write operations

before they are committed to the main memory. Write operations in a store buffer are visible only to

the thread that issued them, and they become visible to all threads only when they are committed to

the memory. This has the effect of delaying their execution, and allows read operations (on different

variables) to overtake them. This is the only type of re-ordering allowed in that model. Issuing a

memory barrier by a thread has the effect of blocking the execution of that thread until its buffer is

empty, ensuring that all prior writes are made visible before issuing any further instructions.

The Px86 model defined in [Raad et al. 2020] is much more complex than TSO, with a hierarchical

memory system, and different flush and barrier operations that may be used to constrain instruction

re-orderings in various ways. Its architecture uses a two-stage buffer system, a pending stage and a

persistency stage, in addition to the persistent memory. In a similar manner to the classical model,

the pending stage consists of buffers, one for each thread, carrying write operations issued by the

corresponding thread and yet not visible to the other threads. Once an operation reaches the end

of a pending buffer, it can cross to the persistency stage. The latter consists of a single buffer that

is visible to all the threads. When a crash occurs, the content of the memory is preserved while

Proc. ACM Program. Lang., Vol. , No. POPL, Article . Publication date: January 2021.

Deciding Reachability under Persistent x86-TSO 3

all operations in the buffers of both stages are lost. In contrast with TSO, the Px86 model has the

following features that make it particularly complex:

• The buffers in both stages may contain, in addition to write operations, other types of operations

such as flush and fence instructions that are used to constrain allowed re-orderings in different

ways. The number of operations of each type can be unbounded.

• Several types of re-orderings may occur inside the buffers in both stages, and hence these buffers

do not behave according to the FIFO discipline. For instance, while write instructions are not re-

ordered with each other in the pending stage, they might be re-ordered with flush instructions, and

once they cross to the persistency stage, write instructions on different variables can be re-ordered.

• The memory system in the persistency model is hierarchical in the sense that the write operations

in the pending buffers are not used to update the shared memory directly. A thread may need to

consult the persistency stage, or even the persistent memory, to fetch the value of a shared variable.

Once formal models of PMs have been defined, the crucial issue is to develop algorithmic ap-

proaches for formal verification of programs running on PMs. For that, investigating the decidability

and complexity of fundamental verification problems such as verifying safety properties (or dually

state reachability), is extremely important.

Program verification under weak memory models has proven to be a challenging task. Indeed,

the ability of these models to re-order operations leads in general to a high computational power.

Intuitively, this re-ordering amounts to using various types of unbounded buffers, and therefore

verification problems may become in general either highly complex or even undecidable. For

instance, it has been shown that the state reachability problem is decidable for (the classical) TSO

[Abdulla et al. 2018a; Atig et al. 2010, 2012], while it is undecidable for other models such as Power

[Abdulla et al. 2020b]. The models obtained by combining the consistency models of the original

architecture with persistency models become much more complicated, with several additional

sources of re-orderings. As far as we know, the decidability and complexity issues have never been

addressed in the presence of persistency. This paper takes the first step in investigating these issues.

We address the state reachability problem for finite-state concurrent programs running on the top

of the persistency TSO model defined in [Raad et al. 2020]. Notice that in [Raad et al. 2020], two

slightly different versions of the persistency TSO model are defined called Px86man and Px86sim .

The Px86man conforms to the behaviors described (informally) in the manual of the persistent x86

architecture, but actually allows more behaviors than the real architecture, and does not capture

precisely the intents of its designers. Px86sim is the formal model that is faithful to the behaviors of

the architecture. In this paper we focus on the latter model, and from now on, we implicitly refer

to Px86sim when we talk about the persistency x86/TSO model (or simply Px86).

Despite the complexity of the Px86 model, we prove in this paper that the reachability problem

for finite-state programs under that model is decidable. We show that this problem is reducible to a

decidable reachability problem in the well-known framework of well-structured transition systems
(WSTS) [Abdulla et al. 1996; Finkel and Schnoebelen 2001]. This is a generic framework for proving

decidability of reachability problem of infinite-state systems. The fundamental theorem established

in this framework is that, for any given system, if (1) it is possible to prove that there is a well-quasi
ordering (WQO) on the states (i.e., an ordering such that for every infinite set of states there are

necessarily at least two comparable elements) for which it is possible to prove that the transition

relation of the system is monotone (i.e., if a state s1 has a transition by some action a to a state s ′
1
,

then every larger state s2 has a transition by a to some state s ′
2
that is larger than s2), and if (2)

computing predecessors of any state can be done effectively, then the standard iterative backward

reachability analysis algorithm is guaranteed to terminate, and therefore the reachability problem

of a given state (and more generally to upward-closed sets of states w.r.t. to the considered WQO) is

decidable [Abdulla et al. 1996; Finkel and Schnoebelen 2001]. This framework has been applied to

Proc. ACM Program. Lang., Vol. , No. POPL, Article . Publication date: January 2021.

4 P. A. Abdulla, M. F. Atig, A. Bouajjani, K N. Kumar, and P. Saivasan

many types of infinite-state systems in the literature, including FIFO-channel systems for instance.

(Of course, well-structuredness is a sufficient condition for decidability, not a necessary one.)

However, the application of the framework of WSTS to the persistency semantics is not easy.

Indeed, a good strategy for establishing well-stucturedness in this context is in general based on the

quest of a number of desirable “criteria of well-behavior”, that are not satisfied by the persistency

semantics. The main criterion is, as we have mentionned above, that the transition system induced

by the program is monotone with respect to a WQO on the data structure [Abdulla and Jonsson

1993]. This means in our case that if we insert an additional message in a given buffer then, from the

new (larger) configuration, the system is able to perform at least the same sequence of transitions as

from the old (smaller) configuration. Clearly, the behavior of the persistency semantics (according

to notions of states and transitions of [Raad et al. 2020]) is not monotone since adding write, flush

or fence instructions to buffers may restrict the behavior of the system.

A second important criterion for showing well-structuredness is that buffers are FIFO, since this

allows to use the natural sub-word well-quasi ordering on these structures. However, as we have

seen, the buffers in Px86 are not FIFO; they allow selective re-orderings of messages, and they may

contain unbounded numbers of messages of different types (write, flushes, and fences). Another

criterion of well-behavior that is important for showing monotonicity is locality, in the sense that

read operations are performed locally on each buffer, without interactions with other buffers. This

is not satisfied in the persistency model due to the memory hierarchy.

In the classical TSO model, buffers are FIFO and reads are local. The decidability proof in that

case can be done using a translation of the semantics to an equivalent monotone semantics w.r.t.

the sub-word ordering. In the case of Px86, such a single step translation is extremely difficult,

if not impossible, due to the additional difficulties mentioned above (non-FIFO buffers, and the

non-locality of reads). Therefore the challenge is to provide a new formal model that is equivalent

to the persistency TSO semantics defined in [Raad et al. 2020], and which falls under the class of

systems to which the WSTS framework can be applied. Notice that, in order to achieve decidability,

it is necessary to investigate semantical aspects and define a model with particular properties that

make the proof of well-structuredness possible, and our approach for that is to enforce (while

preserving equivalence) the criteria of well-behavior mentioned above. Besides decidability, this

investigation has also the interest to provide a better insight about the features of this model, and

its outcome is valuable also from the semantical point of view as it provides a formal model that

could be of simpler use for reasoning about programs.

We perform a sequence of translations, ultimately obtaining a well-structured model that is

equivalent to the Px86 model of [Raad et al. 2020]. The new model is called the scheduling semantics
and is obtained in two steps to make the presentation of the semantics, and the proof of its

soundness and completeness, easier. First we tackle the issues of locality and FIFO order in the

buffers (introducing what we call the basic scheduling semantics), and then, we show how it is

possible to obtain monotonicity (by providing what we call the refined scheduling semantics).

Locality is obtained by introducing an intermediate memory between the pending and the

persistency stages. The information in the persistency stage is needed only when a crash occurs to

determine the re-starting state of each thread and the contents of the intermediary memory.

A more challenging issue is to define an equivalent model where only FIFO buffers are used,

possibly with a finitely encodable additional information. Concerning the pending buffers, to deal

with the fact that flush instructions can be re-ordered forwards and backwards, we introduce

two flags, namely a Delay and a Promise flag for each thread and variable indicating whether a

flush has been delayed (moved backwards) or promised (moved forwards) in the corresponding

pending buffer. We prove that, surprisingly, using only these additional Boolean flags, it is possible

Proc. ACM Program. Lang., Vol. , No. POPL, Article . Publication date: January 2021.

Deciding Reachability under Persistent x86-TSO 5

to simulate precisely the original model in the presence of an unbounded number of flush re-

orderings. Concerning the persistency stage, we split the persistency buffer into a system of several

initial persistency buffers, one per variable, and an additional final persistency buffer where write

instructions are drained from the initial buffers before being committed to the persistent memory.

Having one buffer per variable allows to re-order write instructions on different variables, and the

final buffer allows to simulate correctly the persistency barriers semantics. The architecture of the

so defined model, called basic scheduling semantics, is pictured in Figure 2.

✓

�
initial persistent buffer

final persistent buffer

x

y

thread

thread

persistent
stage

pending
buffer

✓ Delay

intermediate
memory

�
Promise

pending
bufferprogram

pending
stage

persistent
memory

initial persistent buffer

Fig. 2. The architecture of the basic scheduling semantics.

Then, the second step of our

reduction is to translate the ba-

sic model described above to a

monotone one. For that, each

stage needs to be handled dif-

ferently. Concerning the pend-

ing stage, the idea is to use

a (dual) load-buffer semantics

based on FIFO load buffers instead of store buffers following the approach introduced in [Abdulla

et al. 2018a], although technically the reduction is quite different since we have to deal with other

types of messages in the buffers such as flush instructions. In the load-buffer semantics, write

instructions are executed in the moment they are issued to the main memory, and then, they flow to

the load buffers from which threads can fetch values to read. In addition, we maintain information

about at most one flush instruction per variable in each thread load buffer, and show that this

suffices to simulate the basic scheduling semantics. This fact is crucial for obtaining a monotone

model. Concerning the persistency stage, getting monotonicity is somehow easier. In fact, the

source of non-monotonicity comes only from the final persistency buffer, not from the initial per-

sistency buffers. To handle this case, we transform write instructions in the final persistency buffer

into memory snapshots, in the spirit of the techniques employed in [Atig et al. 2010, 2012]. From

this reduction, we deduce that the verification problem of the reachability problem in finite-state

concurrent programs is decidable. We can also show that the complexity of this problem can be

shown to be non-primitive recursive by a reduction from the same problem for TSO, for which the

complexity has been established in [Atig et al. 2010].

To summarize, we define a new operational formal semantics that is equivalent to the Px86 model

[Raad et al. 2020] up to state reachability, and which has the property of defining a well-structured

system. This model is based on establishing a clear separation between the pending and persistency

stages. This compositional view of the Px86 model, and the ability of using only FIFO buffers in the

modelling, are the key for proving the decidability of the state reachability problem.

Related work. Formal models of PMs have been proposed recently in, e.g., [Raad and Vafeiadis

2018; Raad et al. 2020, 2019]. These works follow the line of research investigating formal models of

weakly consistent systems, defining axiomatic and/or operational models for hardware architectures

[Alglave et al. 2014; Flur et al. 2016; Mador-Haim et al. 2012; Sewell et al. 2010], concurrent

programming languages [Batty et al. 2011; Kang et al. 2017; Lahav et al. 2016; Nienhuis et al. 2016;

Podkopaev et al. 2019], and distributed systems [Burckhardt 2014].

Decidability and complexity of program verification under weak consistency have been in-

vestigated in the last decade for hardware architectures models [Abdulla et al. 2020b; Atig et al.

2010, 2012], concurrent programming languages models [Abdulla et al. 2019a], and for distributed

replicated data structures and data bases [Lahav and Boker 2020]. Many other works addressing

effective program verification under weak consistency have been carried out, e.g., [Abdulla et al.

2017a, 2018b; Alglave et al. 2013b,a; Atig et al. 2011; Demsky and Lam 2015; Gotsman et al. 2016;

Proc. ACM Program. Lang., Vol. , No. POPL, Article . Publication date: January 2021.

6 P. A. Abdulla, M. F. Atig, A. Bouajjani, K N. Kumar, and P. Saivasan

Kokologiannakis et al. 2018; Kokologiannakis and Vafeiadis 2020]. All the mentioned works do not

address the case of PMs. So far, works on automated verification of programs running on PMs are

rare. The papers [Liu et al. 2020, 2019] propose a method for detecting cross-failures, i.e., checking
whether persistent data remain consistent across a failure. The papers identify necessary conditions

for consistent recoveries, i.e., to decide whether the data that persist before a failure, is used to take

the program to a consistent state after the failure.
The framework of well structured systems is a general framework for establishing decidability

results for infinite-state systems. It has been traditionally applied to various types of systems

such as Petri nets, unreliable communication channels, register systems, parametrized networks of

processes, etc. It has been also applied to weak memory models in [Atig et al. 2010, 2012]. It has

never been applied so far to the case of PM models.

2 OVERVIEW
We will give a step-by-step introduction to the scheduling semantics, using a sequence of simple

examples. We will start by recalling the persistency x86/TSO semantics of [Raad et al. 2020]. For the

latter, we also highlight the aspects of the semantics that make it hard to prove decidability of the

reachability problem. For simplicity, we will assume that cache lines are not shared by variables. In

Sec. 2.4 we explain briefly how we can extend our framework, in a straightforward manner, to deal

with the general case where cache lines are shared by multiple variables. We define the scheduling

semantics in two steps, namely the basic, followed by the refined (full) semantics.

2.1 The Persistency semantics

✓

�

thread

thread
persistent

stage
pending
bufferprogram pending

stage

persistent buffer

✓

�

pending
buffer

persistent
memory

Fig. 3. The architecture of the persistency seman-
tics as defined in [Raad et al. 2020].

The operational semantics of persistency TSO was

recently proposed by Raad et. al [Raad et al. 2020].

The semantics, which we simply refer to as the

persistency semantics in the sequel, generalizes the

classical TSO semantics. Fig. 3 depicts the architec-

ture of the persistency semantics for the case of a

program with two threads θ and ϕ. The semantics

uses a two-stage buffer system, which we refer to

as the pending stage, and the persistency stage. The
pending stage consists of unbounded buffers, which we call the pending buffers, one for each thread.

The pending buffer of a thread θ carries messages representing instructions that have been executed

by θ , but that are yet not visible to the other threads. Messages can be of different types, e.g., write,

flush, or fence messages, reflecting the instructions that have generated them. A message in the

pending may eventually cross to the persistency stage, possibly overtaking other messages ahead

of it in the buffer. The latter consists of a single buffer, which we call the persistency buffer. The
persistency buffer is shared by (and is visible to) all the threads and it sends its messages to the

persistent memory. We say that a write message persists when it reaches the persistent memory. A

message that persists will survive a system crash, unless it is overwritten in the persistent memory

by another message. On the other hand, all messages traveling in the buffers will be lost if a

crash takes place. After crash, a recovery procedure, provided by the programmer, can retrieve the

persistent data and use it to re-start the program from an appropriate configuration.

2.1.1 Configurations. Fig. 4 illustrates a typical configuration in the persistency semantics. For

ease of reading, we will omit the local states of the threads from our figures in this section.

Proc. ACM Program. Lang., Vol. , No. POPL, Article . Publication date: January 2021.

Deciding Reachability under Persistent x86-TSO 7

pending
buffers

persistency
buffer

3
0

persistent
memory

x
y

✓

x1 sf

y1fox
y2 perx

�

Fig. 4. A configuration in
the persistency semantics.

The pending buffer of θ contains a store fence message sf, followed1 by
a write message assigning 1 to x , denoted x1. The pending buffer of ϕ
contains a write message assigning 1 to y, followed by a flush message

on the variable x , denoted fox . The persistency buffer contains a barrier

message on x , denoted perx , followed by a write message on y. The
values of x and y in the persistent memory are 3 and 0 respectively. If a

crash occurs in this configuration, then these two values will be retained.

We will explain the roles of sf, fo, and per later.

2.1.2 Memory Hierarchy. The memory system of the persistency semantics is hierarchical in the

sense that write messages in the pending buffers are not used to update the shared memory directly.

This makes read instructions non-local. A read instruction can traverse the whole memory hierarchy:

when reading from a variables x , the thread first inspects its own pending buffer and reads the value

of the last buffered write to x if such a write exists (this is similar to the classical TSO semantics);

otherwise, it searches the persistency buffer for the value of the last buffered write to x if such a

write exists; otherwise, it reads x from the persistent memory. In Fig. 4, read instructions by the

thread θ on the variables x and y would obtain the values 1 (from its pending buffer), resp. 2 (from

the persistency buffer). Analogously, the thread ϕ would obtain the values 3 (from the persistent

memory) and 1 (from its pending buffer).

Fig. 5. Re-ordering of write messages
in the persistency buffer.

2.1.3 Re-orderings. Writemessages exhibit amixture of FIFO

and non-FIFO behaviors in the persistency semantics. They

are ordered inside the pending buffers but, once inside the

persistency buffer, write messages on different variables can

be re-ordered. Fig. 5 illustrates simple program, and a run of

the program under the persistency semantics. Inγ1, the thread
has performed its two instructions, and the corresponding

messages, i.e., x1 and y1 are in the pending buffer. The two

messages cannot be re-ordered inside the pending buffer, and hence they cross to the persistency

buffer in the same order, i.e., x1 followed by y1 (configuration γ2). However, once inside the

persistency buffer, the messages can be re-ordered. This means that, although x1 was generated
before y1, the latter can persist first. The assertion at the end of program says when the value of y
is 1 in the persistent memory then the value of x can be 0 or 1.

y1

z1

x1perx

fox

barrier

pending buffer

persistency buffer

flushoptx instruction

Fig. 6. The flushopt instruc-
tion.

2.1.4 Flush Operations. To limit the re-orderings that allow write

instructions to persist differently from the order in which they

were issued, the persistency architecture provides different kinds

of flush/fence instructions. Fig. 6 illustrates the flush instruction

flushopt, referred to as cache line flush optimized in the Intel

Manual [Intel 2019a; Raad et al. 2020]. When a thread θ executes

flushoptx , a corresponding message fox is added to the pending

buffer of θ . When the message crosses to the persistency buffer, it

is transformed to a message perx . The latter acts as a barrier in the

sense that it prevents write messages on x that lie before it in the

persistency buffer to be overtaken by write messages on other variables that lie after it in the buffer

1
Later, we will formally represent a write message as a triple ⟨wr, x , 1⟩. To simplify the figures in this section, we depict

it as x 1
. We will use a similar notation for other types of messages when we introduce the persistency and scheduling

semantics in the subsequent sub-sections.

Proc. ACM Program. Lang., Vol. , No. POPL, Article . Publication date: January 2021.

8 P. A. Abdulla, M. F. Atig, A. Bouajjani, K N. Kumar, and P. Saivasan

(although perx can overtake a write message on different variable y.) The message perx disappears
when it reaches the end of the persistency buffer without affecting the persistent memory.

x:=1

y:=1

✓

persist: (y = 1)
) x 2 {0,1}

flushoptx

�1
<latexit sha1_base64="+hdX5BeiUR0JHLVf08XwAh3PkU0=">AAAC23icbZFLixNBEMc742tdX1nFk5fBIHiQMJN96W3RixdhRbO7kBlCT08labYfQ3eNcWjm5E28+gG8Kvh9/Db2TIbFxBQ0/edfv6Krq7JCcItR9KcXXLt+4+atndu7d+7eu/+gv/fwzOrSMBgzLbS5yKgFwRWMkaOAi8IAlZmA8+zyTZM//wTGcq0+YlVAKulc8RlnFL017T9OMi1yW0l/uWROpaTTuJ72B9EwaiP8X8SdGJAuTqd7vd9JrlkpQSET1NpJHBWYOmqQMwH1blJaKCi7pHOYeKmoBJu6tv86fOadPJxp44/CsHX/rXBU2qZFT0qKC7uZa8xtuUmJs5ep46ooERRbPTQrRYg6bIYR5twAQ1F5QZnhvteQLaihDP3I1l7JMrn2CfdOfWiH9sKipKYyuU8rWDLtJ6jyZLngCJM4dQnCZ2x/5FqvdoO4XmczUW6ijbWFNJBvgN7ZwlUghF5uoCuzo9sNH8ajg+Mjv9jD0VH8av9qsVfibDSM94ej9weDk9fdrnfIE/KUPCcxOSYn5C05JWPCiCM/yE/yK0iDL8HX4NsKDXpdzSOyFsH3vy3k7NI=</latexit>

�2

�3

0
0fox x1y1

x1y1 0
0fox

x1 0
1fox

✓

Fig. 7. Combining flushopt with plain
write instructions.

2.1.5 Overtaking flushopt. While the fo message trans-

forms to a barrier per in the persistency buffer, it behaves

weakly in the pending buffer, in the sense that it can be

overtaken by (and also overtake) other messages. Conse-

quently, the flushopt instruction on a variable x is too weak

to ensure that a write instruction on x persists before a later

write instruction on another variable y. In γ1 of Fig. 7, θ has

executed all of its three instructions, namely two write in-

structions on x resp. y, with a flushopt instruction on x in between; and has put the corresponding

messages in the pending buffer. A write message is allowed to overtake an fomessage in the pending

buffer. This means that we can reach the configuration γ2 where the write messages on x and y
have both crossed to the persistency buffer, while the fox is still in the pending buffer. Since write

messages on different variables can overtake each other inside the persistency buffer, the message

y1 can persist before the message x1 (configuration γ3).

x:=1

y:=1

rec: (x = 1)
) (y = 1)

✓
flushoptx

sfence fox x1y1 sf

flushopt cannot
overtake write
on same variable

0
0
0
0x1y1 perx

�1
<latexit sha1_base64="+hdX5BeiUR0JHLVf08XwAh3PkU0=">AAAC23icbZFLixNBEMc742tdX1nFk5fBIHiQMJN96W3RixdhRbO7kBlCT08labYfQ3eNcWjm5E28+gG8Kvh9/Db2TIbFxBQ0/edfv6Krq7JCcItR9KcXXLt+4+atndu7d+7eu/+gv/fwzOrSMBgzLbS5yKgFwRWMkaOAi8IAlZmA8+zyTZM//wTGcq0+YlVAKulc8RlnFL017T9OMi1yW0l/uWROpaTTuJ72B9EwaiP8X8SdGJAuTqd7vd9JrlkpQSET1NpJHBWYOmqQMwH1blJaKCi7pHOYeKmoBJu6tv86fOadPJxp44/CsHX/rXBU2qZFT0qKC7uZa8xtuUmJs5ep46ooERRbPTQrRYg6bIYR5twAQ1F5QZnhvteQLaihDP3I1l7JMrn2CfdOfWiH9sKipKYyuU8rWDLtJ6jyZLngCJM4dQnCZ2x/5FqvdoO4XmczUW6ijbWFNJBvgN7ZwlUghF5uoCuzo9sNH8ajg+Mjv9jD0VH8av9qsVfibDSM94ej9weDk9fdrnfIE/KUPCcxOSYn5C05JWPCiCM/yE/yK0iDL8HX4NsKDXpdzSOyFsH3vy3k7NI=</latexit>

�2

barrier

✓

Fig. 8. Strengthening the flushopt instruction.

2.1.6 Strengthening flushopt. Given the weak

behavior of the flushopt instruction in the

pending stage, we need to combine it with other

instructions such as the store fence sfence in-
struction. The sfence and flushopt combine

together to enforce persistence in a given order

as follows. The sfence instruction generates

the message sf in the pending buffer. The sf
message disappearswhen it reaches the end of the pending buffer. However, it acts as a barrier inside
the pending buffer. Since fo generates a barrier per in the persistency buffer, the two messages can

enforce that persistency between write message occurs in a given order. This is illustrated in the

program in Fig. 8, which we get from the program of Fig. 7 by inserting a store fence before the

flushopt instruction. In γ1, the thread has executed its instructions and output the corresponding

messages in its pending buffer. In the persistency semantics, the message fox cannot overtake

a write message on the same variable x . Given this, and the fact that the message sf cannot be

re-ordered with any other messages in the pending buffer means that the messages move form the

pending to the persistency buffer in the order shown in γ2. Hence the addition of the sfence after

the flushoptx has enforced that writes persist in the same order as they are issued by the thread.

x1y1

flush cannot be re-
ordered with writes

�1
<latexit sha1_base64="+hdX5BeiUR0JHLVf08XwAh3PkU0=">AAAC23icbZFLixNBEMc742tdX1nFk5fBIHiQMJN96W3RixdhRbO7kBlCT08labYfQ3eNcWjm5E28+gG8Kvh9/Db2TIbFxBQ0/edfv6Krq7JCcItR9KcXXLt+4+atndu7d+7eu/+gv/fwzOrSMBgzLbS5yKgFwRWMkaOAi8IAlZmA8+zyTZM//wTGcq0+YlVAKulc8RlnFL017T9OMi1yW0l/uWROpaTTuJ72B9EwaiP8X8SdGJAuTqd7vd9JrlkpQSET1NpJHBWYOmqQMwH1blJaKCi7pHOYeKmoBJu6tv86fOadPJxp44/CsHX/rXBU2qZFT0qKC7uZa8xtuUmJs5ep46ooERRbPTQrRYg6bIYR5twAQ1F5QZnhvteQLaihDP3I1l7JMrn2CfdOfWiH9sKipKYyuU8rWDLtJ6jyZLngCJM4dQnCZ2x/5FqvdoO4XmczUW6ijbWFNJBvgN7ZwlUghF5uoCuzo9sNH8ajg+Mjv9jD0VH8av9qsVfibDSM94ej9weDk9fdrnfIE/KUPCcxOSYn5C05JWPCiCM/yE/yK0iDL8HX4NsKDXpdzSOyFsH3vy3k7NI=</latexit>

�2
<latexit sha1_base64="Wn7+V4CSytlb07Eht2prRakkIyk=">AAAC23icbZFLixNBEMc742tdX1nFk5fBIHiQkJl96W3RixdhRbO7kBlCT08labYfQ3eNcWjm5E28+gG8Kvh9/Db2TIbFxBQ0/edfv6Krq7JCcIuj0Z9ecO36jZu3dm7v3rl77/6D/t7DM6tLw2DMtNDmIqMWBFcwRo4CLgoDVGYCzrPLN03+/BMYy7X6iFUBqaRzxWecUfTWtP84ybTIbSX95ZI5lZJO43raH4yGozbC/0XUiQHp4nS61/ud5JqVEhQyQa2dRKMCU0cNciag3k1KCwVll3QOEy8VlWBT1/Zfh8+8k4czbfxRGLbuvxWOStu06ElJcWE3c425LTcpcfYydVwVJYJiq4dmpQhRh80wwpwbYCgqLygz3PcasgU1lKEf2dorWSbXPuHeqQ/t0F5YlNRUJvdpBUum/QRVniwXHGESpS5B+Iztj1zr1W4Q1etsJspNtLG2kAbyDdA7W7gKhNDLDXRldnS74cMoPjg+8os9jI+iV/tXi70SZ/Ew2h/G7w8GJ6+7Xe+QJ+QpeU4ickxOyFtySsaEEUd+kJ/kV5AGX4KvwbcVGvS6mkdkLYLvfwEwRuzT</latexit>

flx
x:=1

y:=1

rec: (x = 1)
) (y = 1)

✓
flush x

0
0

0
0x1y1 perx

✓

Fig. 9. Strengthening the flushopt instruction.

Another way to tackle the weakness of the

flushopt instruction is to replace with the stronger

flush instruction flushoptx , which generates a mes-

sage flx (Fig. 9). The latter cannot be overtaken by

write instructions and generates a barrier message

perx in the persistency buffer, thus enforcing the

correct order of persistency.

2.1.7 Overtaking Other Instructions. In the program of Fig. 10, the write instruction z:=1 can persist
before y := 1 (both issued by the thread ϕ), only if the instruction flushopty overtakes the write
instruction x:=1 (both issued by the thread θ). The explanation is as follows. In order for the instruc-

tion z:=1 to execute (and persist), we need the write messages generated by the write instructions

to cross from the pending stage to the persistency stage in the order y1, x1, x2, and finally z1.

Proc. ACM Program. Lang., Vol. , No. POPL, Article . Publication date: January 2021.

Deciding Reachability under Persistent x86-TSO 9

0

0
0

x1sfx2 foy

y1

0

0
0

x1sfx2

y1
pery

0

0
0x1x2z1 y1

�1
<latexit sha1_base64="+hdX5BeiUR0JHLVf08XwAh3PkU0=">AAAC23icbZFLixNBEMc742tdX1nFk5fBIHiQMJN96W3RixdhRbO7kBlCT08labYfQ3eNcWjm5E28+gG8Kvh9/Db2TIbFxBQ0/edfv6Krq7JCcItR9KcXXLt+4+atndu7d+7eu/+gv/fwzOrSMBgzLbS5yKgFwRWMkaOAi8IAlZmA8+zyTZM//wTGcq0+YlVAKulc8RlnFL017T9OMi1yW0l/uWROpaTTuJ72B9EwaiP8X8SdGJAuTqd7vd9JrlkpQSET1NpJHBWYOmqQMwH1blJaKCi7pHOYeKmoBJu6tv86fOadPJxp44/CsHX/rXBU2qZFT0qKC7uZa8xtuUmJs5ep46ooERRbPTQrRYg6bIYR5twAQ1F5QZnhvteQLaihDP3I1l7JMrn2CfdOfWiH9sKipKYyuU8rWDLtJ6jyZLngCJM4dQnCZ2x/5FqvdoO4XmczUW6ijbWFNJBvgN7ZwlUghF5uoCuzo9sNH8ajg+Mjv9jD0VH8av9qsVfibDSM94ej9weDk9fdrnfIE/KUPCcxOSYn5C05JWPCiCM/yE/yK0iDL8HX4NsKDXpdzSOyFsH3vy3k7NI=</latexit>

�2
<latexit sha1_base64="Wn7+V4CSytlb07Eht2prRakkIyk=">AAAC23icbZFLixNBEMc742tdX1nFk5fBIHiQkJl96W3RixdhRbO7kBlCT08labYfQ3eNcWjm5E28+gG8Kvh9/Db2TIbFxBQ0/edfv6Krq7JCcIuj0Z9ecO36jZu3dm7v3rl77/6D/t7DM6tLw2DMtNDmIqMWBFcwRo4CLgoDVGYCzrPLN03+/BMYy7X6iFUBqaRzxWecUfTWtP84ybTIbSX95ZI5lZJO43raH4yGozbC/0XUiQHp4nS61/ud5JqVEhQyQa2dRKMCU0cNciag3k1KCwVll3QOEy8VlWBT1/Zfh8+8k4czbfxRGLbuvxWOStu06ElJcWE3c425LTcpcfYydVwVJYJiq4dmpQhRh80wwpwbYCgqLygz3PcasgU1lKEf2dorWSbXPuHeqQ/t0F5YlNRUJvdpBUum/QRVniwXHGESpS5B+Iztj1zr1W4Q1etsJspNtLG2kAbyDdA7W7gKhNDLDXRldnS74cMoPjg+8os9jI+iV/tXi70SZ/Ew2h/G7w8GJ6+7Xe+QJ+QpeU4ickxOyFtySsaEEUd+kJ/kV5AGX4KvwbcVGvS6mkdkLYLvfwEwRuzT</latexit>

position of
 without re-ordering

pery

�3

x:=1

x:=2

y:=1

a:=x

z:=1

rec: (z = 1)) y 2 {0,1}

✓ �

b:=xsfence

mfence

flushopty

if (a==0)
and (b==2)

�

✓

Fig. 10. flushopt overtaking other instructions.

To see this, we make the following obser-

vations:

• x1 and x2 are in the same pend-

ing buffer and hence they cannot be re-

ordered.

• The condition (a==0) and (b==2)
implies that the messages x1 and x2 must

reach the persistency buffer between the

time points where ϕ executes the read

instructions a:=x and b:=x.
• The memory fence instruction mfence can be executed only when the pending buffer of ϕ

is empty, and hence the message y1 reaches the persistency stage before the instruction a:=x is
executed.

• The thread write instruction z:=1 is executed after the read instruction b:=x, and hence also

the message z1 is put in the pending buffer after the execution of b:=x.
Let us now consider two cases, namely (i) foy overtakes x1. (ii) foy does not overtake x1. Case (i)

is depicted in Fig. 10, where foy crosses first to the persistency buffer and transforms to the barrier

pery (the transition from γ1 to γ2). Afterwards the barrier can be removed from the buffer and the

rest of the messages can cross to the persistency buffer in the above mentioned order. Since write

messages on different variables can be re-ordered in the persistency buffer, the message z1 can
persist before y1. In case (ii), since the message sf acts as a barrier (as explained in Sec. 2.1.6), it

prevents the message x2 from being re-ordered with foy , so foy will enter the persistency buffer

between x1 and x2 . Consequently, as indicated in Fig. 10, the barrier pery , created by foy , will
separate z1 from y1, which means that z1 cannot persist before y1. Notice that, in this example, the

order in which two writes in the thread ϕ persist depends on re-orderings of instructions in θ .

y1 fox
1 fo

y
1x1fo

y
2fox

2 x2 sfy2sf

y1fox
1 fo

y
1x1fo

y
2fox

2 x2 sfy2sf

y3

y3

y1fox
1 fo

y
1 x1fo

y
2fox

2 x2 sfy2sf y3

fl
y
3

fl
y
3

fl
y
3 y1 x1x2 per

y
1per

y
2

B1
to the

persistency
stage

pending
stage

from
the

 program

B0
2

B2

input sequence

possible
output

sequences

Fig. 11. Re-ordering wrt. flushopt.

2.1.8 Unbounded Re-orderings. In general, the

fox instruction can be involved in several types

of re-orderings inside the pending buffer. First,

it can overtake a write or a fo message on any

variable different from x , and also overtake any
other fo message. Second, it may be overtaken
by any write or fo message, regardless of the

variable, and by a fl message on any variable

different from x . For example, assume that a program has a run in which messages are transferred

from the program to the pending buffer in the sequence shown
2
in B1 of Fig. 11. Using the re-

orderings shown in the figure, the persistency semantics allows the messages to cross to the

persistency stage in different orders, e.g., in the order B′
2
, or B2. Since the pending buffers are

unbounded, there is a priori no bound on the number of orderings that may occur before messages

are transferred to the persistency stage, along a given run of the program.

2.1.9 The Reachability Problem. We are interested in the reachability problem. Given a program,

together with a recovery procedure, we would like to check whether the program violates a given

assertion, characterized as a set of bad thread (process) states. Our goal is to prove the decidability

of the reachability problem by applying the framework of Well-Structured Transition Systems

(WSTS), instantiated to the case of (finite-state) threads operating on (unbounded) FIFO buffers. The

application of the framework to the persistency semantics is not easy. Classically, when applying

2
To distinguish the different occurrences of fo and fl messages, we mark them by subscripts in the figure.

Proc. ACM Program. Lang., Vol. , No. POPL, Article . Publication date: January 2021.

10 P. A. Abdulla, M. F. Atig, A. Bouajjani, K N. Kumar, and P. Saivasan

the framework of WSTS to systems with FIFO-like data structures, we expect the system to satisfy

four “criteria of well-behavior”, that are not satisfied by the persistency semantics, namely:

(1) Monotonicity. The behavior of the system should be monotone wrt. the standard sub-word

ordering on FIFO buffers. We give the formal definition of monotonicity in Sec. 7. Roughly

speaking, it means that if we insert an additional message in a given buffer then, from the

new (larger) configuration, the system is able to perform at least the same sequence of

transitions as from the old (smaller) configuration. The behavior of the persistency semantics

is not monotone. For instance, inserting flush and fence messages in the buffers will restrict

the re-ordering of messages, and hence may prevent the the system from performing the

same sequence of transitions. For instance, inserting an sf message in the pending buffer

of configuration γ1 in Fig. 7, between the messages y1 and fox will prevent the re-ordering

indicated in the figure, and thus restrict the behavior of the program.

(2) Locality. The system should perform its operations locally on each buffer, without interaction

with the rest of the buffers. As explained above, read operations are not local in the persistency

semantics due to the memory hierarchy.

(3) FIFO. The buffers should not re-order messages. As we saw, both write messages (in the

persistency buffer), and flush messages (in the pending buffers) can be re-ordered.

(4) Normality. The buffers should only allow normal (standard) operations, which can be:

• Update operations, i.e., enqueueing and dequeueing messages.

• Other operations, provided that they can be implemented using a finite data structure.

Typical examples of such operations are reading the latest write operation by a thread on a

variable, reading the value of a variable in the shared memory, or removing a distinguished

message from inside (not necessarily at the head of) a buffer.

In the persistency semantics, there are several examples where dequeueing is not made from

the head of the buffer. This is a side-effect of the fact that messages overtake each other. For

instance, in Fig. 5, the write message y1 can be dequeued from the persistency buffer in γ2.

Necessity vs Sufficiency of the Criteria of Well-Behavior. We emphasize these criteria are sufficient

rather than necessary conditions for obtaining decidability. In particular, they help bring us close

to "FIFO-like" queues with monotonic behaviors which can be handled in the WSTS framework.

2.2 The Basic Scheduling Semantics
The basic scheduling semantics satisfies the criteria of locality and FIFO, but not monotonicity.

The operational model, whose architecture, illustrated in Fig. 2, is equivalent to the persistency

semantics wrt. the reachability problem. As in the persistency semantics, it consists of a pending
and a persistency stage. These stages implement features to satisfy the criteria of well-behavior

(except monotonicity). To ensure locality of read operations, we add an intermediate memory to the

pending stage (Sec. 2.2.2). To simulate the re-ordering of write instructions in the persistency stage,

we replace the (only) persistency buffer, by a two-stage FIFO-buffer system (Sec. 2.2.3). First, we

have a set of FIFO buffers, one for each variable x , called the x-initial persistency buffer; followed
by a single FIFO buffer, called the final persistency buffer. We get rid of re-orderings caused by

per messages (recall that a per message can overtake write messages on different variables), by

eliminating the per message altogether from the semantics. Instead, we put an extra condition that

constrains how we remove fo messages from the pending buffers (Sec. 2.2.4). Getting rid of per
messages has the additional advantage that it eliminates one source of non-monotonicity in the

semantics (recall that permessages block certain re-orderings). To simulate the re-ordering of flush

messages in the pending buffers, we use a scheduling protocol that regulates the flow of messages to

the persistency stage. The protocol uses two finite sets of Boolean flags, called the delay and promise

Proc. ACM Program. Lang., Vol. , No. POPL, Article . Publication date: January 2021.

Deciding Reachability under Persistent x86-TSO 11

flags, that fully capture the effect of (unbounded numbers of) flush message re-orderings, without

losing precision (Secs. 2.2.6, and 2.2.7).

persistent
memory

pending
buffers

✓

�
Promise

2
3✓x�y

x1 sf

y1fox

initial persistent
 buffers

final persistent
 bufferx

y2

x4 0
4

y
<latexit sha1_base64="tas9Nc9h7E+nNCCpyO5f9u4WzCA=">AAAC0nicbZFLb9QwEMe94VXKoy0cuUSskDigVbJ9wa2CSy9IRXTbSptQOc5s16ofkT1hCVYOqNd+gF7hA/B9+DY42ahilx3J8l//+Y08nskKwS1G0Z9ecOfuvfsP1h6uP3r85OnG5tazE6tLw2DEtNDmLKMWBFcwQo4CzgoDVGYCTrPLD03+9CsYy7U6xqqAVNILxSecUfTWlyTTIreV9Jer6vPNfjSI2gj/F3En+qSLo/Ot3u8k16yUoJAJau04jgpMHTXImYB6PSktFJRd0gsYe6moBJu6tu06fOWdPJxo44/CsHX/rXBU2qY3T0qKU7uca8xVuXGJk7ep46ooERSbPzQpRYg6bGYQ5twAQ1F5QZnhvteQTamhDP2kFl7JMrnwCfdRfW6n9caipKYyuU8rmDEtJVV5MptyhHGcugThG7Y/cq1Xu35cL7KZKJfRxlpBGsiXQO+s4CoQQs+W0LnZ0e2Gd+Phzv6eX+zucC9+t3272FtxMhzE24Php53+wftu12vkBXlJXpOY7JMDckiOyIgwYsgN+Ul+BcfB9+BHcDVHg15X85wsRHD9F4WW6eU=</latexit>

Delay
2.2.1 Configurations. The figure (on the right) illustrates a

configuration in the scheduling semantics with two threads θ
and ϕ, and two shared variables x and y. The pending buffers

contain the same messages as in Sec. 2.1.1. The values of x and

y in the intermediate memory are 2 and 3; and in the persistent

memory 0 and 4, respectively. The initial persistency buffer of

x is empty, while that of y contains a single write message assigning 2 to y. The final persistency
buffer contains a single write message, assigning 4 to x . The modules Promise and Delay are sets

of Boolean flags, one for each variable and thread. In the figures, we show the sets of flags that are

true. In the figure, the promise flag of ϕ and y is true, while all the other promise flags are false.

Similarly, the delay flag of the thread θ and x is true, while all the other delay flags are false.

2.2.2 Intermediate Memory. We add an explicit intermediate memory after the pending buffers.

When a write message reaches the end of the pending buffer of a thread θ , it can non-

deterministically be deleted and used to update the intermediate memory. When θ performs

a read instruction on a variable x , and its pending buffer does not contain write messages on x , then
θ fetches the value of x from the intermediate memory without consulting the persistency stage.

This makes read instructions local to the pending stage, and eliminates the hierarchical structure

of the memory. In the figure of Sec. 2.2.1 the thread θ sees the value 1 of x (from its pending buffer),

resp. 3 of y (from the intermediate memory). The thread ϕ sees the values 2 (from the intermediate

memory) resp. 1 (from its pending buffer).

�1
<latexit sha1_base64="+hdX5BeiUR0JHLVf08XwAh3PkU0=">AAAC23icbZFLixNBEMc742tdX1nFk5fBIHiQMJN96W3RixdhRbO7kBlCT08labYfQ3eNcWjm5E28+gG8Kvh9/Db2TIbFxBQ0/edfv6Krq7JCcItR9KcXXLt+4+atndu7d+7eu/+gv/fwzOrSMBgzLbS5yKgFwRWMkaOAi8IAlZmA8+zyTZM//wTGcq0+YlVAKulc8RlnFL017T9OMi1yW0l/uWROpaTTuJ72B9EwaiP8X8SdGJAuTqd7vd9JrlkpQSET1NpJHBWYOmqQMwH1blJaKCi7pHOYeKmoBJu6tv86fOadPJxp44/CsHX/rXBU2qZFT0qKC7uZa8xtuUmJs5ep46ooERRbPTQrRYg6bIYR5twAQ1F5QZnhvteQLaihDP3I1l7JMrn2CfdOfWiH9sKipKYyuU8rWDLtJ6jyZLngCJM4dQnCZ2x/5FqvdoO4XmczUW6ijbWFNJBvgN7ZwlUghF5uoCuzo9sNH8ajg+Mjv9jD0VH8av9qsVfibDSM94ej9weDk9fdrnfIE/KUPCcxOSYn5C05JWPCiCM/yE/yK0iDL8HX4NsKDXpdzSOyFsH3vy3k7NI=</latexit>

�3
<latexit sha1_base64="gJA7vz0k6vpsGnjc5GyWTeaJa6c=">AAAC23icbZFLixNBEMc742tdX1nFk5fBIHiQkEn24d4WvXgRVjS7C5kh9PRUkmb7MXTXmB2aOXkTr34Arwp+H7+NPZNhMTEFTf/516/o6qo0F9ziYPCnE9y4eev2nZ27u/fuP3j4qLv3+MzqwjAYMy20uUipBcEVjJGjgIvcAJWpgPP08m2dP/8MxnKtPmGZQyLpXPEZZxS9Ne0+jVMtMltKf7l4TqWk01E17fYG/UET4f8iakWPtHE63ev8jjPNCgkKmaDWTqJBjomjBjkTUO3GhYWcsks6h4mXikqwiWv6r8IX3snCmTb+KAwb998KR6WtW/SkpLiwm7na3JabFDh7nTiu8gJBsdVDs0KEqMN6GGHGDTAUpReUGe57DdmCGsrQj2ztlTSVa59w79XHZmivLEpqSpP5tIIl036CKouXC44wiRIXI1xh8yPXeJXrRdU6m4piE62tLaSBbAP0zhauBCH0cgNdmS3dbPggGu4fHfrFHgwPo+PR9WKvxdmwH436ww/7vZM37a53yDPynLwkETkiJ+QdOSVjwogjP8hP8itIgi/B1+DbCg06bc0TshbB978yqOzU</latexit>

�2
<latexit sha1_base64="Wn7+V4CSytlb07Eht2prRakkIyk=">AAAC23icbZFLixNBEMc742tdX1nFk5fBIHiQkJl96W3RixdhRbO7kBlCT08labYfQ3eNcWjm5E28+gG8Kvh9/Db2TIbFxBQ0/edfv6Krq7JCcIuj0Z9ecO36jZu3dm7v3rl77/6D/t7DM6tLw2DMtNDmIqMWBFcwRo4CLgoDVGYCzrPLN03+/BMYy7X6iFUBqaRzxWecUfTWtP84ybTIbSX95ZI5lZJO43raH4yGozbC/0XUiQHp4nS61/ud5JqVEhQyQa2dRKMCU0cNciag3k1KCwVll3QOEy8VlWBT1/Zfh8+8k4czbfxRGLbuvxWOStu06ElJcWE3c425LTcpcfYydVwVJYJiq4dmpQhRh80wwpwbYCgqLygz3PcasgU1lKEf2dorWSbXPuHeqQ/t0F5YlNRUJvdpBUum/QRVniwXHGESpS5B+Iztj1zr1W4Q1etsJspNtLG2kAbyDdA7W7gKhNDLDXRldnS74cMoPjg+8os9jI+iV/tXi70SZ/Ew2h/G7w8GJ6+7Xe+QJ+QpeU4ickxOyFtySsaEEUd+kJ/kV5AGX4KvwbcVGvS6mkdkLYLvfwEwRuzT</latexit>

0
0

0
0

x1y1
✓

1
1

0
0

x1

y1

1
1

0
0x1 y1

2.2.3 Simulating Write Re-orderings. Re-ordering of write messages

is simulated by letting these messages move non-deterministically

from the initial persistency buffers to the final persistency buffer.

The figure (on the right) describes how this is done in case of the

program of Sec. 2.1.3. Write instructions are appended to the end of

the pending buffer belonging to the thread (configuration γ1). The
pending stage can non-deterministically select a write message at

the head of some pending buffer and, at the same time, remove it,

use it to update the intermediate memory, and move it to the persistency stage. A write messages

on a variable x is forwarded to the x-initial persistency buffer (configuration γ2). Messages are

selected non-deterministically from the heads of the different initial buffers, and transferred to

the final persistency buffer. This allows to re-order the write messages x1 and y1 (configuration
γ3). This example might give the impression that the final persistency buffer is not needed, since

we can achieve the same effect by simply letting the messages from the initial buffers to update

the persistent memory directly, without making them pass through the final buffer. However, as

described in Sec. 2.2.5, we need the final buffer to avoid using the per messages in the semantics.

2.2.4 Delaying the flushopt Instruction. We implement a mechanism to allow other instructions

to overtake the flushopt instruction without compromising the FIFO policy of the pending buffer.

Our solution is to delay a message fox that is at the head of the buffer. To capture delays, we use a

Boolean flag, called the Delay-flag, for each thread and variable. If the x-Delay-flag is true for a
given a thread θ , then this tells us that we are currently delaying (at least) one fox in θ .

Proc. ACM Program. Lang., Vol. , No. POPL, Article . Publication date: January 2021.

12 P. A. Abdulla, M. F. Atig, A. Bouajjani, K N. Kumar, and P. Saivasan

�2

�3

�1
<latexit sha1_base64="+hdX5BeiUR0JHLVf08XwAh3PkU0=">AAAC23icbZFLixNBEMc742tdX1nFk5fBIHiQMJN96W3RixdhRbO7kBlCT08labYfQ3eNcWjm5E28+gG8Kvh9/Db2TIbFxBQ0/edfv6Krq7JCcItR9KcXXLt+4+atndu7d+7eu/+gv/fwzOrSMBgzLbS5yKgFwRWMkaOAi8IAlZmA8+zyTZM//wTGcq0+YlVAKulc8RlnFL017T9OMi1yW0l/uWROpaTTuJ72B9EwaiP8X8SdGJAuTqd7vd9JrlkpQSET1NpJHBWYOmqQMwH1blJaKCi7pHOYeKmoBJu6tv86fOadPJxp44/CsHX/rXBU2qZFT0qKC7uZa8xtuUmJs5ep46ooERRbPTQrRYg6bIYR5twAQ1F5QZnhvteQLaihDP3I1l7JMrn2CfdOfWiH9sKipKYyuU8rWDLtJ6jyZLngCJM4dQnCZ2x/5FqvdoO4XmczUW6ijbWFNJBvgN7ZwlUghF5uoCuzo9sNH8ajg+Mjv9jD0VH8av9qsVfibDSM94ej9weDk9fdrnfIE/KUPCcxOSYn5C05JWPCiCM/yE/yK0iDL8HX4NsKDXpdzSOyFsH3vy3k7NI=</latexit>

1
0

0
0

x1y1
✓

fox

1
0

x1y1 fox

✓x

1
0

x1fox

✓x

0
0

0
0

y1

In the figure (on the right) we show how this allows us to simulate

the scenario of Sec. 2.1.5. In γ1, the thread θ has executed all its three

instructions. The message x1 has already crossed to the x-initial persis-
tency buffer. When the fox message is fetched from the pending buffer,

we will not let it cross immediately to the persistency stage. Instead, we

update the corresponding Delay-flag to true (configuration γ2). This
allows the operation to be potentially overtaken by other operations.

The message y1 is still in the pending buffer. In γ3, the message y1

has crossed to the y-initial persistency buffer, thus overtaking the fox

message, and also from there it has crossed to the final persistency buffer, thus persisting before

the message x1. Later in the run, the fox message can be released, i.e., be allowed to take effect. This
is done by resetting the x-Delay-flag to false (under a certain condition described in Sec. 2.2.5).

�2

�1
<latexit sha1_base64="+hdX5BeiUR0JHLVf08XwAh3PkU0=">AAAC23icbZFLixNBEMc742tdX1nFk5fBIHiQMJN96W3RixdhRbO7kBlCT08labYfQ3eNcWjm5E28+gG8Kvh9/Db2TIbFxBQ0/edfv6Krq7JCcItR9KcXXLt+4+atndu7d+7eu/+gv/fwzOrSMBgzLbS5yKgFwRWMkaOAi8IAlZmA8+zyTZM//wTGcq0+YlVAKulc8RlnFL017T9OMi1yW0l/uWROpaTTuJ72B9EwaiP8X8SdGJAuTqd7vd9JrlkpQSET1NpJHBWYOmqQMwH1blJaKCi7pHOYeKmoBJu6tv86fOadPJxp44/CsHX/rXBU2qZFT0qKC7uZa8xtuUmJs5ep46ooERRbPTQrRYg6bIYR5twAQ1F5QZnhvteQLaihDP3I1l7JMrn2CfdOfWiH9sKipKYyuU8rWDLtJ6jyZLngCJM4dQnCZ2x/5FqvdoO4XmczUW6ijbWFNJBvgN7ZwlUghF5uoCuzo9sNH8ajg+Mjv9jD0VH8av9qsVfibDSM94ej9weDk9fdrnfIE/KUPCcxOSYn5C05JWPCiCM/yE/yK0iDL8HX4NsKDXpdzSOyFsH3vy3k7NI=</latexit>

1
0

0
0

x1y1
✓

1
0

0
0x1

y1

sf

✓x

2.2.5 Removing the per Messages. To simulate the effect of perx

messages, we require that a delayed message fox in thread θ can be

released, only if the x-initial persistency buffer is empty. In the sequel,

we call this operation emptiness testing. In this manner, we create an

implicit barrier without the need to explicitly adding the message

perx (as we did in the persistency semantics). This is illustrated in

the figure (on the right) which simulates the scenario of Sec. 2.1.6. The configuration γ1 is similar

to the configuration γ2 in Sec. 2.2.4, except that the thread θ has now also executed the sfence
instruction, and put the associated message sf in its pending buffer. The fact that store fences cannot
overtake flushopt instructions, is modelled by forbidding the removal of sf from the buffer until

the delay is released. Finally, as described above, the delay can only be released when the x-initial
persistency buffer becomes empty, i.e., after the message x1 has moved to the final persistency

buffer (configuration γ2). Since the latter is a FIFO buffer, the message y1 cannot catch up with x1,
and hence the latter persists first.

2.2.6 Promising the flushopt Instruction. Similarly to delays, we implement a mechanism to allow

flushopt overtake other instructions while keeping the FIFO policy of the pending buffers. For

that, we allow a thread θ to promise that it will perform a flushoptx instruction. Concretely, we

insert the message fox at the end the pending buffer of θ , and set the x-Promise-flag of θ to true.

y1
2
1
0

0
0
0

x1

x2

y1
2
1
1

0
0
0

x1

x2

z1

✓y
0
0
0

0
0
0

x1 foy

0
0
0

0
0
0

x1 foy

✓y
0
0
0

0
0
0

foy

y1
2
1
0

0
0
0

x1

x2

z1

�1
<latexit sha1_base64="+hdX5BeiUR0JHLVf08XwAh3PkU0=">AAAC23icbZFLixNBEMc742tdX1nFk5fBIHiQMJN96W3RixdhRbO7kBlCT08labYfQ3eNcWjm5E28+gG8Kvh9/Db2TIbFxBQ0/edfv6Krq7JCcItR9KcXXLt+4+atndu7d+7eu/+gv/fwzOrSMBgzLbS5yKgFwRWMkaOAi8IAlZmA8+zyTZM//wTGcq0+YlVAKulc8RlnFL017T9OMi1yW0l/uWROpaTTuJ72B9EwaiP8X8SdGJAuTqd7vd9JrlkpQSET1NpJHBWYOmqQMwH1blJaKCi7pHOYeKmoBJu6tv86fOadPJxp44/CsHX/rXBU2qZFT0qKC7uZa8xtuUmJs5ep46ooERRbPTQrRYg6bIYR5twAQ1F5QZnhvteQLaihDP3I1l7JMrn2CfdOfWiH9sKipKYyuU8rWDLtJ6jyZLngCJM4dQnCZ2x/5FqvdoO4XmczUW6ijbWFNJBvgN7ZwlUghF5uoCuzo9sNH8ajg+Mjv9jD0VH8av9qsVfibDSM94ej9weDk9fdrnfIE/KUPCcxOSYn5C05JWPCiCM/yE/yK0iDL8HX4NsKDXpdzSOyFsH3vy3k7NI=</latexit>

�4

�5

�6

�2
<latexit sha1_base64="Wn7+V4CSytlb07Eht2prRakkIyk=">AAAC23icbZFLixNBEMc742tdX1nFk5fBIHiQkJl96W3RixdhRbO7kBlCT08labYfQ3eNcWjm5E28+gG8Kvh9/Db2TIbFxBQ0/edfv6Krq7JCcIuj0Z9ecO36jZu3dm7v3rl77/6D/t7DM6tLw2DMtNDmIqMWBFcwRo4CLgoDVGYCzrPLN03+/BMYy7X6iFUBqaRzxWecUfTWtP84ybTIbSX95ZI5lZJO43raH4yGozbC/0XUiQHp4nS61/ud5JqVEhQyQa2dRKMCU0cNciag3k1KCwVll3QOEy8VlWBT1/Zfh8+8k4czbfxRGLbuvxWOStu06ElJcWE3c425LTcpcfYydVwVJYJiq4dmpQhRh80wwpwbYCgqLygz3PcasgU1lKEf2dorWSbXPuHeqQ/t0F5YlNRUJvdpBUum/QRVniwXHGESpS5B+Iztj1zr1W4Q1etsJspNtLG2kAbyDdA7W7gKhNDLDXRldnS74cMoPjg+8os9jI+iV/tXi70SZ/Ew2h/G7w8GJ6+7Xe+QJ+QpeU4ickxOyFtySsaEEUd+kJ/kV5AGX4KvwbcVGvS6mkdkLYLvfwEwRuzT</latexit>

�3
<latexit sha1_base64="gJA7vz0k6vpsGnjc5GyWTeaJa6c=">AAAC23icbZFLixNBEMc742tdX1nFk5fBIHiQkEn24d4WvXgRVjS7C5kh9PRUkmb7MXTXmB2aOXkTr34Arwp+H7+NPZNhMTEFTf/516/o6qo0F9ziYPCnE9y4eev2nZ27u/fuP3j4qLv3+MzqwjAYMy20uUipBcEVjJGjgIvcAJWpgPP08m2dP/8MxnKtPmGZQyLpXPEZZxS9Ne0+jVMtMltKf7l4TqWk01E17fYG/UET4f8iakWPtHE63ev8jjPNCgkKmaDWTqJBjomjBjkTUO3GhYWcsks6h4mXikqwiWv6r8IX3snCmTb+KAwb998KR6WtW/SkpLiwm7na3JabFDh7nTiu8gJBsdVDs0KEqMN6GGHGDTAUpReUGe57DdmCGsrQj2ztlTSVa59w79XHZmivLEpqSpP5tIIl036CKouXC44wiRIXI1xh8yPXeJXrRdU6m4piE62tLaSBbAP0zhauBCH0cgNdmS3dbPggGu4fHfrFHgwPo+PR9WKvxdmwH436ww/7vZM37a53yDPynLwkETkiJ+QdOSVjwogjP8hP8itIgi/B1+DbCg06bc0TshbB978yqOzU</latexit>

In the figure (on the right), we simu-

late the scenario of Sec. 2.1.7 in the

scheduling semantics. In the config-

uration γ1, the thread has made a

promise on y. As long as the flag is

set, the thread is only allowed to per-

form instructions that can be over-

taken by the instruction flushopty.
For instance, in γ1, the thread θ is al-

lowed to perform a write instruction

on x if such an instruction is available, but not a write instruction on y. In γ2, the thread has per-

formed its first instruction, i.e., x:=1. Notice that the promise has allowed the instruction flushopty
to overtake x:=1. Next, θ performs the flushopty instruction which allows to discharge the promise.

This is indicated by resetting the y-Promise-flag to false (configuration γ3). Now, θ can perform

the rest of its instructions, one after one, and store the corresponding messages in its pending

buffer, while thread ϕ can execute its first instruction y:=1, and store the corresponding message

in its pending buffer. In the next steps, the two threads propagate their buffer contents to initial

Proc. ACM Program. Lang., Vol. , No. POPL, Article . Publication date: January 2021.

Deciding Reachability under Persistent x86-TSO 13

persistency buffers and, in the case of the message x1 further to the final persistency buffer, while

updating the intermediate memory accordingly (configuration γ4). Now, the thread ϕ executes the

instruction z:=1 (configuration γ5). The message z1 moves (in two steps) to the final persistency

buffer (configuration γ6). The instruction z:=1 will thus persist before y:=1.

2.2.7 Unbounded Re-Orderings. We explain how the scheduling semantics
3
captures the scenario

where multiple re-orderings involving fox messages in the persistency semantics (Sec. 2.1.8). In fact,

the scheduling semantics forbids such re-orderings. Instead, it uses the Promise- and Delay-flags
to implement a scheduling protocol that eliminates re-orderings but still maintains exactness wrt.

the reachability problem. For any input sequence of messages provided by the program to the

pending stage, the semantics guarantees that it generates at least one output sequence of write
messages that follows the protocol and crosses from the pending stage to the persistency stage. We

will define the protocol in several steps: (i) We divide the input sequence, wrt. each variable x , into
contiguous segments which we call x-zones. (ii) We show that the persistency semantics satisfies

an attraction property: for any input sequence of messages to the pending buffer, it is possible

to generate an output sequence such that, inside each x-zone, all occurrences of the fox message

are consecutive (they are "attracted" to each other inside the zone.) (iii) The scheduling semantics

produces the effect of at most one copy of the perx message per x-zone, exploiting the fact that
consecutive occurrences of the perx can be merged to a single copy without affecting the set of

reachable configurations. (iv) We show that the scheduling protocol needs to be applied only to

one active zone at a time, and hence one Promise-flag and one Delay-flag per variable and thread

suffices to ensure exactness. To illustrate these ideas, we consider Fig. 12. The sequences B1 and

B2 are identical to the input and output sequences in the example of Sec. 2.1.8. Given the output

sequence B2, the sequence of messages that will cross to the persistency buffer is given by D2.

y1fox
1 x1fo

y
2x2 sfsf y3

fl
y
3

fox
2 fo

y
1

y-sub-zone y-sub-zone

y2

y-sub-zone y-sub-zone

x-sub-zone x-sub-zone

pivot

x-zone

y-zone

y-attractorx-attractor

pivot x-sub-zone

Zones. For a sequence of messages B and a variable x , we
say that B is an x-zone if it contains only messages that can

overtake fox . Each x-zone is divided into a sequence of x-
sub-zones. An x-sub-zone contains only messages that can be

overtaken by fox . This means that each pair of x-sub-zones
is separated by a write message on x . The pivot x-sub-zone is the left-most x-sub-zone containing
an occurrence of the fox message. The figure (on the right) shows the sequence B2 from Sec. 2.1.8.

The Figure shows an x-zone, with three sub-zones, and a y-zone with four sub-zones. The pivot

x-sub-zone is the first one from the left, and pivot y-sub-zone is the third one from the left.

y1 x1per
y
1

y1fox
1 fo

y
1 x1fo

y
2fox

2 x2 sfy2sf y3
fl

y
3 y1x2y3 per

y
2per

y
3

persistency
stage

pending
stage

y1 x1x2y2 y3 per
y
1per

y
2per

y
3 perx

1 per
x
2

y1 fox
1 fo

y
1x1fo

y
2fox

2 x2 sfy2sf y3fl
y
3

B1
y-attractor y-attractorx-attractor

perx
2perx

1y2 per
y
1 x1

B2

x-attractor

y1fox
1 fo

y
1 x1fo

y
2fox

2 x2 sfy2sf y3fl
y
3

B3

y1
x1y1x1x2y2 y3per

y
3 perx pery

x-attraction point y-attraction point

D4

D3

D2

x-attraction point y-attraction point

y1x1x2 sfy2sf y3fl
y
3 fox foy

B4

attraction

merging

Fig. 12. Zones and uniform runs.

Attraction. The oper-
ation exploits the fact

a message fox can be

re-ordered with any

other message inside

an x-sub-zone, and be

moved to the left any

number of steps inside

the x-zone. It selects

an fox message in the

pivot x-zone, called the attractor, and moves the rest of the fox messages in the whole zone, called

the x-movers, to a position, called the x-attraction point, beside the attractor. In Fig. 12, we apply

3
This sub-section explains applications of the model, using the features already introduced in the previous sub-sections,

rather than adding new features.

Proc. ACM Program. Lang., Vol. , No. POPL, Article . Publication date: January 2021.

14 P. A. Abdulla, M. F. Atig, A. Bouajjani, K N. Kumar, and P. Saivasan

attraction to B2 twice to obtain B3. First, we apply attraction wrt. x where fox
1
is the x-attractor,

and fox
2
is the (only) x-mover; and then we apply attraction wrt. y where fo

y
2
is the y-attractor,

and fo
y
1
is the (only) y-mover. This means that the sequence of messages that will cross to the

persistency buffer is of the form D3. Notice that applying attraction in the pending stage will

change the sequence of messages passing through the persistency buffer in a similar fashion: the

corresponding per messages are attracted to each other, resulting in corresponding attraction

points. (cf. D2 and D3 in Fig. 12). Attraction does not reduce the set of allowed re-orderings of write

messages in the persistency buffer. The reason is that the set of constraints implied by the movers

in their new positions, is identical to the set of constraints implied by the attractor. However, the set

of allowed re-orderings may increase, as the constraints by the movers in their original positions

will now disappear. In D2, the only allowed re-ordering is between x1 and y1 while D3 allows, in

addition, the re-ordering of x2 and y3. This means that applying attraction to an x-zone allows
to reach the same set of persistent memory states as before (but possibly more). Since attraction

corresponds to re-orderings that are always allowed by the persistency semantics, its application

does not comprise precision, as it does not change the set of reachable persistent memory states

(and consequently it does not change the set of reachable configurations).

Merging. Given an input sequence of messages to the persistency stage, the scheduling semantics

produces an output sequence on which it has applied attraction. Notice that the number of fox

messages in an x-zone can still be unbounded. Therefore, the scheduling semantics applies an

additional operation, called merging, which collapses the consecutive copies of the fox resp. perx

message into one copy. Applying compression to B3 and D3 leads to B4 resp. D4. Merging preserves

exactly the set of allowed re-orderings of write messages in the persistency buffer: multiple copies

of perx create an identical barrier as a single copy of perx . In both cases, they prevent later write

messages from overtaking earlier write messages on x . In Fig. 12, the set of re-orderings of write

messages allowed in D3 and D4 are identical.

Compression. The operation consists in applying attraction followed by merging. The net effect

of compression is to collect all the fox messages (and hence also all the perx messages) in the

x-attraction point, and merge them into a single message. For instance, B4 and D4 are compressions

of B2 resp. D2. Compression preserves the set of reachable configurations since both attraction and

merging do.

x1

per
y
1

x1

x1

y1

y1fox
1 fo

y
1x1fo

y
2fox

2 x2 sfy2sf y3fl
y
3

delaydelay

y-promisey-discharge

x-promise

x-discharge

2

1
3

45
6

78

foy

fox

Fig. 13. The scheduling protocol.

Implementing compression in the scheduling semantics.
The scheduling protocol uses Delay- and Promise-flags
to guarantee that at least one compression is generated

for each x-zone. We give a high-level description of the

scheduling protocol using Fig. 13. Suppose that we are

given the input sequence B1 from Fig. 12. We show how the

scheduling semantics allows simulate the output sequence

D4. The indices 1 , . . . , 8 give the order in which the messages leave the buffer. Recall that, in the

scheduling semantics, a write message that reaches the head of a pending buffer will eventually be

forwarded to the persistency stage, while a fo message is used to perform the emptiness checking

operation on the relevant initial persistency buffer (rather than producing a per message). The

main ingredients of the protocol are the following.

• If the next input message cannot overtake the fox message then this signals the start of a new

active x-zone. The previous x-zone will become passive. In Fig.13, the reception of the first message

sf creates both a new active x-zone and a new active y-zone. In particular, several zones may be

active at the same time but at most one per variable.

Proc. ACM Program. Lang., Vol. , No. POPL, Article . Publication date: January 2021.

Deciding Reachability under Persistent x86-TSO 15

• At some point inside the x-zone, the protocol guesses the position of the x-attractor. This is done
by (i) setting the x-Promise-flag to true, and (ii) putting a message fox in the buffer. In Fig. 13, this

is done at position 6 for x and at position 3 for y. A message fox (the x-promise) is inserted after

receiving y3 and before receiving y2, and analogously, a message foy (the y-promise) is inserted

after receiving y1 and before receiving x2. The promises are artificial messages that are inserted

by the semantics, and do not correspond to actual messages received from the thread. In fact, the

promised messages are the only fomessages from the current zones that will be used to perform the

emptiness testing operation. The “actual” fo messages are all deleted either when they generated

or when they reach the head of the pending buffer. Thus, the protocol will test the emptiness of the

initial x-initial persistency buffer at most once for any x-zone. After the promise is made, we are

inside the pivot x-sub-zone, and hence, the thread is not allowed to provide write messages on x ,
until the promise is discharged.

• The fo messages that reach the head of the buffer before the promise is made (fox
1
and fo

y
1
) are

delayed, i.e., they are simply fetched and removed when reaching the head of the buffer, while

setting the corresponding Delay-flag to true (or keeping the value of the flag if already true).

•Write messages are appended and received from the buffer as usual. This means x1 will leave the
buffer first followed by x1.
• The fo’s that are received from the thread after the promise has been made, are all discarded.

However, the very last one is used to discharge the promise, i.e., resetting the corresponding

Promise-flag to false. In our example, fox
2
and fo

y
2
are used to discharge the x- and the y-promise

respectively.

•When the promised message for x reaches the head of the buffer, it is eventually used to check the

emptiness of the x-initial persistency buffer and simultaneously reset the x-Delay-flag to false.
At position 3 , the promised y-message reaches the head of the buffer, can will be used to preform

the emptiness check.

Overall, in our example, has produced the compression B4 (of Fig. 12).

fox
1

make-
promise

discharge-
promise

fox fox

passive
zone

fox

make-
promise

make-
promise

discharge-
promise

Z1Z2
passive

zone
active
zone Z3

sfflx

Handling multiple zones. In general, a pend-

ing buffer may contain several x-zones, sepa-
rated by messages that cannot overtake fox (see
the figure on the right). However, at any point

of time, all these zones will be passive except,

possibly, the left-most one. The reason is that, by construction, we activate a new zone only after

we have made the previous one passive (discharged its promise). The value of the x-promise-flag

is true exactly when the left-most x-zone is active. In such a manner, we can keep track of an

unbounded number of over-takings using two Boolean flags for any thread and variable.

2.3 The Refined Scheduling Semantics
The basic scheduling semantics satisfies the locality and FIFO criteria, but fails to meet the mono-

tonicity criterion. Monotonicity fails exactly in two places, namely the pending buffers, and in the

final persistency buffer. Therefore, we replace these buffers by yet new types of buffers, resulting

in the refined scheduling semantics. The refined scheduling semantics is equivalent to the basic

scheduling semantics up to the reachability problem, and it satisfies the criteria of well-behavior

including monotonicity. This allows us to show the well-structuredness of the entire system.

2.3.1 Load Pending Buffers. There are two sources of non-monotonicity in the pending buffers

of basic scheduling semantics, namely write-non-monotonicity and flush/fence-non-monotonicity.

Proc. ACM Program. Lang., Vol. , No. POPL, Article . Publication date: January 2021.

16 P. A. Abdulla, M. F. Atig, A. Bouajjani, K N. Kumar, and P. Saivasan

x1

fence-non-
monotonicity

x1

write-non-
monotonicity

y1

x2

(a) (b)

y1

flxWrite-non-monotonicity is illustrated in the figure (on the right), where

the pending buffer contains a write message ⟨wr, x, 1⟩ followed by a write
message ⟨wr,y, 1⟩. Inserting an extra write message ⟨wr, x, 2⟩ in between

these two messages in the buffer, as depicted in the figure, would prevent

other threads from observing the intermediate memory state in which

x = 1 and y = 1. An example of flush/fence-non-monotonicity is depicted in the figure, where

inserting an flx message would prevent the message y1 from persisting before x1.

✓

�

thread

thread

to
persistent

stage

load
buffer

✓

load
buffer

intermediate
memory

�

program

pending
stage

Delay

Promise

The purpose of the load-buffer semantics, depicted in

the figure (on the right), is to eliminate the two sources

of non-monotonicity. It is inspired from (but is more in-

volved than) a similar semantics designed to eliminate

write-non-monotonicity in the classical TSO semantics

[Abdulla et al. 2018a]. We replace the pending store

buffers of the threads by pending load buffers. The load
buffers contain pending read messages, i.e., values that will potentially be used by forthcoming

read instructions. In addition, as we describe below, a buffer may contain a bounded number of

distinguished messages. The flow of information will now be in the reverse direction. Write instruc-

tions are performed atomically on the intermediate memory, while simultaneously propagating

the corresponding messages to the persistency stage. The values of the variables are propagated

non-deterministically from the memory to the load buffers of the threads. When a thread θ performs

a read instruction on a variable x ∈ X, it will first try to fetch the value of x from a distinguished

message inside its buffer, called the most-recent message on x . The message represents the latest

write instruction of θ on x . If no such message exists in the buffer, θ can read from the first message

in its buffer, but only if that message is on x .
We get rid of flush/fence-non-monotonicity through two arrangements. First, we propagate

flush and sfence instructions to the persistency stage immediately after they are issued, without

ever putting them in the pending buffer. The second measure concerns the fox messages. Although

compression leaves each x-zone with at most one fox message, there is in general no bound on the

number ofx-zones in a given run of the system. The refined semantics solves this problem by keeping

a single distinguished promise message pfox per variable x in the load buffer, corresponding to the

active x-zone. Since the flow is backward, a promise sends a perx to the persistency buffer. Therefore,
it is sufficient to keep a single copy of pfox that indicates whether there is currently an un-discharged
promise on x , as well as the position, relative to the other messages, where the promise was made.

pfox pfoy y1x2y2 x3 x1 z1z2

promise
on y

promise
on x

most recent
message on x

The figure (on the right) depicts a configuration of a load

buffer with three distinguished messages. Like store buffers,

the number of normal (non-distinguished) read messages is

potentially unbounded. However, the buffer is now monotone wrt. the normal read messages. More

precisely, any additional read messages that are added to the buffer, may simply be neglected by the

thread and therefore such messages will not constrain the behavior of the thread. The transition

relation is not monotone wrt. to the distinguishedmessages. However, the number of these messages

is finite (bounded by 2 · |X|). This means that operations on the distinguished message do not

violate the locality criterion. Furthermore, the existence of a bounded number of distinguished

messages that violate monotonicity will not affect well-structuredness of the system. Technically,

their existence can be encoded by factorizing the buffer into a finite sequence of sub-buffers that are

separated by the distinguished messgaes. The distinguished messages themselves are manipulated

using a finite-state component that is separated from the buffer.

Proc. ACM Program. Lang., Vol. , No. POPL, Article . Publication date: January 2021.

Deciding Reachability under Persistent x86-TSO 17

0
3
4

x1y1x2 z1

0
3
4

1
3
4

1
1
4

1
1
1

2
1
1

final
persistency

buffer

snapshot
buffer

memory
snapshot

memory

memory

y2

3
2
5

monotonicity
violated

monotonicity
preserved

2.3.2 The Snapshot Buffer. The final persistency buffer suffers

from write-non-monotonicity. To see that consider the example

shown in the figure (on the right), where the final persistency

buffer contains a sequence of four write messages. By propagating

the first three messages in the sequence, we can obtain a memory

state where x = 1, y = 1, and z = 1. However, inserting an

additional write message y2 in the position indicated in the figure

will make such a state unreachable. Therefore, we replace the final

persistency buffer with a new equivalent buffer, called the snapshot
buffer. The buffer contains a sequence of memory snapshots, i.e.,
each message is a function that assigns a value to each variable.

Intuitively, the snapshot buffer simulates the final persistency

buffer by calculating, for each message, the state of the persistent

memory at the moment the current message hits the memory (see the figure). The snapshot buffer is

monotone since inserting new snapshot messages does not prevent the same sequence of memory

states to arise, even though these states may not occur contiguously: they may be separated by

other states.

x1

x3

x2

On the other hand, the initial persistency buffers are all monotone. The reason

is that the different variables are separated, and therefore inserting an additional

write message does not violate monotonicity as follows. In the figure (on the right),

as soon as the message x3 crosses to the snapshot buffer, we can let x1 cross in the next step and

hence the system will be able to perform the same transitions as before.

2.4 Semantical Equivalence, Decidability, and Complexity
Semantical Equivalence. The scheduling semantics is equivalent to the persistency semantics,

up to the reachability of process states. Formally, Lemma 5.1 shows that the basic semantics is

equivalent to the scheduling semantics. Lemma 6.1 shows that refined semantics is equivalent to

the basic semantics. Therefore, Lemma 5.1 and Lemma 6.1 together imply that the basic persistency

and scheduling semantics are equivalent. As we saw above, the refined scheduling semantics fulfills

all the criteria of well-behavior. This allows to solve the reachability problem, in which we ask

whether we can reach a given set of bad thread states. Due the equivalence of the persistency and

scheduling semantics (up to state reachability), the decidability of the reachability problem for the

latter implies the problem for the former.

Crashes and Recovery. Observe that the scheduling semantics only considers program runs that are

crash-free. However, solving the crash-free reachability problem allows to solve the full reachability

problem in the presence of crashes. As usual with persistent memories (e.g., [Raad et al. 2020]),

we assume that we are given a recovery procedure: a function takes the content of the persistent

memory as input, and returns the re-starting states of the threads after a crash. A run of the system

can be viewed as a sequence of crash-free segments, each of which ends with a crash. After a crash,

the recovery procedure computes the re-starting states, and the execution of the system is resumed.

 recovery

no
crash

persistent
memory

persistent
memory

bad
configuration

finitely many

crash

M M

A key observation here is that for each run leading

to bad configuration, there is another run where the

persistent memory states just prior to the crashes are

all different. The reason is that if two such states are

identical, then we can short-cut the run, as shown in

the figure (on the right), and obtain a shorter run. This

means that, we need only to consider runs where we bound the number of crashes that occur along

Proc. ACM Program. Lang., Vol. , No. POPL, Article . Publication date: January 2021.

18 P. A. Abdulla, M. F. Atig, A. Bouajjani, K N. Kumar, and P. Saivasan

the run by the number of different memory states which is |X| |D | where X is the set of variables

and D is the data domain (both of which are finite). Notice that there is still no bound on the length

of each crash-free segment. In this manner, we have reduced the full reachability problem to a

finite set of instances of crash-free reachability problem. Therefore, the decidability of the latter

implies the decidability of the former.

 recovery

initial
phase

threads
pending
buffers

intermediate
memory

persistency
buffers

persistent
memory

Complexity. The reachability problem for the classical TSO

model can be reduced to the crash-free reachability problem. This

can be done by adding an initialization phase, performed by an

extra thread, that re-initializes the threads, the intermediate mem-

ory (using atomic read-write operations). The recovery procedure

can then be defined to always re-start the system from the initialization phase. Thus, any run of the

system will consist of a set of runs under the classical model, each of which starts from the initial

configuration. Since the reachability problem for the classical TSO model is non-primitive-recursive

[Atig et al. 2010], the same applies to the crash-free reachability problem.

Cache Lines. The model of [Raad et al. 2020] uses the concept of cache lines that are shared by

groups of variables Variables from the same cache line are indistinguishable wrt. reordering in

the pending stage. Furthermore, the persistency barriers of variables on the same cache line are

indistinguishable in the persistency stage. However, writes on different variables may overtake

each other in the persistency stage even if they are in the same cache line. We can address cache

lines via two modifications to our constructions. To adapt our pending stage to incorporate the

cache lines, we simply treat fox and fox
′

as identical for x and x ′ in the same cache line. In the

persistency stage we continue to have one initial persistency buffer per variable, but to receive a

perx , we require that the initial persistency buffers of all variables in x ’s cache line be empty.

3 EVENT AUTOMATA
We will give the formal definitions of the basic and refined scheduling semantics using event
automata (or simply automata). Such an automaton can in general be infinite-state, and each

transition is labeled by a pair of events, called the input resp. output events. The events represent the
interaction of the automaton with the environment. We will consider automata from the external
and internal point of view. For the external view, we study the histories, i.e., the sequences of input
and output events, that are generated by the automaton. For the internal view, we consider the

set of configurations that are reachable from the initial configuration. In the later section, we will

define automata for describing the program, the pending stage, and the persistency stage. The last

two automata are fixed for given sets of variables and threads, and do not depend on the actual

definition of the program.

3.1 Notation
For a set A, we use A∗ (A+) to denote the set of (non-empty) finite words over A. For a wordw ∈ A∗,
we use |w | to denote the length ofw , and for i : 1 ≤ i ≤ |w |, we usew[i] to denote the ith element

of w . For a ∈ A, we write a ∈ w to denote that w[i] = a for some i : 1 ≤ i ≤ |w |. For words
w1,w2 ∈ A

∗
, we usew1 ·w2 to denote the concatenation ofw1 andw2. We writew1 ⪯ w2 ifw1 is a

(not nececessarily contiguous) sub-word ofw2. For setsA and B, we use [A→ B] to denote the set of
functions fromA to B and write f : A→ B to denote that f ∈ [A→ B]. We use f [a ← b] to denote
the function f ′ where f ′(a) = b, and f ′(a′) = f (a′) if a′ , a. For a function f : A1 → [A2 → A3]

we define f [a1 ← a2 ← a3] to be the function f ′ such f ′(a1)(a2) = a3, and f ′(a′
1
)(a′

2
) = f (a′

1
)(a′

2
)

if a′
1
, a1 or a

′
2
, a2.

Proc. ACM Program. Lang., Vol. , No. POPL, Article . Publication date: January 2021.

Deciding Reachability under Persistent x86-TSO 19

3.2 Automata
We assume a finite alphabet Σ which we refer to as the set of events. We assume that Σ contains a

special empty event, denoted −, that is not visible to the environment. For a word h ∈ Σ∗, we say that
h is a history over Σ if − < h, i.e., it does not contain the empty event. For a wordw ∈ Σ∗, we define
w− to be the maximal subword h ofw that is a history, i.e., h is the word we get fromw by removing

all occurrences of −. A behavior b over Σ is pair ⟨h,h′⟩ of histories over Σ. For sets of behaviors B
and B′, we define their composition B ⊗ B′ := {⟨h,h′⟩ | ∃h′′. (⟨h,h′′⟩ ∈ B) ∧ (⟨h′′,h′⟩ ∈ B′)}.

An (event) automatonA is a tuple ⟨Γ, Γinit, Σin, Σout, ⟩ where Γ is a set of configurations, Γinit ⊆ Γ
is the set of initial configurations, Σin is the set of input events, Σout is the set of output events, and

⊆ Γ × Σin × Σout × Γ is the transition relation. We write γ
e/e′

γ ′ to denote that ⟨γ , e, e ′,γ ′⟩ ∈ .

We write γ1 γ2 to denote that γ1
e1/e2 γ2, for some e1 ∈ Σin and e2 ∈ Σout ; and use

∗
to denote

the reflexive transitive closure of . For a configuration γ ∈ Γ, we write ⟨A,γ ⟩ |= γ ′ to denote

that γ ∗ γ ′. For a set of configurations G ⊆ Γ, we write ⟨A,G⟩ |= γ ′ to denote that ⟨A,γ ⟩ |= γ ′

for some γ ∈ G. Finally, we write A |= γ to denote that ⟨A, Γinit⟩ |= γ . We extend the definition to

A |= G whereG is a set as expected. A run ρ ofA is a sequence γ0

〈
e1, e′

1

〉
γ1

〈
e2, e′

2

〉
γ2

〈
e3, e′

3

〉
· · ·

〈
en , e′n

〉
γn , where γ0 ∈ Γinit . We use Runs (A) to denote the set of runs of A. We define

⟦ρ⟧ :=
〈
(e1, e2, e3 · · · en)

−,
(
e ′
1
, e ′

2
, e ′

3
· · · e ′n

)−〉
, and define ⟦A⟧ := {⟦ρ⟧ | ρ ∈ Runs (A)}. In other

words, ⟦A⟧ is the set of behaviors generated by A.

Given, two automata A1 =
〈
Γ1, Γ1init, Σ

1

in, Σ
1

out, 1

〉
and A2 =

〈
Γ2, Γ2init, Σ

2

in, Σ
2

out, 2

〉
, we define

their composition A1 ⊗ A2 to be the automaton A = ⟨Γ, Γinit, Σin, Σout, ⟩, defined as follows:

• Γ = Γ1 × Γ2. • Γinit = Γ1init × Γ
2

init . • Σin = Σ1

in. • Σout = Σ2

out .

• ⟨γ1,γ2⟩
e1/e2

⟨γ3,γ4⟩ if one of the following conditions is satisfied:

– γ1
e1/−

1 γ3, e2 = −, and γ2 = γ4. − γ2
−/e2

2 γ4, e1 = −, and γ1 = γ3.

– γ1
e1/e3

1 γ3 and γ2
e3/e2

2 γ4 for some e3 , −.

Notice that ⟦A1 ⊗ A2⟧ = ⟦A1⟧⊗⟦A2⟧. We extend the composition operator toA1⊗A2⊗· · ·⊗An
in the obvious manner. Let the resulting automaton be A.

4 CONCURRENT PROGRAMS
We consider concurrent programs, consisting of a finite set Θ of threads that communicate through

a finite set X of shared variable. The values of the variables are fetched from a finite domain D,
including the special value 0. A thread contains a finite set R of local variables, also ranging over D.
The behavior of a thread is defined by a finite set of instructions each labeled from a finite set L of

labels. We use a simple but general programming language to describe the instructions. The syntax

of the language as well as its semantics (as an event automaton) are standard, and are omitted

here. The language allows standard instructions such as reading, writing, and compare-and-swap

instructions on shared and local variables, as well as branching/jumping instructions, and finally

flush and fence instructions that are specific to the architecture (as described in Sec. 2). Semantically,

a program P induces an automaton, denoted A P
. A configuration of A P

is a pair ⟨λ,R⟩ where
λ : Θ → L defines the label of the current instruction of each thread, and R : R → D defines

the values of the local variables. The set of initial configurations contains a single configuration

⟨λinit,Rinit⟩ where λinit (θ) defines the label from which θ starts executing, and λinit (a) = 0 for all

local variables a ∈ R. The set of input events contains only the empty event, since we assume

that the program does not take any input. An output event is either a write ⟨θ , wr, x,d⟩, a read

Proc. ACM Program. Lang., Vol. , No. POPL, Article . Publication date: January 2021.

20 P. A. Abdulla, M. F. Atig, A. Bouajjani, K N. Kumar, and P. Saivasan

⟨θ, wr, x,d⟩, an rmw ⟨θ, rmw, x,d1,d2⟩, an optimized flush ⟨θ , fo, x⟩, a flush ⟨θ, fl, x⟩, a store fence
⟨θ, sf⟩, a memory fence ⟨θ, mf⟩, or the empty event −, where θ ∈ Θ is thread, x ∈ X is a variable,

and d,d1,d2 ∈ D are values taken from the data domain. The transition relation is defined by a set

of inference rules as usual.

For a labeling function λ : Θ→ L, we define A P □λ to be the automaton we get from A P
by

changing the initial label of each thread θ in P to λ (θ).

5 THE BASIC SCHEDULING SEMANTICS
In this section, we give the formal definition of the basic scheduling semantics, as two automata

that describe the pending and persistency stages respectively.

5.1 The Pending Stage

The pending stage automaton
4
(Fig. 14) is of the form A 1 =

〈
Γ 1 , Γ

1

init, Σ
1

in, Σ
1

out, 1

〉
, defined as

follows. A configuration in Γ 1
is a tuple ⟨B, Promise, Delay,M⟩ of functions, defined as follows.

The function B : Θ→ G∗, whereG = ({wr} × X × D) ∪ ({fo, fl} × X) ∪ {sf} is the buffer alphabet,
encodes the contents of the pending buffer of each thread. The function Promise : Θ→ [X→ B]
defines the promise flag of each variable in each thread. The function Delay : Θ → [X→ B]
defines the delay flag of each variable in each thread. The function M : X → D defines the

value of each variable in the intermediate memory. The set Γ
1

init of initial configurations is the

singleton {⟨Binit, Promiseinit, Delayinit,Minit⟩} where Binit = λθ .ϵ , Promiseinit = λθ .λx .false,
Delayinit = λθ .λx .false, andMinit = λx .0. In other words, we start from empty pending buffers,

with no promises and delays, and with an intermediate state that assigns 0 to all the variables.

The set of input events is identical to the set output events from program automaton (described

in Sec. 4). An output event is either a write ⟨wr, x,d⟩, a barrier ⟨per, x⟩, or the empty event −, where

x ∈ X and d ∈ D.
The transition relation

1
is defined by the set of inference rules in Fig. 14, one set for each

thread θ . Before we go through the rules, we give some remarks that make some of the rule premises

easier to understand. First, we interpret the emptiness of the pending buffers of a thread θ as the

conjunction of two conditions, an explicit condition, namely that B (θ) = ϵ , and an implicit condition,
namely that the promise and delay flags should be false for all the variables. The implicit condition

reflects the fact that a delay indicates that at least one occurrence of the message fo is (logically)
inside the buffer. Second, all the inference rules respect the FIFO policy: messages are added to the

end, and removed from the head of the buffers.

In the first group of rules, consisting of four rules, the automaton receives an event from the

program that corresponds to read/write instructions. The first three transitions in the group do

not generate any output events. In Write, the automaton receives an event ⟨θ , wr, x,d⟩ which
means that θ performs a write instruction that assigns the value d ∈ D to the variable x ∈ X.
The corresponding write message ⟨wr, x,d⟩ is appended to the end of the pending buffer of θ . A
flushopt instruction on x cannot overtake a write instruction on x , and hence we require the

the flag Promise (θ) (x) is false. In Read-Own-Write, the automaton receives the event ⟨θ, rd, x,d⟩
which means that θ performs a read instruction on the variable x ∈ X, in a configuration where

there is at least one write message on x in the pending buffer of θ . In such a case, we take the value

from the most recent write message on x in the buffer of θ . The rule Read-from-Memory is similar,

but there is no write message on x in the pending buffer of θ . We fetch the value from the entry of

x in the intermediate memory. Although a flushopt instruction cannot overtake a read instruction,

4
To differentiate the automata we use for the different modules, we use superscripts like 1 , 2 , etc.

Proc. ACM Program. Lang., Vol. , No. POPL, Article . Publication date: January 2021.

Deciding Reachability under Persistent x86-TSO 21

Delay-
FO

Write
Promise (✓) (x) = false

hB, Promise, Delay, Mi h✓, wr, x, di/�
1 hB0, Promise, Delay, Mi

Read-
Own-
Write

x 62 w1

hB, Promise, Delay, Mi h✓, rd, x, di/�
1 hB, Promise, Delay, Mi

Read-
from-

Memory

M (x) = d

hB, Promise, Delay, Mi h✓, rd, x, di/�
1 hB, Promise, Delay, Mi

Initiate-
Promise

Promise (✓) (x) = false Promise0 = Promise [✓ x true]

hB, Promise, Delay, Mi �/�
1 hB0, Promise0, Delay, Mi

Discharge-
Promise

Promise0 = Promise [✓ x false]Promise (✓) (x) = true

hB, Promise, Delay, Mi h✓, fo, xi/�
1 hB, Promise0, Delay, Mi

Delay0 = Delay [✓ x true]B0 = B [✓ w]

Merge-
FO

Promise (✓) (x) = true

hB, Promise, Delay, Mi h✓, fo, xi/�
1 hB, Promise, Delay, Mi

hB, Promise, Delay, Mi �/�
1 hB0, Promise, Delay0, Mi

Propagate-
Write

B0 = B [✓ w]M 0 = M [x d]

hB, Promise, Delay, Mi �/hwr, x, di
1 hB0, Promise, Delay, M 0i

Release-
FO

Delay (✓) (x) = true Delay0 = Delay [✓ x false]

hB, Promise, Delay, Mi �/hper, xi
1 hB0, Promise, Delay0, Mi

SF
8y 2 X. Promise (✓) (y) = false B0 = B [✓ sf • B (✓)]

hB, Promise, Delay, Mi h✓, sfi/�
1 hB0, Promise, Delay, Mi

FL
Promise (✓) (x) = false

hB, Promise, Delay, Mi h✓, fl, xi/�
1 hB0, Promise, Delay, Mi

Prop-
agate-

FL

B0 = B [✓ w]Delay (✓) (x) = false Prop-
agate-

SF

B0 = B [✓ w]8y 2 X. Delay (✓) (y) = false B (✓) = w • sf

B (✓) = w • hfo, xi

B (✓) = w • hfl, xi

B0 = B [✓ hwr, x, di • B (✓)] B (✓) = w1 • hwr, x, di • w2

B0 = B [✓ hfo, xi • B (✓)]

B0 = B [✓ hfl, xi • B (✓)]

B (✓) = w • hwr, x, di

Delay-
FO

hB, Promise, Delay, Mi �/�
1 hB0, Promise, Delay, Mi

6 9d. hwr, x, di 2 B (✓)

(hfo, xi 2 B (✓))_ (Delay (✓) (x) = true)

Read-
Modify-
Write

B (✓) = ✏ M (x) = d1 M 0 = M [x d2]8y 2 X. Delay (✓) (y) = false

hB, Promise, Delay, Mi h✓, rmw, x, d1, d2i/hwr, x, d2i
1 hB, Promise, Delay, M 0i

8y 2 X. Promise (✓) (y) = false

MF
B (✓) = ✏8y 2 X. Delay (✓) (y) = false

hB, Promise, Delay, Mi h✓, mfi/�
1 hB, Promise, Delay, Mi

8y 2 X. Promise (✓) (y) = false

hB, Promise, Delay, Mi h✓, fl, xi/hper, xi
1 hB0, Promise, Delay, Mi

Fig. 14. The pending stage automaton.

in contrast to the Write rule, we do not need to put any condition on the promise flags in the

premise of the rule. The reason is the following properties. First, in contrast to write instructions,

read instructions are instantaneous. More precisely, a write message needs to travel through the

whole buffer before it “takes effect” and becomes visible to the other threads. A read instruction is

performed atomically. Second, as we will see below (in the rule Discharge-Promise), we allow to

discharge a promise only if the corresponding fo is still in the buffer or delayed. The net effect of

these two properties is that a flushopt, on a variable y ∈ X, cannot overtake any read instruction

on any variable. In Read-Modify-Write, the automaton receives an event ⟨θ, rmw, x,d1,d2⟩ which
means that θ reads the value of the variable x ∈ X. We require that the value of x in the intermediate

memory is d1, and that the pending buffer of θ is empty. As mentioned above, the emptiness of

the buffer also implies that the promise and delay flags are all false. In such a case, we assign the

value d2 ∈ D to x in the intermediate memory. In contrast to the previous three rules, we generate

a write event consisting of the variable x and the written value d2. Furthermore, we require that

the delay flags for all the variables are false in θ . This ensures that the CAS instruction that has

induced the rmw does not overtake any flushopt instructions.
The next five rules concern the flushopt instruction. In Initiate-Promise, θ promises a

flushopt instruction on a variable x ∈ X. We append a message ⟨fo, x⟩ to the end of the pending

buffer of θ , and set the promise flag of x in θ to true. The flag remains true until the promise

is discharged. This happens when an event ⟨θ , fo, x⟩ is performed by the program (the rule

Discharge-Promise), at which point the flag may be reset to false. Relating to the scheduling pro-

tocol, described in Sec. 2.2.7, the two previous rules can also be used to add normal (non-artificial) fo
messages, when an ⟨θ , fo, x⟩ is received from θ . This is done by first promising the message before

the event, and then immediately discharging the promise when the event is received. The rule

Proc. ACM Program. Lang., Vol. , No. POPL, Article . Publication date: January 2021.

22 P. A. Abdulla, M. F. Atig, A. Bouajjani, K N. Kumar, and P. Saivasan

Merge-FO allows additional occurrences of flushopt instructions without discharging the promise.

As we saw in Sec. 2.2.7, this is necessary to simulation of attraction and merging operations in the

scheduling protocol. In Delay-FO, a fo message has reached the head of the pending buffer. In such

a case the automaton will delay the message, allowing other messages to overtake it. Although the

message is always delayed, it may not necessarily be overtaken by other messages. The reason is

that the Release-FO rule can be applied immediately afterwards to inform the persistency stage

of the reception of the fo message. The latter also generates the corresponding event ⟨per, x⟩. As
we will see in the next sub-section, when the event ⟨per, x⟩ is received by the persistency stage,

it will not generate a ⟨per, x⟩ message in the initial buffer. The rule Delay-FO is enabled even if

the delay flag for θ and x is already set. This is to take into account the absorption operation. In

particular, we can interpret Delay (θ) (x) as θ having performed at least one flushopt on x rather

than exactly one.

The next three rules deal with the thread issuing other fence instructions than flushopt. In FL,
the automaton receives an event ⟨θ, fl, x⟩ from the program, indicating that the thread θ ∈ Θ
performs a flush instruction on the variable x ∈ X, and the corresponding message ⟨fl, x⟩ is
appended to the end of the pending buffer of the thread. The event is allowed to take place only if the

x-Promise-flag false. The reason is that a flushopt instruction is not allowed to overtake a flush
instruction on the same variable. The rule SF is similar and concerns the store fence instruction. We

require that the y-Promise-flag is not set for any variable y ∈ X, since an sfence instruction is not

allowed to be overtaken a flushopt instruction on any variable. The rule MF concerns a memory

fence, and the pending buffer of the thread should be empty when the instruction performed. In

particular, the promise and delay flags should be false for all variables.
The last three rules concern output events that the automaton propagates to the persistency

stage. The transitions can all be non-deterministically executed by the automaton whenever they

are enabled. There are invisible to the program, and hence the rules do not involve any input events.

Propagate-Write tells us that when a write message reaches the head of the pending buffer, then it

may be fetched and used to update the intermediate memory. At the same time, the persistency

stage is notified through the output event ⟨wr, x,d⟩. The rule Propagate-FL is similar in the sense

that the persistency stage is notified through the event ⟨per, x⟩. In this case, the delay flag of x
should be false since the flush instruction cannot overtake the flushopt instruction on the same

variable. The persistency stage is again notified through the event ⟨per, x⟩. The last rule is similar

and concerns the store fence instruction. The delay flag of all variables should be false since the

sfence instruction cannot overtake the flushopt instruction on any variable.

For a functionM : X→ D, giving the content of the intermediate memory, we define A 1 [M]

to be the automaton we get from A 1
by changing the initial intermediate memory state toM .

5.2 The Persistency Stage

D (x) = ✏

hD, E, Ni hper, xi/�
2 hD, E, Ni

Per Write
D0 = D [x hwr, x, di • D (x)]

hD, E, Ni hwr, x, di/�
2 hD0, E, Ni

Propagate-
Write

E0 = E [x hwr, x, di • E]D (x) = w • hwr, x, di D0 = D [x w]

hD, E, Ni �/�
2 hD0, E0, Ni

Update-
Persistent-

MemoryhD, E, Ni �/�
2 hD, E0, N 0i

E = w • hwr, x, di E0 = w N 0 = N [x d]

The automaton, depicted in the figure, re-

ceives events from the pending stage but

does not output any events. Formally,A 2 =〈
Γ 2 , Γ

2

init, Σ
2

in, Σ
2

out, 2

〉
, where the compo-

nents defined as follows. A configuration in

Γ 2
is a triple of the form ⟨D, E,N ⟩. The func-

tion D : X→ (X × D)∗ defines the contents
of the initial persistency buffers of all the variables. We require that B (x) contains write messages

only on x . In fact, the variable name in a write message is redundant; we keep it only for clarity.

Proc. ACM Program. Lang., Vol. , No. POPL, Article . Publication date: January 2021.

Deciding Reachability under Persistent x86-TSO 23

The word E ∈ (X × D)∗ gives the content of the final persistency buffer. Finally, the function

N : X → D gives the contents of the persistent memory. We define Γ
2

init := {⟨Dinit, Einit,Ninit⟩},

where Dinit = (λx ∈ X. ϵ), Einit = ϵ , and Ninit = (λx ∈ X. 0), i.e., initially, all the buffers are empty,

and values of the value of each variable in the persistent memory is 0. The set of input events is iden-

tical to the set output events Σ
1

out . The set Σ
2

out contains only the empty event −. The inference rules

inducing the transition relation
2
are as follows. In Per, the automaton receives an event ⟨per, x⟩

from the pending stage. The transition is enabled only if the x-initial persistency buffer is empty.

This ensures that we create a barrier between the early write messages on x , and write messages

that arrive later from the pending stage. In Write, the automaton receives an event indicating a

write operation on a variable x ∈ X, and the automaton appends the corresponding message to the

end of the x-initial buffer. In Propagate-Write, the automaton non-deterministically removes the

message at the head of one of the initial buffers, and appends it to tail of the final buffer. This means

that the automaton keeps the order of write messages on the same variable, while it can re-order

messages on distinct variables. The persistent memory stores the value of the variables to be recov-

ered in case of a system crash. The automaton can non-deterministically fetch the last message in

the final buffer, and use it to update the persistent memory (the rule Update-Persistent-Memory).

For a function N : X→ D, giving the content of the persistent memory, we defineA 2 [N] to be

the automaton we get from A 2
by changing the initial persistent memory state to N .

5.3 The Reachability Problems
In the rest of this section, we fix a program P , with a finite set Θ of threads, and a set L of

instruction labels. Let A P
be the automaton induced by the program (see Sec. 4). In the Crash-

Free Reachability Problem, we are given a configuration γ of A P
, and the question is whether

A P ⊗ A 1 ⊗ A 2 |= ⟨γ ,γ1,γ2⟩, for some γ1 and γ2.
In the Full Reachability Problem we consider full runs of the system including crashes. A recovery

procedure is a function Rec : [X→ D] → [Θ→ L]. Intuitively, given the current state of the

persistent memory N : X→ D, the value of Rec (N) is labeling function λ that gives the re-starting

instructions (new initial labels) of the threads after a crash from a configuration of the system.

For a program P and a configuration γ = ⟨γP ,γ1,γ2⟩ where γ2 = ⟨D, E,N ⟩, we define P□γ to be

the automaton

(
A P [Rec (N)]

)
⊗

(
A 1 [N]

)
⊗

(
A 2 [N]

)
. In the Full-Reachability Problem we are

given a configuration γ of A P
, as well as a recovery procedure Rec. The question is whether there

exists a finite sequence A0γ0A1γ1 · · · Anγn such that the following conditions are satisfied:

• A0 = A
P ⊗ A 1 ⊗ A 2 • Ai |= γi • Ai+1 = P□γi . • γn = ⟨γ ,γ1,γ2⟩, for some γ1,γ2.

5.4 Correctness
LetA O

be the automaton corresponding to the persistency semantics of [Raad et al. 2020]. The full

reachability and crash-free reachability problems are defined analogous to scheduling semantics.

The crash-free reachability problem asks if a configuration of A P
can be reached in A P ⊗ A O

.

The full reachability problem asks whether a sequence of crashes and recoveries allow us to reach

such a configuration. The following lemma states that each of these problems can be reduced to

the corresponding problem in scheduling semantics.

Lemma 5.1. The crash-free/full reachability problem on A P ⊗ A O reduces to the crash-free [full]
reachability on A P ⊗ A 1 ⊗ A 2 .

Towards the proof of the lemma, notice that the program component of both the systems are the

same. Hence it is enough to establish equivalence between A O
and A 1 ⊗ A 2

. As a first step, we

Proc. ACM Program. Lang., Vol. , No. POPL, Article . Publication date: January 2021.

24 P. A. Abdulla, M. F. Atig, A. Bouajjani, K N. Kumar, and P. Saivasan

reformulate the persistency semantics as a composition of pending stage and persistency stage

(referred to as A B
and A P

respectively), this we do by introducing an intermediate memory

component in the pending stage (i.e. to A B
). In the new setup, a transfer of a write from the

pending stage to the persistence stage is also stored in the intermediate memory, allowing us to

service the reads directly from the intermediate memory. This allows us to reformulate A O
as

A B ⊗ A P
. The equivalence of this reformulation is straightforward. With this, we can structure

the proof of the Lemma 5.1 as two separate equivalences between A 1 ,A B
and A 2 ,A P

.

Equivalence between A 1 and A B : Any access of the pending buffers in A 1
confirms to the FIFO

policy whereas the accesses to pending buffer in A B
need not follow this criterion. The A 1

uses

the promise and delay flags to simulate the behaviours of A B
while still confirming to the FIFO

policy. Section 2.1 describes, through examples, the key ideas used in this simulation. A careful

construction using those ideas leads to a simulation of each run ρ in A B
by a run ρ ′ in A 1

. It is

important to note that this simulating run is defined step by step but is based on the entire run ρ.
The simulation satisfies the following at the end of each step:

• The inputs read so far are identical

• The output sequence in the simulation can be obtained from that of the simulated prefix of ρ
by the deletion of some of the per events.

The actual invariant required for the proof is a significant strengthening of these requirements. This

is necessary for it to be inductive and to guarantee that the simulation steps are indeed enabled.

Among other things it asserts that the intermediate memory reached at the end of these partial

runs is identical and that, for each thread, the contents of the pending buffer is identical if one

ignores (i.e. project out) the fo messages. More intricate parts of the invariant pertain to the Delay

and Promise flags.

For instance, it asserts that Promise (θ) (x) is set to true only if the tail end of B (θ) is part of a
pivot x-sub-zone and that there is a subsequent ⟨θ, fo, x⟩ within that zone to release this obligation.

It also asserts that Delay (θ) (x) is set to true only if the x-zone at the head of the pending buffer

contains ⟨fo, x⟩ which may then be used to discharge it.

The simulation of runs of A 1
by A B

is again carried out per run ρ of A B
but defined step by

step on its prefixes. The invariant in this case guarantees:

• The inputs read so far are identical

• The output sequence in the simulation can be obtained by stuttering the per events in the

output sequence of the simulated prefix.

In summary

(1) If ⟨α, β⟩ ∈
�
A B

�
then there is a ⟨α, β ′⟩ ∈

�
A 1

�
, where β ′ is obtained by deleting some per

events from β .

(2) If ⟨α, β⟩ ∈
�
A 1

�
, then there is a ⟨α, β ′⟩ ∈

�
A B

�
, where β ′ which is obtained by stuttering

some per events from β .

Equivalence betweenA 2 andA P : Recall that the persistency buffer in theA P
is now replaced in

A 2
by a two level structure: initial persistency buffers consisting of a collection of FIFO channels,

one per variable, which in turn feed the final persistency buffer consisting of a single FIFO channel.

The simulation ofA P
byA 2

is achieved as follows: Once again, our simulation proceeds step by

step based on the entire run. The A P
, on reading a ⟨wr, x,d⟩ from its input, stores ⟨wr, x,d⟩ in its

persistency buffer. This is simulated by A P
by storing ⟨wr, x,d⟩ in the initial buffer corresponding

Proc. ACM Program. Lang., Vol. , No. POPL, Article . Publication date: January 2021.

Deciding Reachability under Persistent x86-TSO 25

to x . On reading a ⟨per, x⟩ the simulation proceeds if the input buffer of x is empty. Finally writes

to persistent memory are simulated by transferring the head of the buffer to the persistent memory

(and the invariant of the simulation guarantees that the required value resides at the head of

this buffer.). Further after each step, the simulation transfers values from the initial to the final

persistency buffer provided their turn (based on the order in which they exited the persistency

buffer in the run ρ) has arrived ensuring that values leave the final stage in FIFO order as well. We

establish an invariant which guarantees after each simulation step that

• The inputs read are the same

• The state of the persistent memory is the same

The actual invariant is a significant strengthening, which includes properties such as: contents of

the final buffer appear in the order in which they exited in ρ, the values present in the initial and

final buffers are the same as those found in the persistency buffer and so on.

Reasoning along the same lines, a similar result can be established for the other direction also.

With this, we have

(3) On any input α , the set of persistent memory configurations reachable under A P
and A 2

are the same.

We next put together the results obtained for the pending and persistent stages. To take into

account the stuttering/deletion of per events in the simulation results for the pending stage we

prove the following robustness results for A P
and A 2

.

(4) Let α be an input to the persistent stage and α ′ obtained from α by stuttering some of the

per events. Then, any configuration reachable under A P
on input α is also reachable on

input α ′.
(5) let α be an input to the persistent stage and α ′ obtained by deleting some of the per events

in α . Then, any configuration reachable under A 2
on input α is also reachable on input α ′.

Combining the above results, we see that on any input the set of persistent memory stages

reachable in A 1 ⊗ A 2
and A B ⊗ A P

are the same. This establishes Lemma 5.1.

6 THE REFINED SCHEDULING SEMANTICS
In this section, we give the automata for the refined scheduling semantics.

6.1 Load Pending Buffers
To describe the contents of the load buffers, we consider wordsw ∈ G∗ over the buffer alphabet
G = ({rd, srd} × X × D)∪({pfo} × X). There are three types of messages in the alphabet. A normal
read message ⟨rd, x,d⟩ corresponds to reading from a write instruction that was performed by

another thread. A self-read message ⟨srd, x,d⟩ corresponds to reading from a write instruction

that was performed by the thread itself. A promise message ⟨pfo, x⟩ corresponds to a promised

flushoptx instruction. A distinguished message is either a self-read or a promise message. We

say thatw is load-buffer word, or simply an LB-word if it is of the formw1m1w2m2w3 · · ·mn−1wn ,

wherewi contains only normal messages, and eachmi is a distinguished message. Furthermore,

we require thatmi ,mj if i , j. In other words, for each variable x , the wordw contains at most

one self-read message on x , and at most one pfo message on x . We define the factorization of w
factor (w) := [w1][m1][w2][m2][w3] · · · [mn−1][wn] (the brackets are for readability and have no

semantical significance.) We use H to denote the set of LB-words.

The load pending automaton is of the form A 3 =
〈
Γ 3 , Γ

3

init, Σ
3

in, Σ
3

out, 3

〉
, defined as fol-

lows. A configuration in Γ 3

is a triple ⟨B, Promise, Delay,M⟩. The state of the load buffers is

Proc. ACM Program. Lang., Vol. , No. POPL, Article . Publication date: January 2021.

26 P. A. Abdulla, M. F. Atig, A. Bouajjani, K N. Kumar, and P. Saivasan

Delete-
Msg

B0 = B [✓ w]B (✓) = m · w m 6= hpfo, ⇤i

hB, Promise, Delay, Mi �/�
3 hB0, Promise, Delay, Mi

Back-
Propagate-

Read

M 0 (x) = dB0 = B [✓ B (✓) · hrd, x, di]

8y 2 X. Delay (✓) (y) = false8y 2 X. Promise (✓) (y) = false

hB, Promise, Delay, Mi h✓, sfi/�
3 hB, Promise, Delay, Mi

SF MF
B (✓) = ✏8y 2 X. Delay (✓) (y) = false

hB, Promise, Delay, Mi h✓, mfi/�
3 hB, Promise, Delay, Mi

8y 2 X. Promise (✓) (y) = false

M 0 = M [x d]
Write

B0 = B [✓ B (✓)� hsrd, x, di]

hB, Promise, Delay, Mi h✓, wr, x, di/hwr, x, di
3 hB0, Promise, Delay, M 0i

Promise (✓) (x) = false

Read-
Self

B (✓) = w1 · hsrd, x, di · w2

hB, Promise, Delay, Mi h✓, rd, x, di/�
3 hB, Promise, Delay, Mi

hsrd, x, ⇤i 62 B (✓)B (✓) = hrd, x, di · w Read-
OtherhB, Promise, Delay, Mi h✓, rd, x, di/�

3 hB, Promise, Delay, Mi

Delay-
FO

Delay0 = Delay [✓ x true]

hB, Promise, Delay, Mi h✓, fo, xi/�
3 hB, Promise, Delay0, Mi

Release-
FO (1)

Delay (✓) (x) = true Delay0 = Delay [✓ x false]Promise (✓) (x) = false

hB, Promise, Delay, Mi �/hper, xi
3 hB, Promise, Delay0, Mi

Release-
FO (2)

Delay (✓) (x) = true Delay0 = Delay [✓ x false]Promise (✓) (x) = true B0 = B [✓ B (✓) • hpfo, xi]

hB, Promise, Delay, Mi �/hper, xi
3 hB0, Promise, Delay0, Mi

Make-
Promise

Delay0 = Delay [✓ x true]Promise (✓) (x) = false Promise0 = Promise [✓ x true]

hB, Promise, Delay, Mi �/�
3 hB, Promise0, Delay0, Mi

FL
Delay (✓) (x) = falseMerge-

FO
Promise (✓) (x) = true

hB, Promise, Delay, Mi h✓, fo, xi/�
3 hB, Promise, Delay, Mi

Promise (✓) (x) = false

hB, Promise, Delay, Mi h✓, fl, xi/hper, xi
3 hB, Promise, Delay, Mi

Read-
Modify-
Write

B (✓) = ✏ M (x) = d1 M 0 = M [x d2]8y 2 X. Delay (✓) (y) = false

hB, Promise, Delay, Mi h✓, rmw, x, d1, d2i/hwr, x, d2i
3 hB, Promise, Delay, M 0i

8y 2 X. Promise (✓) (y) = false

Discharge-
Promise (1)

Promise0 = Promise [✓ x false]Promise (✓) (x) = true

hB, Promise, Delay, Mi h✓, fo, xi/�
1 hB, Promise0, Delay, Mi

(Delay (✓) (x) = true)^ (hpfo, xi 62 B (✓))

Discharge-
Promise(2)

Promise0 = Promise [✓ x false]B (✓) = w1 · hpfo, xi · w2 B0 = B [✓ w1 · w2]

hB, Promise, Delay, Mi h✓, fo, xi/�
3 hB0, Promise0, Delay, Mi

hB, Promise, Delay, Mi �/�
3 hB0, Promise, Delay, Mi

Fig. 15. The load buffer automaton.
defined by B : Θ → H . The transition system maintains the invariant that each pending load

buffer contains an LB-word. The Promise, Delay, and the M functions define the delay flags

resp. the contents of the intermediate memory as before. The set Γ
3

init of initial configurations

{⟨Binit, Promiseinit, Delayinit,Minit⟩} is defined as before. In particular, we start with empty load

buffers. The sets of input events Σ
3

in , and output events Σ
3

out are identical to their counter-parts Σ
1

in

resp. Σ
1

out . The transition relation
3
is defined through the inference rules shown in Fig. 15, for a

thread θ ∈ Θ.
For w ∈ H , representing the content of a load buffer, we define w ⊙ ⟨srd, x,d⟩ := w ′ where

w ′ = w1 · w2 · ⟨srd, x,d⟩ if w = w1 · ⟨srd, x,d
′⟩ · w2 for some d ′ ∈ D, and w ′ = w · ⟨srd, x,d⟩

if there is no self-read message on x in w . Notice that the operation maintains the invariant

that the buffer contains an LB-word. In Write, the automaton receives an event ⟨θ, wr, x,d⟩, and
performs three operations simultaneously: (i) it updates the intermediate memory, (ii) it notifies

the persistency stage through the event ⟨wr, x,d⟩, and (iii) it sends a self-read message ⟨srd, x,d⟩
to itself. To emphasize the fact that messages travel in the reverse direction, we let the messages be

added from the right (which is now considered to be the tail), and fetched from the left (which is

now the head) of the load buffer. The transition may be performed only if there is no discharged

promise on x , i.e., there is no pfo message on x in the load buffer. At any point, the intermediate

memory may non-deterministically select the thread θ and a variable x and send the value of x
to θ . This creates a normal read message on x that is appended to the end of the buffer of θ (the

rule Back-Propagate-Read). Notice that such a message could have been created by the thread

itself: we create a self-read message only in the Write rule. This simplifies the set of rules and it

does not affect the analysis. In Read-Self, θ reads from the self-read message on the x , if such a

message is in the buffer. If such a message is missing, and if the last read message in the buffer

Proc. ACM Program. Lang., Vol. , No. POPL, Article . Publication date: January 2021.

Deciding Reachability under Persistent x86-TSO 27

is on x then θ can read the value of x from that message (the rule Read-Other). The thread can

non-deterministically remove the message at the head of its buffer and throw it away (Delete-Msg).
The rule Read-Modify-Write is as before, i.e., the included read and write operations are carried

out simultaneously, and we require that the buffer is empty, and that the delay flags are false.

The next six rules handle promising and delaying the flushopt instruction. When θ performs

a flushopt on a variable x ∈ X it is delayed immediately, and in contrast to the basic semantics,

it is not inserted in the buffer (Delay-FO). As in the basic semantics, a delayed instruction can be

released non-deterministically to the persistency stage (Release-FO). The thread can promise a

flushopt, by setting the promise flag, while delaying the event rather than sending it immediately

to the persistency stage (Make-Promise). A promise on a variable x can be discharged when the

flushoptx instruction is executed by θ , either by removing the (only) pfo message, or checking

that the delay flag is true. As before, a promise need not be discharged if a flushoptx occurs.

The last three rules concern other flush and fence instructions. In FL, the automaton receives an

event ⟨θ, fl, x⟩. In a similar manner to a flushopt instruction, we do not put any message in the

buffer. However, we still require that there is no delay or promise on the variable x . The rule SF
and MF are straightforward adaptations from the basic semantics.

6.2 Snapshot Buffer

h
X •! X⇥ D⇤

i
⇥ ([X! E])

⇤ ⇥
h
X •! E

i
� 4

4

Update-
Persistent-

Memory

E0 = wE = w • N 0

hD, E, Ni �/�
4 hD, E0, N 0i

Propagate-
Write

D (x) = w • hwr, x, di D0 = D [x w]

hD, E, Ni �/�
4 hD0, E0, Ni

E0 = hwr, x, di �E

For a write messagem = ⟨wr, x,d⟩ and a non-

empty word w ∈ [X→ D]+ of memory states

(snapshots), withw = N ·w ′, we definem ⊕w :=

(N [x ← d]) ·w , i.e., we construct a new snapshot

by considering the last element N inw and update

the value of x to d , and then append the new snap-

shot to w . In the figure, we show only the parts

that are different from the basic semantics The Propagate-Write rule still removes a write message

on x from the initial x-initial buffer. However, instead of simply transferring the message to the

final persistency buffer, it computes its addition to the current content of the snapshot buffer and

transfers the result to the latter. Furthermore, in Update-Persistent-Memory, we copy the entire

snapshot to the memory rather than just the value of a single variable.

Lemma 6.1. The crash-free/full reachability problems from A P ⊗ A 1 ⊗ A 2 reduce to the corre-
sponding problems for A P ⊗ A 3 ⊗ A 4 .

Towards the correctness, we show equivalence of A P ⊗ A 1 ⊗ A 2
and A P ⊗ A 3 ⊗ A 4

.

While the equivalence of A 2
and A 4

is straightforward, we provide the correctness argument for

equivalence of A P ⊗ A 1
and A P ⊗ A 3

below. The equivalence of the automaton A P ⊗ A 1
to

A P ⊗A 3

is best seen as a series of transformations involving a number of intermediate semantics.

Our multi-step approach allows us to treat the different concerns separately. In the transformations

below, wewill assume a fixedA P
and proceed with the explanations.Wemainly show the following

transformations

• Transformation of A 1
into an equivalent enriched TSO model

• Transformation of enriched TSO model into an equivalent enriched Load Buffer model

• Refining the enriched Load Buffer model into A 3

Transforming A 2 into an enriched TSO model . Recall that the standard TSO model consists of a

channel per thread into which writes are deposited (at the tail) and the memory is updated from

values drawn from the head of these buffers. It also includes memory fence instructions. InA 1
, we

Proc. ACM Program. Lang., Vol. , No. POPL, Article . Publication date: January 2021.

28 P. A. Abdulla, M. F. Atig, A. Bouajjani, K N. Kumar, and P. Saivasan

have reads, writes, memory fence (all of which find a place in the TSO model) and in addition there

are other instructions such as sfence, flushopt, flush as well as the flags promise and delay.

Our idea is to incorporate all these additional items into the TSO as (reads and writes to) new

variables. Setting the flag Promise (x) (θ) (in A 1
) will now be represented as writing true/false to

a new variable Promise (x) (θ), while testing its value would correspond to a read. The instruction

flush/sfence is to be treated as writing (some fixed value) to the variable ⟨x, fl, θ⟩/⟨θ, sf⟩ (which
has the effect of inserting it in the TSO buffer thus simulating the corresponding move in the

scheduling semantics). It turns out that we can use a variable Delay (x) (θ) to capture both the

instruction flushopt as well as the flag Delay (x) (θ).
Memory updates on these new variables can be used to denote the transmission of values from

the pending stage to the persistent stage. For instance, the memory update on the variable ⟨x, fl, θ⟩

captures the transfer of a ⟨fl, x⟩ from the pending buffer to the output as a ⟨per, x⟩ in A 1
. To

simulate the discharge of a delay (and the output of a per), we incorporate a new special process

with the responsibility to reset this variable to false through an rmw instruction.

The main obstacle to such a direct coding into TSO is the requirement in A 1
to test side

conditions at output transitions: for instance, to transfer sf from the pending buffer to the output

we have to verify whether Delay (x) is false for all x . Similarly to transfer a ⟨fl, x⟩ as a ⟨per, x⟩
we have to verify that Delay (x) is false. To handle such tests we enrich the TSO model, adding

power to the memory updates. The new model allows us to specify, for any variable, an enabling

boolean condition (on the memory) that must hold for its value to be updated in the memory. We

do not have to concern ourselves with the decidability of this enriched model as our aim is to use

this merely as a step in the translation eventually to the refined scheduling semantics.

Equivalence of enriched TSO model with enriched Load Buffer model. The second stage involves mov-

ing from this enriched TSO model where writes are stored in buffers while reads are instantaneous

(store buffers) to one where writes happen instantaneously while reads pick up values from buffers

(load buffers). In a load buffer model, values are periodically back propagated from the memory

to the load buffers so that a thread may read an outdated value from this buffer. We enrich this

traditional load buffer model as we enriched the TSO, allowing us to specify, for each variable, an

enabling boolean condition to be evaluated on the memory before writing to it. The equivalence

between TSO and load buffer (LB)models was shown in [Abdulla et al. 2018a]. The proofs extend

easily to an equivalence between the enriched TSO model and enriched load buffer model. Once

again, we do not have to concern ourselves with the decidability of the enriched LB model as it is

used only in the translation to the refined scheduling semantics.

Refining the enriched Load Buffer model into A 3 . The Enriched Load Buffer model while faithfully

simulatingA 1
still uses additional variables and these appear in the load buffers making it different

from A 3

. The last stage transforms this enriched load buffer model into the refined scheduling

semantics by eliminating the need to back propagate these new variables to the load buffer. The

elimination of the back propagation of most of the new variables can be handled via very simple

observations : for instance, the variables ⟨x, fl, θ⟩, ⟨θ , sf⟩ are not read at all obviating any reason

for their back propagation. For Promise (x) (θ) we make use of the fact that it is modified and read

only by θ .
The last and somewhat intricate step is to show that the back propagation of the variables

Delay (x) (θ) can be handled by using at most one ⟨pfo, x⟩ in the load buffer of thread θ . A rough

intuition is the following: this variable is written to by only two processes, the thread θ which

only writes true and the special process that only resets it through a rmw instruction. The special
thread accesses this variable only through a rmw instruction. Thus, this variable needs to be back

Proc. ACM Program. Lang., Vol. , No. POPL, Article . Publication date: January 2021.

Deciding Reachability under Persistent x86-TSO 29

propagated only to thread θ . We would like to eliminate this as well and allow it to read directly

from the memory. However, there is a very specific circumstance in which this results in a problem.

Since θ only reads the value true attempting to read a wrong value can only disable an otherwise

enabled read. And this happens only in a very specific scenario i.e., when it is still reading values

from its load buffer that arrived earlier than last time the special process set this variable to false.

We are able to capture this situation by inserting the ⟨pfo, x⟩ as a fence into the load buffer at the

execution of the rmw instruction. This then is essentially a reformulation of A 3

.

Thus, we are able to demonstrate the equivalence between A 1
and A 3

models when executed

in composition with any program giving us the correctness of Lemma 6.1.

Remark on FIFO Buffers. Some aspects of the semantics may give the impression that the load

buffer is not purely FIFO. For instance the rule Discharge-Promise(2) seems to perform a non-FIFO

operation since it deletes a message from inside the load buffer. However, this is not true. More

precisely, we divide the load buffer to a finite sequence of sub-buffers, each of which is a FIFO

buffer. The buffers are separated by messages from the set of distguished messages which is finite.

This is reflected in the factorization operation, which is the basis the ordering relation with respect

to which the system is monotone (Sec. 7).

7 DECIDABILITY
In this section, we give an overview of the decidability of the reachability problems, by instantiating

the framework of well-structured systems [Abdulla et al. 1996; Finkel and Schnoebelen 2001]. In

the rest of the section, we fix an ordered automaton ⟨Γ, Γinit, Σin, Σout, , ⊑⟩, i.e., an automaton that

is equipped with a pre-order ⊑ on the set Γ.

Well-Structured Automata. For events e1, e2 ∈ Σin ∪ Σout , we use
e1/e2
=⇒ to denote (

−/−
)∗◦

e1/e2

◦(
−/−
)∗. If γ1

e1/e2
=⇒ γ2 then we can move from γ1 to γ2 by performing a transition γ1

e1/e2 γ2,
preceded and followed by an arbitrary number of transitions in which the automaton does not

interact with the environment during the transition. For a setG ⊆ Γ of configurations, we define

its predecessor set as Pred (e1/e2) (G) :=
{
γ | ∃γ ′ ∈ G . γ

e1/e2
=⇒ γ ′

}
. We define the upward closure of G

as Ĝ := {γ ′ | ∃γ ∈ G . γ ⊑ γ ′}. We say A is well-structured if it satisfies the following conditions:

• ⊑ is a well quasi-ordering, i.e., for any infinite sequence γ0,γ1,γ2, . . . of configurations, there are
i, j with i < j and γi ⊑ γj .

• is monotone wrt. ⊑, i.e., given configuration γ1, γ2, γ3 such that γ1
e1/e2 γ2 and γ1 ⊑ γ3, there

is a configuration γ4 such that γ3
e1/e2
=⇒ γ4 and γ2 ⊑ γ4.

• For a finite set G ⊆ Γ, we can compute a finite encoding of the predecessor set Pred (e1/e2)
(
Ĝ
)
.

Theorem 7.1. For a well-structured automaton A and a finite set G ⊆ Γ, A |= Ĝ is decidable.

Orderings. The main step in proving well-structuredness of our automata is to provide a well

quasi-ordering ⊑, such that the transition relation is monotone wrt. ⊑. Since, we are working

with FIFO operations, and all the operations are local, computing the predecessor set amounts to

standard operations on finite words [Abdulla and Jonsson 1993]. The set Γ P
of configurations in

the automaton A P
is finite, and therefore we can trivially define ⊑ to be the equality relation on

Γ P
. For the automatonA 3

we define the ordering ⊑ on the set Γ 3

in two steps. First, we define an

ordering ⊑ on the set H of LB-words, using their factorizations. Letw,w ′ ∈ H , with factor (w) =
[w1][m1][w2][m2][w3] · · · [mn−1][wn], and factor (w

′) = [w ′
1
][m′

1
][w ′

2
][m′

2
][w ′

3
] · · · [m′n−1][w

′
n]. We

Proc. ACM Program. Lang., Vol. , No. POPL, Article . Publication date: January 2021.

30 P. A. Abdulla, M. F. Atig, A. Bouajjani, K N. Kumar, and P. Saivasan

writew ⊑ w ′ to denote that (i)mi =m
′
i for all i : 1 ≤ i < n, and (ii)wi ⪯ w ′i for all i : 1 ≤ i ≤ n. In

other words, we require thatw andw ′ agree on the values and the orderings of the distinguished

messages, and furthermore, each segment in w is a sub-word of the corresponding segment in

w ′ (recall the definition of ⪯ from Sec. 3.1.) For configurations γ = ⟨B, Promise, Delay,M⟩ and

γ ′ = ⟨B′, Promise′, Delay′,M ′⟩ in Γ 3

, we write γ ⊑ γ ′ to denote that (i) B (θ) ⊑ B′ (θ) for all θ ∈ Θ,
(ii) Promise′ = Promise, (iii) Delay = Delay′, and (iv) M = M ′. For configurations γ = ⟨D, E,N ⟩

and γ ′ = ⟨D ′, E ′,N ′⟩ in Γ 4
, we write γ ⊑ γ ′ to denote that (i) D (x) ⪯ D ′ (x) for all x ∈ X. (ii)

E ⪯ E ′. (iii) N = N ′. The well-structuredness of A P
, A 3

, and A 4
implies the same for that

A P ⊗ A 3 ⊗ A 4
.

Decidability. The set of configurations for which we want to check reachability can always be

defined as the upward closure Ĝ of a finite set G of configurations. To see this, we observe that, for

any buffer, e.g., a load , initial, or snapshot buffer, the set of all buffer states is the upward closure

{̂ϵ} (wrt. ⪯). This means that A P ⊗ A 3 ⊗ A 4 |= ⟨γ ,γ3,γ4⟩ for some γ3 and γ4 is equivalent to

A P ⊗ A 3 ⊗ A 4 |= Ĝ . Here,G ⊆ {γ } × Γ 3 × Γ 4
, and all the buffers in the configurations ofG are

empty. Notice that this implies that G is finite. From this and Theorem 7.1 we get:

Lemma 7.2. We can decide whether ∃γ3γ4. A P ⊗ A 3 ⊗ A 4 |= ⟨γ ,γ3,γ4⟩.

From Lemmata 6.1 , 7.2, we get:

Theorem 7.3. The crash-free and full reachability problems are decidable

8 CONCLUSION
We proved that verifying reachability in concurrent programs under the Px86 model is decidable.

This is the first result on the decidability of this problem in the context of persistent memory

models. Our approach for achieving this result is based on establishing a clear separation between

the pending and the persistency stages. Besides decidability, our work provides an insight about

the computational power of the persistent TSO model through the investigation and the definition

of a new operational model that can be of independent interest for program designers.

Understanding the computational power of persistent TSO is also the first step towards developing

efficient methods and tools for the verification of programs under this memory model. It opens the

door to the investigation of various types of verification procedures combining our constructionwith

techniques such as bounded analysis or DPOR strategies, following the lines of works developed,

e.g., in [Abdulla et al. 2015, 2017b, 2016a, 2018b; Atig et al. 2014; Kokologiannakis et al. 2019], for

other memory models such as TSO, Power, or C11.

Concretely, for future work, we intend to consider:

• The decidability of probabilistic extensions of the persistent TSOmodel, using the frameworks

we have developed for infinite-state Markov chains, e.g., [Abdulla et al. 2000, 2005a,b,c, 2007;

Abdulla and Rabinovich 2003].

• Parameterized verification of concurrent programs running on the persistent TSO model,

along the lines of [Abdulla et al. 2020a, 2004, 2013, 2016b].

• The development of over-approximation techniques such as monotonic and simulation-

based abstraction [Abdulla et al. 2008a,b, 2011], and under-approximation techniques such as

stateless model checking [Abdulla et al. 2015, 2017a, 2019b, 2016a, 2018b].

REFERENCES
P.A. Abdulla, S. Aronis, M. Faouzi Atig, B. Jonsson, C. Leonardsson, and K. Sagonas. 2015. Stateless Model Checking for

TSO and PSO. In TACAS (LNCS), Vol. 9035. Springer, 353–367.

Proc. ACM Program. Lang., Vol. , No. POPL, Article . Publication date: January 2021.

Deciding Reachability under Persistent x86-TSO 31

Parosh Aziz Abdulla, Stavros Aronis, Mohamed Faouzi Atig, Bengt Jonsson, Carl Leonardsson, and Konstantinos Sagonas.

2017a. Stateless model checking for TSO and PSO. Acta Inf. 54, 8 (2017), 789–818.
Parosh Aziz Abdulla, Jatin Arora, Mohamed Faouzi Atig, and Shankara Narayanan Krishna. 2019a. Verification of programs

under the release-acquire semantics. In Proceedings of the 40th ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI 2019, Phoenix, AZ, USA, June 22-26, 2019., Kathryn S. McKinley and Kathleen Fisher

(Eds.). ACM, 1117–1132. https://doi.org/10.1145/3314221.3314649

Parosh Aziz Abdulla, Mohamed Faouzi Atig, Ahmed Bouajjani, Egor Derevenetc, Carl Leonardsson, and Roland Meyer.

2020b. Safety Verification under Power. In NETYS 2020 (Lecture Notes in Computer Science). Springer. to appear.

Parosh Aziz Abdulla, Mohamed Faouzi Atig, Ahmed Bouajjani, and Tuan Phong Ngo. 2017b. Context-Bounded Analysis for

POWER. In TACAS. 56–74.
Parosh Aziz Abdulla, Mohamed Faouzi Atig, Ahmed Bouajjani, and Tuan Phong Ngo. 2018a. A Load-Buffer Semantics for

Total Store Ordering. Logical Methods in Computer Science 14, 1 (2018). https://doi.org/10.23638/LMCS-14(1:9)2018

Parosh Aziz Abdulla, Mohamed Faouzi Atig, Bengt Jonsson, Magnus Lång, Tuan Phong Ngo, and Konstantinos Sagonas.

2019b. Optimal stateless model checking for reads-from equivalence under sequential consistency. PACMPL 3, OOPSLA

(2019).

Parosh Aziz Abdulla, Mohamed Faouzi Atig, Bengt Jonsson, and Carl Leonardsson. 2016a. Stateless Model Checking for

POWER. In CAV (LNCS), Vol. 9780. 134–156.
Parosh Aziz Abdulla, Mohamed Faouzi Atig, Bengt Jonsson, and Tuan Phong Ngo. 2018b. Optimal stateless model checking

under the release-acquire semantics. PACMPL 2, OOPSLA (2018), 135:1–135:29. https://doi.org/10.1145/3276505

Parosh Aziz Abdulla, Mohamed Faouzi Atig, and Rojin Rezvan. 2020a. Parameterized verification under TSO is PSPACE-

complete. PACMPL 4, POPL (2020).

Parosh Aziz Abdulla, Christel Baier, S. Purushothaman Iyer, and Bengt Jonsson. 2000. Reasoning about Probabilistic Lossy

Channel Systems. In CONCUR 2000 - Concurrency Theory, 11th International Conference, University Park, PA, USA, August
22-25, 2000, Proceedings (Lecture Notes in Computer Science), Catuscia Palamidessi (Ed.), Vol. 1877. Springer, 320–333.

https://doi.org/10.1007/3-540-44618-4_24

Parosh Aziz Abdulla, Christel Baier, S. Purushothaman Iyer, and Bengt Jonsson. 2005a. Simulating perfect channels with

probabilistic lossy channels. Inf. Comput. 197, 1-2 (2005), 22–40. https://doi.org/10.1016/j.ic.2004.12.001

Parosh Aziz Abdulla, Nathalie Bertrand, Alexander Moshe Rabinovich, and Philippe Schnoebelen. 2005b. Verification of

probabilistic systems with faulty communication. Inf. Comput. 202, 2 (2005), 141–165. https://doi.org/10.1016/j.ic.2005.

05.008

Parosh Aziz Abdulla, Ahmed Bouajjani, Jonathan Cederberg, Frédéric Haziza, and Ahmed Rezine. 2008a. Monotonic

Abstraction for Programs with Dynamic Memory Heaps. In Computer Aided Verification, 20th International Conference,
CAV 2008, Princeton, NJ, USA, July 7-14, 2008, Proceedings (Lecture Notes in Computer Science), Aarti Gupta and Sharad

Malik (Eds.), Vol. 5123. Springer, 341–354. https://doi.org/10.1007/978-3-540-70545-1_33

Parosh Aziz Abdulla, Ahmed Bouajjani, Lukás Holík, Lisa Kaati, and Tomás Vojnar. 2008b. Computing Simulations over Tree

Automata. In Tools and Algorithms for the Construction and Analysis of Systems, 14th International Conference, TACAS 2008,
Held as Part of the Joint European Conferences on Theory and Practice of Software, ETAPS 2008, Budapest, Hungary, March
29-April 6, 2008. Proceedings (Lecture Notes in Computer Science), C. R. Ramakrishnan and Jakob Rehof (Eds.), Vol. 4963.

Springer, 93–108. https://doi.org/10.1007/978-3-540-78800-3_8

Parosh Aziz Abdulla, Karlis Cerans, Bengt Jonsson, and Yih-Kuen Tsay. 1996. General Decidability Theorems for Infinite-

State Systems. In Proceedings, 11th Annual IEEE Symposium on Logic in Computer Science, New Brunswick, New Jersey,
USA, July 27-30, 1996. IEEE Computer Society, 313–321. https://doi.org/10.1109/LICS.1996.561359

Parosh Aziz Abdulla, Yu-Fang Chen, Lorenzo Clemente, Lukás Holík, Chih-Duo Hong, Richard Mayr, and Tomás Vojnar. 2011.

Advanced Ramsey-Based Büchi Automata Inclusion Testing. In CONCUR 2011 - Concurrency Theory - 22nd International
Conference, CONCUR 2011, Aachen, Germany, September 6-9, 2011. Proceedings (Lecture Notes in Computer Science),
Joost-Pieter Katoen and Barbara König (Eds.), Vol. 6901. Springer, 187–202. https://doi.org/10.1007/978-3-642-23217-6_13

Parosh Aziz Abdulla, Johann Deneux, and Pritha Mahata. 2004. Multi-Clock Timed Networks. In 19th IEEE Symposium
on Logic in Computer Science (LICS 2004), 14-17 July 2004, Turku, Finland, Proceedings. IEEE Computer Society, 345–354.

https://doi.org/10.1109/LICS.2004.1319629

Parosh Aziz Abdulla, Frédéric Haziza, and Lukás Holík. 2013. All for the Price of Few. In Verification, Model Checking, and
Abstract Interpretation, 14th International Conference, VMCAI 2013, Rome, Italy, January 20-22, 2013. Proceedings (Lecture
Notes in Computer Science), Roberto Giacobazzi, Josh Berdine, and Isabella Mastroeni (Eds.), Vol. 7737. Springer, 476–495.

https://doi.org/10.1007/978-3-642-35873-9_28

Parosh Aziz Abdulla, Frédéric Haziza, and Lukás Holík. 2016b. Parameterized verification through view abstraction. STTT
18, 5 (2016), 495–516. https://doi.org/10.1007/s10009-015-0406-x

Parosh Aziz Abdulla, Noomene Ben Henda, and Richard Mayr. 2005c. Verifying Infinite Markov Chains with a Finite

Attractor or the Global Coarseness Property. In 20th IEEE Symposium on Logic in Computer Science (LICS 2005), 26-29

Proc. ACM Program. Lang., Vol. , No. POPL, Article . Publication date: January 2021.

https://doi.org/10.1145/3314221.3314649
https://doi.org/10.23638/LMCS-14(1:9)2018
https://doi.org/10.1145/3276505
https://doi.org/10.1007/3-540-44618-4_24
https://doi.org/10.1016/j.ic.2004.12.001
https://doi.org/10.1016/j.ic.2005.05.008
https://doi.org/10.1016/j.ic.2005.05.008
https://doi.org/10.1007/978-3-540-70545-1_33
https://doi.org/10.1007/978-3-540-78800-3_8
https://doi.org/10.1109/LICS.1996.561359
https://doi.org/10.1007/978-3-642-23217-6_13
https://doi.org/10.1109/LICS.2004.1319629
https://doi.org/10.1007/978-3-642-35873-9_28
https://doi.org/10.1007/s10009-015-0406-x

32 P. A. Abdulla, M. F. Atig, A. Bouajjani, K N. Kumar, and P. Saivasan

June 2005, Chicago, IL, USA, Proceedings. IEEE Computer Society, 127–136. https://doi.org/10.1109/LICS.2005.54

Parosh Aziz Abdulla, Noomene Ben Henda, and Richard Mayr. 2007. Decisive Markov Chains. CoRR abs/0706.2585 (2007).

arXiv:0706.2585 http://arxiv.org/abs/0706.2585

Parosh Aziz Abdulla and Bengt Jonsson. 1993. Verifying Programs with Unreliable Channels. In Proceedings of the Eighth
Annual Symposium on Logic in Computer Science (LICS ’93), Montreal, Canada, June 19-23, 1993. IEEE Computer Society,

160–170. https://doi.org/10.1109/LICS.1993.287591

Parosh Aziz Abdulla and Alexander Moshe Rabinovich. 2003. Verification of Probabilistic Systems with Faulty Com-

munication. In Foundations of Software Science and Computational Structures, 6th International Conference, FOSSACS
2003 Held as Part of the Joint European Conference on Theory and Practice of Software, ETAPS 2003, Warsaw, Poland,
April 7-11, 2003, Proceedings (Lecture Notes in Computer Science), Andrew D. Gordon (Ed.), Vol. 2620. Springer, 39–53.

https://doi.org/10.1007/3-540-36576-1_3

Jade Alglave, Daniel Kroening, Vincent Nimal, and Michael Tautschnig. 2013b. Software Verification for Weak Memory via

Program Transformation. In Programming Languages and Systems - 22nd European Symposium on Programming, ESOP
2013, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2013, Rome, Italy, March
16-24, 2013. Proceedings (Lecture Notes in Computer Science), Matthias Felleisen and Philippa Gardner (Eds.), Vol. 7792.

Springer, 512–532. https://doi.org/10.1007/978-3-642-37036-6_28

Jade Alglave, Daniel Kroening, and Michael Tautschnig. 2013a. Partial Orders for Efficient Bounded Model Checking of

Concurrent Software. In Computer Aided Verification - 25th International Conference, CAV 2013, Saint Petersburg, Russia,
July 13-19, 2013. Proceedings (Lecture Notes in Computer Science), Natasha Sharygina and Helmut Veith (Eds.), Vol. 8044.

Springer, 141–157. https://doi.org/10.1007/978-3-642-39799-8_9

Jade Alglave, Luc Maranget, and Michael Tautschnig. 2014. Herding Cats: Modelling, Simulation, Testing, and Data Mining

for Weak Memory. ACM Trans. Program. Lang. Syst. 36, 2 (2014), 7:1–7:74.
ARM. 2018. ARM architecture reference manual ARMv8, for ARMv8-A architecture profile (DDI 0487D.a).

Joy Arulraj and Andrew Pavlo. 2017. How to Build a Non-Volatile Memory Database Management System. In SIGMOD,
Semih Salihoglu, Wenchao Zhou, Rada Chirkova, Jun Yang, and Dan Suciu (Eds.). ACM.

Mohamed Faouzi Atig, Ahmed Bouajjani, Sebastian Burckhardt, and Madanlal Musuvathi. 2010. On the verification problem

for weak memory models. In Proceedings of the 37th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL 2010, Madrid, Spain, January 17-23, 2010, Manuel V. Hermenegildo and Jens Palsberg (Eds.). ACM, 7–18.

https://doi.org/10.1145/1706299.1706303

Mohamed Faouzi Atig, Ahmed Bouajjani, Sebastian Burckhardt, and Madanlal Musuvathi. 2012. What’s Decidable about

Weak Memory Models?. In Programming Languages and Systems - 21st European Symposium on Programming, ESOP
2012, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2012, Tallinn, Estonia,
March 24 - April 1, 2012. Proceedings (Lecture Notes in Computer Science), Helmut Seidl (Ed.), Vol. 7211. Springer, 26–46.

https://doi.org/10.1007/978-3-642-28869-2_2

Mohamed Faouzi Atig, Ahmed Bouajjani, and Gennaro Parlato. 2011. Getting Rid of Store-Buffers in TSO Analysis. In CAV
(LNCS), Vol. 6806. Springer, 99–115.

Mohamed Faouzi Atig, Ahmed Bouajjani, and Gennaro Parlato. 2014. Context-Bounded Analysis of TSO Systems. In From
Programs to Systems. The Systems perspective in Computing - ETAPS Workshop, FPS 2014, in Honor of Joseph Sifakis,
Grenoble, France, April 6, 2014. Proceedings. 21–38.

M. Batty, S. Owens, S. Sarkar, P. Sewell, and T. Weber. 2011. Mathematizing C++ concurrency. In POPL. ACM, 55–66.

Sebastian Burckhardt. 2014. Principles of Eventual Consistency. Foundations and Trends in Programming Languages 1, 1-2
(2014), 1–150.

Nachshon Cohen, David T. Aksun, and James R. Larus. 2018. Object-oriented recovery for non-volatile memory. PACMPL 2,

OOPSLA (2018).

Brian Demsky and Patrick Lam. 2015. SATCheck: SAT-directed stateless model checking for SC and TSO. In OOPSLA. ACM,

20–36.

Alain Finkel and Philippe Schnoebelen. 2001. Well-structured transition systems everywhere! Theor. Comput. Sci. 256, 1-2
(2001), 63–92. https://doi.org/10.1016/S0304-3975(00)00102-X

Shaked Flur, Kathryn E. Gray, Christopher Pulte, Susmit Sarkar, Ali Sezgin, Luc Maranget, Will Deacon, and Peter Sewell.

2016. Modelling the ARMv8 architecture, operationally: concurrency and ISA. In POPL. ACM, 608–621.

Alexey Gotsman, Hongseok Yang, Carla Ferreira, Mahsa Najafzadeh, and Marc Shapiro. 2016. ’Cause I’m strong enough:

reasoning about consistency choices in distributed systems. In POPL 2016. 371–384.
Intel. 2019a. Architectures Software Developer’s Manual (Combined Volumes). Software.intel.com.

Intel (Ed.). 2019b. Intel 64 and IA-32 Architectures Software Developer’s Manual (Combined Volumes). Intel.
Intel. 2019c. Intel Optane Technology. https://www.intel.com/content/www/us/en/architecture-and-technology/intel-

optane-technology.html.

Proc. ACM Program. Lang., Vol. , No. POPL, Article . Publication date: January 2021.

https://doi.org/10.1109/LICS.2005.54
http://arxiv.org/abs/0706.2585
http://arxiv.org/abs/0706.2585
https://doi.org/10.1109/LICS.1993.287591
https://doi.org/10.1007/3-540-36576-1_3
https://doi.org/10.1007/978-3-642-37036-6_28
https://doi.org/10.1007/978-3-642-39799-8_9
https://doi.org/10.1145/1706299.1706303
https://doi.org/10.1007/978-3-642-28869-2_2
https://doi.org/10.1016/S0304-3975(00)00102-X
https://software.intel.com/sites/default/files/managed/39/c5/325462-sdm-vol-1-2abcd-3abcd.pdf
https://www.intel.com/content/www/us/en/architecture-and-technology/intel-optane-technology.html
https://www.intel.com/content/www/us/en/architecture-and-technology/intel-optane-technology.html

Deciding Reachability under Persistent x86-TSO 33

Jeehoon Kang, Chung-Kil Hur, Ori Lahav, Viktor Vafeiadis, and Derek Dreyer. 2017. A promising semantics for relaxed-

memory concurrency. In POPL 2017. 175–189.
Michalis Kokologiannakis, Ori Lahav, Konstantinos Sagonas, and Viktor Vafeiadis. 2018. Effective stateless model checking

for C/C++ concurrency. PACMPL 2 (2018), 17:1–17:32.

Michalis Kokologiannakis, Azalea Raad, and Viktor Vafeiadis. 2019. Effective lock handling in stateless model checking.

Proc. ACM Program. Lang. 3, OOPSLA (2019), 173:1–173:26. https://doi.org/10.1145/3360599

Michalis Kokologiannakis and Viktor Vafeiadis. 2020. HMC: Model Checking for Hardware Memory Models. In ASPLOS
’20: Architectural Support for Programming Languages and Operating Systems, Lausanne, Switzerland, March 16-20, 2020
[ASPLOS 2020 was canceled because of COVID-19], James R. Larus, Luis Ceze, and Karin Strauss (Eds.). ACM, 1157–1171.

https://doi.org/10.1145/3373376.3378480

Ori Lahav and Udi Boker. 2020. Decidable verification under a causally consistent shared memory. In Proceedings of the 41st
ACM SIGPLAN International Conference on Programming Language Design and Implementation, PLDI 2020, London, UK,
June 15-20, 2020, Alastair F. Donaldson and Emina Torlak (Eds.). ACM, 211–226. https://doi.org/10.1145/3385412.3385966

Ori Lahav, Nick Giannarakis, and Viktor Vafeiadis. 2016. Taming release-acquire consistency. In Proceedings of the 43rd
Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2016, St. Petersburg, FL, USA,
January 20 - 22, 2016, Rastislav Bodík and Rupak Majumdar (Eds.). ACM, 649–662.

Sihang Liu, Korakit Seemakhupt, Yizhou Wei, Thomas F. Wenisch, Aasheesh Kolli, and Samira Khan. 2020. Cross Failure

Bug Detection in Persistent Memory Programs. In ASPLOS.
Sihang Liu, Yizhou Wei, Jishen Zhao, Aasheesh Kolli, and Samira Manabi Khan. 2019. PMTest: A Fast and Flexible Testing

Framework for Persistent Memory Programs. In Proceedings of the Twenty-Fourth International Conference on Architectural
Support for Programming Languages and Operating Systems, ASPLOS 2019, Providence, RI, USA, April 13-17, 2019, Iris Bahar,
Maurice Herlihy, Emmett Witchel, and Alvin R. Lebeck (Eds.). ACM, 411–425. https://doi.org/10.1145/3297858.3304015

Sela Mador-Haim, Luc Maranget, Susmit Sarkar, Kayvan Memarian, Jade Alglave, Scott Owens, Rajeev Alur, Milo M. K.

Martin, Peter Sewell, and Derek Williams. 2012. An Axiomatic Memory Model for POWER Multiprocessors. In Computer
Aided Verification - 24th International Conference, CAV 2012, Berkeley, CA, USA, July 7-13, 2012 Proceedings (Lecture Notes
in Computer Science), P. Madhusudan and Sanjit A. Seshia (Eds.), Vol. 7358. Springer, 495–512.

Kyndylan Nienhuis, Kayvan Memarian, and Peter Sewell. 2016. An operational semantics for C/C++11 concurrency. In

OOPSLA. ACM, 111–128.

Steven Pelley, Peter M. Chen, and Thomas F. Wenisch. 2014. Memory persistency. In ISCA.
Anton Podkopaev, Ori Lahav, and Viktor Vafeiadis. 2019. Bridging the gap between programming languages and hardware

weak memory models. Proc. ACM Program. Lang. 3, POPL (2019), 69:1–69:31. https://doi.org/10.1145/3290382

Azalea Raad and Viktor Vafeiadis. 2018. Persistence semantics for weak memory: integrating epoch persistency with the

TSO memory model. Proc. ACM Program. Lang. 2, OOPSLA (2018), 137:1–137:27. https://doi.org/10.1145/3276507

Azalea Raad, John Wickerson, Gil Neiger, and Viktor Vafeiadis. 2020. Persistency semantics of the Intel-x86 architecture.

PACMPL 4, POPL (2020), 11:1–11:31. https://doi.org/10.1145/3371079

Azalea Raad, John Wickerson, and Viktor Vafeiadis. 2019. Weak persistency semantics from the ground up: formalising the

persistency semantics of ARMv8 and transactional models. Proc. ACM Program. Lang. 3, OOPSLA (2019), 135:1–135:27.

https://doi.org/10.1145/3360561

Peter Sewell, Susmit Sarkar, Scott Owens, Francesco Zappa Nardelli, and Magnus O. Myreen. 2010. x86-TSO: a rigorous and

usable programmer’s model for x86 multiprocessors. Commun. ACM 53, 7 (2010), 89–97.

Fei Xia, Dejun Jiang, Jin Xiong, and Ninghui Sun. 2017. HiKV: A Hybrid Index Key-Value Store for DRAM-NVM Memory

Systems. In USENIX ATC, Dilma Da Silva and Bryan Ford (Eds.).

Proc. ACM Program. Lang., Vol. , No. POPL, Article . Publication date: January 2021.

https://doi.org/10.1145/3360599
https://doi.org/10.1145/3373376.3378480
https://doi.org/10.1145/3385412.3385966
https://doi.org/10.1145/3297858.3304015
https://doi.org/10.1145/3290382
https://doi.org/10.1145/3276507
https://doi.org/10.1145/3371079
https://doi.org/10.1145/3360561

	Abstract
	1 Introduction
	2 Overview
	2.1 The Persistency semantics
	2.2 The Basic Scheduling Semantics
	2.3 The Refined Scheduling Semantics
	2.4 Semantical Equivalence, Decidability, and Complexity

	3 Event Automata
	3.1 Notation
	3.2 Automata

	4 Concurrent Programs
	5 The Basic Scheduling Semantics
	5.1 The Pending Stage
	5.2 The Persistency Stage
	5.3 The Reachability Problems
	5.4 Correctness

	6 The Refined Scheduling Semantics
	6.1 Load Pending Buffers
	6.2 Snapshot Buffer

	7 Decidability
	8 Conclusion
	References

