
Carrying Probabilities to the Infinite World?

Parosh Aziz Abdulla

Uppsala University, Sweden

Abstract. We give en example-guided introduction to a framework that
we have developed in recent years in order to extend the applicability of
program verification to the context of systems modeled as infinite-state
Markov chains. In particular, we describe the class of decisive Markov
chains, and show how to perform qualitative and quantitative analysis of
Markov chains that arise from probabilistic extensions of classical models
such as Petri nets and communicating finite-state processes.

1 Introduction

In recent years, several approaches have been proposed for automatic verification
of infinite-state systems (see e.g., [2, 1]). In a parallel development, there has been
an extensive research effort for the design and analysis of models with stochastic
behaviors (e.g., [12, 7, 6, 11]). Recently, several works have considered verification
of infinite-state Markov chains that are generated by push-down systems (e.g.,
[9, 10]). We consider verification of Markov chains with infinite state spaces. We
describe a general framework that can handle probabilistic versions of several
classical models such as Petri nets and communicating finite-state processes. We
do that by defining abstract conditions on infinite Markov chains that give rise
to the class of decisive Markov chains. For this class, we perform qualitative and
quantitative analysis wrt. standard properties such as reachability and repeated
reachability of a given set of configurations. This presentation is informal and
example-based. For the technical details, we refer to our works in [3–5].

2 Transition Systems

A transition system T is a pair (C,−→) where C is a (potentially infinite) set
of configurations, and −→⊆ C ×C is the transition relation. As usual, we write
c −→ c′ to denote that (c, c′) ∈−→ and use

∗−→ to denote the reflexive transitive
closure of −→. For a configuration c, a c-run is a sequence c0 −→ c1 −→ c2 −→
· · · where c0 = c. For a natural number k, we write c

k−→ c′ if there is a sequence
c0 −→ c1 −→ · · · −→ c` with ` ≤ k, c0 = c and c` = c′, i.e., we can reach c′ from

c in k or fewer steps. Notice that c
∗−→ c′ iff c

k−→ c′ for some k. We lift the
above notation to sets of configurations. For sets C1, C2 ⊆ C of configurations,

? This tutorial is based on common work with Noomene Ben Henda, Richard Mayr,
and Sven Sandberg.

we write C1 −→ C2 if c −→ c′ for some c ∈ C1 and c′ ∈ C2. We use C1
k−→ C2

and C1
∗−→ C2 in a similar way. We also mix the notations, so we we write for

instance c
∗−→ C2 instead of {c} ∗−→ C2 We say that C2 is reachable from C1 if

C1
∗−→ C2. A transition system T is said to be k-spanning wrt. a give set F of

configurations if for any configuration c, we have that c
∗−→ F implies c

k−→ F .
In other words, for any configuration c, either c cannot reach F or it can reach
F within k steps. We say that T is finitely spanning wrt. F if there is a k such
that T is k-spanning wrt. F . In other words, if T is finitely spanning wrt. F

then ∃k. ∀c ∈ C. c ∗−→ F ⊃ c k−→ F . We define F̃ :=
{
c| c 6 ∗−→ F

}
, i.e., F̃ is the

set of configurations from which F is not reachable. For a set U ⊆ C, we define
Pre(U) := {c| ∃c′ ∈ U. c −→ c′}, i.e., Pre(U) is the set of configurations that
can reach U through the execution of a single transition. We assume familiarity
with the temporal logic CTL∗. Given a CTL∗ path-formula φ, we use (c |= φ) to
denote the set of c-runs that satisfy φ.

3 Petri Nets

We illustrate some ideas of our methodology, using the model of Petri Nets.
After recalling the standard definitions of Petri nets, we describe the transition
system induced by a Petri net. We describe how checking safety properties can
be translated to the reachability of sets of configurations which are upward
closed wrt. a natural ordering on the set of configurations1. We give a sketch
of an algorithm to solve the reachability problem, and show that Petri nets are
finitely spanning with respect to upward closed sets of configurations. Finally,
we briefly mention a model closely related to Petri nets, namely that of Vector
Addition Systems with States (VASS).

3.1 Model

A Petri net N is a tuple (P, T, F), where P is a finite set of places, T is a finite
set of transitions, and F ⊆ (P × T) ∪ (T × P) is the flow relation. If (p, t) ∈ F
then p is said to be an input place of t; and if (t, p) ∈ F then p is said to be an
output place of t. We use In (t) := {p| (p, t) ∈ F} and Out (t) := {p| (t, p) ∈ F}
to denote the sets of input places and output places of t respectively.

Figure 1 shows an example of a Petri net with three places (drawn as circles),
namely L, W, and C; and two transitions (drawn as rectangles), namely t1 and t2.
The flow relation is represented by edges from places to transitions, and from
transitions to places. For instance, the flow relation in the example includes the
pairs (L, t1) and (t2, W), i.e., L is an input place of t1, and W is an output place
of t2.

The transition system induced by a Petri net is defined by the set configu-
rations together with the transition relation defined on them. A configuration c

1 Reachability of upward closed sets of configurations is referred to as the coverability
problem in the Petri net literature.

L

W

C

t1 t2

(a)

L

W

C

t1 t2

(b)

Fig. 1. (a) A simple Petri net. (b) The result of firing t1.

of a Petri net 2 is a multiset over P . The configuration c defines the number of
tokens in each place. Figure 1 (a) shows a configuration where there is one token
in place L, three tokens in place W, and no token in place C. The configuration
corresponds to the multiset

[
L, W3

]
.

The operational semantics of a Petri net is defined through the notion of firing
transitions. This gives a transition relation on the set of configurations. More
precisely, when a transition t is fired, then a token is removed from each input
place, and a token is added to each output place of t. The transition is fired only
if each input place has at least one token. Formally, we write c1 −→ c2 to denote
that there is a transition t ∈ T such that c1 ≥ In (t) and c2 = c1−In (t)+Out (t).

A set U ⊆ C of configurations is said to be upward closed if c ∈ U and c ≤ c′
implies that c′ ∈ U . For a configuration c ∈ C, define the upward closure of c by
ĉ := {c′| c ≤ c′}. We extend the definition to a set C1 ⊆ C of configurations by

Ĉ1 := ∪c∈C1
ĉ.

The Petri net of Figure 1 can be seen as a model of a simple mutual exclusion
protocol, where access to the critical section is controlled by a global lock. A
process is either waiting or is in its critical section. Initially, all the processes are
in their waiting states. When a process wants to access the critical section, it
must first acquire the lock. This can be done only if no other process has already
acquired the lock. From the critical section, the process eventually releases the
lock and moves back to the waiting state. The numbers of tokens in places W and
C represent the number of processes in their waiting states and critical sections

2 A configuration in a Petri net is often called a marking in the literature.

respectively. Absence of tokens in L means that the lock is currently taken by
some process.

The set Cinit of initial configurations are those of the form [L, Wn] where n ≥ 0.
In other words, all the processes are initially in their waiting states, and the lock
is free. The transition t1 models a process moving to its critical section, while
the transition t2 models a process going back to its waiting state. For instance,
if we start from the configuration

[
L, W4

]
, we can fire the transition t1 to obtain

the configuration
[
C, W3

]
from which we can fire the transition t2 to obtain the

configuration
[
L, W4

]
, and so on.

3.2 Safety Properties

We are interested in checking a safety property for the Petri net in Figure 1.
In a safety property, we want to show that “nothing bad happens” during the
execution of the system. Typically, we define a set Bad of configurations, i.e.,
configurations which we do not want to occur during the execution of the system.
In this particular example, we are interested in proving mutual exclusion. The
set Bad contains those configurations that violate mutual exclusion, i.e., con-
figurations in which at least two processes are in their critical sections. These
configurations are of the form

[
Lk, Wm, Cn

]
where n ≥ 2. Checking the safety

property can be carried out by checking whether we can fire a sequence of tran-
sitions taking us from an initial configuration to a bad configuration, i.e., we
check whether the set Bad is reachable.

To analyze safety properties, we study some aspects of the behavior of Petri
nets. First, we observe that the behavior of a Petri net is monotonic: if c1 −→ c2
and c1 ≤ c3 then there is a c4 such that c3 −→ c4 and c4 ≥ c2.

We will work with sets of configurations that are upward closed with respect
to ≤. Such sets are interesting in our setting for two reasons. First, all sets of
bad configurations that occur in our examples are upward closed. For instance,
in our example, whenever a configuration contains two processes in their critical
sections then any larger configuration will also contain (at least) two processes in
their critical sections, so the set Bad is upward closed. In this manner, checking
the safety property amounts to deciding reachability of an upward closed set.
Second, each upward closed set U can be uniquely represented by its set of
minimal elements. This set, which we refer to as the set of generator of U , is
finite due to Dickson’s lemma [8]. In fact, since the ordering ≤ is anti-symmetric,
it follows that each upward closed set has a unique generator. Finally, we observe
that, due to monotonicity, if U is upward closed then Pre(U) is upward closed. In
other words, upward closedness is preserved by going backwards in the transition
relation.

Below, we give a sketch of backward reachability algorithm for checking safety
properties.

3.3 Algorithm

As mentioned above, we are interested in checking whether it is the case that
Bad is reachable. The safety property is violated iff the question has a positive
answer. The algorithm, illustrated in Figure 2, starts from the set of bad config-
urations, and tries to find a path backwards through the transition relation to
the set of initial configurations. The algorithm operates on upward closed sets
of configurations. An upward closed set is symbolically represented by a finite
set of configurations, namely the members of its generator. In the above exam-
ple, the set gen (Bad) is the singleton

{[
C2
]}

. Therefore, the algorithm starts

from the configuration c0 =
[
C2
]
. From the configuration c0, we go backwards

and derive the generator of the set of configurations from which we can fire a
transition and reach a configuration in Bad = ĉ0. Transition t1 gives the config-
uration c1 = [L, W, C], since ĉ1 contains exactly those configurations from which
we can fire t1 and reach a configuration in ĉ0. Analogously, transition t2 gives
the configuration c2 =

[
C3
]
, since ĉ2 contains exactly those configurations from

which we can fire t2 and reach a configuration in ĉ0. Since c0 ≤ c2, it follows
that ĉ2 ⊆ ĉ0. In such a case, we say that c2 is subsumed by c0. Since ĉ2 ⊆ ĉ0,
we can discard c2 safely from the analysis without the loss of any information.
Now, we repeat the procedure on c1, and obtain the configurations c3 =

[
L2, W2

]
(via t1), and c4 =

[
C2
]

(via t2), where c4 is subsumed by c0. Finally, from c3
we obtain the configurations c5 =

[
L3, W3

]
(via t1), and c6 = [L, W, C] (via t2).

The configurations c5 and c6 are subsumed by c3 and c1 respectively. The iter-
ation terminates at this point since all the newly generated configurations were
subsumed by existing ones, and hence there are no more new configurations to
consider. In fact, the set B =

{[
C2
]
, [L, W, C] ,

[
L2, W2

]}
is the generator of the

set of configurations from which we can reach a bad configurations. The three
members in B are those configurations which are not discarded in the analysis
(they were not subsumed by other configurations). To check whether Bad is

reachable, we check the intersection B̂ ∩ Cinit . Since the intersection is empty,
we conclude that Bad is not reachable, and hence the safety property is satisfied
by the system.

3.4 Finite Span

An interesting consequence of the above algorithm is that Petri nets are finitely
spanning with respect to an upward closed set of configurations. First, the reach-
ability algorithm is guaranteed to terminate by Dickson’s lemma [8]. Suppose
that the algorithm starts by an upward closed set U (represented by its genera-
tor) and suppose that it terminates in k steps. Then, we claim that the Petri net

is k-spanning wrt. U . To see this, consider a configuration c such that c
∗−→ U .

Then, the algorithm will generate some c′ such that c′ ≤ c. Suppose that c′ is

generated in step ` ≤ k. Then c′
`−→ U . By monotonicity, we have that c

`−→ U .
For instance, the span of the Petri net of Figure 1 wrt.

[
C2
]

is equal to 2.

[
C2
][L, W, C]

[
C3
]

[
L2, W2

]
[
C2
]

[
L3, W3

]
[L, W, C]

Fig. 2. Running the backward reachability algorithm on the example Petri net. Each
ellipse contains the configurations generated during one iteration. The subsumed con-
figurations are crossed over.

3.5 VASS

A VASS is simply a Petri net equipped with a finite set of control states. Each
transition has exactly one input control state and one output control state. Thus
a transitions changes the control state of the VASS (in addition to changing the
numbers of the tokens in the places). We can also think of a VASS as a counter
machine where the counters are allowed to be tested for equality with zero.

4 Markov Chains

A Markov chain M is a tuple (C,P) where C is a (potentially infinite) set
of configuration, and P : C × C → [0, 1], such that

∑
c′∈C P (c, c′) = 1, for

each c ∈ C. A Markov chain induces a transition system, where the transition
relation consists of pairs of configurations related by positive probabilities. In this
manner, concepts defined for transition systems can be lifted to Markov chains.
For instance, for a Markov chain M, a run of M is a run in the underlying
transition system, andM is finitely spanning w.r.t. given set F if the underlying
transition system is finitely spanning w.r.t. F , etc.

We use Probc (φ) to denote the measure of the set of c-runs (c |= φ) (which
is measurable by [12]). Sometimes, we refer to Probc (φ) as the probability by
which φ holds at c. For instance, given a set F ⊆ C, Probc (3F) is the measure of
c-runs which eventually reach F . We say that almost all runs of a Markov chain
satisfy a given property φ if Probc (φ) = 1. In this case one says that (c |= φ)
holds almost certainly. For formulas φ1, φ2, we use Probc (φ1 | φ2) to denote the
probability that φ2 holds under the assumption that φ1 holds.

5 Decisive Markov Chains

In this section, we introduce decisive Markov chains, present two sufficient condi-
tions for decisiveness, and show examples of models that induce decisive Markov
chains.

Consider a Markov chain M = (C,P) and a set F of configurations. We
say that M is decisive wrt. F if each run of the system almost certainly will
eventually either reach F or reach F̃ . Formally, for each configuration c, it is the

case that Probc

(
3F ∨3F̃

)
= 1. Put differently, if F is always reachable along a

run ρ then ρ will almost certainly eventually reach F , i.e., Probc(3F | 2∃3F) =
1. Figure 3 shows an illustration of a run in a decisive Markov chain.

F

F F F F F F

Fig. 3. Illustration of a run in a decisive Markov chain.

Notice that all finite Markov chains are decisive (wrt. any given set of con-
figurations). On the other hand, Figures 4–5 show examples of infinite Markov
chains that are not decisive. Let us consider the Markov chain of Figure 4.
The configuration F is reachable from each configuration in the Markov chain.

Therefore F̃ = ∅, and hence ProbInit

(
3F ∨3F̃

)
= ProbInit(3F) = 2

3 < 1.

F Init

1

0.4

0.6

0.4

0.6

0.4

0.6

0.4

0.6

0.4

Fig. 4. A Markov chain that is not decisive.

Next, let us consider the Markov chain of Figure 5. Again, the configura-
tion F is reachable from each configuration in the Markov chain. Therefore,

ProbInit

(
3F ∨3F̃

)
= ProbInit(3F) < 0.2.

5.1 Sufficient Condition I

A configuration c is said to be of coarseness β if for each c′ ∈ C, P (c, c′) > 0
implies P (c, c′) ≥ β. A Markov chain M = (C,P) is said to be of coarseness β
if each c ∈ C is of coarseness β. We say that M is coarse if M is of coarseness

Init

F

0.9 0.99 0.999 0.9999

0.1 0.01 0.001 0.0001 0.00001

1

Fig. 5. Another Markov chain that is not decisive.

β, for some β > 0. Notice that if M is coarse then the underlying transition
system is finitely branching; however, the converse is not necessarily true. For
instance, the Markov chain of Figure 4 is coarse (it is of coarseness 0.4), while
the Markov chain of Figure 5 is not coarse.

A sufficient condition for decisiveness is the combination of coarseness and
finite spanning. If a Markov chain M is both coarse and finitely spanning wrt.
to set F of configurations thenM is decisive wrt. F . The situation is illustrated
in Figure 6 that shows a run in a Markov chain with coarseness 0.1 and span
3 (wrt. some F). The idea is that if we have a run ρ from which F is always

F F

F

F

F

F

0.1

0.1

0.1

0.1

0.1

0.1

0.1 0.1

0.1

0.1

0.1

0.1

Fig. 6. A run in a Markov chain that is both coarse and finitely spanning.

reachable, then from each configuration along the run, the probability of hitting
F within the next 3 steps is at least 0.001. Therefore, the probability that ρ will
avoid F forever is equal to 0. In other words, ρ will almost certainly eventually
reach F .

5.2 Sufficient Condition II

An attractor A ⊆ C is a set of configurations, such that each run of M will
almost certainly eventually reach A. Figure 7 illustrates an attractor. Formally,
for each c ∈ C, we have Probc (3A) = 1, i.e., the set A is reached from c with
probability one.

A

Fig. 7. An attractor.

In fact, any run of the system will almost certainly visit A infinitely often. The
reason (illustrated in Figure 8) is the following. Consider a run ρ. By definition
of an attractor, ρ will almost certainly eventually reach a configuration c1 ∈ A.
We apply the definition of an attractor to the continuation of ρ from c1. This
continuation will almost certainly eventually reach a configuration c2 ∈ A. The
reasoning can be repeated infinitely thus obtaining an infinite sequence c1, c2, . . .
of configurations inside A that will be visited. This means that A will be visited
infinitely often with probability 1.

A

Fig. 8. Repeated reachability of an attractor.

The existence of a finite attractor is a sufficient condition for decisiveness
wrt. any set F of configurations. Assume a finite attractor A (see Figure 9). We

partition A into two sets: A0 := A ∩ F̃ and A1 := A ∩ ¬F̃ . In other words, the
configurations in A0 cannot reach F (in the underlying transition system), while
from each configuration in A1 there is a path to F . Consider a run ρ. We show
that ρ will almost certainly eventually either reach F̃ or reach F . We know that
ρ will almost certainly visit A infinitely often. If ρ reaches F at some point then
we are done. Otherwise, ρ will visit A1 infinitely often with probability 1. Since
A1 is a finite set, with probability 1, there is a configuration c ∈ A1 that will
be visited by ρ. By definition, we know that F is reachable from c, i.e., there is
path (say of length k) from c to F . Let β be the probability that this path is
taken during the next k steps of the run. This means that each time ρ visits c,
it will reach F during the next k steps with probability at least β, which implies
that ρ cannot avoid F forever. Thus ρ will almost certainly eventually reach F .

A F̃

F

Fig. 9. Decisiveness due to a finite attractor.

5.3 Probabilistic Petri Nets

To induce Markov chains from Petri nets, we associate weights (natural numbers)
with the transitions of the net. If several transitions are enabled from a given
configuration then a particular transition will be fired with a probability that
reflects its weight relative to the weights of the rest of the enabled transitions. For
instance, Figure 10 shows a weighted version of the Petri net of Figure 1, where
the transitions t1 and t2 have weights that are 3 and 2 respectively. Consider
the configuration c1 =

[
L, W3

]
. From c1 only transition t1 is enabled. Therefore

the probability of moving from c1 to the configuration c2 =
[
C, W2

]
is given

by P (c1, c2) = 1, while P (c1, c
′
1) = 0 for all other configurations c′1. On the

other hand, both t1 and t2 are enabled from the configuration c3 =
[
L, C, W3

]
.

Therefore, the probability of moving from c3 to the configuration c4 =
[
C2, W2

]

L

W

C

t1 t23 2

(a)

Fig. 10. A weighted Petri net.

is given by P (c3, c4) = 3
2+3 = 3

5 ; while, for c5 =
[
L, C, W3

]
, we have P (c3, c5) =

2
2+3 = 2

5 . In such a manner, we obtain an infinite-state Markov chain, where
the configurations are those of the Petri net, and the probability distribution
is defined by the weights of the transitions as described above. On the one
hand, this Markov chain is finitely spanning wrt. an upward closed set F of
configurations, since the underlying transition system is finitely spanning wrt.
to F (as explained in Section 3). On the other hand, the Markov chains is coarse.
In fact, the Markov chain is at least of coarseness 1

w where w is the sum of weights
of all the transitions in the Petri net. It follows that the Markov chain induced
by a Petri net is decisive wrt. any upward closed set F .

5.4 Communicating Processes

We consider systems that consist of finite sets of finite-state processes, communi-
cating through unbounded channels that behave as FIFO queues (see Figure 11).
During each step in a run of the system, a process may either send a message to
a channel (in which case the message is appended to the tail of the channel), or
receive a message from a channel (in which case the message is fetched from the
head of the channel). Choices between different enabled transitions are resolved
probabilistically by associating weights to the transition in a similar manner to
the case of Petri nets. Furthermore, after each step in a run of the system, a
given message may be lost (removed from the buffer) by a predefined probability
λ. The probability of loss is identical (equal to λ) for all messages that reside in
the channels. The induced Markov chain is infinite-state, since the sizes of the
buffers are not bounded. However, such a Markov chains always contains a finite

Process 1

Process 2

Process 3

Fig. 11. Communicating finite-state processes.

attractor. In fact, the finite attractor is given by the set of configurations in
which all the channels are empty. This is due to the fact that the more messages
inside a buffer, the higher the probability that “many of” these message will be
lost in the next step. Thus, each run of the system will almost certainly reach
a configuration where all the channels are empty. Consequently, the induced
Markov chain is decisive wrt. any set F of configurations.

6 Qualitative Analysis

In this section, we consider qualitative analysis of (infinite-state) Markov chains.
We are given an initial configuration Init and a set of final (target) configurations
F . In qualitative reachability analysis, we want to check whether ProbInit(3F) =
1, i.e., whether the probability of reaching F from Init is equal to 1. In qualitative
repeated reachability analysis, we want to check whether ProbInit(23F) = 1,
i.e., whether the probability of repeatedly reaching F from Init is equal to 1.
In the case of decisive Markov chains, we reduce the problems to corresponding
problems defined on the underlying transition systems.

6.1 Reachability

For sets of configurations C1, C2 and a run ρ = c0 −→ c1 −→ c1 −→ · · ·, we say
that ρ satisfies C1 Before C2 if there is an i ≥ 0 such that ci ∈ C1 and for all

j : 0 ≤ j ≤ i it is the case that cj 6∈ C2. Then, for a configuration c, we have
c |= ∃. C1 Before C2 iff there is a c-run that reaches C1 before reaching C2.

We will show that ProbInit(3F) = 1 iff Init 6|= ∃. F̃ Before F . One direction of
the proof is illustrated in Figure 12. In fact, this direction holds for any Markov
chain and is not dependent on the Markov chain being decisive.

FF̃Init

Fig. 12. Reaching F̃ before F .

Suppose that Init |= ∃. F̃ Before F , i.e., there is an Init-run that reaches

F̃ before reaching F . This means that there is a prefix ρ′ of ρ that will reach
F̃ before reaching F . The prefix ρ′ has a certain probability β. Notice that the
measure of all runs that are continuations of ρ′ (that have ρ′ as a prefix) is equal

to β. Furthermore, all these continuations will not reach F (since ρ′ visits F̃
from which F is not reachable). This means that the measure of computations
that will never reach F is larger than β, and hence the measure of computations
that will reach F is smaller than 1− β < 1.

The other direction of the proof, namely that Init 6|= ∃. F̃ Before F implies
ProbInit(3F) = 1 does not hold in general. As a counter-example, consider the

Markov chain of Figure 4. In this example F̃ = ∅ since F is reachable from
every configuration in the Markov chain. Therefore, Init 6|= ∃. F̃ Before F holds

trivially. However, as mentioned in Section 5, we have ProbInit(3F) = 2
3 < 1.

This direction of the proof holds for Markov chain that is decisive wrt. F
(Figure 13). Consider any Init-run ρ. By decisiveness, ρ will almost certainly

reach either F or F̃ . In the first case, the claim holds trivially. In the second
case, since ρ visits F̃ and since all runs must visit F before visiting F̃ , we know
that ρ must have visited F (before visiting F̃).

Thus, we have reduced the problem of checking whether ProbInit(3F) = 1
in a Markov chain that is decisive wrt. F to that of checking whether Init |=

F

F̃

Init

Fig. 13. Reaching F before F̃ .

∃. F̃ Before F in the underlying transition system. In fact, as clear from the
structure of the proof, the two problems are equivalent.

The problem of checking Init |= ∃. F̃ Before F is decidable for Petri nets in
case F is given by a set of control states (we are asking about the reachability
of a set of control states in a VASS). However, the problem is undecidable in
case F is given by an arbitrary upward closed set of configurations. This is quite
surprising since the control state reachability problem and upward closed set
reachability problem are equivalent for all other models (whether probabilistic
or not). The problem is also decidable for lossy channel systems which is the
underlying transition system model for communicating processes (as described
in Section 5).

6.2 Repeated Reachability

We will show that, for a configuration Init and a set F of configurations in a
decisive Markov chain, we have that ProbInit(23F) = 1 iff Init |= ∀2 ∃3 F .
The formula states that the set F remains reachable along all Init-runs. Notice
that this is equivalent to Init 6|= ∃3 F̃ . (it is not the case that there is an Init-

run that leads to F̃). Also, in this case, one direction of the proof (illustrated
in Figure 12) holds for any Markov chain (it is not dependent on the Markov

chain being decisive). Suppose that Init 6|= ∀2 ∃3 F (i.e. Init |= ∃3 F̃). This

means that there is a Init-run ρ that reaches F̃ . The run ρ is similar to the one
shown in Figure 12 (with the difference that ρ is now allowed to visit F before

visiting F̃). In a similar manner to the case of reachability, there is a prefix ρ′

that will reach F̃ and that has a certain probability β. Furthermore, none of the
continuations of ρ′ will reach F . This means that the measure of computations
that will not repeatedly visit F is smaller than 1− β < 1.

Also here, the other direction of the proof, namely that Init |= ∀2 ∃3 F .
implies ProbInit(23F) = 1 does not hold in general. For instance in the Markov

chain of Figure 4, we have F̃ = ∅. Therefore, Init |= ∀2 ∃3 F holds. However,
we have ProbInit(23F) ≤ ProbInit(3F) = 2

3 < 1. This direction of the proof
holds for Markov chain that is decisive wrt. F (Figure 14). Consider any Init-

run ρ. Since F̃ is not reachable from Init , it follows by decisiveness that ρ will

FInit

Fig. 14. Repeatedly reaching F .

almost certainly reach some configuration c1 ∈ F . We apply the definition of an
attractor to the continuation of ρ from c1. This continuation will almost certainly
eventually reach a configuration c2 ∈ F . The reasoning can be repeated infinitely
thus obtaining an infinite sequence c1, c2, . . . of configurations inside the F that
will be visited. This means that F will be visited infinitely often with probability
1.

We have then reduced the problem of checking whether ProbInit(23F) = 1
in a Markov chain that is decisive wrt. F to that of checking whether Init |=
∀2 ∃3 F in the underlying transition system.

The problem of checking Init |= ∀2 ∃3 F is decidable for Petri nets in case F
is an arbitrary upward closed set of configurations. This is again surprising since
it means that repeated reachability is a simpler problem than simple reachability
(as we have seen, the former is decidable for upward closed sets while the latter
is undecidable). The problem is also decidable for lossy channel systems.

7 Quantitative Analysis

We give a sketch of a algorithm that computes the probability ProbInit(3F)
up to an arbitrary given precision ε. The algorithm builds the reachability tree
starting from Init as the root of the tree. It maintains two variables, namely
the variable yes that under-approximates ProbInit(3F), and no that under-
approximates ProbInit(¬3F). Each time the algorithm picks a leaf from the tree
(corresponding to a configuration c), it computes the successors of the node. For

each successor c′ such that c′ 6∈ F ∪ F̃ , it creates a child labeled with c′ and
labels the edge between the nodes by P (c, c′). If c′ ∈ F then it will close the

node and increases the value yes by the weight the path from the root to the
current node (equal to the product of the probabilities on the edges along the

path). If c′ ∈ F̃ it will close the node and increases the value no analogously.
The algorithm terminates when yes + no ≥ ε. The algorithm is guaranteed to
terminate in case the Markov chain is decisive wrt. F since, as more and more
steps of the algorithm are executed, the sum yes + no will get arbitrarily close
to one.

References

1. P. A. Abdulla. Well (and better) quasi-ordered transition systems. Bulletin of
Symbolic Logic, 16(4):457–515, 2010.

2. P. A. Abdulla, K. Čerāns, B. Jonsson, and Y.-K. Tsay. General decidability theo-
rems for infinite-state systems. In Proc. LICS ’96, 11th IEEE Int. Symp. on Logic
in Computer Science, pages 313–321, 1996.

3. P. A. Abdulla, N. B. Henda, and R. Mayr. Decisive markov chains. Logical Methods
in Computer Science, 2007. A Preliminary Version appeared in Proc. LICS05.

4. P. A. Abdulla, N. B. Henda, R. Mayr, and S. Sandberg. Eager Markov chains.
In Proc. ATVA ’06, 4th Int. Symp. on Automated Technology for Verification and
Analysis, volume 4218 of Lecture Notes in Computer Science, pages 24–38. Springer
Verlag, 2006.

5. P. A. Abdulla, N. B. Henda, R. Mayr, and S. Sandberg. Limiting behavior of
Markov chains with eager attractors. In P. R. D’Argentio, A. Milner, and G. Ru-
bino, editors, 3rd International Conference on the Quantitative Evaluation of Sys-
Tems (QEST), pages 253–262, 2006.

6. C. Baier, B. R. Haverkort, H. Hermanns, and J.-P. Katoen. Model-checking algo-
rithms for continuous-time markov chains. IEEE Trans. Software Eng., 29(6):524–
541, 2003.

7. C. Courcoubetis and M. Yannakakis. The complexity of probabilistic verification.
Journal of the ACM, 42(4):857–907, 1995.

8. L. E. Dickson. Finiteness of the odd perfect and primitive abundant numbers with
n distinct prime factors. Amer. J. Math., 35:413–422, 1913.

9. J. Esparza, A. Kučera, and R. Mayr. Model checking probabilistic pushdown
automata. In Proc. LICS ’04, 20th IEEE Int. Symp. on Logic in Computer Science,
pages 12–21, 2004.

10. K. Etessami and M. Yannakakis. Recursive Markov chains, stochastic grammars,
and monotone systems of non-linear equations. In Proc. STACS’05, 22nd Int.
Symp. on Theoretical Aspects of Computer Science, volume 2996 of Lecture Notes
in Computer Science, pages 340–352, 2005.

11. M. Huth and M. Kwiatkowska. Quantitative analysis and model checking. In Proc.
LICS ’97, 12th IEEE Int. Symp. on Logic in Computer Science, pages 111–122,
1997.

12. M. Vardi. Automatic verification of probabilistic concurrent finite-state programs.
In Proc. FOCS ’85, 26th Annual Symp. Foundations of Computer Science, pages
327–338, 1985.

