Algorithmic Program Verification

Parosh Aziz Abdulla
Uppsala University
Sweden
Algorithmic Program Verification

Model Checking of Infinite State-Systems

Parosh Aziz Abdulla
Uppsala University
Sweden
Model Checking
Model \models (safety) property
Background

Classical Approach
Finite-State Systems

Model Checking
Model \models (safety) property
Background

Classical Approach
Finite-State Systems

Model Checking
Model \models (safety) property

Challenge:
Infinite-State Systems
Background

Classical Approach
Finite-State Systems

Model Checking
\[\text{Model} \models \text{(safety) property} \]

Challenge:
Infinite-State Systems

Sources of “Infiniteness”:
Background

Classical Approach
Finite-State Systems

Challenge:
Infinite-State Systems

Model Checking
Model \models (safety) property

Sources of “Infiniteness”:

Unbounded Data Structures
- stacks (recursion)
- queues (protocols)
- counters (programs)
- clocks (time)
- lists, trees, graphs (heaps)
Background

Classical Approach
Finite-State Systems

Model Checking
Model \models \text{(safety) property}

Challenge:
Infinite-State Systems

Sources of “Infiniteness”:

Unbounded Data Structures
- stacks (recursion)
- queues (protocols)
- counters (programs)
- clocks (time)
- lists, trees, graphs (heaps)

Unbounded Control Structures
- parameterized systems
- multithreaded programs
- concurrent libraries
- Petri nets
Background

Classical Approach
Finite-State Systems

Multiple Sources:
• timed Petri nets
• recursive programs with unbounded data
• channels with time stamps
• etc

Model Checking
Model \models (safety) property

Challenge:
Infinite-State Systems

Sources of “Infiniteness”:

Unbounded Data Structures
• stacks (recursion)
• queues (protocols)
• counters (programs)
• clocks (time)
• lists, trees, graphs (heaps)

Unbounded Control Structures
• parameterized systems
• multithreaded programs
• concurrent libraries
• Petri nets
Infinite-State Systems
Infinite-State Systems

Unbounded Number of Processes

Cache Coherence Protocol

P

cache

cache

cache

P

cache
Infinite-State Systems

Unbounded Number of Processes

Cache Coherence Protocol

Diagram:

- Four blue circles labeled P
- Four red boxes labeled cache
- Connections between P and cache boxes
- Wavy lines indicating coherence protocol

Infinite-State Systems

Unbounded Number of Processes

Cache Coherence Protocol
Cache Coherence Protocol

- unbounded number of processes
- correctness:
 - exclusive ownership: at most one process
Infinite-State Systems

Unbounded Data Structures
Infinite-State Systems

Unbounded Data Structures

Unbounded Channels

- unbounded FIFO channels
- correctness:
 - regardless of channels size
Infinite-State Systems

Unbounded Data Structures

Unbounded Stack

push (a);

push (b);

push (c);

pop ();

push (a);

push (d);
Infinite-State Systems
Unbounded Data Structures

Unbounded Stack

- push (a);
- push (b);
- push (c);
- pop ();
- push (d);

- unbounded stack
- correctness:
 - regardless of stack size
Infinite-State Systems

Unbounded Data Structures

Unbounded Counters

\[c \rightarrow c++ \]
\[d \rightarrow d++ \]
\[d \rightarrow d=-0? \]

Graphical representation of state transitions and operations.
Infinite-State Systems

Unbounded Data Structures

Unbounded Counters

- unbounded counters
- correctness:
 - regardless of counter values
Infinite-State Systems
Unbounded Data Structures
Clocks
Infinite-State Systems
Unbounded Data Structures

Clocks

- timed systems
- real-value clocks
Background

Classical Approach
Finite-State Systems

Model Checking
Model \models (safety) property

Challenge:
Infinite-State Systems

Sources of "Infiniteness":

Unbounded Data Structures
- stacks (recursion)
- queues (protocols)
- counters (programs)
- clocks (time)
- lists, trees, graphs (heaps)

Unbounded Control Structures
- parameterized systems
- multithreaded programs
- concurrent libraries
- Petri nets

Multiple Sources:
- timed Petri nets
- recursive programs with unbounded data
- queues with time stamps
- etc
Background

Classical Approach
Finite-State Systems

Model Checking
Model \models (safety) property

Challenge:
Infinite-State Systems

Sources of “Infiniteness”:

Unbounded Data Structures
- stacks (recursion)
- queues (protocols)
- counters (programs)
- clocks (time)
- lists, trees, graphs (heaps)

Unbounded Control Structures
- parameterized systems
- multithreaded programs
- concurrent libraries
- Petri nets

Multiple Sources:
- timed Petri nets
- recursive programs with unbounded data
- queues with time stamps
- etc
Parameterized Systems
Parameterized Systems
• Specification
 • Mutual Exclusion (MutEx):
 • At most one process in C
Parameterized Systems

\[P^n | L \]

- Specification
 - Mutual Exclusion (MutEx):
 - At most one process in C
Parameterized Systems

Task = Parameterized Verification

Verify correctness regardless of the number of processes

\(\forall n. (P^n | L) \models \text{MutEx} \)

Specification

- Mutual Exclusion (MutEx):
 - At most one process in C

\(P^n | L \)
Parameterized Systems

- **Task = Parameterized Verification**
 - Verify correctness regardless of the number of processes
 - $\forall n. (P^n | L) \models \text{MutEx}$

- **Specification**
 - Mutual Exclusion (MutEx):
 - At most one process in C

Infinite-State System

$P^n | L$
Background
Parameterized Systems
Petri Nets
Lossy Channel Systems
Timed Petri Nets
Petri Nets

- Configurations
- Transitions

- Model

- Ordering

- Monotonicity
- Computing Predecessors
- Backward Reachability
- Upward Closed Sets
Petri Nets

Model

Configurations

Transitions

Ordering

Monotonicity

Upward Closed Sets

Computing Predecessors

Backward Reachability
Petri Nets
Petri Nets
Petri Nets

\begin{itemize}
\item \textit{places}
\item \textit{transitions}
\end{itemize}
Petri Nets

- Model
- Configurations
- Monotonicity
- Backward Reachability
- Transitions
- Ordering

- Upward Closed Sets
- Computing Predecessors
- Backward Reachability
Model

Configurations

Ordering

Transitions

Monotonicity

Upward Closed Sets

Computing Predecessors

Backward Reachability

Petri Nets
Markings
Markings

Petri Nets
Petri Nets

Markings

t_1 t_2

marking
Markings

Petri Nets

t_1 t_2

marking multiset
Petri Nets

Transitions

$\overrightarrow{t_1} \overrightarrow{t_2}$
Transitions

\[t_1 \quad t_2 \]

transition

\[t_1 \]
Petri Nets

Transitions

transition

t_1
Transitions

Petri Nets

t_1 → transition → t_2
Petri Nets
Transitions
Petri Nets

Transitions

t_1 t_2

transition

t_1
Petri Nets

Transitions

$t_1 \quad t_2$

transition

t_1
Transitions
Petri Nets

Modeling

- Encoding (counter abstraction)
 - # tokens in \(L \) = # processes in \(L = \text{free?} \)
 - # tokens in \(I \) = # processes in \(L = \text{busy} \)
 - one/no token in \(C \) = lock free/busy

\(t_1 \quad I \quad t_2 \quad L \quad C \)

\(I \quad L := \text{free?} \quad L := \text{free} \quad L := \text{busy} \quad C \)
Petri Nets

Transitions

\[t_1 \rightarrow t_2 \]
Petri Nets

Transitions

\[t_1 \rightarrow t_2 \rightarrow t_1 \]
Petri Nets

Transitions

t_1
Petri Nets

Transitions

t_1
Petri Nets

Transitions

t_1 t_2
Petri Nets
Petri Nets

Transitions

\[t_1 \quad t_2 \]
Petri Nets
Transitions

\[t_1 \quad \text{black} \quad t_2 \]
Petri Nets

Transitions

t_1 t_2
Petri Nets
Transitions

t_1 t_2

Transitions
Petri Nets

Transitions

t_1

t_2

t_1

t_2
Petri Nets

Transitions

$\mathbf{t_1}$

$\mathbf{t_2}$
Petri Nets

Transitions

t_1 t_2

t_1

t_2

t_1
Petri Nets

Transitions

\[t_1 \quad t_2 \]

\[t_1 \quad t_2 \]
Petri Nets

Transitions

```
\[
\begin{array}{c}
\text{t}_1 & \rightarrow & \text{t}_2 \\
\text{t}_2 & \rightarrow & \text{t}_1
\end{array}
\]
```
Safety Properties
Safety Properties

Initial Markings (Init)

- one
- arbitrarily many
Safety Properties

Initial Markings (\textit{Init})

- one
- arbitrarily many

\begin{itemize}
 \item one
 \item arbitrarily many
\end{itemize}
Safety Properties

Initial Markings (Init)
- infinitely many
- one
- arbitrarily many

Bad Markings (Bad)
- at least two
Safety Properties

Initial Markings (Init)
- infinitely many
- one
- arbitrarily many

Bad Markings (Bad)
- infinitely many
- at least two
Petri Nets

Safety Properties

Init

Bad

Initial Markings (Init)
- infinitely many
- one
- arbitrarily many

Bad Markings (Bad)
- infinitely many
- at least two
Petri Nets

Safety Properties

Initial Markings (Init)
- infinitely many
- one
- arbitrarily many

Bad Markings (Bad)
- infinitely many
- at least two

Safety Property

Init $\xrightarrow{*}$ Bad ?
Safety Properties

Init Markings (Init)
- infinitely many
- one
- arbitrarily many

Bad Markings (Bad)
- infinitely many

Safety Property
Init $\rightarrow^* \text{Bad}$?
Petri Nets

Safety Properties

Initial Markings (*Init*)
- infinitely many
- one
- arbitrarily many

Bad Markings (*Bad*)
- at least two
- infinitely many

Safety Property

Init \rightarrow^* *Bad* ?
Petri Nets

Safety Properties

Initial Markings (Init)
- infinitely many
- one
- arbitrarily many

Bad Markings (Bad)
- infinitely many
- at least two

Safety Property

Init * Bad ?
Safety Properties

How to check safety properties?

Init Markings (Init)
- infinitely many
- one
- arbitrarily many

Bad Markings (Bad)
- infinitely many
- at least two

Safety Property

$$Init \rightarrow^* Bad$$
Safety Properties

Initial Markings (Init)
- infinitely many

Bad Markings (Bad)
- at least two
 - one
 - arbitrarily many

How to check safety properties?
- Ordering
- Monotonicity
- Upward Closed sets
- Predecessors
- Backward Reachability

Safety Property

```
Init * Bad
```
Petri Nets

- Model
- Configurations
- Ordering
 - Monotonicity
 - Upward Closed Sets
 - Backward Reachability

- Transitions
 - Computing Predecessors
Petri Nets

- Model
 - Configurations
 - Transitions
- Ordering
 - Monotonicity
 - Upward Closed Sets
 - Computing Predecessors
 - Backward Reachability
Petri Nets

Ordering

\[t_1 \quad t_2 \]
Petri Nets

Ordering

$\mathcal{P} = \{t_1, t_2\}$

$\mathcal{N} = \{1, 2, 3, 4, 5, 6\}$

$\mathcal{E} = \{(1, 2), (2, 3), (3, 4), (4, 5), (5, 6), (6, 1)\}$

$\mathcal{F} = \{(1, 2), (2, 3), (3, 4), (4, 5), (5, 6), (6, 1)\}$

$\mathcal{P} \cap \mathcal{N} = \emptyset$

$\mathcal{P} \cup \mathcal{N} = \{1, 2, 3, 4, 5, 6, t_1, t_2\}$

$\mathcal{P} \times \mathcal{N} = \{(t_1, 1), (t_1, 2), (t_1, 3), (t_1, 4), (t_1, 5), (t_1, 6), (t_2, 1), (t_2, 2), (t_2, 3), (t_2, 4), (t_2, 5), (t_2, 6)\}$

$\mathcal{E} \cap \mathcal{P} \times \mathcal{N} = \emptyset$

$\mathcal{E} \cap \mathcal{N} \times \mathcal{P} = \emptyset$

$\mathcal{E} \cap \mathcal{P} \times \mathcal{N} = \emptyset$

$\mathcal{E} \cap \mathcal{N} \times \mathcal{P} = \emptyset$

$\mathcal{E} \cap \mathcal{P} \times \mathcal{N} = \emptyset$

$\mathcal{E} \cap \mathcal{N} \times \mathcal{P} = \emptyset$

$\mathcal{E} \cap \mathcal{P} \times \mathcal{N} = \emptyset$

$\mathcal{E} \cap \mathcal{N} \times \mathcal{P} = \emptyset$

$\mathcal{E} \cap \mathcal{P} \times \mathcal{N} = \emptyset$

$\mathcal{E} \cap \mathcal{N} \times \mathcal{P} = \emptyset$

$\mathcal{E} \cap \mathcal{P} \times \mathcal{N} = \emptyset$

$\mathcal{E} \cap \mathcal{N} \times \mathcal{P} = \emptyset$

$\mathcal{E} \cap \mathcal{P} \times \mathcal{N} = \emptyset$

$\mathcal{E} \cap \mathcal{N} \times \mathcal{P} = \emptyset$

$\mathcal{E} \cap \mathcal{P} \times \mathcal{N} = \emptyset$

$\mathcal{E} \cap \mathcal{N} \times \mathcal{P} = \emptyset$

$\mathcal{E} \cap \mathcal{P} \times \mathcal{N} = \emptyset$

$\mathcal{E} \cap \mathcal{N} \times \mathcal{P} = \emptyset$

$\mathcal{E} \cap \mathcal{P} \times \mathcal{N} = \emptyset$

$\mathcal{E} \cap \mathcal{N} \times \mathcal{P} = \emptyset$

$\mathcal{E} \cap \mathcal{P} \times \mathcal{N} = \emptyset$

$\mathcal{E} \cap \mathcal{N} \times \mathcal{P} = \emptyset$

$\mathcal{E} \cap \mathcal{P} \times \mathcal{N} = \emptyset$

$\mathcal{E} \cap \mathcal{N} \times \mathcal{P} = \emptyset$

$\mathcal{E} \cap \mathcal{P} \times \mathcal{N} = \emptyset$

$\mathcal{E} \cap \mathcal{N} \times \mathcal{P} = \emptyset$

$\mathcal{E} \cap \mathcal{P} \times \mathcal{N} = \emptyset$

$\mathcal{E} \cap \mathcal{N} \times \mathcal{P} = \emptyset$

$\mathcal{E} \cap \mathcal{P} \times \mathcal{N} = \emptyset$

$\mathcal{E} \cap \mathcal{N} \times \mathcal{P} = \emptyset$

$\mathcal{E} \cap \mathcal{P} \times \mathcal{N} = \emptyset$

$\mathcal{E} \cap \mathcal{N} \times \mathcal{P} = \emptyset$

$\mathcal{E} \cap \mathcal{P} \times \mathcal{N} = \emptyset$

$\mathcal{E} \cap \mathcal{N} \times \mathcal{P} = \emptyset$

$\mathcal{E} \cap \mathcal{P} \times \mathcal{N} = \emptyset$

$\mathcal{E} \cap \mathcal{N} \times \mathcal{P} = \emptyset$

$\mathcal{E} \cap \mathcal{P} \times \mathcal{N} = \emptyset$

$\mathcal{E} \cap \mathcal{N} \times \mathcal{P} = \emptyset$

$\mathcal{E} \cap \mathcal{P} \times \mathcal{N} = \emptyset$

$\mathcal{E} \cap \mathcal{N} \times \mathcal{P} = \emptyset$

$\mathcal{E} \cap \mathcal{P} \times \mathcal{N} = \emptyset$

$\mathcal{E} \cap \mathcal{N} \times \mathcal{P} = \emptyset$

$\mathcal{E} \cap \mathcal{P} \times \mathcal{N} = \emptyset$

$\mathcal{E} \cap \mathcal{N} \times \mathcal{P} = \emptyset$

$\mathcal{E} \cap \mathcal{P} \times \mathcal{N} = \emptyset$

$\mathcal{E} \cap \mathcal{N} \times \mathcal{P} = \emptyset$

$\mathcal{E} \cap \mathcal{P} \times \mathcal{N} = \emptyset$

$\mathcal{E} \cap \mathcal{N} \times \mathcal{P} = \emptyset$

$\mathcal{E} \cap \mathcal{P} \times \mathcal{N} = \emptyset$

$\mathcal{E} \cap \mathcal{N} \times \mathcal{P} = \emptyset$

$\mathcal{E} \cap \mathcal{P} \times \mathcal{N} = \emptyset$

$\mathcal{E} \cap \mathcal{N} \times \mathcal{P} = \emptyset$

$\mathcal{E} \cap \mathcal{P} \times \mathcal{N} = \emptyset$

$\mathcal{E} \cap \mathcal{N} \times \mathcal{P} = \emptyset$

$\mathcal{E} \cap \mathcal{P} \times \mathcal{N} = \emptyset$
Petri Nets

- Model
- Configurations
- Transitions
- Ordering
- Monotonicity
- Upward Closed Sets
- Computing Predecessors
- Backward Reachability
Petri Nets

Monotonicity

Monotonicity
Petri Nets

Monotonicity

Monotonicity
Petri Nets

Monotonicity
Monotonicity
Petri Nets

Monotonicity

Monotonicity
Petri Nets

Monotonicity

\[t_1 \quad t_2 \]

\[t_1 \quad t_2 \]

Monotonicity
Monotonicity
Monotonicity

larger configuration
“simulate”
smaller configurations
Petri Nets

- Configurations
- Transitions
- Ordering
- Monotonicity
- Upward Closed Sets
- Computing Predecessors
- Backward Reachability

Model

✔️
Petri Nets

- Model
 - Configurations
 - Ordering
 - Monotonicity
 - Upward Closed Sets
 - Backward Reachability
 - Transitions
 - Computing Predecessors
Upward Closed Set (UC)

- if $m_1 \in U$ and $m_1 \subseteq m_2$
- then $m_2 \in U$
Upward-Closed Set

Upward Closed Set (UC)

- if \(m_1 \in U \) and \(m_1 \sqsubseteq m_2 \)
- then \(m_2 \in U \)
Upward-Closed Set

Upward Closed Set (UC)

- if $m_1 \in U$ and $m_1 \subseteq m_2$
- then $m_2 \in U$
Petri Nets

Upward Closed Sets

Upward-Closed Set

Upward Closed Set (UC)

- if $m_1 \in U$ and $m_1 \sqsubseteq m_2$
- then $m_2 \in U$
Upward Closed Set (UC)

- if $m_1 \in U$ and $m_1 \subseteq m_2$
- then $m_2 \in U$
Upward Closed Set (UC)

- if $m_1 \in U$ and $m_1 \subseteq m_2$
- then $m_2 \in U$
Upward-Closed Set

Upward Closed Set (UC)
- if $m_1 \in U$ and $m_1 \subseteq m_2$
- then $m_2 \in U$
Upward Closed Set (UC)

- if $m_1 \in U$ and $m_1 \subseteq m_2$
- then $m_2 \in U$
Upward Closed Set (UC)

- if \(m_1 \in U \) and \(m_1 \subseteq m_2 \)
- then \(m_2 \in U \)

Why UC?

- Bad sets of markings are UC
 - checking safety properties = reachability of bad markings
- Uniquely characterized by generator
 - simple representation = finite multiset
Petri Nets
Upward Closed Sets
Petri Nets

Upward Closed Sets

\[\text{implies} \]
Petri Nets

Upward Closed Sets

implies

generator
Petri Nets
Upward Closed Sets

implies

generator

generator
Petri Nets
Upward Closed Sets

implies

generator

\(\subseteq \)

\(\subseteq \)

generator
Petri Nets

- Model
- Configurations
- Transitions
- Ordering
- Monotonicity
- Upward Closed Sets
- Computing Predecessors
- Backward Reachability
Petri Nets

Model

Configurations

Ordering

Transitions

Monotonicity

Upward Closed Sets

Computing Predecessors

Backward Reachability
Petri Nets

Predecessors

U

m_1

m_3
Petri Nets

Predecessors

$\text{Pre}(U)$

U

m_2

m_1

m_3
Monotonicity: UC persevered by Pre

\[m_1 \xrightarrow{\text{Pre}} m_2 \]
\[m_3 \xrightarrow{\exists} m_4 \]
Petri Nets

Monotonicity: UC persevered by Pre

$m_1 \rightarrow m_2$

$m_3 \rightarrow m_4$

$\text{Pre}(U)$

\uparrow

\uparrow

\exists

\uparrow

U

upward closed

upward closed?
Petri Nets

Predecessors

Monotonicity: UC persevered by Pre

$m_1 \xrightarrow{\sqcap} m_2$

$m_3 \xrightarrow{\exists} m_4$

$Pre(U)$ upward closed?

U upward closed
Monotonicity: UC persevered by Pre

$\text{Pre}(U)$ upward closed?

U upward closed
Monotonicity: UC persevered by Pre

$Pre(U)$

upward closed?
Petri Nets

Predecessors

Monotonicity: UC persevered by \(\text{Pre} \)

\[
\begin{align*}
&m_1 \quad m_2 \\
&m_3 \quad m_4
\end{align*}
\]

\[
\begin{align*}
\text{Pre}(U) & \quad \text{upward closed?}
\end{align*}
\]

\(U \)

upward closed
Monotonicity: UC persevered by Pre

$Pre(U)$

U

$m_1 \rightarrow m_2$

$m_3 \rightarrow m_4$

$\forall m, m \in Pre(U)$

$\exists m' \in U$ such that $m \rightarrow m'$
Computing Predecessors

$Pre_{t_1} =$

Petri Net Diagram:

- Transitions t_1 and t_2
- Tokens in places
- Arrows indicating the flow of tokens
Petri Nets
Computing Predecessors

\[Pre_{t_1} \]
Computing Predecessors

\[\text{Pre}_{t_1} \begin{array} {c} \text{ } \\ \text{ } \\ \text{ } \end{array} \begin{array} {c} \text{ } \\ \text{ } \\ \text{ } \end{array} = \begin{array} {c} \text{ } \\ \text{ } \\ \text{ } \end{array} \]

\[\text{Pre}_{t_2} \begin{array} {c} \text{ } \\ \text{ } \\ \text{ } \end{array} \begin{array} {c} \text{ } \\ \text{ } \\ \text{ } \end{array} = \begin{array} {c} \text{ } \\ \text{ } \\ \text{ } \end{array} \]
Petri Nets

Computing Predecessors

\[\text{Pre}_{t_1} \begin{bmatrix} \text{red} \end{bmatrix} = \begin{bmatrix} \text{red}, \text{blue} \end{bmatrix} \]

\[\text{Pre}_{t_2} \begin{bmatrix} \text{red} \end{bmatrix} = \begin{bmatrix} \text{red} \end{bmatrix} \]
Computing Predecessors

\[\text{Pre}_{t_1} = \]

\[\text{Pre}_{t_2} = \]

\[\text{Pre}_{t_1} = \]
Petri Nets
Computing Predecessors

$Pre_{t_1}[[\text{red}]] = \text{green} + \text{blue}$

$Pre_{t_2}[[\text{red}]] = \text{green}$

$Pre_{t_1}[[\text{green} + \text{blue}]] = \text{green} + \text{blue}$
Petri Nets

- Model
 - Configurations
 - Ordering
 - Monotonicity
 - Upward Closed Sets
 - Backward Reachability
 - Computing Predecessors
 - Transitions
Petri Nets

- Model
- Configurations
- Transitions

Ordering

- Monotonicity
- Upward Closed Sets
- Computing Predecessors

Backward Reachability
Petri Nets

Backward Reachability
Petri Nets

Backward Reachability
Petri Nets
Backward Reachability
Petri Nets

Backward Reachability
Petri Nets

Backward Reachability

\[t_1 \quad t_2 \]
Petri Nets

Backward Reachability
Petri Nets

Backward Reachability
Petri Nets

Backward Reachability

Diagram showing a Petri net with transitions t_1 and t_2. The net has places and transitions connected by arcs.
Petri Nets

Backward Reachability
Petri Nets

Backward Reachability
Petri Nets

Backward Reachability

\[
t_1 \quad t_2
\]
Petri Nets

Backward Reachability
Petri Nets

Backward Reachability
Petri Nets
Backward Reachability
Petri Nets

Backward Reachability
Petri Nets

Backward Reachability
Petri Nets

Backward Reachability

Diagram:

- States: t_1, t_2
- Transitions: t_2 connects t_1 and t_1 connects t_2

Diagram elements:
- Blue circle
- Green circle
- Red circle
- Black squares

Notes:
- Petri Nets are used to model systems with concurrent processes.
- Backward reachability helps in understanding the predecessors of a state in the system.
Backward Reachability
Petri Nets

Backward Reachability
Petri Nets

Backward Reachability
Petri Nets

Backward Reachability

Diagram: A Petri net with places t_1 and t_2 connected by transitions.
Petri Nets

Backward Reachability

\[t_1 \rightarrow t_2 \]
Backward Reachability

Petri Nets
Petri Nets

Backward Reachability
Petri Nets

Backward Reachability

$Pre^*(\cdot)$
Petri Nets

Backward Reachability

$Pre^*(\cdot)$
Petri Nets

Backward Reachability

System Safe!

$Pre^*(\text{ })$
Backward Reachability

System Safe!

symbolic representation = finite multisets

\[\text{Pre}^*(\text{initial markings}) \]
Petri Nets

Backward Reachability

System Safe!

Initial markings

Symbolic representation = finite multisets

Termination: multisets well quasi-ordered
Well Quasi-Ordering

$m_0, m_1, m_2, \ldots, m_i, \ldots, m_j, \ldots$

infinite sequence of markings
Well Quasi-Ordering

$m_0, m_1, m_2, \ldots, m_i, \ldots, m_j, \ldots$

$\exists i < j : m_i \sqsubseteq m_j$
Petri Nets

Well Quasi-Ordering

Well Quasi-Ordering

\[m_0, m_1, m_2, \ldots, m_i, \ldots, m_j, \ldots \]

\[\exists i < j : m_i \preceq m_j \]
Assume: non-termination
Petri Nets

Backward Reachability

Termination

Assume: non-termination
Assume: non-termination
Assume: non-termination
Assume: non-termination
Assume: non-termination
Assume:
non-termination
Assume: non-termination

Petri Nets

Backward Reachability

Termination
Assume: non-termination

contradiction: WQO
Petri Nets
Backward Reachability

System Safe!

Symbolic representation = finite multisets

Termination: multisets well quasi-ordered

Initial markings
Petri Nets

Backward Reachability

Initial markings

Symbolic representation = finite multisets

System Safe!

Termination: multisets well quasi-ordered

Ordering:
 • monotonicity
 • computing predecessors
 • well quasi-ordering
Petri Nets

\[p_1 \rightarrow t_1 \rightarrow p_2 \leftarrow t_2 \rightarrow p_3 \leftarrow t_3 \]
• Perform backward reachability analysis from \([p3,p3]\)
• Reachable from:
 • \([p1,p1]\)?