
Monotonic Abstraction in Parameterized
Verification

Parosh Aziz Abdulla1

Department of Information Technology
Uppsala University

Sweden

Giorgio Delzanno2

Dipartimento Informatica e Scienze dell´Informazione
Università di Genova

Italy

Ahmed Rezine3

LIAFA
University of Paris 7

France

Abstract

We present a tutorial on verification of safety properties for parameterized systems. Such a system consists
of an arbitrary number of processes which are organized in a linear array. The aim is to prove correctness
of the system regardless of the number of processes inside the system. We give an overview of the method
of monotonic abstraction, which provides an over-approximation of the transition system induced by a
parameterized system. The over-approximation gives a transition system which is monotonic with respect
to a well quasi-ordering on the set of configurations. This makes it possible to use existing methods for
verification of well quasi-ordered programs.

Keywords: Model Checking, Automatic Verification, Parameterized Systems, Safety Properties

1 Introduction

In this tutorial, we explain the basic ideas of the monotonic abstraction, a technique
which we have introduced recently [4,3,5] for automatic verification of parameter-
ized systems. A parameterized system consists of an arbitrary number number of

1 Email: parosh@it.uu.se
2 Email: giorgio@disi.unige.it
3 Email: rezine.ahmed@liafa.jussieu.fr

Preprint submitted to Electronic Notes in Theoretical Computer Science 27 September 2009

mailto:parosh@it.uu.se
mailto:giorgio@disi.unige.it
mailto:rezine.ahmed@liafa.jussieu.fr

processes usually organized as a linear array. In fact, a parameterized system rep-
resents an infinite family of systems, namely one for each size of the system. We
are interested in parameterized verification, i.e., verifying correctness regardless of
the number of processes inside the system. The term parameterized refers to the
fact that the size of the system is (implicitly) a parameter of the verification prob-
lem. Examples of parameterized systems include mutual exclusion algorithms, bus
protocols, telecommunication protocols, and cache coherence protocols.

The main techniques used for verification of parameterized systems have been
defined within the paradigm of regular model checking [14,7,9]. In regular model
checking, states are represented by words where each element of the word corre-
sponds to the local state of one process. The ordering of the elements inside the
word reflects the ordering of the corresponding processes inside the array. Using
words to represent configurations allows us to use finite automata (or regular ex-
pressions) to represent (infinite) sets of configurations. A configuration belongs to
the set if its word encoding is accepted by the automaton. We can also encode the
transition relation by finite-state transducers. A transducer is an extension of an au-
tomaton, where each run of the transducer both inputs and outputs a word (rather
than only inputting a word). A transition from a configuration c1 to a configuration
c2 can be encoded by a run of the transducer where we input the word encoding of
c1, and output the word encoding of c2. Safety properties can be checked through
performing reachability analysis, which amounts to applying the transducer relation
iteratively to the set of initial states. The main problem with transducer-based tech-
niques is the difficulty of computing the transitive closure. Existing methods are
heavy and usually rely on several layers of computationally expensive automata-
theoretic constructions; in many cases making them very inefficient and severely
limiting their applicability.

In parallel, there has been an extensive research on the verification of infinite-
state systems which are monotonic w.r.t. a well quasi-ordering on the set of config-
urations [2]. The main idea is to perform symbolic backward reachability analysis
to check safety properties for such systems. The method was first reported in [6]
and applied to analyze safety properties for lossy channel systems. Concretely, we
define a pre-order � on the set of configurations such that (1) � is a simulation with
respect to the transition relation (i.e., the transition relation is monotonic w.r.t. �),
and (2) � is a well-quasi ordering (WQO for short). Given such a pre-order, we
can derive a backward algorithm for checking reachability of sets of configurations
which are upward closed w.r.t. �. Upward closed sets are attractive to use in this
setting for several reasons. First, we are interested in safety properties, in which we
check the reachability of a set of bad configurations. These are configurations which
we do not want to occur during the execution of the system. For instance, in mutual
exclusion protocols, the bad configurations are those in which at least two processes
are in their critical sections. This means that checking safety properties amounts to
checking reachability of upward closed sets of configurations. The second attractive
feature of upward closed sets is that they can be characterized by their minimal
elements, which often makes it possible to have efficient symbolic representations of

2

infinite sets of configurations.
We start from the set of bad configurations, and then compute the sets of pre-

decessors, i.e., sets of configurations which correspond to going one step backwards
along the transition relation. Monotonicity implies that, for any upward-closed set,
the set of its predecessors is an upward-closed set. Since the set of bad configurations
is upward closed, it follows that all the sets which are generated are also upward
closed. This procedure is guaranteed to terminate by the well quasi-ordering of the
relation on the set of configurations.

Since its first application to lossy channel systems [6], the method has been used
for the design of verification algorithms for a wide range of models such as Petri
nets, timed Petri nets, broadcast protocols, cache coherence protocols, etc. (see,
e.g., [8,10,11,12]).

Unfortunately, parametrized systems do not quite fit into this framework, in
the sense that there is no nontrivial (useful) WQO for which these systems are
monotonic. The ordering � amounts to the subword relation on words. The main
obstacle is that parameterized systems usually use universal global conditions in
which a process may need to check states of all other processes inside the system.
Universal conditions are inherently non-monotonic, since having larger configura-
tions may lead to the violation of the universal condition. In this tutorial, we give an
overview of the method of monotonic abstraction [4,3,5,1], which attempts to over-
come this problem by defining an abstract semantics which forces monotonicity.
Basically, the idea is to consider that a transition is possible from a configuration c1

to c2 if it is possible from any smaller configuration c′1 � c1 to c2. More precisely, the
abstraction kills (deletes) all the processes inside the configuration which violate the
universal condition. Since the abstract transition relation is an over-approximation
of the original one, proving a safety property in the abstract system implies that
the property also holds in the original system.

Monotonic abstraction has been used for performing shape analysis [1], and for
parametrized verification of mutual exclusion and cache coherence protocols [4,3,5].
Surprisingly, it leads to quite efficient analysis which can handle fully automatically
several non-trivial examples of such systems [4,3].

Outline
In the next section, we give an overview of parameterized systems, using a simple

protocol that we use as a running example throughout this tutorial. In Section 3, we
introduce the (infinite) transition systems which arise from parameterized systems.
In Section 4 we introduce our ordering on the set of configurations, and then we
define our abstraction in Section 5. We describe our approximated algorithm in
Section 6. In Section 7, we simulate the reachability algorithm on a simple example.
Finally, in Section 8, we describe several features which can be used to enrich the
basic model of Section 2.

3

t6∀LR t1

∃L t3

t2

∀L

t4

t5

Fig. 1. One process in the protocol.

2 Parameterized Systems

In this section, we introduce the concept of parameterized systems, through a sim-
ple example of a protocol which implements mutual exclusion among an arbitrary
number of processes.

A parameterized system consists of an arbitrary number of processes each of
which is a finite-state process. The processes are (usually) organized as a linear
array. In each step in the execution of a parameterized system, one process, called
the active process, changes state. The rest of the processes, called the passive
processes, do not change states. We call the passive processes to the left of the
active process the left context of the active process. The right context is defined
analogously. The active process may perform a local transition in which it changes
its state independently of the states of the passive processes. The active process
may also perform a global transition in which it checks the states of the passive
processes. A global transition is either universally or existentially quantified. An
example of a universal condition is that all processes in the left context of the active
process should be in certain states. In an existential transition we require that some
(rather than all) processes should be in certain states.

In our example, each process (depicted in Figure 2) has four local states, namely
the green, black, blue, and red states. We represent these states by coloured balls

, , , and . Sometimes, we refer to a process in a configuration by its state,
so we say e.g. “the red process” rather than “the process in its red state”.

Initially, all the processes are green (they are idle). When a process becomes
interested in accessing the critical section (which corresponds to the red state), it
declares its interest by moving to the black state. This is described by the global
universal transition rule t1 in which the move is allowed only if all other processes
are in their green or black states. The universal quantifier labeling t1 encodes the
condition that all other processes (whether in the left or the right context – hence
the index LR of the quantifier) of the active process should be green or black.

In the black state, the process may move to the blue state through the local
transition t2 (in which the process does not need to check the states of the other
processes). Notice that any number of processes my cross from the initial (green)
state to the black state. However, once the first process has crossed to the blue

4

state, it “closes the door” on the processes which are still in their green states.
These processes will no longer be able to leave their green states until the door is
opened again (when no process is blue or red). From the set of processes which have
declared interest in accessing the critical section (those which have left their green
states and are now black or blue) the leftmost process has the highest priority. This
is encoded by the global universal transition t4 where a process may move from its
blue state to its red state only subject to the universal condition that all processes
in its left context are green (the index L of the quantifier stands for “Left”). If
the process finds out, through the existential global condition, that there are other
processes that are black, blue, or red, then it loops back to the blue state through
the existential transition t3. Once the process leaves the critical section, it will
return back to the black state through the local transition t5. In the black state,
the process chooses either to try to reach the critical section again, or to become
idle (through the local transition t6).

Formally, we represent a parameterized systems P by a pair (Q, T), where Q is
the set of the local states of the processes, and T is the set of transition rules which
define the behaviour of each process. In the above example, the set Q consists of
four states (green, black, blue, and red), while the set T consists of six rules, namely
three local rules (t2, t5, and t6), two universal rules (t1 and t4), and one existential
rule (t3).

3 Transition Systems

A parameterized systems P = (Q, T) induces a transition systems T = (C,−→),
where C is the set of configurations and −→ is a transition relation on C. A
configuration is a word in Q∗, where each element of the word represents the local
state of one process.

Let us consider the example of Section 2. The word represents
a configuration in an instance of the system with five processes that are in their
green, blue, red, blue, and black states, in that order. Since there is no bound on the
size of configurations, the set of configuration is infinite. We define the transition
relation −→:=

⋃
t∈T

t−→, where t−→ is a relation on configurations that captures
the effect of the transition rule t. The definition of t−→ depends on the type of t

(whether it is local, existential, or universal). We will consider three transition rules
from Figure 2 to illustrate the idea.

The local rule t2 induces transitions of the form
t2−→

Here the active process changes its local state from black to blue.
The existential rule t3 induces transitions of the form

t3−→

The blue process can perform the transition since there is a black process in its left
context. However, the transition is not enabled from the configuration

5

, since there are no red, blue, or black processes in the left context of the process
trying to perform the transition.

The universal rule t4 induces transitions of the form
t4−→

The active process can perform the transition since all processes in its left con-
text are green. On the other hand, neither of the blue processes can perform the
transition form the configuration since, for each one of them, there
is at least one process in its left context which is not green.

We use ∗−→ to denote the reflexive transitive closure of −→. For sets C1 and C2

of configurations, we use C1
∗−→ C2 to denote that there are configurations c1 ∈ C1

and c2 ∈ C2 such that c1
∗−→ c2.

An initial configuration is one in which all processes are in their initial (green)
states. We use Init to denote the set of initial configurations. Examples of initial
configurations are and corresponding to instances of the system
with two and four processes respectively. Notice that there is an infinite set of initial
configurations, namely one for each size of the system.

As mentioned in Section 2, the protocol is intended to observe mutual exclusion.
In other words, we are interested in verifying a safety property. To do this we
characterize the set Bad of configurations: all configurations which contain at least
two red processes. Examples of configurations in Bad are and

. Showing the safety property amounts to proving that the protocol, starting
from an initial configuration, will never reach a bad configuration. In other words,
we want to answer the question whether Init ∗−→ Bad .

4 Ordering

In this section, we define an ordering on configurations, which we use to define bad
sets of configurations, and hence also to formulate the class of safety properties
which we consider in this tutorial.

For configurations c1 and c2, we use c1 � c2 to denote that c1 is a (not necessarily
contiguous) subword of c2. For instance, we have � . A set U of
configurations is said to be upward closed, if whenever c ∈ U and c � c′ then c′ ∈ U .
For a configuration c, we use ĉ to denote the upward closed set U := {c′| c � c′},
i.e., ĉ contains all configurations which are larger than c w.r.t. the ordering �. In
such a case, we call c the generator of U .

We are interested in upward closed sets for two reasons. First, all sets of bad
configurations which we work with are upward closed. For instance, in the example
of Section 2-3, the set Bad of configurations violating mutual exclusion are those
which contain at least two red processes. The set is upward closed since whenever
a configuration contains two red processes then any larger configuration will also
contain (at least) two red processes.

The second reason why we are interested in upward closed sets is that they have
an efficient symbolic representation. In fact, it can be shown that each upward

6

closed set can be characterized by a finite set of generators. More precisely, for an
upward closed set U , there are configurations c1, . . . , cn with U = ĉ1 ∪ · · · ∪ ĉn. For
instance, the set Bad above has a single generator, namely . Thus, operations
which manipulate upward closed sets can be translated into operations which ma-
nipulate words. In this manner we avoid using heavy machinery, such as regular
languages, when performing reachability analysis. This makes our approach much
more efficient in practice compared to automata-based methods such as regular
model checking [14,7,9].

We will check safety properties using backward reachability analysis. For a set
C of configurations, we use Pre(C) := {c| ∃c′ ∈ C · c −→ c′}. In other words, the
set Pre(C) contains exactly all configurations from which a configuration in C can
be reached through a single application of the transition relation.

To solve the safety problem, we present a scheme for backward reachability
analysis. We start with the set Bad of bad configurations which is upward closed.
Then, we apply the function Pre repeatedly generating a sequence U0, U1, U2, . . . of
sets of configurations, where U0 := Bad , and Ui+1 := Ui ∪ Pre(Ui) for i ≥ 0. We
observe that the set Ui characterizes the set of configurations from which the set
Bad is reachable within i steps. We would like the sets Ui to be upward (so that we
can represent them by their finite sets of generators). In order to achieve that, we
introduce a sufficient condition, namely that of monotonicity. Monotonicity implies
that Pre(U) is upward closed whenever U is upward closed. Since U0 is upward
closed by definition, monotonicity would imply that all the sets Ui are upward
closed.

A transition system is said to be monotonic if � forms a simulation on the set
of configurations. In other words, for all configurations c1, c2, c3, whenever c1 � c2

and c1 −→ c3 then c2 −→ c4 for some c4 � c3.
Monotonicity implies that upward closedness is preserved through the applica-

tion of Pre as follows. Consider an upward closed set U . Let c1 be a member of
Pre(U) and let c2 � c1. We will show that c2 is also a member of Pre(U). Since
c1 ∈ Pre(U), we know by definition that there is a c3 ∈ U such that c1 −→ c3. By
monotonicity it follows that there is a c4 such that c3 � c4 and c2 −→ c4. From
c3 ∈ U and c3 � c4 it follows that c4 ∈ U . This means that we have found a
configuration c4 ∈ U such that c2 −→ c4, which implies that c2 ∈ Pre(U).

5 Monotonic Abstraction

In this section, we define an abstraction that generates an over-approximation of
the transition system. The abstract transition system is monotonic, thus allowing
to work with upward closed sets. In fact, we first show that local and existential
transitions are monotonic, and hence need not be approximated. Therefore, we only
provide an over-approximation for universal transitions.

Consider the local transition

c1 = t2−→ = c3

7

in which a process changes state from black to blue. Consider the configuration
c2 = that is larger than c1. Clearly, c2 can perform the local
transition

c2 = t2−→ c4

leading to c4 � c2. Local transitions are monotonic, since the active process in the
small configuration (the black process in c1) also exists in the larger configuration
(i.e., c2). A local transition does not check or change the states of the passive
processes; and hence the larger configuration c2 is also able to perform the transition,
while maintaining the ordering c3 � c4.

Consider the existential transition

c1 = t3−→ = c3

Let us observe that the configuration c1 can be divided into three parts: the active
process , the left context , and the right context . Furthermore, the left
context contains a witness which enables the transition. Consider the configu-
ration c2 = that is larger than c1. Also, the configuration c2

can be divided into three parts: the active process , the left context , and
the right context . Notice that the left context of c2 is larger than the left
context of c1, and hence the former will also contain the witness . This means
that c2 can perform the same transition

c2 = t3−→ = c4

leading to c4 � c3.
Next, we motivate why universal transitions are not monotonic. Consider the

universal transition

c1 = t4−→ = c3.

The transition is enabled since all processes in the left context of the active process
satisfy the condition of the transition (they are green). Consider the configuration
c2 = . Although c1 � c2, the universal transition t4 is not
enabled from c2 since the left context of the active process contains processes that
violate the condition of the transition. This implies that universal transitions are
not monotonic.

In order to deal with non-monotonicity of universal transitions, we will work
with an abstract transition relation −→A that is an over-approximation of the con-
crete transition relation −→. We call −→A the monotonic abstraction of −→. The
relations t−→A coincides with t−→ in case of local and existential transitions (in these
two cases, the relation is monotonic and hence no over-approximation is needed).
In case t is universal, we have c1

t−→A c2 iff c′1
t−→ c2 for some c′1 � c1. In other

words, c1
t−→A c2 if c1 can first “transform” to a smaller configuration from which

it can perform the transition. This means for instance that
t4−→A

since

8

� t4−→

The abstract transition relation is monotonic also w.r.t. universal transitions,
since c1 � c2 and c1 −→A c3 implies that c2 −→A c3. Notice that in the over-
approximation, we delete those processes in the configuration that violate the con-
dition of the universal transition.

Since the abstract transition relation −→A is an over-approximation of the orig-
inal transition relation −→, it follows that if a safety property holds in the abstract
model, then it will also hold in the concrete model.

6 Backward Reachability Algorithm

We present a backward algorithm for approximated reachability analysis. The idea
is that we compute the function Pre w.r.t. the abstract relation −→A rather than
the concrete relation −→. This means that we can work with upward closed sets in
the scheme for backward reachability analysis presented in Section 4. Recall that
we generate a sequence U0, U1, U2, . . . of sets of configurations, where U0 := Bad ,
and Ui+1 := Ui ∪ Pre(Ui) for i ≥ 0. Since U0 is upward closed by definition, and
−→A is monotonic, all the sets Ui are upward closed.

Several properties of upward closed sets enable us to transform the backward
reachability scheme into an algorithm. First, each set can be represented by its
finite set of generators. Given a configuration c, we show below how to compute
the set of generators for the set Pre(ĉ). This means that we only need to work with
generators (configurations) as a symbolic representation of the sets which arise in
the algorithm.

Now, we show that the algorithm is guaranteed to terminate. Suppose that
the algorithm, during its execution, produces two generators c1, c2 such that c1 �
c2. Since ĉ2 ⊆ ĉ1, we can safely discard c2 from the analysis without the loss of
any information. In such a case, we say that c2 is subsumed by c1. Discarding
configurations in this manner makes it possible to apply the methodology of [2].
According to [2], termination of the algorithm is guaranteed since � is a so called
well quasi-ordering [13]. That � is a well quasi-ordering means that for any infinite
sequence c0, c1, c2, . . . of configurations, there are i < j such that ci � cj .

It remains to show that we can compute the generators of Pre(ĉ) for any con-
figuration c. We define Pre(ĉ) :=

⋃
t∈T Pret(ĉ) where Pret gives the generators of

the set of configurations from which we can reach ĉ through one application of the
transition rule t. The definition of Pret depends on the type of t (whether it is local,
existential, or universal). We will consider different transition rules in Figure 2 to
illustrate how to compute Pret(ĉ).

For the local rule t5 in Figure 2, we have

Pret5

(
̂

)
=
{ }

In other words, the predecessor set is characterized by one generator, namely

9

. Strictly speaking, the set contains also a number of other configurations such as
. However such configurations are subsumed by the original configuration

, and therefore we will not include them in the set.
For existential transitions, there are two cases depending on whether a witness

exists or not in the configuration. Consider the existential rule t3 in Figure 2. We
have

Pret3

(
̂

)
=
{ }

In the above case, there is a witness in the left context of the active process .
On the other hand, we have

Pret3

(
̂

)
=

,

,

,

In this case there is no witness available in the left context of the active process.
Therefore, we add a witness explicitly in each possible state (, , or), and each
possible place in the left context of the active process. Notice that the sizes of the
new generators (four processes) is larger than the size of the original configuration
(three processes). This means that the sizes of the configurations generated by
the backward algorithm may increase, and hence there is no bound a priori on the
sizes of the configurations. However, termination is still guaranteed to the well
quasi-ordering of �.

For universal conditions, we check whether there are any processes in the con-
figuration violating the condition. Consider the universal rule t4 in Figure 2. Then

Pret4

(
̂

)
= ∅

since there is a black process in the left context of the potential active process (which
is in state). On the other hand

Pret4

(
̂

)
=
{ }

since all processes in the left context of the active process are in their green states.

7 Example

We show how the backward reachability algorithm runs on our running example.
We start by the generator

g0 =

of the set of bad configuration. The only transition which might be enabled back-
wards from a red state, is the one induced by the rule t4. From the two red processes

10

in g0 only the left one can perform t4 backwards (the right process cannot perform
t4 backwards since its left context contains a process not satisfying the condition of
the quantifier):

Pret4 (g0) =
{

g1 =
}

From g1, two rules are enabled backwards (both from the blue process): the local
rule t2

Pret2 (g1) =
{

g2 =
}

and the existential rule t3

Pret3 (g1) =
{

, ,
}

Since a witness is missing in the left context, we add it explicitly. All the three
generators in Pret3 (g1) are subsumed by g1.

One rule is enabled backwards from g2, namely the local rule t5 from the black
process:

Pret5 (g2) = {g0}
Notice that the universal transition t1 is not enabled from the black process, since
there is another process (the red process) in the configuration that violates the
condition of the quantifier. At this point, the algorithm terminates, since it is not
possible to provide any new generators which are not subsumed by the existing
ones.

Since there is no initial configuration (with only green processes) in ĝ0 ∪ ĝ1 ∪ ĝ2,
the set of bad configurations is not reachable from the set of initial configurations
in the abstract semantics. Therefore, the set of bad configurations is not reachable
from the set of initial configurations in the concrete semantics, either.

8 Extensions

In our earlier works [4,3], we have considered the following extensions of the basic
model of parameterized systems we present in this paper.

Local and Global Variables
We allow each process to have a set of variables which range over finite domains,

and which the process can read and write locally. We also allow a finite number of
global variables which all the processes may read and write.

Broadcast and Binary Communication
In a broadcast transition, an arbitrary number of processes change states simul-

taneously. The broadcast is initiated by a process, called the initiator. Together
with the initiator, an arbitrary number of processes change state simultaneously. In
binary communication two processes perform a rendez-vous changing states simul-
taneously.

11

Dynamic Behaviour
We allow dynamic creation and deletion of processes.

Numerical Variables
We consider parameterized systems where the individual processes operate on

numerical variables which range over the natural numbers. The conditions on the
numerical variables are stated as gap-order constraints. Gap-order constraints [15]
are a logical formalism in which we can express simple relations such as lower and
upper bounds on the values of individual variables; and equality, and gaps (minimal
differences) between values of pairs of variables.

References

[1] Parosh Aziz Abdulla, Ahmed Bouajjani, Jonathan Cederberg, Fréd’eric Haziza, and Ahmed Rezine.
Monotonic abstraction for programs with dynamic memory heaps. In Proc. 20th Int. Conf. on
Computer Aided Verification, 2008.

[2] Parosh Aziz Abdulla, Karlis Čerāns, Bengt Jonsson, and Yih-Kuen Tsay. General decidability theorems
for infinite-state systems. In Proc. LICS ’96, 11th IEEE Int. Symp. on Logic in Computer Science,
pages 313–321, 1996.

[3] Parosh Aziz Abdulla, Giorgio Delzanno, and Ahmed Rezine. Parameterized verification of infinite-state
processes with global conditions. In Proc. 19th Int. Conf. on Computer Aided Verification, volume 4590
of Lecture Notes in Computer Science, pages 145–157, 2007.

[4] Parosh Aziz Abdulla, Noomene Ben Henda, Giorgio Delzanno, and Ahmed Rezine. Regular model
checking without transducers (on efficient verification of parameterized systems). In Proc. TACAS ’07,
13th Int. Conf. on Tools and Algorithms for the Construction and Analysis of Systems, volume 4424
of Lecture Notes in Computer Science, pages 721–736. Springer Verlag, 2007.

[5] Parosh Aziz Abdulla, Noomene Ben Henda, Giorgio Delzanno, and Ahmed Rezine. Handling
parameterized systems with non-atomic global conditions. In Proc. VMCAI ’08, 9th Int. Conf. on
Verification, Model Checking, and Abstract Interpretation, 2008.

[6] Parosh Aziz Abdulla and Bengt Jonsson. Verifying programs with unreliable channels. In Proc. LICS
’93, 8th IEEE Int. Symp. on Logic in Computer Science, pages 160–170, 1993.

[7] Parosh Aziz Abdulla, Bengt Jonsson, Marcus Nilsson, and Julien d’Orso. Regular model checking made
simple and efficient. In Proc. CONCUR 2002, 13th Int. Conf. on Concurrency Theory, volume 2421
of Lecture Notes in Computer Science, pages 116–130, 2002.

[8] Parosh Aziz Abdulla and Aletta Nylén. Timed Petri nets and BQOs. In Proc. ICATPN’2001: 22nd
Int. Conf. on application and theory of Petri nets, volume 2075 of Lecture Notes in Computer Science,
pages 53 –70, 2001.

[9] Bernard Boigelot, Axel Legay, and Pierre Wolper. Iterating transducers in the large. In Proc. 15th

Int. Conf. on Computer Aided Verification, volume 2725 of Lecture Notes in Computer Science, pages
223–235, 2003.

[10] G. Delzanno. Automatic verification of cache coherence protocols. In Emerson and Sistla, editors, Proc.
12th Int. Conf. on Computer Aided Verification, volume 1855 of Lecture Notes in Computer Science,
pages 53–68. Springer Verlag, 2000.

[11] E.A. Emerson and K.S. Namjoshi. On model checking for non-deterministic infinite-state systems. In
Proc. LICS ’98, 13th IEEE Int. Symp. on Logic in Computer Science, pages 70–80, 1998.

[12] J. Esparza, A. Finkel, and R. Mayr. On the verification of broadcast protocols. In Proc. LICS ’99,
14th IEEE Int. Symp. on Logic in Computer Science, 1999.

[13] G. Higman. Ordering by divisibility in abstract algebras. Proc. London Math. Soc. (3), 2(7):326–336,
1952.

[14] Y. Kesten, O. Maler, M. Marcus, A. Pnueli, and E. Shahar. Symbolic model checking with rich
assertional languages. Theoretical Computer Science, 256:93–112, 2001.

[15] P. Revesz. A closed form evaluation for datalog queries with integer (gap)-order constraints. Theoretical
Computer Science, 116(1):117–149, 1993.

12

	Introduction
	Parameterized Systems
	Transition Systems
	Ordering
	Monotonic Abstraction
	Backward Reachability Algorithm
	Example
	Extensions
	References

