
Submitted to:
INFINITY 2012

c© P. A. Abdulla, R. Mayr
This work is licensed under the
Creative Commons Attribution License.

Petri Nets with Time and Cost
(Tutorial)

Parosh Aziz Abdulla
Department of Information Technology

Uppsala University∗
Sweden

parosh@it.uu.se

Richard Mayr
School of Informatics, LFCS

University of Edinburgh
United Kingdom

homepages.inf.ed.ac.uk/rmayr/

1 Introduction

Petri nets [13, 12] are a widely used model for the study and analysis of concurrent systems. Many
different formalisms have been proposed which extend Petri nets with clocks and real-time constraints,
leading to various definitions of Timed Petri nets (TPNs) (see [10, 6] for surveys).

In parallel, there have been several works on extending the model of timed automata [4] with prices
(weights) (see e.g., [5, 11, 8]). Weighted timed automata are suitable models for embedded systems,
where we have to take into consideration the fact that the behavior of the system may be constrained by
the consumption of different types of resources. Concretely, weighted timed automata extend classical
timed automata with a cost function Cost that maps every location and every transition to a nonnegative
integer (or rational) number. For a transition, Cost gives the cost of performing the transition. For a
location, Cost gives the cost per time unit for staying in the location. In this manner, we can define, for
each computation of the system, the accumulated cost of staying in locations and performing transitions
along the computation.

In this tutorial, we recall, through a sequence of examples, a very expressive model, introduced in [2],
that subsumes the above models. Priced Timed Petri Nets (PTPN) are a generalization of classic Petri nets
[13] with real-valued (i.e., continuous-time) clocks, real-time constraints, and prices for computations.

In a PTPN, each token is equipped with a real-valued clock, representing the age of the token. The
firing conditions of a transition include the usual ones for Petri nets. Additionally, each arc between a
place and a transition is labeled with a time-interval whose bounds are natural numbers (or possibly ∞

as upper bound). These intervals can be open, closed or half open. Like in timed automata, this is used
to encode strict or non-strict inequalities that describe constraints on the real-valued clocks. When firing
a transition, tokens which are removed from or added to places must have ages lying in the intervals of
the corresponding transition arcs.

We assign a cost to computations via a cost function Cost that maps transitions and places of the
Petri net to natural numbers. For a transition t, Cost(t) gives the cost of performing the transition, while
for a place p, Cost(p) gives the cost per time unit per token in the place. The total cost of a computation
is given by the sum of all costs of fired transitions plus the storage costs for storing certain numbers of
tokens in certain places for certain times during the computation. Like in priced timed automata, having
integers as costs and time bounds is not a restriction, because the case of rational numbers can be reduced
to the integer case.

∗This work is supported by UPMARC, The Uppsala Programming for Multicore Architectures Research Center.

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/


2 Timed Priced Petri Nets

It should be noted that PTPN are infinite-state in several different ways. First, the Petri net itself is
unbounded. So the number of tokens (and thus the number of clocks) can grow beyond any bound, i.e.,
the PTPN can create and destroy arbitrarily many clocks (unlike timed automata). Secondly, every single
clock value is a real number of which there are uncountably many.

In [2] we study the cost to reach a given control-state in a PTPN. In Petri net terminology, this is
called a control-state reachability problem or a coverability problem. The related reachability problem
(i.e., reaching a particular configuration) is undecidable for both continuous-time and discrete-time TPN
[15], even without taking costs into account. Our goal is to compute the optimal cost for moving to a
control state (equivalently for covering a set of markings). In general, a cost-optimal computation may
not exist (e.g., even in priced timed automata it can happen that there is no computation of cost 0, but
there exist computations of cost ≤ ε for every ε > 0). We show that the infimum of the costs to reach a
given control-state is computable, provided that all transition and place costs are non-negative.

Outline. In the next section we introduce PTPNs. In Section 3 we describe a special type of compu-
tations that are sufficient to solve the cost-optimality problem. We introduce a symbolic encoding of
infinite sets of markings in Section 4, and describe a symbolic algorithm for solving the cost-optimality
problem in Section 5. Finally, in Section 6, we give conclusions and directions for future work.

2 Timed Petri Nets

In this section, we introduce Priced Timed Petri Nets, the set of markings, the transition relation it
induces, and the coverability problem.

We use N and R≥0 to denote the sets of natural numbers (including 0) and nonnegative reals respec-
tively. We use a set Intrv of intervals. An open interval is written as (w : z) where w∈N and z∈N∪{∞}.
Intervals can also be closed in one or both directions, e.g. [w : z] is closed in both directions and [w : z) is
closed to the left and open to the right.

Model. A Priced Timed Petri Net (PTPN) is a tuple N = (P,T,Cost) where P is a finite set of places.
T is a finite set of transitions, where each transition t ∈ T is of the form t = (In,Out). We have that In and
Out are finite multisets over P×Intrv which define the input-arcs and output-arcs of t, respectively. Cost :
P∪T → N is the cost function assigning firing costs to transitions and storage costs to places. Figure 1
shows an example of a PTPN with five places: , , , , , and five transitions: t1, t2, t3, t4, t5. The
transition t1 has an input arc from labeled with the interval [1..3], and two output arcs to and ,
labeled with the intervals (0..1) and [2..5] respectively. The price (cost) associated with , is 3, while
the price associated with t1 is 2. We let cmax denote the maximum integer appearing on the arcs of a
given PTPN. In Figure 1, we have cmax = 6.

Markings. A marking is a multiset over P×R≥0. The marking M defines the numbers and ages of
tokens in each place in the net. In Figure 2, we show an example of a marking M. The marking assigns
two tokens in , with ages 7.93 and 1.08, respectively. We will represent markings by lists of “colored
balls” with real numbers inside. Each ball represents one token in the marking. The color describes the
place in which the token resides, while the number represents the age of the token (see Figure 2).

Computations. We define two transition relations on the set of configurations: timed transition and
discrete transition. A timed transition increases the age of each token by the same real number. A



P. A. Abdulla, R. Mayr 3

3

1 0

2 0

t1
2

t2
4 t3

3t4
0

t5
0

[1..3)

[0.
.1)

[2..5)

(2..3) (1..∞)

[3..4] (1..2)

(4..5] (2
..3
)

(1
..

4)

(5..6)

(1
..

2)

Figure 1: A Price Timed Petri Net.

3
7.93
1.08

1
2.32

0
2.11

2

0.25
8.36

0
4.21

t1
2

t2
4 t3

3t4
0

t5
0

[1..3)

[0.
.1)

[2..5)

(2..3) (1..∞)

[3..4] (1..2)

(4..5] (2
..3
)

(1
..

4)

(5..6)

(1
..

2)

7.93 1.08 2.32 2.11 0.25 8.36 4.21

Figure 2: A marking M and its representation.



4 Timed Priced Petri Nets

0.0 −→1.7
5.1

1.7 −→
t1

2.0
0.1 3.1 −→2.3

2.3
2.4 5.4 −→

t2

4
3.6 5.4 −→1.5

3

5.1 6.9 −→
t4

0
2.0 6.9 −→

t1

2
0.8 6.9 3.1 −→1.5

1.5
2.3 8.4 4.6 −→

t2

4

3.7 8.4 4.6 −→
t3

3
3.7 1.1 4.6 −→1

2.0
4.7 2.1 5.6 −→

t5

0
1.5 5.6

Figure 3: A computation π . Above each −→ in the computation we show the transition that has fired,
and below each step we show the cost of the step.

discrete transition represents the effect of firing a transition t in the PTPN. More precisely, for each
input arc to the transition, we remove a token from the corresponding input place, whose age lies in the
relevant interval. Also, for each input arc to the transition, we add a new token to the corresponding
place. The age of the newly generated token is chosen non-deterministically from the relevant interval.
Performing a discrete transition implies paying a cost which is equal to the cost of the transition. When
performing a timed transition, we pay a cost per each token and time unit that is equal to the cost of the
place in which the token resides. A computation is a sequence of discrete and timed transitions. The
cost of a computation is the accumulated cost of all the transitions in the computation. Figure 2 shows
an example of a computation π . It starts from an initial marking where we have a single token in
with age 0. In the seventh step of π , transition t1 fires removing one token from with age 2. The
age belongs to the interval [1..3) (which is the interval on the arc from to t1). At the same time,
it adds two new tokens with ages 0.8 and 3.1 to the places resp. . The cost of this step is equal
to 2. The eighth step is a timed transition of length 1.5, where the ages of all tokens are increased by
1.5. The cost of the step is determined by the number of tokens in each place and the cost of the place,
i.e., 1.5× (1× 1+ 2× 0) = 1.5 (the cost of and are 1 resp. 0). The total cost of π is given by
Cost (π) = 5.1+2+2.3+4+3+0+2+1.5+4+3+2+0 = 28.9.

For a place p, we define Mp to be the set of markings which put at least one token in the place p
(regardless of the ages of the tokens). For instance, if p = then Mp is the set of markings that have at
least one token in .

The Priced Coverability Problem. We will consider two variants of the cost problem, the Cost-
Threshold problem and the Cost-Optimality problem. They are both characterized by an (i) initial mark-
ing Minit that places a single token (with age 0) in a given initial place pinit, and (ii) a set of final markings
Mpfin defined by a final place pfin. In other words, we start from a marking where there is only one token
with age 0 in pinit and where all the other places are empty, and then consider the cost of computations
that takes us to Mpfin .

In the Cost-Threshold problem we ask the question whether there is a computation starting from
Minit and reaching a marking in Mpfin with a cost that is at most v for a given threshold v ∈ N. In the
Cost-Optimality problem, we want to compute the optimal (smallest) cost of reaching Mpfin staring from
Minit. For given Minit and Mpfin , the optimal cost of reaching Mpfin from Minit may not exist. However, in



P. A. Abdulla, R. Mayr 5

1
0

1

t1
0

(1..2)

[0..1)

Figure 4: A Simple PTPN.

7.93 1.06 2.02 2.00 0.97 8.00 4.02 1.91 2.03 1.97 4.02

Figure 5: A marking in δ -form, δ = 0.2.

[2], we show that the infimum of the costs of all computations is a natural number (or ∞ if Mpfin is not
reachable from Minit). The situation is illustrated in Figure 4. The optimal cost for putting a token in
can be made arbitrarily close to 1 (but not equal to 1). In such a case, we simply define the optimal cost
to be 1. In fact, the non-existence of an optimal cost has already been observed for timed automata [9].

3 Computations in δ -Form

In order to solve the Cost-Threshold and the Cost-Optimality problems, it is sufficient to consider com-
putations of a certain form where the ages of all the tokens that appear in the computation are arbi-
trarily close to (within some small real number δ from) an integer. Below, we assume a real number
δ : 0 < δ < 0.2.

δ -Markings. A marking M is said to be in δ -form (Figure 5) if any fractional part of the age of a token
appearing in M is either smaller than δ or larger than 1−δ . We decompose a δ -marking into submarkings
such that in every submarking the fractional parts (but not necessarily the integer parts) of the token ages
are identical. We then arrange these submarkings in a sequence M−m, . . . ,M−1,M0,M1, . . . ,Mn such that
M−m, . . . ,M−1 contain tokens with fractional parts ≥ δ in increasing order, M0 contains the tokens with
fractional part zero, and M1, . . . ,Mn contain tokens with fractional parts < δ in increasing order. Figure 6
shows that partitioning of the marking M in Figure 5. More precisely, We start with the token with the
high fractional parts, namely 0.91 (one token in ), followed by 0.93 (one token in ), followed by
0.97 (one token in and one token in ). Furthermore, there are two tokens with zero fractional parts
(one token in and one token in ). Finally, we consider the tokens with low fractional parts, namely
0.02 (one token in , one token in , and one token in ), followed by 0.03 (one token in ), followed
by 00.7 (one token in ).

Computations in δ -form. The occurrence of a discrete transition t is said to be in δ -form if the ages
of the newly generated tokens are close to an integer (i.e., within distance δ ). This is not a property of
the transition t as such, but a property of its occurrence. Figure 7 shows the result of an occurrence of t1
in δ -form (with δ = 0.2) on the marking of Figure 6.

A computation is in δ -form if:



6 Timed Priced Petri Nets

d.dd1.91 d.dd7.93 d.dd

0.97

1.97

d.dd

2.00

8.00

d.dd

2.02

4.02

4.02

d.dd2.03 d.dd1.06

Figure 6: The partitioning the marking in Figure 5.

d.dd1.91 d.dd

0.93

7.03

d.dd

0.97

1.97

d.dd

2.00

8.00

d.dd

4.02

4.02

d.dd

4.03

2.03

d.dd1.06

Figure 7: An application in δ -form (δ = 0.2) of t1 on the marking of Figure 5. The two new tokens have
fractional parts that are equal to 0.93 resp. 0.03.

1. Every occurrence of a discrete transition is in δ -form, and

2. For every timed transition, the delay is either in the interval (0 : δ ) or in the interval x ∈ (1−δ : 1).

Detailed Timed Transitions. We say that a timed transition (from a marking M) is detailed iff at most
one fractional part of any token in M changes its status about reaching or exceeding the next integer
value. Figures 8 and 9 show some steps in a detailed computation. In the first transition, time passes by
a positive amount but not sufficiently long to make any tokens with positive fractional parts to increase
to the next integer. More precisely, the time delay is 0.01 which means that two tokens in and that
have zero fractional parts, will now have positive fractional parts (0.1). On the other hand, the two tokens
in and that have the highest fractional parts (0.8) will not cross to the next integer (their ages will
now be 0.98 and 1.98 respectively).

In the second step, the amount of delay is 0.02 which is exactly the amount needed to allow the
tokens that currently have the highest fractional parts to become integers. These tokens are the ones with
ages 0.98 and 1.98 in resp. . Their new ages are 1.00 resp. 2.00. In the last step, all tokens have
small fractional parts. We let time pass sufficiently much (0.78 time units) so that the tokens will all have
high fractional parts. Every computation of a PTPN can be transformed into an equivalent one (w.r.t.
reachability and cost) where all timed transitions are detailed, by replacing long timed transitions with
several detailed shorter ones where necessary. Thus we may assume w.l.o.g. that timed transitions are
detailed.

Detailed Computations in δ -form. In [2], we show the following result. For any computation π

starting from an initial marking Minit (defined by a initial place pinit), and reaching a give set Mpfin of
final markings (defined by a final place pfin), and for each δ : 0 < δ < 0.2, there is a detailed computation
π ′ in δ -form where (i) π ′ starts from the same initial marking as π , (ii) π ′ is in δ -from, (iii) π ′ reaches
Mpfin , and (iv) if π is detailed then π ′ is detailed. This means that, to solve the Cost-Threshold and
Cost-Optimality problems, it is sufficient to consider detailed computations in δ -form.

Figure 3 shows a detailed computation in δ -form for the PTPN of Figure 1.



P. A. Abdulla, R. Mayr 7

d.dd1.91 d.dd7.93 d.dd

0.97

1.97

d.dd

2.00

8.00

d.dd

2.02

4.02

4.02

d.dd2.03 d.dd1.06

d.dd1.92 d.dd7.94 d.dd

0.98

1.98

d.dd d.dd

2.01

8.01

d.dd

2.03

4.03

4.03

d.dd2.04 d.dd1.07

d.dd1.94 d.dd7.96 d.dd

1.00

2.00

d.dd

2.03

8.03

d.dd

2.05

4.05

4.05

d.dd2.06 d.dd1.09

d.dd1.97 d.dd7.99 d.dd d.dd

1.03

2.03

d.dd

2.06

8.06

d.dd

2.08

4.08

4.08

d.dd2.09 d.dd1.12

d.dd1.98 d.dd8.00 d.dd

1.04

2.04

d.dd

2.07

8.07

d.dd

2.09

4.09

4.09

d.dd2.10 d.dd1.13

Figure 8: Detailed timed transitions for δ = 0.2.



8 Timed Priced Petri Nets

d.dd1.99 d.dd d.dd8.01 d.dd

1.05

2.05

d.dd

2.08

8.08

d.dd

2.10

4.10

4.10

d.dd2.11 d.dd1.14

d.dd2.00 d.dd8.02 d.dd

1.06

2.06

d.dd

2.09

8.09

d.dd

2.11

4.11

4.11

d.dd2.12 d.dd1.15

d.dd d.dd2.03 d.dd8.05 d.dd

1.09

2.09

d.dd

2.12

8.12

d.dd

2.14

4.14

4.14

d.dd2.15 d.dd1.18

d.dd2.81 d.dd8.83 d.dd

1.87

2.87

d.dd

2.90

8.90

d.dd

2.92

4.92

4.92

d.dd2.93 d.dd1.96 d.dd

Figure 9: Detailed timed transitions (cont.).

0.00 −→1.01

3.03
1.01 −→

t1

2
1.99 3.01 −→0.02

0.02
2.01 3.03 −→

t2

4
4.00 3.03 −→0.99

1.98

4.99 4.02 −→
t4

0
2.00 4.02 −→

t1

2
0.99 3.00 4.02 −→0.02

0.02
1.01 3.02 4.04 −→

t2

4

4.00 3.02 4.04 −→
t3

3
4.00 1.99 4.04 −→0.02

0.04
4.02 2.01 4.06 −→

t5

0
1.01 4.06

Figure 10: A detailed computation in δ -form.



P. A. Abdulla, R. Mayr 9

increasing
fractional

parts

high
fractional

parts

zero
fractional

parts

low
fractional

parts

increasing
fractional

parts

d
6

4
d0 d

1

2
d
1

5
d
2

ω

d4 d3

Figure 11: A region r.

4 Regions

In this section, we introduce a symbolic encoding for infinite sets of markings. The encoding is a variant
of the classical notion of regions [4]. The main difference is that we here need to deal with an unbounded
number of clocks. It is an adaptation of the encoding introduced in [1]. More precisely, we change the
encoding of [1] so that we can now deal with markings in δ -form. First, we give the definition of regions,
and then we show how to simulate timed and discrete transitions on regions. For each type of transition,
we define the cost of firing the transition from the region.

Regions. A region characterizes a set of marking in δ -form for some δ : 0 < δ < 0.2. An example of
(our notion of) a region r is shown in Figure 11. The region consists of three parts, referred to as H (for
high), Z (for zero), and L (for low). The part H is a word of multisets. Each element in a multiset is a
colored ball with a natural number, representing one token. The color defines the place in which the token
resides, while the number defines the integer part of the age of the token. Furthermore, tokens whose
ages are larger than cmax+1 are all represented by one element ω (ages > cmax cannot be distinguished
by the transitions of the PTPN). The ordering of the multisets reflects the ordering of the factional parts
of the corresponding tokens: elements belonging to the same multiset represent tokens with identical
fractional parts, and elements in successive multisets represent tokens with increasing fractional parts.
The part Z consists of one multiset, and represents the tokens with zero fractional parts. Finally, the part
L consists of a word of multisets. It has a similar interpretation to H, except that it represents tokens with
low fractional parts. Figure 12 shows a marking M (of the Petri net of Figure 1) satisfying the region r
of Figure 11 as follows:
• The left-most multiset in H contains a red ball with value 6 and a green ball with value 4. They

represent the token with age 6.95 in the place , and the token with age 4.95 in . The fractional
parts of the two tokens are equal (0.95) and high.

• The next multiset contains a blue ball with value 0. It represents the token with age 0.96 in .
The fractional part of the token (0.96) is high and is larger than the fractional parts of the tokens
in the previous multiset.

• The right-most multiset in H contains a white ball with value 1 and an orange ball with value 2.
They represent the token with ages 1.97 in the place , and the token with age 2.97 in . The



10 Timed Priced Petri Nets

6.95 3.04 8.01 4.03 2.01 1.00

5.00 4.95 1.97 2.97 0.96

Figure 12: A marking M satisfying the region of Figure 11.

fractional parts of the two tokens are equal (0.97). The fractional parts of these tokens (0.97) are
high and are larger than the fractional part of the token in the previous multiset.

• The part Z consists of a single multiset. It contains a blue ball with value 1 and a red ball with
value 5. They represent the token with age 1.00 in the place , and the token with age 5 in .
The fractional parts of the two tokens are zero.

• The left-most multiset in L contains an orange ball with value 2 and a green ball with value ω . They
represent the token with age 2.01 in the place , and the token with age 8.01 in . The fractional
parts of the two tokens are equal (0.01) and low. The age of the token in is 8.01 ≥ cmax+ 1
which means that it is represented by ω in r.

• The next multiset contains a white ball with value 4. It represents that token with age 4.03 in .
The fractional part of the token (0.03) is low and is larger than the fractional parts of the tokens in
the previous multiset.

• The next multiset contains a red ball with value 3. It represents that token with age 3.04 in . The
fractional part of the token (0.04) is low and is larger than the fractional part of the token in the
previous multiset.

We use [[r]] to denote the set of markings satisfying r.

Timed Transitions. We will describe how to encode the effect of detailed timed transitions on regions.
To do that, we define 4 different types of transitions on regions.

Type I This simulates a small delay where the tokens of integer age now have a positive fractional part,
but no tokens reach an integer age. An example of such a transition is shown in Figure 13. Here,
the delay is 0.01 which is not sufficient to make the tokens with the highest fractional parts (the
token with age 1.97 in , and the token with age 2.97 in ) to become integers. Notice that the
tokens with zero fractional parts (the token with age 1.00 in , and the token with age 5.00 in )
will now have have low fractional parts (in fact, they will have the smallest fractional parts, namely
0.01, among all tokens in the marking). At the region level, the two elements in Z will move to L,
forming the left-most multiset in L (reflecting the fact that they have the lowest fractional parts).

Type II Transition. This simulates a small delay in the case where there were no tokens of integer age
and the tokens with the highest fractional parts just reach the next integer age. An example of such
a transition is shown in Figure 14. Here, the delay is 0.02, which is sufficient to make the tokens
with the highest fractional parts (the token with age 1.98 in , and the token with age 2.98 in )
to become integers, i.e., 2 and 3 respectively. At the region level, the right-most multiset in H will
move to Z, and the value of each element in the multiset is incremented by one to reflect the fact
that the ages of the token moves to the next integer.

Type III Transition. This simulates a delay close to (but smaller than) 1 where the tokens with low
fractional parts will now either have high fractional parts, or they have reached (and passed) the



P. A. Abdulla, R. Mayr 11

6.95 3.04 8.01 4.03 2.01 1.00

5.00 4.95 1.97 2.97 0.96

6.96 3.05 8.02 4.04 2.02 1.01

5.01 4.96 1.98 2.98 0.97

d
6

4
d0 d

1

2
d
1

5
d
2

ω

d4 d3 d
6

4
d0 d

1

2
d
1

5
d
1

5
d
2

ω

d4 d3

Figure 13: Type I Transition.

6.96 3.05 8.02 4.04 2.02 1.01

5.01 4.96 1.98 2.98 0.97

6.98 3.07 8.04 4.06 2.04 1.03

5.03 4.98 2.00 3.00 0.99

d
6

4
d0 d

1

2
d
1

2
d
1

5
d
2

ω

d4 d3 d
6

4
d0 d

2

3
d
1

5
d
2

ω

d4 d3

Figure 14: Type II Transition.

next integer and thus have low fractional parts again. The tokens that already had high fractional
parts will all have passed the next integer and will now have high fractional parts again. No token
will have an integer value after the transition (the case where some tokens have integer ages is
covered in Type IV transitions, see below). Here, the delay is 0.95. We have three types of tokens:
• Tokens that have low fractional parts both before and after the transition (the token with age

4.06 in , and the token with age 3.07 in ). The ages of these tokens are 5.01 and 4.02
after the transition. Thus, the delay is sufficient to make their ages go beyond the next integer.
After the transition, these tokens will be the only ones with low fractional parts. The relative
ordering of their fractional parts will not be changed. The integer part of their ages will have
increased by one. At the region level, these two tokens are represented by the two right-most
multisets in L. After the transition, they will be the only multisets in L, and their values are
incremented by 1 each. Notice that the relative ordering of these tokens inside the region will
be preserved.
• Tokens that have low fractional parts before the transition and high fractional parts after the

transition (the token with age 1.03 in , the token with age 5.03 in , the token with age
2.04 in , and the token with age 8.04 in ). The ages of these tokens are 1.98, 5.98,
2.99, resp. 8.99 after the transition. These tokens have the highest fractional parts among all
tokens in the marking. The relative ordering of the fractional parts of these tokens will not
be changed. Also, the delay is not sufficiently long to make their values reach (or pass) to
the next integer. At the region level, the corresponding multisets move from L to H, and will
now be the right-most multisets in H. The ordering of these multisets is preserved.
• Tokens that have high fractional parts both before and after the transition (the token with



12 Timed Priced Petri Nets

6.98 3.07 8.04 4.06 2.04 1.03

5.03 4.98 2.00 3.00 0.99

7.93 4.02 8.99 5.01 2.99 1.98

5.98 5.93 2.95 3.95 1.04

d
6

4
d0 d

2

3
d
1

5
d
2

ω

d4 d3 d

ω

5
d1 d

2

3
d
1

5
d
2

ω

d
1

2
d5 d4

Figure 15: Type III Transition.

6.98 3.07 8.04 4.06 2.04 1.03

5.03 4.98 2.00 3.00 0.99

7.94 4.03 9.00 5.02 3.00 1.99

5.99 5.94 2.96 3.96 1.05

d
6

4
d0 d

2

3
d
1

5
d
2

ω

d4 d3 d

ω

5
d1 d

2

3
d
1

5
d
2

ω

d4 d5

Figure 16: Type IV Transition.

age 6.98 in , the token with age 4.98 in , and the token with age 0.99 in ). The ages
of these tokens are 7.93, 5.93, resp. 1.94 after the transition. The delay is sufficiently long
both to make their values pass the next integer integer, and to make their fractional parts high
again. However, these tokens have now the lowest fractional parts among all tokens with
high fractional parts. The relative ordering of the fractional parts of the tokens will not be
changed. At the region level, the corresponding multisets will be the left-most multisets in
H. The ordering of these multisets is preserved. Their values are incremented by one (to
reflect that they have reached the next integer). Notice that the new value of the token in
is represented by ω since the value is ≥ cmax+1.

Type IV Transition. This is similar to a Type III transition, except that some of the tokens that have low
fractional parts will have integer values after the transition (see Figure 16).

Discrete Transitions. Figure 17 shows the firing of transition t1 (Figure 1), and describes how the
firing of the transition may be simulated at the region level. We remove a token from whose age is in
the interval [1..3). This is done at the region level by removing the red ball with value 2 from Z (the ball
represents a token in whose age is exactly 2). We add one to token to whose age is in the interval
(0..1), and one to token to whose age is in the interval [2..5). In Figure 17, this is done at the region
level by adding a white ball to a multiset in H with value 0 (the ball represents a token in whose age
is in the interval (0..1)), and adding a blue ball to a multiset in L with value 4 (the ball represents a token
in whose age is in the interval (4..5)).



P. A. Abdulla, R. Mayr 13

6.95 3.04 8.01 4.03 2.01 1.00

2.00 4.95 1.97 2.97 0.96

6.95 4.95 1.97 4.03 2.01 1.00

3.04 8.01 0.96 2.97 0.96 4.04

d
6

4
d0 d

1

2
d
1

2
d
2

ω

d4 d3 d
6

4
d
0

0
d
1

2
d1 d

2

ω

d4 d
3

4

Figure 17: Firing the transition t1.

Costs. At the region level, the cost of performing a type I or type II transition is 0, since we can assume
the time delay to be arbitrarily small. The cost of performing a type III or type IV transition is equal to
the cost of performing a timed transition of 1 time unit, since we can make the delay arbitrarily close to
1. Thus, the cost of performing the transition in Figure 15 or Figure 16 is 15. The cost of performing
a discrete transition at the region level is the same as the cost of performing the transition on concrete
markings. Thus, the cost of performing the transition in Figure 17 is 2.

5 Solving the Cost-Optimality Problem

In this section we explain our solution for the Cost-Optimality problem. Here, we give an informal
overview of the main ideas. The (quite complicated) technical details can be found in [2]. First, we show
that the Cost-Optimality problem can be reduced to the Cost-Threshold problem. Then, we introduce
a general framework of ordered transition systems, which we then instantiate to the case of regions.
Finally, we present an algorithm that allows to solve the Cost-Threshold problem.

From Cost-Optimality to Cost-Threshold. Consider an instance the Cost-Optimality problem, de-
fined by Minit and Mpfin (see Section 2). The task is to compute the optimal cost of reaching Mpfin from
Minit, i.e., the infimum of the costs of all computations reaching Mpfin from Minit. To compute this value, it
suffices to solve the Cost-Threshold problem for any given threshold v ∈ N, i.e., to decide whether there
is any computation from Minit to Mpfin with cost ≤ v. To see this, we first decide whether Mpfin is reach-
able from Minit in the underlying timed Petri net (without considering costs). This can be reduced to the
Cost-Threshold problem by setting all place and transition costs to zero and solving the Cost-Threshold
problem for v = 0. If the answer is no, then we can define the optimal cost to be ∞ (Mpfin is not reach-
able form Minit). If yes, then we can find the optimal cost v by solving the Cost-Threshold problem for
threshold v = 0,1,2,3, . . . until the answer is yes. We solve the Cost-Threshold problem using regions
as symbolic encodings of sets of markings.

Ordered Transition Systems. An ordered transition system is a triple T = (S,−→A,v) where S is a
(potentially) infinite set of configurations (or states),−→ is a transition relation on S, andv is an ordering
on S. We say that −→ is monotone wrt. v if the following holds for all configurations c1,c2,c3 ∈ S: if
c1 −→ c2 and c1 v c3 then there is a c4 such that c3 −→ c4 and c2 v c4.



14 Timed Priced Petri Nets

vfreed
6

4
d
1

2
d
1

2
dω d4 d3 d

6

4
d0 d

1

2
d
1

2
d
2

ω

d4 d3

Figure 18: Ordering on Regions.

For a set S ⊆ S of configurations, we define Pre(S) to be the set of predecessors of S wrt. −→, i.e.,
the set of configurations from which we can reach a configuration in S through a single application (a
single step) of −→. We define Pre∗ to be the reflexive transitive closure of Pre, i.e., Pre∗(S) is the set of
configurations from which we can reach a configuration in S through any number of steps of −→.

A set S⊆ S is said to be upward-closed if for any two configurations with c1 v c2, it is the case that
c1 ∈ S implies c2 ∈ S. The upward closure S↑ of a set S of configurations is the set of configurations that
are larger than or equal to some configuration in S wrt. v, i.e., S↑:= {c′ ∈ S| ∃c ∈ S.cv c′}. Below, we
will consider different transition systems that are induced by different sets of configurations and different
transition relations.

Instantiation. Consider an instance of the Cost-Threshold problem, defined by Minit, Mpfin , and a
threshold v. Define a configuration c to be a pair (r,u) where r is a region, and u ≤ v. Intuitively, u
denotes the maximal allowed cost of the remainder of a computation that passes through r. Let S be
the set of all configurations. Let C be the set of configurations of the form (r,u) where r contains only
tokens in the costs places (places whose costs are larger than 0), and where the number of tokens in r is
smaller than u. Notice that C is finite. Consider regions r1,r2. We write r1 vall r2 if we can obtain r2
from r1 by adding a number of tokens to r1. We write r1 vfree r2 if we can obtain r2 from r1 by adding a
number of tokens to the free places (places whose costs are 0). Notice that vfree⊆vall. Figure 18 shows
an example of two regions (interpreted over the PTPN of Figure 1) related by vfree. For configurations
c1 = (r1,u1) and c2 = (r2,u2), we use c1 vall c2 resp. c1 vfree c2 to denote that u1 = u2 and that r1 vall r2
resp. r1 vfree r2. For a set S ⊆ S of configurations, we use S↑ free to be the upward closure of S with
respect to vfree, i.e., it contains all configurations that are larger than or equal to some configuration in S

wrt. vfree. We define S↑all in a similar manner.
Let−→i denote the timed transition relation of type i ∈ {I, II, III, IV}, and let−→Disc be the discrete

transition relation. Define −→A:=−→1 ∪ −→2 ∪ −→Disc, i.e., a transition of type A is either a timed
transition of type I or II, or a discrete transition. Define −→B:=−→3 ∪ −→4, i.e., a transition of type B
is a timed transition of type III or IV. For a set M, we define PreA(M) to be the set of markings from which
we can reach a marking in M through a single application of a transition of type A. We define PreB(M)
analogously.

Algorithm. We give an overview of an algorithm to solve the reachability problem. We notice that Mpfin

is reachable from Minit with a cost ≤ v iff Minit
∗−→A ·

(
−→B ·

∗−→A

)+
Mpfin and the accumulated cost of

all involved transitions is ≤ v. Furthermore, we observe that Mpfin can be characterized by the upward
closure (wrt. vall) of a finite set of regions. Therefore, it is sufficient to give an algorithm that, given a
region rfin and threshold v, checks whether there is a region rinit where Minit is included in the denotation

of rinit such that (rinit,0)
∗−→A ·

(
−→B ·

∗−→A

)+ (
rfin,v

)
↑all. To do that, we generate a sequence of sets

of configurations V1,U1,V2,U2, . . ., as follows:



P. A. Abdulla, R. Mayr 15

• V1 := minfree
(
Pre∗A

(
(rfin,v)↑all

)
∩ (C↑ free)

)
. This set is possible to compute as follows. The

set
(
rfin,v

)
↑ all is (obviously) upward-closed wrt. vall. The relation −→A is monotone wrt.

vall. We can then use the backward reachability algorithm (introduced in [3]) for well quasi-
ordered systems to compute minall

(
Pre∗A

(
(rfin,v)↑all

))
. The result follows from the fact that both

minall
(
Pre∗A

(
(rfin,v)↑all

))
and C are finite.

• U1 := minfree (PreB(V1 ↑ free)). This set can be computed by a straightforward application of −→B

on the elements of V1. Notice that U1 ⊆C↑ free, and that it is a finite set.

• For k > 1, given the finite set Uk, we compute Vk := minfree (Pre∗A(Uk ↑ free)∩ (C↑ free)). Notice
that we here are solving a reachability problem rather than coverability problem, since Uk ↑ free
is not upward-closed wrt. vall. In fact, this problem has an extremely complicated solution (de-
scribed in [2]). The construction to compute it uses many calls to a subroutine which relies on the
decidability of the reachability problem for Petri nets with one inhibitor arc [14, 7]. In a sense,
this is unavoidable, since the reverse reduction also holds. The reachability problem for Petri
nets with one inhibitor arc can be reduced to the zero-cost coverability problem for PTPN, i.e.,
Cost-Threshold with threshold 0.

• For k > 1, we compute Uk := minfree (PreB(Vk ↑ free)) in a similar manner to U1. Notice that
Uk ⊆C↑ free, and that it is a finite set.

The sequence U1↑free,U2↑free, . . . is a monotone-increasing sequence of upward-closed (wrt.vfree) sub-
sets of C↑free. This sequence converges, becausevfree is a well-quasi-ordering on C↑free. Therefore, we

get Un =Un+1 for some finite index n and Un ↑ free =
{

c| c(−→B
∗−→A)

∗rfin

}
, because the transition→B

is only enabled in C↑ free. Finally, we compute the (finite) set of configurations, minall (Pre∗A(Un ↑ free)),
and check whether the set contains a configuration of the form (rinit,u) such that Minit belongs to the
denotation of rinit.

6 Conclusions and Future Work

We have given an informal description of a method for computing the infimum of the costs of placing
a token in given place of a timed Petri net, starting from a given initial marking. Interesting directions
for future work include augmenting time with other infinite-state discrete models such as push-down
systems and asynchronously communicating processes, and to add other quantitative parameters such as
probabilistic behaviors.

References

[1] P.A. Abdulla & B. Jonsson (2003): Model checking of systems with many identical timed processes. Theo-
retical Computer Science 290(1), pp. 241–264, doi:10.1016/S0304-3975(01)00330-9.

[2] P.A. Abdulla & R. Mayr (2011): Computing optimal coverability costs in priced timed Petri nets.
In: Logic in Computer Science (LICS), 2011 26th Annual IEEE Symposium on, IEEE, pp. 399–408,
doi:10.1109/LICS.2011.40.

[3] Parosh Aziz Abdulla, Karlis Cerans, Bengt Jonsson & Yih-Kuen Tsay (1996): General Decidability Theo-
rems for Infinite-State Systems. In: LICS, pp. 313–321, doi:10.1109/LICS.1996.561359.

[4] R. Alur & D. Dill (1994): A Theory of Timed Automata. TCS 126, pp. 183–235, doi:10.1016/0304-
3975(94)90010-8.

http://dx.doi.org/10.1016/S0304-3975(01)00330-9
http://dx.doi.org/10.1109/LICS.2011.40
http://dx.doi.org/10.1109/LICS.1996.561359
http://dx.doi.org/10.1016/0304-3975(94)90010-8
http://dx.doi.org/10.1016/0304-3975(94)90010-8


16 Timed Priced Petri Nets

[5] R. Alur, S. La Torre & G. J. Pappas (2001): Optimal Paths in Weighted Timed Automata. In: HSCC, pp.
49–62, doi:10.1007/3-540-45351-2 8.

[6] B. Bérard, F. Cassez, S. Haddad, O. Roux & D. Lime (2005): Comparison of Different Semantics for Time
Petri Nets. In: Proceedings of ATVA 2005, LNCS 3707, Springer, pp. 81–94, doi:10.1007/3-540-45351-2 8.

[7] R. Bonnet (2011): The reachability problem for Vector Addition Systems with one zero-test. In Filip Murlak
& Piotr Sankowski, editors: Proceedings of the 36th International Symposium on Mathematical Foundations
of Computer Science (MFCS’11), LNCS 6907, Springer, pp. 145–157, doi:10.1007/978-3-642-22993-0 16.

[8] P. Bouyer, T. Brihaye, V. Bruyère & J. Raskin (2007): On the optimal reachability problem of weighted timed
automata. Formal Methods in System Design 31(2), pp. 135–175, doi:10.1007/s10703-007-0035-4.

[9] P. Bouyer, F. Cassez, E. Fleury & K. G. Larsen (2004): Optimal Strategies in Priced Timed Game Automata.
In: FSTTCS, LNCS 3328, Springer, pp. 148–160.

[10] F. D. J. Bowden (1996): Modelling Time in Petri nets. In: Proc. Second Australian-Japan Workshop on
Stochastic Models.

[11] K.G. Larsen, G. Behrmann, E. Brinksma, A. Fehnker, T. Hune, P. Pettersson & J. Romijn (2001): As Cheap
as Possible: Efficient Cost-Optimal Reachability for Priced Timed Automata. In: Proc. 13th Int. Conf. on
Computer Aided Verification, LNCS 2102, doi:10.1007/3-540-44585-4 47.

[12] J.L. Peterson (1977): Petri Nets. Computing Surveys 9(3), pp. 221–252, doi:10.1145/356698.356702.
[13] C.A. Petri (1962): Kommunikation mit Automaten. Ph.D. thesis, University of Bonn.
[14] K. Reinhardt (2008): Reachability in Petri Nets with Inhibitor Arcs. Electronic Notes in Theoretical Com-

putuer Science 223, pp. 239–264, doi:10.1016/j.entcs.2008.12.042.
[15] V. Valero Ruiz, F. Cuartero Gomez & D. de Frutos Escrig (1999): On non-decidability of reachability for

timed-arc Petri nets. In: Proc. 8th Int. Workshop on Petri Net and Performance Models (PNPM’99), 8-10
October 1999, Zaragoza, Spain, pp. 188–196.

http://dx.doi.org/10.1007/3-540-45351-2_8
http://dx.doi.org/10.1007/3-540-45351-2_8
http://dx.doi.org/10.1007/978-3-642-22993-0_16
http://dx.doi.org/10.1007/s10703-007-0035-4
http://dx.doi.org/10.1007/3-540-44585-4_47
http://dx.doi.org/10.1145/356698.356702
http://dx.doi.org/10.1016/j.entcs.2008.12.042

	Introduction
	Timed Petri Nets
	Computations in -Form
	Regions
	Solving the Cost-Optimality Problem
	Conclusions and Future Work

