
Submitted to:
QFM 2012

c© Abdulla et al.
This work is licensed under the
Creative Commons Attribution License.

Adding Time to Pushdown Automata
(Tutorial)

Parosh Aziz Abdulla
Department of Information Technology

Uppsala University
Sweden

parosh@it.uu.se

Mohamed Faouzi Atig
Department of Information Technology

Uppsala University
Sweden

mohamed faouzi.atig@it.uu.se

Jari Stenman
Department of Information Technology

Uppsala University
Sweden

jari.stenman@it.uu.se

In this tutorial, we illustrate through examples how we can combine two classical models, namely
those of pushdown automata (PDA) and timed automata, in order to obtain timed pushdown automata
(TPDA) [2, 1]. Furthermore, we describe how the reachability problem for TPDAs can be reduced to
the reachability problem for PDAs.

1 Introduction

In this tutorial, we describe a timed extension of the widely used model of Pushdown Automata (PDA)
[2, 1]. A PDA computes by moving between states according to some given transition rules. Additionally,
a PDA may utilize a stack to store information. This information is encoded in stack symbols, and the
PDA may add a symbol (push) to or remove a symbol (pop) from the stack. The defining feature of a
stack is that it has ordering on its elements, traditionally from top to bottom; the PDA can only access the
topmost element.

An interesting question is what happens to this model when we extend it with quantitative properties.
Will basic problems, such as state reachability, still be decidable? In particular, we are interested in
extending the model with continuous time in a similar manner in which Timed Automata [5] extend Finite
Automata. Thus, we consider Timed Pushdown automata TPDA. A TPDA is a PDA that is augmented
with a finite number of clocks. It operates in the following manner:

• at any point in the computation, time may elapse by some real number, increasing the values of all
clocks

• the values of clocks constrain the actions of the automaton

In addition to the set of clocks, we also store the age of each stack symbol. We can view this as an
additional clock. Accordingly, the ages of stack symbols increase whenever time elapses. Furthermore,
possible actions of the automaton may be restricted by the age of topmost stack symbol.

The TPDA model thus subsumes both the model of pushdown automata and timed automata. More
precisely, we obtain the former if we prevent the TPDA from using the timed information (all the timing
constraints are trivially valid); and obtain the latter if we prevent the TPDA from using the stack (no
symbols are pushed to or popped from the stack). Notice that a TPDA induces a system that is infinite

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

2 Adding Time to PDA

s1 s2 s3 s5

s4 s6

push(a) push(b)

push(b)

pop(b) pop(a)

pop(b)

Figure 1: A simple PDA

in two dimensions, namely it gives rise to a stack containing an unbounded number of symbols each of
which is equipped with a real-valued clock.

Outline In the next section, we present an overview of Pushdown Automata. In Section 3, we describe
the timed extension of PDA and show some examples of computations. In Section 4, we recall and
extend the notion of regions, and show how we can use them to define a symbolic encoding of TPDA

configurations. Finally, in Section 5 we describe how to construct a PDA which simulates a given TPDA.
The section ends with a detailed example of how the aforementioned TPDA computation is simulated.

2 PDA

In this section, we informally describe the model of Pushdown Automata. A Pushdown Automaton
(PDA) is a tuple (S,sinit,Γ,∆) consisting of a finite set of states S, an initial state sinit, a finite stack
alphabet Γ, and a finite set of transition rules ∆. During the operation of a PDA, it may store information
in a stack. It may add information, which is referred to as pushing, or it may remove information, which
is called popping. The stack is a last-in, first-out queue, and access is restricted to the first element. The
stack alphabet contains all possible symbols that may be stored in the stack, and the set of transition rules
describe the manner in which the automaton is allowed to move between states. Each transition rule is of
the form (s,op, t). The rule contains a source state s, a target state t and a stack operation op. The stack
operation is either push(a), pop(a) or nop (here, a is an arbitrary symbol from the stack alphabet). A
transition rule describes that the automaton may move from s to t while performing the stack operation
op. The operation push(a) pushes a onto the stack, and pop(a) pops it. The operation nop is an “empty”
operation which can be used to change state without modifying the stack. Figure 1 shows a PDA with
the state set {s1,s2,s3,s4,s5,s6} and stack alphabet {a,b}. The initial state of the automaton is s1. The
transition rules are drawn as arrows between states, labeled with the stack operation (missing labels mean
nop).

At any point during a computation, the PDA is in a certain configuration, defined by the current
state and the current stack content. Figure 2 shows the configurations that appear along a computation in

Abdulla et al. 3

which the automaton starts from its initial configuration (the state is s1 and the stack is empty), moves to
s2 while pushing a, then moves to s3 while pushing b, and finally pops b and moves to s4.

s1 a

c0

push(a) s2 a

c1

push(b) s3
b
a

c2

pop(b)
s4 a

c3

Figure 2: Computation of a PDA

Reachability Given a pushdown automaton, the reachability problem is the problem of deciding whether
the automaton can reach a particular state s. In other words, we ask whether there is a computation of
the automaton (starting from the initial configuration) that visits a configuration where the state is s,
regardless of the content of the stack. It turns out that for the automaton in Figure 1, the state s4 is reach-
able but the state s6 is not. This is because in order to move from s5 to s6, the automaton has to pop a.
However, the topmost symbol when the automaton is in state s5 will always be b. For PDA, reachability
is decidable in polynomial time [6].

3 Timed Pushdown Automata

The classical model of Timed Automata extends finite state automata with a finite set of real-valued
clocks. We extend PDA in a similar way, in the sense that a Timed Pushdown Automaton (TPDA) consists
of a finite set of states S, an initial state sinit, a finite stack alphabet Γ, a finite set of transition rules ∆, and
a finite set of clocks X . The transition rules are also extended in the sense that they can read and write the
values of clocks. More specifically, a transition rule (s,op, t) refers not only to stack operations. Instead,
op can also be one of the clock operations x ∈ I ? and x← I. The operation x ∈ I ? checks whether the
value of the clock x is in the interval I. For example, the transition rule (s,x ∈ [1 : 3]?, t) can only be
performed when the value of x is between 1 and 3. The operation x← I nondeterministically resets the
value of the clock x to some value in the interval I. Additionally, each stack symbol is equipped with a
value representing its age. We modify the stack operations to use these values: push(a, I) pushes a and
nondeterministically sets its initial age to some value in the interval I, while pop(a, I) may only pop the
topmost stack symbol if it is equal to a and its age is in the given interval I.

As with PDA, the semantics of TPDA are given by a transition system over configurations. The
configurations of a TPDA need to contain additional information, namely the values of all clocks and the
ages of all stack symbols. The values of all clocks are given by a clock valuation; a mapping X 7→ R≥0

(where R≥0 stands for the non-negative real numbers). To capture the ages of clocks symbols, we store
tuples in the stack. Each tuple consists of (i) a stack symbol from the stack alphabet Γ and (ii) its
corresponding age. Figure 4 and Figure 5 show an example computation of a TPDA (note that this
computation is not related to the automaton in Figure 3). For example, in the configuration c0 in Figure
4, the automaton is in the state s1 with an empty stack, and the values of the two clocks x and y are 0. In
the configuration c3 in the same figure, the stack consists of a symbol a which has age 2.4.

There are two different types of transitions between configurations of a TPDA; discrete and timed.
Discrete transitions are direct applications of the transition rules in ∆. Timed transitions simulate the
passage of time. At any point in the computation, the automaton may take a timed transition, which
means that all clock values and ages of stack symbols are increased by a positive real number. Figures 4

4 Adding Time to PDA

s1 s2 s3 s4
x ∈ (1 : 2]? push(b, [0 : 0])

pop(b, [1 : ∞))

x ∈ [0 : 1]?

x← [0 : 0]

Figure 3: A simple TPDA

and 5 show a computation of a TPDA with clocks X = {x,y} and stack alphabet Γ = {a,b,c,d}. We will
describe the effect of each type of transition with an example from these figures.

Between c2 and c3, the TPDA moves from s2 to s3 and pushes the symbol a onto an empty stack,
setting its initial age to 2.4, a value which is in the allowed interval [1 : 3). Recall that the initial age
is nondeterministically chosen from the given interval; in the push between c6 and c7 the same interval
is given, but the chosen value happens to be 2.9 instead. The operation x← I chooses and assigns a
value nondeterministically. From c7, the automaton resets the value of x. Its value, which was previously
6.1, is set to some value in the interval [2 : 3], in this case 2.1. Assume that ∆ contains a transition
rule (s1,y ∈ (1 : ∞)?,s5). In c21, the TPDA tests if the value of y is strictly greater than 1. It is, so the
transition rule is applied, and the state changes to s5, as shown in configuration c22. The above transitions
are all examples of discrete transitions, i.e. transitions that are induced by transition rules in ∆. Figure 4
and Figure 5 also contain a number of timed transitions. For example, the transition between c8 and c9
represents the passage of 0.9 time units. In c9, the values of x and y and the ages of a and b have all been
increased by 0.9.

Reachability In a similar manner to the reachability problem for PDA, the reachability problem for
TPDA is the problem of deciding whether a particular state is reachable from the initial configuration or
not. In other words, we ask whether it is possible to reach a configuration c such that the state of c is the
given target state.

Notice that in the definition of the reachability problem, we do not place any restrictions on the stack
contents or on the values of the clocks. However, the reachability of a state in a TPDA may, in general,
depend on the clock values and the ages of the stack symbols. For example, the state s4 in Figure 3 is not
reachable because of timing limitations.

Since the set of configurations in a TPDA is infinite, we can not solve the reachability problem by
iteratively computing the successors of the initial configuration until a fixed point is reached. Further-
more, we cannot use the classical techniques that solve the reachability problem for PDA [6] since those
constructions rely on the stack alphabet being finite. Therefore, we will now describe a symbolic repre-
sentation of clock valuations and ages of stack symbols. We will use this representation to construct a
symbolic PDA that simulates the behavior of the given TPDA.

Abdulla et al. 5

s1
x← 0
y← 0

〈d,4.2〉

c0

Time = 3.9
s1

x← 3.9
y← 3.9

〈d,4.2〉

c1

y← [1 : 3)

s2
x← 3.9
y← 1.2

〈d,4.2〉

c2

push(a, [1 : 3))
s3

x← 3.9
y← 1.2

〈a,2.4〉

c3

Time = 1.7

s3
x← 5.6
y← 2.9

〈a,4.1〉

c4

y← (0 : 1)
s1

x← 5.6
y← 0.1

〈a,4.1〉

c5

Time = 0.5

s1
x← 6.1
y← 0.6

〈a,4.6〉

c6

push(b, [1 : 3))
s2

x← 6.1
y← 0.6

〈b,2.9〉
〈a,4.6〉

c7

x← [2 : 3]

s2
x← 2.1
y← 0.6

〈b,2.9〉
〈a,4.6〉

c8

Time = 0.9
s2

x← 3.0
y← 1.5

〈b,3.8〉
〈a,5.5〉

c9

push(c,(1 : 2))

s3
x← 3.0
y← 1.5

〈c,1.7〉
〈b,3.8〉
〈a,5.5〉c10

Time = 4.1
s3

x← 7.1
y← 5.6

〈c,5.8〉
〈b,7.9〉
〈a,9.6〉c11

x← [0 : 3]

s1
x← 1.8
y← 5.6

〈c,5.8〉
〈b,7.9〉
〈a,9.6〉c12

Time = 0.3
s1

x← 2.1
y← 5.9

〈c,6.1〉
〈b,8.2〉
〈a,9.9〉c13

Figure 4: A computation of a TPDA

6 Adding Time to PDA

s1
x← 2.1
y← 5.9

〈c,6.1〉
〈b,8.2〉
〈a,9.9〉c13

pop(c,(6 : ∞))
s1

x← 2.1
y← 5.9

〈b,8.2〉
〈a,9.9〉

c14

x← (2 : 3)

s3
x← 2.2
y← 5.9

〈b,8.2〉
〈a,9.9〉

c15

y← (0 : 1)
s4

x← 2.2
y← 0.4

〈b,8.2〉
〈a,9.9〉

c16

push(d, [1 : 5])

s2
x← 2.2
y← 0.4

〈d,2.3〉
〈b,8.2〉
〈a,9.9〉c17

x← [0 : 2]
s4

x← 0.3
y← 0.4

〈d,2.3〉
〈b,8.2〉
〈a,9.9〉c18

Time = 1.75

s1
x← 2.05
y← 2.15

〈d,4.05〉
〈b,9.95〉
〈a,11.85〉c19

pop(d, [4 : 5))
s1

x← 2.05
y← 2.15

〈b,9.95〉
〈a,11.85〉

c20

x← (3 : 4)

s1
x← 3.05
y← 2.15

〈b,9.95〉
〈a,11.85〉

c21

y ∈ (1 : ∞)?
s5

x← 3.05
y← 2.15

〈b,9.95〉
〈a,11.85〉

c22

Figure 5: A computation of a TPDA (continued)

Abdulla et al. 7

4 Regions

In this section, we describe a symbolic region encoding to represent the infinitely many clock valuations
of a TPDA in a finite way. In the following section, we show how to construct, using this encoding, a
symbolic PDA that simulates the behavior of a TPDA.

In the classical paper by Alur and Dill on timed automata [5], a region represents a set of clock
valuations with “similar behaviors”. The representation splits a real number into two parts: its integral
value, i.e. its value rounded down to the nearest integer, and its fractional part, i.e. what is left when
we subtract it by its integral value. For example, the integral value of π is 3, and its fractional part is
0.141592 The main idea is that two configurations are equivalent if the following conditions hold:

• the integral values are identical in both valuations, up to a constant cmax

• the fractional part of any clock is either 0 in both valuations, or positive in both valuations

• the orderings of the fractional parts of all clocks are identical in both valuations

If the integral values are the same, the valuations will satisfy the same set of constraints. If the
two valuations agree on the ordering of the fractional parts, they agree on the order in which the clocks
will change integral values (and therefore in which order the constrained transitions will be enabled or
disabled). The constant cmax is the largest constant appearing syntactically in the automaton. All values
that are above cmax are indistinguishable form each other, so we can represent them symbolically with ω .
In our example computation (Figure 4 and Figure 5), this constant is 7.

We will use a representation of regions inspired by [3, 4], that suites our purposes. In our represen-
tation, regions are sequences of sets. Each set contains one or more clocks together with their integral
values. Their positioning in the sequence encodes the ordering of the fractional parts. If two clocks are
in the same set, their fractional parts are equal. The first set contains all clocks with fractional part 0, and,
for technical reasons, is the only set which may be empty. For example, the region R1 in Figure 6 rep-
resents clock valuations in which the values of x1 and x2 are exactly 0 and 2, respectively. Furthermore,
the integral value of x3 is 1 and the integral value of x4 is 2, and so on. Finally, the clocks are ordered
in the sequence by increasing fractional part. Thus, the fractional parts of all clocks except x1 and x2 are
strictly positive, and the fractional parts of x6 and x7 are the largest in the sequence (they are in the same
set, so their fractional parts are equal).

Region rotations Given a region, we may simulate passage of time by rotating it. When time passes,
one of two things may happen:

• Some items have fractional part 0, in which case any passage of time is enough to “push” them out

• No items have fractional part 0, in which case the items with the largest fractional part reach their
next integral values.

For instance, consider the region R2 in Figure 6. The next change in the region representation is that
the values of x6 and x7 reach 4 and 1, respectively.

5 Translation

Our goal is is to reduce the reachability problem for TPDA to the reachability problem for PDA by
translating the given TPDA to a PDA which simulates it. We will first describe a naive approach for

8 Adding Time to PDA

〈x1,0〉
〈x2,3〉

〈x3,1〉
〈x4,2〉

〈x1,0〉
〈x2,2〉

〈x5,2〉
〈x6,3〉
〈x7,0〉

R1

〈x3,1〉
〈x4,2〉

〈x1,0〉
〈x2,2〉

〈`,0〉 〈x5,2〉
〈x6,3〉
〈x7,0〉

R2

〈x1,4〉
〈x2,1〉

〈x1,0〉
〈x2,2〉

〈x6,4〉
〈x7,1〉

〈x3,1〉
〈x4,2〉

〈x5,2〉R3

〈x1,0〉
〈x2,2〉

〈x3,4〉
〈x6,4〉
〈x7,3〉

〈x4,2〉 〈x5,2〉R4

〈x1,4〉
〈x2,1〉

〈x1,0〉
〈x2,2〉

〈x6,4〉
〈x7,3〉

〈x4,2〉
〈x3,3〉
〈x5,2〉

R5

Figure 6: Example regions

constructing such a PDA. Then we show the problem with this approach and explain how to amend it.
At the end of this section, we show in detail how the computation in Figure 4 and Figure 5 is simulated
by the PDA.

In the original paper on timed automata [5], the timed automaton is simulated by a region automaton,
i.e. a finite state automaton that encodes the regions in its states. This abstraction relies on the fact that
the set of clocks is fixed and finite. Since a TPDA may in general operate on unboundedly many clocks
(the stack is unbounded, and each symbol has an age), we cannot rely entirely on this abstraction.

Instead, we store the regions in the stack. Each symbol in the stack of the TPDA is represented in the
stack of the PDA by a region that relates the stack symbol with all clocks. For example, consider Run 1
shown in Figure 7. At the beginning, the stack contains a region in which the integral values of a and x
are 2 and 1, respectively, and the fractional part of x is larger than the fractional part of a, which is in turn
larger than 0. The PDA then simulates the pushing of b with an initial age in [0 : 1]. This creates a new
region on top of the stack which relates b to x. The region shown in the run is one of 4 possible regions.
Next, the value of x is set to some value in [1 : 2]. In our case, it happens that x gets the same fractional
part as b.

Unfortunately, it is not enough to relate each stack symbol to all clocks. Consider the final stack of
Run 1 in Figure 7. What is the resulting stack if we now pop b? It is clear that the resulting stack must
contain a and x. As for constraints on their values, we know from the topmost region that the fractional
part of x is positive. We also know, from the region below, that the fractional part of a is positive. If we
combine this information, we end up with one of the stacks in Figure 8.

To see the problem, consider Run 2 in 7. This run ends up with the same stack. However, the
fractional part of x in this run can not be equal to the fractional part of a, since the value of x has not been
reset. This rules out the stack in the middle in Figure 8. Therefore, we need to relate the fractional parts
of a and b. A tempting solution is to simply record the value of a in the region representing b. However,
since a PDA needs to have a finite stack alphabet, we can only record the values of finitely many previous
stack symbols. At the same time, it is easy to construct counter-examples (similar to the one above) in
which we need to keep the relationship between stack symbols that lie arbitrarily far apart in the stack.
In [1], we show that we can in fact enrich the regions in a finite way in order to construct a PDA which
simulates a TPDA. We will now explain the main points of this construction.

Abdulla et al. 9

〈a,2〉〈a,2〉 〈x,1〉

〈a,2〉〈`,0〉 〈x,1〉

〈b,0〉〈`,0〉 〈x,1〉

push(b, [0 : 1])

〈a,2〉〈`,0〉 〈x,1〉

〈b,0〉〈`,0〉 〈b,0〉
〈x,1〉

x← [1 : 2]

(a) Run 1

〈a,2〉〈a,2〉 〈x,1〉

〈a,2〉〈`,0〉 〈x,1〉

〈b,0〉〈`,0〉 〈b,0〉
〈x,1〉

push(b, [1 : 2])

(b) Run 2

Figure 7: Example of information loss

〈x,1〉〈x,1〉 〈a,2〉 〈a,2〉
〈x,1〉〈x,1〉 〈a,2〉〈a,2〉 〈x,1〉

Figure 8: Result of popping

First, let us define the notion of items. An item is either a plain item or a shadow item. A plain
item represents the value of a clock or the age of a stack symbol. We add a special reference clock `,
which is always 0 except when simulating a pop transition. In other words, this reference clock is not
changed when we simulate timed transitions. Thus, the set of plain items consists of X ∪Γ∪{`}. On
the other hand, shadow items record the values of the corresponding plain items in the region below. For
each clock x and stack symbol a, the set of shadow items contains the symbols x• and a•. Additionally,
this set includes a shadow copy `• of the reference clock. The shadow items are used to remember the
amount of time that elapses while the plain items they represent are not on the top of the stack. A region
is then represented by a sequence of sets of items.

To illustrate this, let us simulate a push transition. Assume that the region R1 in Figure 9 is the
topmost region in the stack. The region R1 records the integral values and the relationships between the
clocks x1,x2, the topmost stack symbol a and the reference clock `. It also relates these symbols to the
values of x1,x2,b and ` in the previous topmost region. Now, if we simulate the pushing of c with initial
age in [0 : 1], one of the possible resulting regions is R2. The region R2 uses x•1, x•2 and `• to record the
previous values of the clocks (initially, their values are identical to those of their plain counterparts). The
value of the previous topmost symbol a is recorded in a•. Finally, the region relates the new topmost
stack symbol c with all the previously mentioned symbols.

10 Adding Time to PDA

〈x1,4〉
〈x2,1〉

〈a•,1〉〈`,0〉
〈`•,0〉

〈x1,4〉〈
x•1,4

〉 〈x1,3〉〈
x•1,3

〉 〈c,0〉R2

〈x1,4〉
〈x2,1〉

〈a,1〉
〈`•,0〉〈`,0〉 〈x1,4〉〈

b•1,2
〉 〈x2,3〉〈

x•1,5
〉 〈

x•2,3
〉

R1

Figure 9: Example regions with shadow items

〈y,1〉〈`,0〉 〈x,3〉

〈x•,6〉
〈x,6〉〈`•,2〉〈x•,6〉

〈x,6〉〈`,0〉 〈y•,3〉 〈a,4〉
〈y,0〉

〈a•,4〉
〈y•,0〉
〈y,0〉

〈x,ω〉
〈`,4〉〈`•,5〉〈b,ω〉 〈x•,ω〉

〈a•,ω〉
〈y•,5〉
〈y,5〉

〈a•,4〉
〈y•,0〉〈b•,ω〉〈c,6〉

〈x,2〉〈`,0〉 〈x•,ω〉
〈`•,4〉

〈y•,5〉
〈y,5〉R2

R1

Figure 10: Simulating pop

Simulation We will now describe how to simulate the rest of the transitions, i.e. timed transitions,
x ∈ I ?, x← I, and pop(a, I).

Timed transitions are simulated by rotating the top-most region, as described in the previous section.
Note that the reference clock ` is not affected by these rotations. For example, the rotation of the topmost
region between S18 and S19 simulates the timed transition between c18 and c19 in Figure 4. The reference
clock ` stays in the first set, but all other items are rotated in a way which is consistent with the passage
of 1.75 time units.

The operation x ∈ I ? checks whether the value of x is in the interval I or not. For every transition
rule (s,x ∈ I ?, t) in the TPDA and every region that satisfies the condition x ∈ I, we create a sequence of
two transition rules which first pops the region in question and then pushes it back.

The reset operation x← I sets the value of clock x to some value in the interval I. We simulate this
by first popping the topmost region and then nondeterministically pushing a region which is identical
except for the fact that x has been updated so that x ∈ I. Note that there may be several regions satisfying
this; the region we push is chosen nondeterministically from these.

The interesting operation is pop: the operation merges the information in two different regions. The
simulation is performed in two steps. First, the next top-most region is “refreshed”, by repeatedly rotating
it until its items are updated in a manner that reflects their current values. This is illustrated in Figure 10:
the region R1 is rotated until the shadow items in R2 match their plain counterparts in R1. In the figure,
this matching is illustrated by dotted lines. Next, we combine the regions in the following way:

• The plain stack symbol is selected from the lower region (R1)

• The plain clock symbols are selected from the upper region (R2); it contains their most recent
values

Abdulla et al. 11

• Shadow items are selected from the lower region (R1)

For example, the result of combining R1 and R2 is the topmost region in S14. In this way, we simulate
the passage of time only on the topmost region, but the effect “ripples” down the stack when popping.
Thus, we only encode a finite amount of additional information in the regions, so the stack alphabet is
kept finite.

Results Given a TPDA, we can solve the reachability problem by constructing a PDA which simulates
it, as described in this section. The target state is reachable in the TPDA if and only if it is reachable in
the PDA. However, the size of the PDA might be exponential in the size of the TPDA. The following
theorem states the main result in [1]:

Theorem 1 The reachability problem for TPDA is EXPTIME-complete.

Figure 11: Simulation of a TPDA computation

〈y,0〉
〈x,0〉
〈`,0〉

S0

〈`,0〉 〈y,3〉
〈x,3〉S1

〈y,1〉〈`,0〉 〈x,3〉S2

〈y,1〉〈`,0〉 〈x,3〉

〈`•,0〉
〈`,0〉

〈y•,1〉
〈y,1〉

〈`•,0〉
〈`,0〉 〈a,2〉 〈x•,3〉

〈x,3〉
S3

〈y,1〉〈`,0〉 〈x,3〉

〈x•,3〉
〈x,3〉
〈x•,5〉
〈x,5〉〈a,4〉〈`,0〉 〈`•,1〉 〈y•,2〉

〈y,2〉
S4

〈y,1〉〈`,0〉 〈x,3〉

〈x•,3〉
〈x,3〉
〈x•,5〉
〈x,5〉

〈a,4〉
〈y,0〉〈`,0〉 〈`•,1〉 〈y•,2〉

S5

12 Adding Time to PDA

〈y,1〉〈`,0〉 〈x,3〉

〈x•,6〉
〈x,6〉〈`•,2〉〈x•,6〉

〈x,6〉〈`,0〉 〈y•,3〉 〈a,4〉
〈y,0〉

S6

〈y,1〉〈`,0〉 〈x,3〉

〈x•,6〉
〈x,6〉〈`•,2〉〈x•,6〉

〈x,6〉〈`,0〉 〈y•,3〉 〈a,4〉
〈y,0〉

〈a•,4〉
〈y•,0〉
〈y,0〉

〈x•,6〉
〈x,6〉

〈`•,0〉
〈`,0〉

〈a•,4〉
〈y•,0〉
〈y,0〉

〈b,2〉

S7

〈y,1〉〈`,0〉 〈x,3〉

〈x•,6〉
〈x,6〉〈`•,2〉〈x•,6〉

〈x,6〉〈`,0〉 〈y•,3〉 〈a,4〉
〈y,0〉

〈a•,4〉
〈y•,0〉
〈y,0〉
〈x•,6〉〈x,2〉〈`•,0〉

〈`,0〉

〈a•,4〉
〈y•,0〉
〈y,0〉

〈b,2〉

S8

〈y,1〉〈`,0〉 〈x,3〉

〈x•,6〉
〈x,6〉〈`•,2〉〈x•,6〉

〈x,6〉〈`,0〉 〈y•,3〉 〈a,4〉
〈y,0〉

〈a•,4〉
〈y•,0〉
〈y,0〉

〈a•,5〉
〈y•,1〉
〈y,1〉

〈x•,ω〉〈x,3〉
〈`,0〉 〈b,3〉 〈`•,0〉

S9

〈y,1〉〈`,0〉 〈x,3〉

〈x•,6〉
〈x,6〉〈`•,2〉〈x•,6〉

〈x,6〉〈`,0〉 〈y•,3〉 〈a,4〉
〈y,0〉

〈a•,4〉
〈y•,0〉
〈y,0〉

〈a•,5〉
〈y•,1〉
〈y,1〉

〈x•,ω〉〈x,3〉
〈`,0〉 〈b,3〉 〈`•,0〉

〈x•,3〉
〈x,3〉
〈`•,0〉
〈`,0〉

〈y•,1〉
〈y,1〉

〈x•,3〉
〈x,3〉
〈`•,0〉
〈`,0〉

〈c,1〉 〈b•,3〉

S10

Abdulla et al. 13

〈y,1〉〈`,0〉 〈x,3〉

〈x•,6〉
〈x,6〉〈`•,2〉〈x•,6〉

〈x,6〉〈`,0〉 〈y•,3〉 〈a,4〉
〈y,0〉

〈a•,4〉
〈y•,0〉
〈y,0〉

〈a•,5〉
〈y•,1〉
〈y,1〉

〈x•,ω〉〈x,3〉
〈`,0〉 〈b,3〉 〈`•,0〉

〈a•,4〉
〈y•,0〉
〈y,0〉

〈y•,5〉
〈y,5〉

〈x•,ω〉
〈x,ω〉
〈`•,4〉

〈`,0〉 〈c,5〉 〈b•,ω〉

S11

〈y,1〉〈`,0〉 〈x,3〉

〈x•,6〉
〈x,6〉〈`•,2〉〈x•,6〉

〈x,6〉〈`,0〉 〈y•,3〉 〈a,4〉
〈y,0〉

〈a•,4〉
〈y•,0〉
〈y,0〉

〈a•,5〉
〈y•,1〉
〈y,1〉

〈x•,ω〉〈x,3〉
〈`,0〉 〈b,3〉 〈`•,0〉

〈a•,4〉
〈y•,0〉
〈y•,5〉
〈y,5〉

〈x•,ω〉
〈`•,4〉〈`,0〉 〈c,5〉

〈x,1〉 〈b•,ω〉

S12

〈y,1〉〈`,0〉 〈x,3〉

〈x•,6〉
〈x,6〉〈`•,2〉〈x•,6〉

〈x,6〉〈`,0〉 〈y•,3〉 〈a,4〉
〈y,0〉

〈a•,4〉
〈y•,0〉
〈y,0〉

〈a•,5〉
〈y•,1〉
〈y,1〉

〈x•,ω〉〈x,3〉
〈`,0〉 〈b,3〉 〈`•,0〉

〈a•,4〉
〈y•,0〉〈b•,ω〉〈c,6〉

〈x,2〉〈`,0〉 〈x•,ω〉
〈`•,4〉

〈y•,5〉
〈y,5〉

S13

〈y,1〉〈`,0〉 〈x,3〉

〈x•,6〉
〈x,6〉〈`•,2〉〈x•,6〉

〈x,6〉〈`,0〉 〈y•,3〉 〈a,4〉
〈y,0〉

〈a•,4〉
〈a•,4〉
〈y•,0〉

〈b,ω〉〈x,2〉〈`,0〉 〈`•,5〉 〈x•,ω〉
〈a•,ω〉
〈y•,5〉
〈y,5〉

S14

14 Adding Time to PDA

〈y,1〉〈`,0〉 〈x,3〉

〈x•,6〉
〈x,6〉〈`•,2〉〈x•,6〉

〈x,6〉〈`,0〉 〈y•,3〉 〈a,4〉
〈y,0〉

〈a•,ω〉
〈y•,5〉
〈y,5〉
〈`•,5〉〈b,ω〉

〈x,2〉〈`,0〉 〈x•,ω〉
〈a•,ω〉
〈y•,5〉
〈y,5〉

S15

〈y,1〉〈`,0〉 〈x,3〉

〈x•,6〉
〈x,6〉〈`•,2〉〈x•,6〉

〈x,6〉〈`,0〉 〈y•,3〉 〈a,4〉
〈y,0〉

〈a•,ω〉
〈y•,5〉〈`•,5〉〈b,ω〉

〈x,2〉〈`,0〉 〈x•,ω〉
〈y,0〉

〈a•,ω〉
〈y•,5〉

S16

〈y,1〉〈`,0〉 〈x,3〉

〈x•,6〉
〈x,6〉〈`•,2〉〈x•,6〉

〈x,6〉〈`,0〉 〈y•,3〉 〈a,4〉
〈y,0〉

〈a•,ω〉
〈y•,5〉〈`•,5〉〈b,ω〉

〈x,2〉〈`,0〉 〈x•,ω〉
〈y,0〉

〈a•,ω〉
〈y•,5〉

〈b•,ω〉
〈x•,2〉
〈x,2〉

〈b•,ω〉
〈x•,2〉
〈x,2〉

〈`•,0〉
〈`,0〉 〈d,2〉 〈y•,0〉

〈y,0〉

S17

〈y,1〉〈`,0〉 〈x,3〉

〈x•,6〉
〈x,6〉〈`•,2〉〈x•,6〉

〈x,6〉〈`,0〉 〈y•,3〉 〈a,4〉
〈y,0〉

〈a•,ω〉
〈y•,5〉〈`•,5〉〈b,ω〉

〈x,2〉〈`,0〉 〈x•,ω〉
〈y,0〉

〈a•,ω〉
〈y•,5〉

〈b•,ω〉
〈x•,2〉

〈b•,ω〉
〈x•,2〉

〈`•,0〉
〈`,0〉

〈d,2〉
〈x,0〉

〈y•,0〉
〈y,0〉

S18

Abdulla et al. 15

〈y,1〉〈`,0〉 〈x,3〉

〈x•,6〉
〈x,6〉〈`•,2〉〈x•,6〉

〈x,6〉〈`,0〉 〈y•,3〉 〈a,4〉
〈y,0〉

〈a•,ω〉
〈y•,5〉〈`•,5〉〈b,ω〉

〈x,2〉〈`,0〉 〈x•,ω〉
〈y,0〉

〈a•,ω〉
〈y•,5〉

〈a•,4〉
〈y•,0〉
〈y•,2〉
〈y,2〉

〈d,4〉
〈x,2〉〈`,0〉 〈`•,1〉 〈b•,ω〉

〈x•,3〉

S19

〈y,1〉〈`,0〉 〈x,3〉

〈x•,6〉
〈x,6〉〈`•,2〉〈x•,6〉

〈x,6〉〈`,0〉 〈y•,3〉 〈a,4〉
〈y,0〉

〈a•,4〉
〈a•,4〉〈`•,ω〉〈x,2〉〈`,0〉 〈x•,ω〉

〈y,2〉
〈a•,ω〉
〈y•,ω〉 〈b,ω〉

S20

〈y,1〉〈`,0〉 〈x,3〉

〈x•,6〉
〈x,6〉〈`•,2〉〈x•,6〉

〈x,6〉〈`,0〉 〈y•,3〉 〈a,4〉
〈y,0〉

〈a•,ω〉
〈y•,5〉
〈x•,ω〉
〈y,2〉

〈x,3〉
〈`•,ω〉〈`,0〉 〈a•,ω〉

〈y•,ω〉 〈b,ω〉

S21

〈y,1〉〈`,0〉 〈x,3〉

〈x•,6〉
〈x,6〉〈`•,2〉〈x•,6〉

〈x,6〉〈`,0〉 〈y•,3〉 〈a,4〉
〈y,0〉

〈a•,ω〉
〈y•,5〉
〈x•,ω〉
〈y,2〉

〈x,3〉
〈`•,ω〉〈`,0〉 〈a•,ω〉

〈y•,ω〉 〈b,ω〉

S22

References

[1] P.A. Abdulla, M.F. Atig & J. Stenman (2012): Dense-timed pushdown automata. In: Logic in Computer
Science (LICS), 2012 27th Annual IEEE Symposium on, IEEE, doi:10.1109/LICS.2012.15.

[2] P.A. Abdulla, M.F. Atig & J. Stenman (2012): The Minimal Cost Reachability Problem in Priced Timed
Pushdown Systems. Language and Automata Theory and Applications, pp. 58–69, doi:10.1007/978-3-642-
28332-1.

http://dx.doi.org/10.1109/LICS.2012.15
http://dx.doi.org/10.1007/978-3-642-28332-1
http://dx.doi.org/10.1007/978-3-642-28332-1

16 Adding Time to PDA

[3] P.A. Abdulla & B. Jonsson (1998): Verifying networks of timed processes. Tools and Algorithms for the
Construction and Analysis of Systems, pp. 298–312, doi:10.1007/BFb0054179.

[4] P.A. Abdulla & B. Jonsson (2003): Model checking of systems with many identical timed processes. Theoreti-
cal Computer Science 290(1), pp. 241–264, doi:10.1016/S0304-3975(01)00330-9.

[5] R. Alur & D.L. Dill (1994): A theory of timed automata. Theoretical computer science 126(2), pp. 183–235,
doi:10.1016/0304-3975(94)90010-8.

[6] A. Bouajjani, J. Esparza & O. Maler (1997): Reachability Analysis of Pushdown Automata: Application to
Model-Checking. In: CONCUR, LNCS 1243, Springer, pp. 135–150, doi:10.1007/3-540-63141-0 10.

http://dx.doi.org/10.1007/BFb0054179
http://dx.doi.org/10.1016/S0304-3975(01)00330-9
http://dx.doi.org/10.1016/0304-3975(94)90010-8
http://dx.doi.org/10.1007/3-540-63141-0_10

	Introduction
	Pda
	Timed Pushdown Automata
	Regions
	Translation

