Carrying Probabilities to the Infinite World

Parosh Aziz Abdulla <parosh@it.uu.se>

Department of Information Technology Uppsala University

(Joint work with Noomene Ben Henda, Richard Mayr, and Sven Sandberg)

ERI

2 Infinite-State Transition Systems

Outline

- Background
- Infinite-State Transition Systems
- Decisive Markov Chains
- Qualitative Reachability Analysis
- Qualitative Repeated Reachability Analysis
- Quantitative Reachability Analysis
- Extensions
- Conclusions

- 3 Decisive Markov Chains
- Qualitative Reachability Analysis
- 5 Qualitative Repeated Reachability Analysis
 - 6 Quantitative Reachability Analysis
 - **7** Extensions
 - **8** Conclusions and Current Challenges

Outline

Background

Infinite-State Transition Systems

Decisive Markov Chains

Qualitative Reachability Analysis

Qualitative Repeated Reachability Analysis

Quantitative Reachability Analysis

Extensions

Conclusions

Finite-State Model Checking

Outline

Background

Infinite-State Transition Systems

Decisive Markov Chains

Qualitative Reachability Analysis

Qualitative Repeated Reachability Analysis

Quantitative Reachability Analysis

Extensions

Conclusions

Infinite-State Model Checking

Outline

Background

- Infinite-State Transition Systems
- Decisive Markov Chains
- Qualitative Reachability Analysis
- Qualitative Repeated Reachability Analysis
- Quantitative Reachability Analysis
- Extensions
- Conclusions

Outline

Decisive

Markov

Chains

Analysis

Analysis

Analysis

Background

Infinite-State Transition Systems

- Outline
- Background

Infinite-State Transition Systems

- Decisive Markov Chains
- Qualitative Reachability Analysis
- Qualitative Repeated Reachability Analysis
- Quantitative Reachability Analysis
- Extensions
- Conclusions

Infinite-State Transition Systems

Outline

Background

Infinite-State Transition Systems

Decisive Markov Chains

Qualitative Reachability Analysis

Qualitative Repeated Reachability Analysis

Quantitative Reachability Analysis

Extensions

Reachability F Init Init $\models \Diamond F$?

Infinite-State Transition Systems

Outline

Background

Infinite-State Transition Systems

- Decisive Markov Chains
- Qualitative Reachability Analysis
- Qualitative Repeated Reachability Analysis
- Quantitative Reachability Analysis
- Extensions
- Conclusions

Petri Nets

Outline

Background

Infinite-State Transition Systems

Decisive Markov Chains

Qualitative Reachability Analysis

Qualitative Repeated Reachability Analysis

Quantitative Reachability Analysis

Extensions

Conclusions

Overview

- Syntax and Semantics
- Ordering
- Reachability Properties
- Coverability Algorithm
- VASS

Petri Nets Syntax and Semantics

Outline

Background

Infinite-State Transition Systems

Decisive Markov Chains

Qualitative Reachability Analysis

Qualitative Repeated Reachability Analysis

Quantitative Reachability Analysis

Extensions

Repeated Reachability Analysis

Quantitative Reachability Analysis

Extensions

Conclusions

Syntax and Semantics

Marking: $[L, W^3]$

Petri Nets Syntax and Semantics

Outline

Background

Infinite-State Transition Systems

Decisive Markov Chains

Qualitative Reachability Analysis

Qualitative Repeated Reachability Analysis

Quantitative Reachability Analysis

Extensions Conclusions Firing
$$t_1: [L, W^3] \longrightarrow [W^2, C]$$

Outline

Background

Infinite-State Transition Systems

Decisive Markov Chains

Qualitative Reachability Analysis

Qualitative Repeated Reachability Analysis

Quantitative Reachability Analysis

Extensions

 $\left[L, W^3\right] \leq \left[L^2, W^3, C\right]$

Outline

Background

Infinite-State Transition Systems

Decisive Markov Chains

Qualitative Reachability Analysis

Qualitative Repeated Reachability Analysis

Quantitative Reachability Analysis

Extensions

Conclusions

Upward Closed Sets

$$(m \in U) \land (m \leq m') \implies (m' \in U)$$

Outline

Background

Infinite-State Transition Systems

Decisive Markov Chains

Qualitative Reachability Analysis

Qualitative Repeated Reachability Analysis

Quantitative Reachability Analysis

Extensions Conclusions

Upward Closed Sets

$$(m \in U) \land (m \leq m') \implies (m' \in U)$$

Upward Closure

•
$$m\uparrow := \{m' | m \le m'\}$$

• $[L, W^3]\uparrow = \{[L^2, W^3, C^2], [L^2, W^4, C], \dots\}$

Outline

Background

Infinite-State Transition Systems

Decisive Markov Chains

Qualitative Reachability Analysis

Qualitative Repeated Reachability Analysis

Quantitative Reachability Analysis

Extensions

Conclusions

Upward Closed Sets

$$(m \in U) \land (m \leq m') \implies (m' \in U)$$

Upward Closure

■
$$m\uparrow := \{m' | m \le m'\}$$

■ $[L, W^3]\uparrow = \{[L^2, W^3, C^2], [L^2, W^4, C], \dots$

Minimal Elements

Outline

Background

Infinite-State Transition Systems

Decisive Markov Chains

Qualitative Reachability Analysis

Qualitative Repeated Reachability Analysis

Quantitative Reachability Analysis

Extensions

Upward Closed Sets

$$(m \in U) \land (m \leq m') \implies (m' \in U)$$

Upward Closure

■
$$m\uparrow := \{m'|m \le m'\}$$

■ $[L, W^3]\uparrow = \{[L^2, W^3, C^2], [L^2, W^4, C], \dots$

Minimal Elements

- $\min(U) := \min$ elements of U wrt. \leq .
- Properties:
 - min(U) is finite
 - $\min(U)\uparrow = U.$

Petri Nets Reachability

K-Reachability

• $m_1 \xrightarrow{K} m_2$: m_1 can reach m_2 within K steps

Outline

Background

Infinite-State Transition Systems

Decisive Markov Chains

Qualitative Reachability Analysis

Qualitative Repeated Reachability Analysis

Quantitative Reachability Analysis

Extensions

Petri Nets Reachability

K-Reachability

Outline

Background

Infinite-State Transition Systems

Decisive Markov Chains

Qualitative Reachability Analysis

Qualitative Repeated Reachability Analysis

Quantitative Reachability Analysis

Extensions

Conclusions

• $m_1 \xrightarrow{K} m_2$: m_1 can reach m_2 within K steps

Reachability

$$\blacksquare m_1 \stackrel{*}{\longrightarrow} m_2: m_1 \text{ can reach } m_2$$

Finite Span (wrt. F)

$$\blacksquare \exists K. \forall m. m \xrightarrow{*} F \text{ implies } m \xrightarrow{K} F$$

Petri Nets Reachability

K-Reachability

Outline

Background

Infinite-State Transition Systems

Decisive Markov Chains

Qualitative Reachability Analysis

Qualitative Repeated Reachability Analysis

Quantitative Reachability Analysis

Extensions

Conclusions

• $m_1 \xrightarrow{K} m_2$: m_1 can reach m_2 within K steps

Reachability

 $\blacksquare m_1 \stackrel{*}{\longrightarrow} m_2: m_1 \text{ can reach } m_2$

Finite Span (wrt. F)

$$\blacksquare \exists K. \forall m. m \xrightarrow{*} F \text{ implies } m \xrightarrow{K} F$$

The Coverability Problem

- Instance: *m*₁, *m*₂: markings
- Question: $m_1 \xrightarrow{*} m_2 \uparrow$?

Outline

Background

Infinite-State Transition Systems

Decisive Markov Chains

Qualitative Reachability Analysis

Qualitative Repeated Reachability Analysis

Quantitative Reachability Analysis

Extensions

Outline

Background

Infinite-State Transition Systems

Decisive Markov Chains

Qualitative Reachability Analysis

Qualitative Repeated Reachability Analysis

Quantitative Reachability Analysis

Extensions

Outline

Background

Infinite-State Transition Systems

Decisive Markov Chains

Qualitative Reachability Analysis

Qualitative Repeated Reachability Analysis

Quantitative Reachability Analysis

Extensions

Outline

Background

Infinite-State Transition Systems

Decisive Markov Chains

Qualitative Reachability Analysis

Qualitative Repeated Reachability Analysis

Quantitative Reachability Analysis

Extensions

Outline

Background

Infinite-State Transition Systems

Decisive Markov Chains

Qualitative Reachability Analysis

Qualitative Repeated Reachability Analysis

Quantitative Reachability Analysis

Extensions

Outline

Background

Infinite-State Transition Systems

Decisive Markov Chains

Qualitative Reachability Analysis

Qualitative Repeated Reachability Analysis

Quantitative Reachability Analysis

Extensions

Outline

Background

Infinite-State Transition Systems

Decisive Markov Chains

Qualitative Reachability Analysis

Qualitative Repeated Reachability Analysis

Quantitative Reachability Analysis

Extensions

Outline

Background

Infinite-State Transition Systems

Decisive Markov Chains

Qualitative Reachability Analysis

Qualitative Repeated Reachability Analysis

Quantitative Reachability Analysis

Extensions

Outline

Background

Infinite-State Transition Systems

Decisive Markov Chains

Qualitative Reachability Analysis

Qualitative Repeated Reachability Analysis

Quantitative Reachability Analysis

Extensions

Petri Nets Compute $Pre^* ([C^2]\uparrow)$ - Backward Reachability Analysis

Outline

Background

Infinite-State Transition Systems

Decisive Markov Chains

Qualitative Reachability Analysis

Qualitative Repeated Reachability Analysis

Quantitative Reachability Analysis

Extensions

Vector Addition Systems with States (VASS)

Outline

Background

Infinite-State Transition Systems

Decisive Markov Chains

Qualitative Reachability Analysis

Qualitative Repeated Reachability Analysis

Quantitative Reachability Analysis

Extensions

Conclusions

Configurations and Transition Relation

 $\left(q_{1}, \left[\texttt{L}, \texttt{W}^{3} \right]
ight) \longrightarrow \left(q_{2}, \left[\texttt{W}^{2}, \texttt{C} \right]
ight)$

The Control State Reachability Problem

- Instance: (q_1, m_1) : configuration, q_2 : control state
- Question: $\exists m_2. (q_1, m_1) \xrightarrow{*} (q_2, m_2)?$

Infinite-State Markov Chains

- Outline
- Background
- Infinite-State Transition Systems
- Decisive Markov Chains
- Qualitative Reachability Analysis

51

5

53

 $P(s_1, s_3) = 0.5$

Qualitative Repeated Reachability Analysis

52

- Quantitative Reachability Analysis
- Extensions
- Conclusions

Infinite-State Markov Chains

- Outline
- Background
- Infinite-State Transition Systems
- Decisive Markov Chains
- Qualitative Reachability Analysis
- Qualitative Repeated Reachability Analysis
- Quantitative Reachability Analysis
- Extensions
- Conclusions

 $Prob_{s}(\phi)$: Probability that a computation from s satisfies ϕ

Infinite-State Markov Chains

- Outline
- Background
- Infinite-State Transition Systems
- Decisive Markov Chains
- Qualitative Reachability Analysis
- Qualitative Repeated Reachability Analysis
- Quantitative Reachability Analysis
- Extensions
- Conclusions

 $Prob_{s}(\phi)$: Probability that a computation from s satisfies ϕ

Outline Background Infinite-State Transition Systems Decisive

Chains

Qualitative Analysis

Qualitative Reachability Analysis

$$lnit \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow F$$

$$Prob_{Init}(\Diamond F) = 1$$
?

Markov Qualitative Repeated Reachability Analysis Qualitative Reachability Analysis Qualitative Repeated F Init Reachability Analysis Quantitative $Prob_{Init}(\Box \Diamond F) = 1$? Reachability Analysis

Extensions Conclusions

Outline

Background

Infinite-State Transition Systems

Decisive Markov Chains

Qualitative Reachability Analysis

Qualitative Repeated Reachability Analysis

Quantitative Reachability Analysis

Extensions

Conclusions

Decisive Markov Chains

- Characterized by a simple property
- Covers a large class of systems:
 - Probabilistic Petri nets
 - Probabilistic lossy channel systems
 - Noisy Turing Machines

Allows qualitative and quantitative analysis

- Outline
- Background
- Infinite-State Transition Systems
- Decisive Markov Chains
- Qualitative Reachability Analysis
- Qualitative Repeated Reachability Analysis
- Quantitative Reachability Analysis
- Extensions
- Conclusions

states from which F is not reachable *F* := ¬∃◊F

Outline

Background

Infinite-State Transition Systems

Decisive Markov Chains

Qualitative Reachability Analysis

Qualitative Repeated Reachability Analysis

Quantitative Reachability Analysis

Extensions

Outline

Background

Infinite-State Transition Systems

Decisive Markov Chains

Qualitative Reachability Analysis

Qualitative Repeated Reachability Analysis

Quantitative Reachability Analysis

Extensions

- Outline
- Background
- Infinite-State Transition Systems

Decisive Markov Chains

- Qualitative Reachability Analysis
- Qualitative Repeated Reachability Analysis
- Quantitative Reachability Analysis
- Extensions
- Conclusions

Decisiveness wrt. F

- F always reachable implies F almost certainly reached
- $\forall s. Prob_s(\Diamond F \mid \Box \exists \Diamond F) = 1$
- $\forall s. Prob_s(\Diamond F \lor \Diamond \widetilde{F}) = 1$

- All finite-state Markov chains are decisive.
- Are all (infinite-state) Markov chains decisive?

- Outline
- Background
- Infinite-State Transition Systems
- Decisive Markov Chains
- Qualitative Reachability Analysis
- Qualitative Repeated Reachability Analysis
- Quantitative Reachability Analysis
- Extensions
- Conclusions

All finite-state Markov chains are decisive.Are all (infinite-state) Markov chains decisive?

•
$$\widetilde{F} = \emptyset$$

• $Prob_{Init}(\Diamond F) = \frac{2}{3}$
• $Prob_{Init}(\Diamond F \lor \Diamond \widetilde{F}) = \frac{2}{3} < 1$

Outline

Background

Infinite-State Transition Systems

Decisive Markov Chains

Qualitative Reachability Analysis

Qualitative Repeated Reachability Analysis

Quantitative Reachability Analysis

Extensions

- All finite-state Markov chains are decisive.
- Are all (infinite-state) Markov chains decisive?
 - Not in general.

•
$$\widetilde{F} = \emptyset$$

• $Prob_{Init}(\Diamond F) = \frac{2}{3}$
• $Prob_{Init}(\Diamond F \lor \Diamond \widetilde{F}) = \frac{2}{3} < 1$

Outline

Background

Infinite-State Transition Systems

Decisive Markov Chains

Qualitative Reachability Analysis

Qualitative Repeated Reachability Analysis

Quantitative Reachability Analysis

Extensions

Outline

Systems

Decisive Markov Chains Qualitative Reachability Analysis Qualitative Repeated Reachability Analysis

Background Infinite-State Transition

Decisive Markov Chains

- All finite-state Markov chains are decisive.
- Are all (infinite-state) Markov chains decisive?
 - Not in general.

- $\widetilde{F} = \emptyset$
- Prob_{Init} $(\Diamond F) < 0.2$ Prob_{Init} $(\Diamond F \lor \Diamond \widetilde{F}) < 0.2$

Analysis Extensions

Quantitative

Reachability

- All finite-state Markov chains are decisive.
- Are all (infinite-state) Markov chains decisive?
 - Not in general.

•
$$\widetilde{F} = \emptyset$$

Prob_{Init}(
$$\Diamond F$$
) < 0.2
Prob_{Init}($\Diamond F \lor \Diamond \widetilde{F}$) < 0

- Outline
- Background
- Infinite-State Transition Systems

Decisive Markov Chains

- Qualitative Reachability Analysis
- Qualitative Repeated Reachability Analysis
- Quantitative Reachability Analysis
- Extensions
- Conclusions

Outline

Background

Infinite-State Transition Systems

Decisive Markov Chains

Qualitative Reachability Analysis

Qualitative Repeated Reachability Analysis

Quantitative Reachability Analysis

Extensions

Conclusions

Decisiveness – Sufficient Condition I

- coarseness + finite span:
 - Probabilistic Petri nets
 - Noisy Turing machines

Decisiveness - Sufficient Condition II

- existence of finite attractor:
 - Probabilistic lossy channel systems

Outline

Background

Infinite-State Transition Systems

Decisive Markov Chains

Qualitative Reachability Analysis

Qualitative Repeated Reachability Analysis

Quantitative Reachability Analysis

Extensions

Conclusions

Decisiveness – Sufficient Condition I

- coarseness + finite span:
 - Probabilistic Petri nets
 - Noisy Turing machines

Decisiveness: Sufficient Condition I **Coarseness and Finite Span**

α -coarseness (for $\alpha > 0$)

Outline

Background

Infinite-State Transition Systems

Decisive Markov Chains

Qualitative Reachability Analysis

Qualitative Repeated Reachability Analysis

Quantitative Reachability Analysis

Extensions

Conclusions

$P(s_1, s_2) > 0$ implies $P(s_1, s_2) \geq \alpha$

K-span (wrt. F)

S

$$\stackrel{*}{\longrightarrow} F \text{ implies } s \stackrel{K}{\longrightarrow} F$$

Decisiveness: Sufficient Condition I Coarseness and Finite Span

α -coarseness (for $\alpha > 0$)

Outline

Background

Infinite-State Transition Systems

Decisive Markov Chains

Qualitative Reachability Analysis

Qualitative Repeated Reachability Analysis

Quantitative Reachability Analysis

Extensions

Conclusions

$P(s_1, s_2) > 0$ implies $P(s_1, s_2) \ge \alpha$

 $s \stackrel{*}{\longrightarrow} F$ implies $s \stackrel{K}{\longrightarrow} F$

K-span (wrt. F)

Probabilistic Petri Nets (PPNs)

Decisiveness: Sufficient Condition II Existence of Finite Attractor

Outline

Background

Infinite-State Transition Systems

Decisive Markov Chains

Qualitative Reachability Analysis

Qualitative Repeated Reachability Analysis

Quantitative Reachability Analysis

Extensions

Decisiveness: Sufficient Condition II

 \widetilde{F} S

Finite Attractor \longrightarrow implies \longrightarrow Decisiveness

Outline

Background

Infinite-State Transition Systems

Decisive Markov Chains

Qualitative Reachability Analysis

Qualitative Repeated Reachability Analysis

Quantitative Reachability Analysis

Extensions

Probabilistic Lossy Channel Systems (PLCS)

Outline

Background

Infinite-State Transition Systems

Decisive Markov Chains

Qualitative Reachability Analysis

Qualitative Repeated Reachability Analysis

Quantitative Reachability Analysis

Extensions

Probabilistic Lossy Channel Systems (PLCS)

Background

Infinite-State Transition Systems

Decisive Markov Chains

Qualitative Reachability Analysis

Qualitative Repeated Reachability Analysis

Quantitative Reachability Analysis

Extensions Conclusions

Process 3 Process 1 Process 2

- Finite-state processes
- Unbounded lossy channels
- Send and receive transitions
- Each transition:
 - each message lost with a fixed probability $\lambda > 0$
- Finite attractors:
 - set of configurations with empty channels

Probabilistic Lossy Channel Systems (PLCS)

Background

Infinite-State Transition Systems

Decisive Markov Chains

Qualitative Reachability Analysis

Qualitative Repeated Reachability Analysis

Quantitative Reachability Analysis

Extensions

Conclusions

PLCS

- Finite-state processes
- Unbounded lossy channels
- Send and receive transitions
- Each transition:
 - each message lost with a fixed probability $\lambda > 0$
- Finite attractors:
 - set of configurations with empty channels

Finite Attractor

Outline

Background

Infinite-State Transition Systems

Decisive Markov Chains

Qualitative Reachability Analysis

Qualitative Repeated Reachability Analysis

Quantitative Reachability Analysis

Extensions

Conclusions

 $Prob_{Init}(\Diamond F) = 1$

Outline

Background

Infinite-State Transition Systems

Decisive Markov Chains

Qualitative Reachability Analysis

Qualitative Repeated Reachability Analysis

Quantitative Reachability Analysis

Extensions

Conclusions

 $\mathsf{Prob}_{\mathsf{Init}}(\Diamond \mathsf{F}) = 1$

analyze underlying transition system

• structural properties: reachability of F and \overline{F}

Outline

Background

Infinite-State Transition Systems

Decisive Markov Chains

Qualitative Reachability Analysis

Qualitative Repeated Reachability Analysis

Quantitative Reachability Analysis

Extensions

Conclusions

 $Prob_{Init}(\Diamond F) = 1$

Outline

Background

Infinite-State Transition Systems

Decisive Markov Chains

Qualitative Reachability Analysis

Qualitative Repeated Reachability Analysis

Quantitative Reachability Analysis

Extensions

Conclusions

 $Prob_{Init}(\Diamond F) = 1$

Outline

Background

Infinite-State Transition Systems

Decisive Markov Chains

Qualitative Reachability Analysis

Qualitative Repeated Reachability Analysis

Quantitative Reachability Analysis

Extensions

Outline

Background

Infinite-State Transition Systems

Decisive Markov Chains

Qualitative Reachability Analysis

Qualitative Repeated Reachability Analysis

Quantitative Reachability Analysis

Extensions

Outline

Background

Infinite-State Transition Systems

Decisive Markov Chains

Qualitative Reachability Analysis

Qualitative Repeated Reachability Analysis

Quantitative Reachability Analysis

Extensions

Outline

Background

Infinite-State Transition Systems

Decisive Markov Chains

Qualitative Reachability Analysis

Qualitative Repeated Reachability Analysis

Quantitative Reachability Analysis

Extensions

Conclusions

 $\mathsf{Prob}_{\mathsf{Init}}(\Diamond \mathsf{F}) = 1 \qquad \stackrel{?}{\leftarrow} \qquad \mathsf{Init} \not\models \exists. \ \widetilde{\mathsf{F}} \ \mathsf{Before} \ \mathsf{F}$

Outline

Background

Infinite-State Transition Systems

Decisive Markov Chains

Qualitative Reachability Analysis

Qualitative Repeated Reachability Analysis

Quantitative Reachability Analysis

Extensions

Outline

Background

Infinite-State Transition Systems

Decisive Markov Chains

Qualitative Reachability Analysis

Qualitative Repeated Reachability Analysis

Quantitative Reachability Analysis

Extensions

Outline

Background

Infinite-State Transition Systems

Decisive Markov Chains

Qualitative Reachability Analysis

Qualitative Repeated Reachability Analysis

Quantitative Reachability Analysis

Extensions

Outline

Background

Infinite-State Transition Systems

Decisive Markov Chains

Qualitative Reachability Analysis

Qualitative Repeated Reachability Analysis

Quantitative Reachability Analysis

Extensions

Outline

Background

Infinite-State Transition Systems

Decisive Markov Chains

Qualitative Reachability Analysis

Qualitative Repeated Reachability Analysis

Quantitative Reachability Analysis

Extensions

Background

Infinite-State Transition Systems

Decisive Markov Chains

Qualitative Reachability Analysis

Qualitative Repeated Reachability Analysis

Quantitative Reachability Analysis

Extensions

Can we check *Init* $\models \exists$. \widetilde{F} *Before F* ?

Outline

Background

Infinite-State Transition Systems

Decisive Markov Chains

Qualitative Reachability Analysis

Qualitative Repeated Reachability Analysis

Quantitative Reachability Analysis

Extensions

Outline

Background

Infinite-State Transition Systems

Decisive Markov Chains

Qualitative Reachability Analysis

Qualitative Repeated Reachability Analysis

Quantitative Reachability Analysis

Extensions

Conclusions

Yes: PPN – F set of control states

UPPSALA UNIVERSITET	Qualitative Reachability Analysis
Outline	Can we check <i>Init</i> $\models \exists$. \tilde{F} Before F ?
Background Infinite-State Transition Systems	Yes: PPN – F set of control states
Decisive Markov Chains	No: PPN – F upward set $\leftarrow \sim \sim$ undecidable
Qualitative Reachability Analysis	

Quantitative Reachability Analysis

Extensions

UPPSALA UNIVERSITET	Qualitative Reachability Analysis
	Can we check $Init \models \exists. \tilde{F}$ Before F ?
Outline	
Background	
Infinite-State Transition Systems	Yes: $PPN - F$ set of control states
Decisive Markov Chains	No: PPN – F upward set + undecidable
Qualitative Reachability Analysis	
Qualitative Repeated Reachability Analysis	Yes: : NTM
Quantitative Reachability Analysis	Yes: : PLCS
Extensions	
Conclusions	

Outline

Background

Infinite-State Transition Systems

Decisive Markov Chains

Qualitative Reachability Analysis

Qualitative Repeated Reachability Analysis

Quantitative Reachability Analysis

Extensions

Conclusions

 $Prob_{Init}(\Box \Diamond F) = 1$

Outline

Background

Infinite-State Transition Systems

Decisive Markov Chains

Qualitative Reachability Analysis

Qualitative Repeated Reachability Analysis

Quantitative Reachability Analysis

Extensions

Conclusions

 $Prob_{Init}(\Box \Diamond F) = 1$

analyze underlying transition system
structural properties: reachability of F and F̃

Outline

Background

Infinite-State Transition Systems

Decisive Markov Chains

Qualitative Reachability Analysis

Qualitative Repeated Reachability Analysis

Quantitative Reachability Analysis

Extensions

Conclusions

 $Prob_{Init}(\Box \Diamond F) = 1$

Outline

Background

Infinite-State Transition Systems

Decisive Markov Chains

Qualitative Reachability Analysis

Qualitative Repeated Reachability Analysis

Quantitative Reachability Analysis

Extensions

Init $\not\models \forall \Box \exists \Diamond F$

 $Prob_{Init}(\Box \Diamond F) < 1$

Outline

Background

Infinite-State Transition Systems

Decisive Markov Chains

Qualitative Reachability Analysis

Qualitative Repeated Reachability Analysis

Quantitative Reachability Analysis

Extensions

Outline

Background

Infinite-State Transition Systems

Decisive Markov Chains

Qualitative Reachability Analysis

Qualitative Repeated Reachability Analysis

Quantitative Reachability Analysis

Extensions

Outline

Background

Infinite-State Transition Systems

Decisive Markov Chains

Qualitative Reachability Analysis

Qualitative Repeated Reachability Analysis

Quantitative Reachability Analysis

Extensions

Outline

Background

Infinite-State Transition Systems

Decisive Markov Chains

Qualitative Reachability Analysis

Qualitative Repeated Reachability Analysis

Quantitative Reachability Analysis

Extensions

Outline

Background

Infinite-State Transition Systems

Decisive Markov Chains

Qualitative Reachability Analysis

Qualitative Repeated Reachability Analysis

Quantitative Reachability Analysis

Extensions

Outline

Background

Infinite-State Transition Systems

Decisive Markov Chains

Qualitative Reachability Analysis

Qualitative Repeated Reachability Analysis

Quantitative Reachability Analysis

Extensions

Outline

Background

Infinite-State Transition Systems

Decisive Markov Chains

Qualitative Reachability Analysis

Qualitative Repeated Reachability Analysis

Quantitative Reachability Analysis

Extensions

Outline

Background

Infinite-State Transition Systems

Decisive Markov Chains

Qualitative Reachability Analysis

Qualitative Repeated Reachability Analysis

Quantitative Reachability Analysis

Extensions

Outline

Background

Infinite-State Transition Systems

Decisive Markov Chains

Qualitative Reachability Analysis

Qualitative Repeated Reachability Analysis

Quantitative Reachability Analysis

Extensions

Outline

Background

Infinite-State Transition Systems

Decisive Markov Chains

Qualitative Reachability Analysis

Qualitative Repeated Reachability Analysis

Quantitative Reachability Analysis

Extensions

Outline

Background

Infinite-State Transition Systems

Decisive Markov Chains

Qualitative Reachability Analysis

Qualitative Repeated Reachability Analysis

Quantitative Reachability Analysis

Extensions

Outline

Background

Infinite-State Transition Systems

Decisive Markov Chains

Qualitative Reachability Analysis

Qualitative Repeated Reachability Analysis

Quantitative Reachability Analysis

Extensions

Outline

Background

Infinite-State Transition Systems

Decisive Markov Chains

Qualitative Reachability Analysis

Qualitative Repeated Reachability Analysis

Quantitative Reachability Analysis

Extensions

Extensions

Can we che	ck Init $\models \forall \Box \exists \Diamond F$?
------------	---

Outline

Background

Infinite-State Transition Systems

Decisive Markov Chains

Qualitative Reachability Analysis

Qualitative Repeated Reachability Analysis

Quantitative Reachability Analysis

Extensions

Can we check	$Init \models \forall \Box \exists \Diamond F ?$
--------------	--

Outline

Background

Infinite-State Transition Systems

Decisive Markov Chains

Qualitative Reachability Analysis

Qualitative Repeated Reachability Analysis

Quantitative Reachability Analysis

Extensions

Conclusions

Yes: PPN – F set of control states

UPPSALA UNIVERSITET	Qualitative Repeated Reachability Analysis
Outline	Can we check $Init \models \forall \Box \exists \Diamond F$?
Background	
Infinite-State Transition Systems	Yes: PPN – F set of control states
Decisive Markov Chains	Yes: PPN – F upward set +++++++++++++++++++++++++++++++++++
Qualitative Reachability Analysis	
Qualitative Repeated Reachability	

- Analysis
- Quantitative Reachability Analysis
- Conclusions

UPPSALA JNIVERSITET	Qualitative Repeated Reachability Analysis
utline	Can we check $Init \models \forall \Box \exists \Diamond F$?
ackground	
finite-State ransition ystems	Yes: PPN – F set of control states
ecisive Iarkov hains ualitative eachability	Yes: PPN – F upward set
nalysis	
ualitative epeated eachability nalysis	Yes: : NTM
uantitative eachability nalysis	Yes: : PLCS
anclusions	
oniononono	

Q R R A

Problem

• Compute $Prob_{Init}(\Diamond F)$

- Outline
- Background
- Infinite-State Transition Systems
- Decisive Markov Chains
- Qualitative Reachability Analysis
- Qualitative Repeated Reachability Analysis

Quantitative Reachability Analysis

Extensions

Conclusions

• Approximation (with arbitrary precision ϵ): compute ρ s.t. $\rho \leq Prob_{Init}(\Diamond F) \leq \rho + \epsilon$

Problem

- Outline
- Background
- Infinite-State Transition Systems
- Decisive Markov Chains
- Qualitative Reachability Analysis
- Qualitative Repeated Reachability Analysis

Quantitative Reachability Analysis

Extensions

Conclusions

- Compute Prob_{Init}(◊F)
 Approximation (with arbitrary precision ε): compute ρ s.t. ρ ≤ Prob_{Init}(◊F) ≤ ρ + ε
 - Init

No

Problem

- Outline
- Background
- Infinite-State Transition Systems
- Decisive Markov Chains
- Qualitative Reachability Analysis
- Qualitative Repeated Reachability Analysis

Quantitative Reachability Analysis

Extensions

Conclusions

 Compute Prob_{Init}(◊F)
 Approximation (with arbitrary precision ε): compute ρ s.t. ρ ≤ Prob_{Init}(◊F) ≤ ρ + ε

Problem

- Compute *Prob_{Init}*(◊*F*)
 - Approximation (with arbitrary precision ϵ): compute ρ s.t. $\rho \leq Prob_{Init}(\Diamond F) \leq \rho + \epsilon$

- Outline
- Background
- Infinite-State Transition Systems
- Decisive Markov Chains
- Qualitative Reachability Analysis
- Qualitative Repeated Reachability Analysis
- Quantitative Reachability Analysis
- Extensions
- Conclusions

Outline

Decisive Markov Chains Qualitative Reachability

Analysis Qualitative Repeated

Reachability Analysis Quantitative Reachability Analysis

Background

Infinite-State Transition Systems

Quantitative Reachability Analysis

Problem

- Compute Prob_{Init}(\$F)
 - Approximation (with arbitrary precision ϵ): compute ρ s.t. $\rho \leq Prob_{lnit}(\Diamond F) \leq \rho + \epsilon$

Yes:=Yes+0.15

No

Extensions Conclusions

Problem

- Compute *Prob_{Init}*(◊*F*)
- Approximation (with arbitrary precision ϵ): compute ρ s.t. $\rho \leq Prob_{Init}(\Diamond F) \leq \rho + \epsilon$

- Outline
- Background
- Infinite-State Transition Systems
- Decisive Markov Chains
- Qualitative Reachability Analysis
- Qualitative Repeated Reachability Analysis

Quantitative Reachability Analysis

Extensions

Problem

- Compute *Prob_{Init}*(◊*F*)
- Approximation (with arbitrary precision ϵ): compute ρ s.t. $\rho \leq Prob_{Init}(\Diamond F) \leq \rho + \epsilon$

- Outline
- Background
- Infinite-State Transition Systems
- Decisive Markov Chains
- Qualitative Reachability Analysis
- Qualitative Repeated Reachability Analysis

Quantitative Reachability Analysis

- Extensions
- Conclusions

Problem

- Compute *Prob_{Init}*(◊*F*)
- Approximation (with arbitrary precision ϵ): compute ρ s.t. $\rho \leq Prob_{Init}(\Diamond F) \leq \rho + \epsilon$

Outline

- Background
- Infinite-State Transition Systems
- Decisive Markov Chains
- Qualitative Reachability Analysis
- Qualitative Repeated Reachability Analysis

Quantitative Reachability Analysis

Extensions

Problem

- Compute $Prob_{Init}(\Diamond F)$
- Background
- Infinite-State Transition Systems
- Decisive Markov Chains
- Qualitative Reachability Analysis
- Qualitative Repeated Reachability Analysis

Quantitative Reachability Analysis

Extensions

Conclusions

• Approximation (with arbitrary precision ϵ): compute ρ s.t. $\rho \leq Prob_{lnit}(\Diamond F) \leq \rho + \epsilon$

Outline

Decisive Markov Chains Qualitative Reachability Analysis Qualitative

Background

Infinite-State Transition Systems

Quantitative Reachability Analysis

Problem

- Compute Prob_{Init}(◊F)
 - Approximation (with arbitrary precision ϵ): compute ρ s.t. $\rho \leq Prob_{lnit}(\Diamond F) \leq \rho + \epsilon$

Analysis Extensions

Quantitative Reachability

Repeated Reachability

Analysis

Quantitative Repeated Reachability Analysis

Problem

- Compute $Prob_{Init}(\Box \Diamond F)$
- Approximation (with arbitrary precision ϵ): compute ρ s.t. $\rho \leq Prob_{Init}(\Box \Diamond F) \leq \rho + \epsilon$

- Outline
- Background
- Infinite-State Transition Systems
- Decisive Markov Chains
- Qualitative Reachability Analysis
- Qualitative Repeated Reachability Analysis

Quantitative Reachability Analysis

Extensions

Quantitative Repeated Reachability Analysis

Problem

- Compute $Prob_{Init}(\Box \Diamond F)$
- Approximation (with arbitrary precision ϵ): compute ρ s.t. $\rho \leq Prob_{Init}(\Box \Diamond F) \leq \rho + \epsilon$

- Outline
- Background
- Infinite-State Transition Systems
- Decisive Markov Chains
- Qualitative Reachability Analysis
- Qualitative Repeated Reachability Analysis

Quantitative Reachability Analysis

- Extensions
- Conclusions

Quantitative Repeated Reachability Analysis

Problem

- Compute $Prob_{Init}(\Box \Diamond F)$
- Approximation (with arbitrary precision ϵ): compute ρ s.t. $\rho \leq Prob_{Init}(\Box \Diamond F) \leq \rho + \epsilon$

- Outline
- Background
- Infinite-State Transition Systems
- Decisive Markov Chains
- Qualitative Reachability Analysis
- Qualitative Repeated Reachability Analysis

Quantitative Reachability Analysis

Extensions

Extensions

Outline

Background

Infinite-State Transition Systems

Decisive Markov Chains

Qualitative Reachability Analysis

Qualitative Repeated Reachability Analysis

Quantitative Reachability Analysis

Extensions

Extensions

Outline

Background

Infinite-State Transition Systems

Decisive Markov Chains

Qualitative Reachability Analysis

Qualitative Repeated Reachability Analysis

Quantitative Reachability Analysis

Extensions Conclusions y x: number of steps of computation

Eager Markov Chains (wrt. F)

y: probability of reaching F in x or more steps

Property

Expected Cost of runs

Examples

- Probabilistic Petri Nets
- Probabilistic Lossy Channel Systems
- Noisy Turing Machines

Extensions

Outline

Background

Infinite-State Transition Systems

Decisive Markov Chains

Qualitative Reachability Analysis

Qualitative Repeated Reachability Analysis

Quantitative Reachability Analysis

Extensions

Outline Background

Transition

Systems

Decisive Markov Chains

Qualitative Reachability

Reachability Analysis

Reachability

Conclusions

Analysis Extensions

Analysis Qualitative Repeated

Extensions

Stochastic Games

- Outline
- Background
- Infinite-State Transition Systems
- Decisive Markov Chains
- Qualitative Reachability Analysis
- Qualitative Repeated Reachability Analysis
- Quantitative Reachability Analysis
- Extensions
- Conclusions

$2\frac{1}{2}$ -Games

- Three types of states
- Models: lossy channel systems, Petri nets, etc
- Infinite-state
- Winning conditions: Büchi, Co-Büchi, Parity, . . .

Conclusions and Current Challenges

Decisive Markov Chains

- Simple characterization.
- Examples: Petri nets, lossy channel systems, noisy Turing machines, ...
- Analysis: qualitative, quantitative analysis, expected reward, limiting behaviors, stochastic games, ...
- Unexpected behaviors:
 - Decidability of repeated reachability vs. undecidability of simple reachability (for PPN).
 - Decidability of simple reachability for control states vs. undecidability for upward closed sets (for PPN).
 - Decidability of repeated reachability for probabilistic lossy channel systems vs. undecidability in the non-probabilistic case.

Outline

Background

Infinite-State Transition Systems

Decisive Markov Chains

Qualitative Reachability Analysis

Qualitative Repeated Reachability Analysis

Quantitative Reachability Analysis

Extensions

Conclusions and Current Challenges

Outline

Background

Infinite-State Transition Systems

Decisive Markov Chains

Qualitative Reachability Analysis

Qualitative Repeated Reachability Analysis

Quantitative Reachability Analysis

Extensions

Conclusions

Challenges:

- Open problems:
 - Approximated quantitative repeated reachability analysis for PPNs.
 - Exact quantitative analysis.
 - Qualitative analysis for PPNs wrt. reachability problems.
- Relation to recently studied models: e.g., energy games.
 - Implementation effort:
 - Probabilistic parameterized systems: mutex protocols, distributed algorithms, ...
 - Communication protocols