
Software Tools for Technology Transfer manuscript No.
(will be inserted by the editor)

Regular Model Checking

An Introduction

Parosh Aziz Abdulla

Department of Information Technology
Uppsala University

Received: xx/xx/xx / Revised version: yy/yy/yy

Abstract. Regular Model Checking has been studied ex-
tensively during recent years as a framework for algorith-
mic verification of systems with infinite state spaces. We
describe the main concepts of the framework, and some
of its applications.

1 Introduction

This paper introduces the main concepts of Regular Model
Checking, a framework that has been used in recent years
for algorithmic verification of various classes of systems
with infinite state spaces.

Model checking [34,47,35] is one of the most impor-
tant approaches to program verification. Model checking
has achieved spectacular success in the context of finite-
state systems, where the behavior can be captured by
a finite graph. One important factor in this success has
been the use of Binary Decision Diagrams (BDDs) as an
efficient data structure for symbolic representations of
large state spaces [29]; and (more recently) the integra-
tion of propositional satisfiability solvers (SAT-solves) in
model checking engines [33,3].

While hardware circuits can be naturally modeled
as finite-state systems, there are several aspects in the
behaviors of software systems that give rise to infinite
state spaces. In fact, there are at least two sources of
”infiniteness”. First, programs operate usually on un-
bounded data domains, such as unbounded counters, stacks,
queues, and clocks. Second, programs may have unbounded
control structures. One example of the latter is multi-
threaded programs that may spawn unbounded num-
bers of threads. Another example is parameterized sys-
tems that contain unbounded numbers of (often identi-
cal) components. For instance, a mutual exclusion pro-

Send offprint requests to:

tocol should work correctly regardless of the number
of participating processes, a cache coherence protocol
should work correctly regardless of the number of caches,
and a security protocol should work correctly regard-
less of the number of principals. In such cases, we would
like to perform parameterized verification in which the
correctness property is parameterized (and universally
quantified) by the number of components inside the sys-
tem. These applications have led to a large amount of
research, directed towards developing model checking al-
gorithms for different classes of infinite-state systems
such as push-down systems [20,31,30], timed systems
[12], processes communicating through buffers [9], pa-
rameterized systems [5], and many other models.

One direction of research has been to design general
frameworks for infinite-state model checking that can be
instantiated to wide classes of systems. An example of
such a framework is that of well quasi-ordered programs
that was first proposed in [6] (see [2] for a recent sur-
vey). The framework has been applied for the verifica-
tion of Petri nets, lossy channel systems, timed systems,
cache coherence protocols, etc. This paper describes Reg-
ular Model Checking (RMC) which has also been an im-
portant framework for infinite-state model checking. In
RMC, sets of states are represented by finite-state au-
tomata, and transition relations is represented by finite-
state transducers, typically over finite or infinite words
or tree structures. The framework allows, for instance, to
handle models whose configurations can be represented
as finite words or trees of arbitrary length over a finite al-
phabet. This includes parameterized systems consisting
of an arbitrary number of homogeneous finite-state pro-
cesses connected in a linear, ring-formed, or tree-formed
topology, and systems that operate on queues, stacks,
integers, and other linear (or tree-like) data structures.

Regular model checking was first advocated by Kesten
et al. [44] and by Boigelot and Wolper [49], as a uni-
form framework for analyzing several classes of parame-
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terized and infinite-state systems. The idea is that regu-
lar sets will provide an efficient representation of infinite
state spaces, and play a role similar to that played by
BDDs for symbolic model checking of finite-state sys-
tems. An advantage is that one can exploit automata-
theoretic algorithms for manipulating regular sets, e.g.,
algorithms for minimizing and for checking universality
and language inclusion for finite automata. Such algo-
rithms have already been successfully implemented, e.g.,
in the Mona [45] system; and their development is also
currently an active area of research [38,7].

A generic task in symbolic model checking is to com-
pute the set of reachable states (characterize the states
that are reachable from the initial state), in order to ver-
ify safety properties; and to compute reachability rela-
tions (characterize the relation containing pairs of states
(s1, s2) such that s2 is reachable from s1), in order to
verify liveness properties. For finite-state systems this is
typically done by state-space exploration for which ter-
mination is guaranteed. For infinite-state systems this
procedure terminates only if there is a bound on the dis-
tance (in number of transitions) from the initial configu-
rations to any reachable configuration. An infinite-state
system does not have such a bound, and any nontriv-
ial model checking problem is in general undecidable.
RMC is a model checking technique, and hence its aim
is to verify system properties algorithmically (automati-
cally). As the problem is undecidable, there is no hope to
achieve that goal in general. To circumvent this problem,
existing approaches adopt either incomplete methods or
approximate methods.

Incomplete methods are not guaranteed to terminate.
Naturally, such a method will be not be useful unless it
terminates sufficiently often on practical examples. In
order to achieve termination, several works adopt ac-
celeration operators, the purpose of which is to com-
pute (in one computation step) the effect of arbitrarily
long sequences of transitions [1,14]. In general, the ef-
fect of acceleration is not computable. However, com-
putability have been obtained for certain classes [43].
Analogous techniques for computing accelerations have
successfully been developed for several classes of param-
eterized and infinite-state systems, e.g., systems with
unbounded FIFO channels [15,16,21,4], systems with
stacks [20,32,40], and systems with counters [19,13].

Approximate methods compute an over-approximation
of the original transition relation, and then perform veri-
fication on the approximated transition system. A safety
property that holds for the over-approximation holds
also for the original system. Over-approximations are
computed either by applying abstraction functions [25,
37], or by applying widening techniques [46,27]. Typi-
cally, widening is achieved by first generating increas-
ing sequences of approximations of the set of reachable
states, then detecting an ”increment” in the manner in
which the set of detected states grows, and finally ex-

trapolating by allowing an arbitrary repetition of the
detected increment.

Outline In the next section, we present the main con-
cepts in the basic framework of RMC. In Section 3, we
describe the techniques used for designing verification
algorithms. We show some extensions of the basic model
in Section 4. Finally, in Section 5, we give an overview
of the papers included in this issue of the journal.

2 Framework

In this section, we introduce the basic framework of
RMC. To do that we introduce how programs are mod-
eled, give some examples of systems, and then state the
relevant verification problems.

Model A model checking algorithms usually operates on
transition systems, each consisting of

– a set of configurations (or states), some of which are
initial, and

– a transition relation, which is a binary relation on
the set of configurations.

The configurations represent possible “snapshots” of the
system state, and the transition relation describes how
these can evolve over time. Most work on model check-
ing assumes that the set of configurations is finite, but
significant effort is underway to develop model check-
ing techniques for transition systems with infinite sets
of configurations. RMC is one such a technique. In its
simplest form, the RMC framework represents a transi-
tion system as follows.

– A configuration (state) of the system is a word over
a finite alphabet Σ.

– The set of initial configurations is a regular set over
Σ.

– The transition relation is a regular and length-preserving
relation on Σ∗. It is represented by a finite-state
transducer over (Σ × Σ), which accepts all words
(a1, a

′
1) · · · (an, a′n) such that (a1 · · · an , a′1 · · · a′n) is

in the transition relation.

Formally, let Σ be a finite alphabet of symbols. A de-
terministic finite-state transducer T over Σ is a tuple
(Q, q0, t, F ) where Q is the set of states, q0 is the initial
state, t : (Q × (Σ × Σ)) 7→ Q is the transition func-
tion, and F ⊆ Q is the set of accepting states. We use

q1
(a,b)−→ q2 to denote that t(q1, (a, b)) = q2, and use L (T )

to denote the language of T .
The transducer T induces a regular relation R on

words over Σ. More precisely, for words x = a1 · · · an and
y = b1 · · · bn inΣ∗, we have (x, y) ∈ R if (a1, b1) · · · (an, bn) ∈
L (T ). The idea is that R is used to represent the transi-
tion relation on the configurations of the system (each of
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which is a word in Σ). Sometimes, we identify the rela-
tion R with the transducer T A generic task in RMC is to
compute a representation for the transitive closure of the
transducer relation, i.e., to construct a new transducer
T+ where T+ = ∪i>0 T

i. The transducer T+ can then
be used for computing the set of reachable states (when
verifying safety properties), or to find loops (when veri-
fying livens properties). Due to undecidability, the tran-
sitive closure cannot be computed in general. Therefore,
some acceleration, abstraction, or widening techniques
are needed to compute a representation of T+ by other
means.

Examples There are several classes of systems that can
be modeled in the RMC framework. Below, we give some
examples. For instance, in RMC we can model param-
eterized systems with linear or ring-formed topologies
(where each component if finite-state). A configuration
of the system is represented by a word over a finite al-
phabet, where each member of the alphabet represents
a state of a component. In this manner, each position
of the word represents the state of the component at
that position. As an example, we consider a simple to-
ken passing protocol. The system consists of an arbi-
trary (but finite) number of components organized in a
linear fashion. In each step, the process currently hav-
ing the token passes it to the right. A configuration of
the system is a word over the alphabet {t, n}, where t
represents that the process has the token, and n repre-
sents not having it. For instance, the word nntnn rep-
resents a configuration of a system with five processes
where the third process has the token. The set of initial
states is given by the regular expression tn∗ (Figure 1).
Notice that the set of initial configurations is infinite.
The transition relation is represented by the transducer
in Figure 1. For instance, the transducer accepts the
word (n, n)(n, n)(t, n)(n, t)(n, n), representing the pair
(nntnn, nnntn) of configurations where the token is
passed from the third to the fourth process.

As a second example, we consider a system consist-
ing of a finite-state process operating on one unbounded
FIFO channel. Let Q be the set of control states of the
process, and let M be the (finite) set of messages which
can reside inside the channel. A configuration of the sys-
tem is a word over the alphabet Q∪M ∪{e}, where the
padding symbol e represents an empty position in the
channel. For instance the word q1em3m1ee corresponds
to a configuration where the process is in state q1 and
the channel (of length four) contains the messages m3

and m1 in this order. The set of configurations of the
system can thus be described by the regular expression
Qe∗M∗e∗. By allowing arbitrarily many padding sym-
bols e, one can model channels of arbitrary but bounded
length. As an example, the action where the process
sends the message m to the channel and changes state
from q1 to q2 is modeled by the transducer in Figure 2.
In the figure, “M” is used to denote any message in M .

t

n

(a)

qL q qR
(t, n) (n, t)

(n, n) (n, n)

(b)

Fig. 1. The token passing protocol. (a) The set of initial states
in the token passing protocol. (b) The transducer describing the
transition relation.

q0 q1 q3

q2

(s1, s2) (e,m)

(M,M) (e,m)

(M,M)

(e, e)

Fig. 2. Sending a message to a queue.

q0 q1 q2 q3
(s1, s2) (e,m) (e, e)

(e, e) (M,M) (e, e)

Fig. 3. Pushing a symbol to a stack.

A system consisting of a finite-state process oper-
ating on a queue can be modeled in a similar manner.
Figure 3 shows the operation of pushing a symbol m to
the stack.

Verification Problems Two types of verification prob-
lems are usually considered in RMC.

The first problem is verification of safety properties.
A safety property is of form “bad things do not hap-
pen during system execution”. A safety property can be
verified by solving a reachability problem. Formulated in
the RMC framework, the corresponding problem is the
following: given a regular set of initial configurations I,
a regular set of bad configurations B and a transition
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relation specified by a transducer T , does there exist a
path from I to B through the transition relation T? This
amounts to checking whether (I ◦ T ∗)∩B = ∅. The prob-
lem can be solved by computing the set Inv = I ◦T ∗ and
checking whether it intersects B.

The second problem is verification of liveness proper-
ties. A liveness property is of form “a good thing happens
during system execution”. Often, liveness properties are
verified using fairness requirements on the model, which
can state that certain actions must infinitely often be
either disabled or executed. Since, by the restriction to
length-preserving transducers, any infinite system exe-
cution can only visit a finite set of configurations, the
verification of a liveness property can be reduced to a
repeated reachability problem. The repeated reachability
problem asks, given a set of initial configurations I, a
set of accepting configurations F and a transition rela-
tion T , whether there exist an infinite computation from
I through T that visits F infinitely often? By letting F
be the configurations where the fairness requirement is
satisfied, and by excluding states where the “good thing”
happens from T , the liveness property is satisfied if and
only if the repeated reachability problem is answered
negatively.

Since the transition relation is length-preserving, and
hence each execution can visit only a finite set of configu-
rations, the repeated reachability problem can be solved
by checking whether there exists a reachable loop con-
taining some configuration from F . This can be checked
by computing (Inv ∩ F )2 ∩ Id and checking whether
this relation intersects T+. Here Id is the identity rela-
tion on the set of configurations, and Inv = I ◦ T ∗ as
before.

3 Algorithms

In Section 2, we stated a verification problem as that of
computing a representation of I ◦ T ∗ (or T+) for some
transition relation T and some set of configurations I.
In some cases we also have a set of bad configurations B
and we want to check whether I ◦ T ∗ ∩ B 6= ∅.

Given a transducer T , our goal then is to construct
a new transducer that recognizes the relation T+. As
a running illustration, we will consider the problem of
computing the transitive closure T+ for the transducer in
Figure 1. A first attempt is to compute Tn, is to take the
composition of T with itself n times for n = 1, 2, 3, · · ·.
For example, T 3 is the transition relation where the to-
ken gets passed three positions to the right (its trans-
ducer is given in Figure 4). A transducer for T+ is one
where the token gets passed an arbitrary number of
times, given in Figure 5. Obviously, the transducer T+

cannot be constructed naively by simply computing the
approximations Tn for n = 1, 2, 3, · · ·, since this will not
converge. Therefore, different approaches have been pro-

posed for computing T+. Below, we give overviews of
some of them.

Acceleration A solution is proposed in [11], where we
derive T+ in a number of steps as follows. First, start-
ing from T , we can in a straight-forward way construct
a transducer for T+ whose states, called columns, are
sequences of states in Q, where runs of transitions be-
tween columns of length i accept pairs of words in Ri.
More precisely, define the column transducer for T as
the tuple T+ =

(
Q+, q+0 ,=⇒, F+

)
where

– Q+ is the set of non-empty sequences of states of T ,
– q+0 is the set of non-empty sequences of the initial

state of T ,
– =⇒: (Q+ × (Σ × Σ)) 7→ 2Q

+

is defined as follows:
for any columns q1q2 · · · qm and r1r2 · · · rm, and pair

(a, a′), we have q1q2 · · · qm
(a,a′)
=⇒ r1r2 · · · rm iff there

are a0, a1, . . . , am with a = a0 and a′ = am such that

qi
(ai−1,ai)−→ ri for 1 ≤ i ≤ m,

– F+ is the set of non-empty sequences of accepting
states of T .

Note that although T is deterministic, T+ needs not be.
It is easy to see that T+ accepts exactly the relation
T+: runs of transitions from qi0 to columns in F i ac-
cept transductions in Ri. The problem is that the col-
umn transducer has infinitely many states. In order to
increase the chances for termination, we present a pro-
cedure for incrementally generating a transducer which
accepts the same relation as T+. The procedure starts
from T ; by successively adding transitions of T+ we com-
pute a sequence of successively larger (in terms of sets of
accepted pairs of words) transducers, all of which under-
approximate T+. Each new approximation is generated
through performing a basic step. The step constructs
transitions by combining already constructed transitions.
In order to that, the algorithm identifies pairs of tran-
sitions (of the automaton) and combines them in the
following way. When we have a transition from x to x′

on (a, b), and a transition from y to y′ on (b, c) we add
the transition xy to x′y′ on (a, c).

Furthermore, we perform quotienting based on an
equivalence relation ' that we define on the set Q+ of
columns of T+. During the procedure, we will all the
time merge columns of T+ that are equivalent wrt. ';
thus hopefully arrive at a finite-state result. We define
' as follows. A state in q ∈ Q is left-copying if whenever

q0
(a0,a

′
0)=⇒ q1

(a1,a
′
1)=⇒ · · ·

(an−1,a
′
n−1)

=⇒ qn with qn = q, then
ai = a′i for all i ∈ {0, 1, . . . , n− 1}. A right-copying state
is defined in a similar manner. In other words, prefixes
of left-copying states only copy input symbols to out-
put symbols, and similarly for suffixes of right-copying
states. In our example, the states qL and qR are left-
and right-copying, respectively. Two columns are equiv-
alent if they can be made equal by ignoring repetitions
of identical neighbours which are either left- or right-
copying. Formally, the equivalence classes of ' will be
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sets denoted by regular expressions of form e1e2 · · · en
where each ei is one of the following:

1. q+L , for some left-copying state qL,
2. q+R , for some right-copying state qR,
3. q, for some state q which is neither left-copying nor

right-copying,

and where two consecutive ei can be identical only if they
are neither left-copying nor right-copying. For a column
x, let [x]' denote the equivalence class for x. We will use
X, Y , etc. to denote equivalence classes of columns. De-
fine the operator ? as the natural concatenation operator
on equivalence classes:

[x]' ? [y]' = [x · y]'

where · denotes concatenation of columns. It is easy
to check that this operation is well-defined. If equiv-
alence classes are represented by their defining regu-
lar expressions, this means that e1 · · · en ? f1 · · · fm is
e1 · · · en f1 · · · fm, except when en and f1 are both q+

for some left- or right-copying state q, in which case it
is e1 · · · en f2 · · · fm. For instance the columns qLqLxqR
and qLxqRqR are equivalent.

Having defined the equivalence relation ' on Q+, we
define the quotient transducer T' as

T' =
(
Q+/ ', {q0}+ ,=⇒', F+/ '

)
where

– Q+/ ' is the set of equivalence classes of columns,
– q+0 is the initial equivalence class (assuming that the

initial state is left-copying, this will be one equiva-
lence class of '),

– =⇒': ((Q+/ ')× (Σ ×Σ)) 7→ 2(Q
+/') is defined in

the natural way as follows. For any columns x, x′ and
symbols a, a′:

x
(a,a′)
=⇒ x′ ⇒ [x]'

(a,a′)
=⇒' [x′]'

– F+/ ' is the partitioning of F+ with respect to ' (if
the final states are right-copying then F+ is a union
of equivalence classes).

Our proposed algorithm now builds a sequence
T̃0, T̃1, T̃2, · · · of transducers. The states of each T̃i is
Q+/ ', and its transition relation will be a subset of
=⇒'. The procedure incrementally adds transitions in
=⇒' between equivalence classes, and therefore the re-
lations accepted by T̃0, T̃1, · · · will be successively larger
subsets of the relation accepted by T'.

Based on these ideas, here is the algorithm for com-
puting a transducer for the transitive closure.

– The initial transducer T̃0 is obtained from T by tak-
ing all transitions in T and replacing all left- or right-
copying states q by q+.

0 1 2 3 4
(t, n) (n, n) (n, n) (n, t)

(n, n) (n, n)

Fig. 4. The transducer T 3.

0 1 2
(t, n) (n, t)

(n, n) (n, n) (n, n)

Fig. 5. The transitive closure of T .

– In each step of the procedure, =⇒i+1 is obtained

from =⇒i by adding transitions of formX?X ′
(a,c)
=⇒i+1Y ?

Y ′ such that X
(a,b)
=⇒iY and X ′

(b,c)
=⇒0Y

′.
– The algorithm terminates when the relation R+ is

accepted by T̃i. This can be tested by checking if the
language of T̃i ◦R is included in T̃i.

Example (ctd.) Applying this to our example, we get
the following transitions.

– First, we take all transitions in the original trans-
ducer replacing qL by q+L , and replacing qR by q+R .

– q+L
(t,n)
=⇒ q, q+L

(n,n)
=⇒ q+L gives q+L

(t,n)
=⇒ qq+L .

– q
(n,t)
=⇒ q+R , q+L

(t,n)
=⇒ q gives qq+L

(n,n)
=⇒ q+Rq.

– q+R
(n,n)
=⇒ q+R , q

(n,t)
=⇒ q+R gives q+Rq

(n,t)
=⇒ q+R .

– qq+L
(n,n)
=⇒ q+Rq, q

+
L

(n,n)
=⇒ q+L gives qq+L

(n,n)
=⇒ q+Rqq

+
L .

– q+Rq
(n,t)
=⇒ q+R , q+L

(t,n)
=⇒ q give us q+Rqq

+
L

(n,n)
=⇒ q+Rq.

– q+Rqq
+
L

(n,n)
=⇒ q+Rq, q

+
L

(n,n)
=⇒ q+L gives q+Rqq

+
L

(n,n)
=⇒ q+Rqq

+
L .

At the last point, the termination test succeeds, implying
that the transducer indeed accepts the transitive closure
of the original relation (the one shown in Figure 5). The
new transducer thus becomes the one shown in Figure 6.

Abstraction In [23], abstraction techniques are applied
to automata that arise in the iterative computation of
I ◦T ∗. When computing the sequence I, I ◦T, I ◦T 2, I ◦
T 3, · · · the automata that arise in the computation may
all be different or may be very large and contain infor-
mation that is not relevant for checking whether I ◦ T ∗
has a nonempty intersection with the set of bad configu-
rations B. Therefore, each iterate I ◦Tn is abstracted by
quotienting under some equivalence relation '. In con-
trast to the techniques of [11,24,36,10], the abstraction
does not need to preserve the language accepted, i.e.,
(I ◦ Tn)/ ' can be any over-approximation of I ◦ Tn or
even of I ◦ T ∗. The procedure calculates the sequence of
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q
+
L

q q
+
R

q q
+
L

q
+
R

q

q
+
R

q q
+
L

(t, n) (n, t)

(t, n)

(n, n)

(n, t)

(n, n) (n, n)

(n, n)

(n, n) (n, n)

Fig. 6. The transitive closure of T as computed by the algorithm.

0 1
t

n

(a)

0 1 2
n t

n

(b)

0, 1 2
t

n n

(c)

Fig. 7. (a) Automaton forB. (b) An automatonA. (c) Abstraction
of A.

approximations of form (((I ◦ T )/ ') ◦ T )/ ' · · ·. Con-
vergence to a limit T lim can be ensured by choosing '
to have finite index.

If now T lim ∩B = ∅, we can conclude (by L ((I ◦ T ∗)) ⊆
L
(
T lim

)
) that I ◦ T ∗ has an empty intersection with B.

Otherwise, we try to trace back the computation from B
to I. If this succeeds, a counterexample has been found,
otherwise the abstraction must be refined by using a finer
equivalence relation, from which a more exact approxi-
mation T lim can be calculated, etc.

The technique relies on defining suitable equivalence
relations. One way is to use the automaton for B. We
illustrate this on the token passing example. Suppose
that B is given by the automaton in Fig 7, denoting
that the last process has the token. Each state q in
an automaton A has a post language L (A, q) which is
the set of words accepted starting from that state. For
example, in the automaton for B we have L (B, 0) =
n∗t and L (B, 1) = {ε}. The post languages are used
to define ', such that q ' q′ holds if for all states r
of B we have L (A, q) ∩ L (B, r) = ∅ exactly when
L (A, q′) ∩ L (B, r) = ∅. Each equivalence class of ' can
be represented by a Boolean vector indexed by states of
B, which is true on position s exactly when the equiv-
alence class members have nonempty intersection with
L (B, s). This is one way to get a finite index equivalence
relation.

We show an example of an automaton A in Fig 7
with its corresponding abstract version. Considering the
states of A, we observe that the post languages of states 0
and 1 both have a nonempty intersection with the post
language n∗t and an empty intersection with the post
language containing the empty string. The post language
of state 2 have an empty intersection with n∗t and an
nonempty intersection with the post language containing
the empty string.

If a spurious counterexample is found, i.e. a coun-
terexample occurring when quotienting with an equiva-
lence ', but not in the original system, we need to refine
the equivalence and start again. Automata representing
parts of the counterexample can be used, in the same way
as the automaton B above, to define an equivalence. In
[23], the equivalence is refined by using both B and au-
tomata representing parts of the counterexample. This
prevents the same counterexample from occurring twice.
Using abstraction can potentially greatly reduce the exe-
cution time, since we only need to verify that we cannot
reach B and therefore it may be that less information
about the structure of I ◦ T ∗ needs to be stored.

Widening Another technique for calculating I ◦T ∗ is to
speed up the iterative computation by widening (extrap-
olation) techniques that try to guess the limit. The idea
is to detect a repeating pattern – a regular growth – in
the iterations, from which one guesses the effect of ar-
bitrarily many iterations. The guess may be exactly the
limit, or an approximation of it.

In [24,48], the extrapolation is formulated in terms of
rules for guessing I ◦ T ∗ from observed growth patterns
among the approximations I, I ◦ T, I ◦ T 2, · · ·. Following
[24], if I is a regular expression ρ which is a concatena-
tion of form ρ = ρ1 ·ρ2, and in the successive approxima-
tions we observe a growth of form (ρ1 ·ρ2)◦T = ρ1 ·Λ ·ρ2
for some regular expression Λ, then the guess for the
limit ρ ◦ T ∗ is ρ1 · Λ∗ · ρ2. In [48] this approach is ex-
tended to more general situations. One of these is when
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ρ is a concatenation of form ρ1 · . . . · ρn and

(ρ1 · . . . · ρn) ◦ T =

n−1⋃
i=1

ρ1 · . . . · ρi · Λi · ρi+1 · . . . · ρn

The guess for the limit ρ ◦ T ∗ is in this case

ρ1 · Λ∗1 · ρ2 · Λ∗2 · . . . · Λ∗n−1 · ρn

For example, if ρ = a∗ba∗ and T is a relation which
changes an a to a c, then ρ ◦ T is a∗ca∗ba∗ ∪ a∗ba∗ca∗
(i.e., each step adds either ca∗ to the left of b or a∗c to
the right). The above rule guesses the limit ρ ◦ T ∗ to be
a∗(ca∗)∗b(a∗c)∗a∗.

Having formed a guess ρ′ for the limit, we apply a
convergence test which checks whether ρ′ = (ρ′◦T )∪ρ. If
it succeeds, we can conclude that ρ◦T ∗ ⊆ ρ′. The work in
[24] and [48] also provide results which state that under
some additional conditions, we can in fact conclude that
ρ ◦ T ∗ = ρ′, i.e., that ρ′ is the exact limit.

The paper [17] extends the above techniques by con-
sidering growth patterns for subsequences of I, I ◦ T, I ◦
T 2, · · ·, consisting of infinite sequences of sample points,
noting that the union of the approximations in any such
subsequence is equal to the union of the approximations
in the full sequence. This idea is applied by iteratinig a
special case of relations, arithmetic transducers, which
operate on binary encodings of integers, and give a suf-
ficient criterion for exact extrapolation.

We illustrate these approaches, using our token pass-
ing example. From the initial set ρI = tn∗, we get ρI ◦
T = ntn∗, ρI ◦T 2 = nntn∗, ρI ◦T 3 = nnntn∗, and so on.
The methods above detect the growth ρI ◦T = n·ρI , and
guess that the limit is n∗tn∗. In this case, the complete-
ness results of [24,48] allow to conclude that the guessed
limit is exact.

4 Extensions

In the previous sections, we presented the basic con-
cepts in RMC, where configurations are represented as
finite words, and the transition relation is represented by
length-preserving transducers. Below, we give an overview
of some extensions of the basic framework.

Non-Length-Preserving Transducers Lifting the restric-
tion of length-preservation from transducers allows to
model more easily dynamic data structures and param-
eterized systems of processes with dynamic process cre-
ation. The techniques have been extended, see, e.g., [36,
17].

Infinite Words The natural extension to modeling sys-
tems by infinite words has been considered in [18], hav-
ing the application to real arithmetic in mind. Regular
sets and transducers must then be represented by Büchi

0 1
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n n
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Fig. 8. (a) Automaton for ρI . (b) Automaton for ρI ◦ T . (c) Ex-
trapolated automaton.

automata. To avoid the high complexity of some opera-
tions on Büchi automata, the approach is restricted to
sets that can be defined by weak deterministic Büchi
automata.

Finite Trees Regular sets of trees can in principle be an-
alyzed in the same way as regular sets of words, as was
observed also in [18]. Configurations will now be finite
trees; sets of configurations will be encoded by tree au-
tomata, while the transition relation will be represented
by a tree transducer. With some complications, similar
techniques can be used for symbolic verification [10,26].
Some techniques have been implemented and used to
verify mutual exclusion algorithms [10], to perform data-
flow analysis for parallel programs with procedures [26],
or to verify pointer-manipulating programs [22].

Light-Weight Techniques Several approaches to RMC
have been recently proposed to avoid the use of the full
class of regular languages. An example of such an ap-
proach is that of monotonic abstraction [8]. The main
idea is to use over-approximations that allow the appli-
cation of the framework of well-quasi-ordered programs
[6] on the abstract system. This results in methods that
are on the one hand sufficiently general to handle most
existing benchmarks, and on the other hand sufficiently
simple to allow efficient verification algorithms.
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5 Overview of Papers

The papers included in this issue cover large parts of the
topics mentioned above:

– The paper [46] describes a widening technique for
computing the transitive closure of a relation induced
by a transducer. This is done by deriving a sequence
of automata that represent successive approximations
of the transitive closure. The method works for gen-
eral transducers. It does not rely on the particular
relation the transducer represents. For instance, the
method has been applied both to perform verifica-
tion and to derive automata that represent the con-
vex hull of a set of integers.

– The paper [27] applies widening in the case of tree-
based RMC. More precisely, it extends RMC from
the context of words to that of trees. Sets of config-
urations are now modeled by tree automata, while
transition relations are represented by tree transduc-
ers. The paper is based on principles similar to those
in [46], namely iteratively computing transitive clo-
sures of tree transducers, while enhancing the itera-
tions by a widening operator. The method is applied
to perform different tasks on various classes of sys-
tems such as the verification of parameterized tree
networks, and data-flow analysis of multithreaded
programs.

– The paper [25] describes how to apply abstraction in
RMC. The goal of abstraction here is twofold, namely
(i) it accelerates the computation of the transitive
closure and hence increases the chances of termina-
tion, and (ii) the sizes of the generated automata are
much smaller thus limiting the state explosion prob-
lem which is often the limiting factor in the applica-
tion of RMC. The paper shows the application of the
method to programs operating on unbounded coun-
ters, queues, stacks, and parameters. Furthermore, it
shows how to extend the techniques to the case of
trees.

– The paper [14] describes another technique to achieve
acceleration in RMC. The acceleration operator is
associated to cycles in the transition graph of the
program. The acceleration is achieved by computing
(in a single step) the set of all states that can be
reached by iterating a cycle arbitrarily many times.
In contrast to the previous techniques, the algorithm
for computing the acceleration operator depends on
the type of the data domains that are manipulated
by the program, and on the symbolic representation
chosen for representing sets of states. The paper de-
scribes acceleration operators designed for systems
operating on FIFO communication channels, and for
programs operating on integer- and real-valued vari-
ables.

– The paper [37] describes a lightweight approach to
RMC that tries to achieve efficient solutions by avoid-

ing the use of the full power of finite-state automata.
More precisely, it introduces monotonic abstraction
that only uses sets of states that are upward closed
with respect to a certain ordering on the state space.
This allows to use the framework of well quasi-ordered
programs [6] that is in some cases much more efficient
than transducer-based methods.

– The paper [1] introduces a specification formalism
that combines the classical languages of Linear Tem-
poral Logic (LTL) and Monadic Second-Order Logic
(MSO). The formalism can be used to describe both
safety and liveness properties. The paper describes
a technique for model checking LTL(MSO) which is
adapted from the automata-theoretic approach by
translating a formula to a Büchi regular transition
system with a regular set of accepting states. Then,
it uses RMC techniques to perform searching.
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