
Algorithmic Program Verification

Algorithmic Program Verification

… with applications to
weak memory models …

Algorithmic Program Verification

… with applications to
weak memory models …

Parosh Aziz Abdulla
Uppsala University

• Web page:

Outline

Outline
•Background

Outline
•Background
•Program Verification

Outline
•Background
•Program Verification
•Infinite-State Models

Outline
•Background
•Program Verification
•Infinite-State Models
•Petri Nets

Outline
•Background
•Program Verification
•Infinite-State Models
•Petri Nets
•Timed Automata

Outline
•Background
•Program Verification
•Infinite-State Models
•Petri Nets
•Timed Automata
•Push-Down Automata

Outline
•Background
•Program Verification
•Infinite-State Models
•Petri Nets
•Timed Automata
•Push-Down Automata
•Lossy Channel Systems

Outline
•Background
•Program Verification
•Infinite-State Models
•Petri Nets
•Timed Automata
•Push-Down Automata
•Lossy Channel Systems
•Parameterized Systems

Outline
•Background
•Program Verification
•Infinite-State Models
•Petri Nets
•Timed Automata
•Push-Down Automata
•Lossy Channel Systems
•Parameterized Systems

models

Outline
•Background
•Program Verification
•Infinite-State Models
•Petri Nets
•Timed Automata
•Push-Down Automata
•Lossy Channel Systems
•Parameterized Systems
•Well-Structured Systems

models

Outline
•Background
•Program Verification
•Infinite-State Models
•Petri Nets
•Timed Automata
•Push-Down Automata
•Lossy Channel Systems
•Parameterized Systems
•Well-Structured Systems
•Abstraction Techniques

models

Outline
•Background
•Program Verification
•Infinite-State Models
•Petri Nets
•Timed Automata
•Push-Down Automata
•Lossy Channel Systems
•Parameterized Systems
•Well-Structured Systems
•Abstraction Techniques

models

techniques

Outline
•Background
•Program Verification
•Infinite-State Models
•Petri Nets
•Timed Automata
•Push-Down Automata
•Lossy Channel Systems
•Parameterized Systems
•Well-Structured Systems
•Abstraction Techniques
•x86

models

techniques

Outline
•Background
•Program Verification
•Infinite-State Models
•Petri Nets
•Timed Automata
•Push-Down Automata
•Lossy Channel Systems
•Parameterized Systems
•Well-Structured Systems
•Abstraction Techniques
•x86
•ARM

models

techniques

Outline
•Background
•Program Verification
•Infinite-State Models
•Petri Nets
•Timed Automata
•Push-Down Automata
•Lossy Channel Systems
•Parameterized Systems
•Well-Structured Systems
•Abstraction Techniques
•x86

•IBM Power
•ARM

models

techniques

Outline
•Background
•Program Verification
•Infinite-State Models
•Petri Nets
•Timed Automata
•Push-Down Automata
•Lossy Channel Systems
•Parameterized Systems
•Well-Structured Systems
•Abstraction Techniques
•x86

•IBM Power
•ARM

•C11

models

techniques

Outline
•Background
•Program Verification
•Infinite-State Models
•Petri Nets
•Timed Automata
•Push-Down Automata
•Lossy Channel Systems
•Parameterized Systems
•Well-Structured Systems
•Abstraction Techniques
•x86

•IBM Power
•ARM

•C11
• Cloud Platforms

models

techniques

Outline
•Background
•Program Verification
•Infinite-State Models
•Petri Nets
•Timed Automata
•Push-Down Automata
•Lossy Channel Systems
•Parameterized Systems
•Well-Structured Systems
•Abstraction Techniques
•x86

•IBM Power
•ARM

•C11
• Cloud Platforms

models

techniques

weak
memory
models

Outline
•Background
•Program Verification
•Infinite-State Models
•Petri Nets
•Timed Automata
•Push-Down Automata
•Lossy Channel Systems
•Parameterized Systems
•Well-Structured Systems
•Abstraction Techniques
•x86

•IBM Power
•ARM

•C11
• Cloud Platforms

models

techniques

weak
memory
models

concurrency

Outline
•Background
•Program Verification
•Infinite-State Models
•Petri Nets
•Timed Automata
•Push-Down Automata
•Lossy Channel Systems
•Parameterized Systems
•Well-Structured Systems
•Abstraction Techniques
•x86

•IBM Power
•ARM

•C11
• Cloud Platforms

models

techniques

weak
memory
models

common
themeconcurrency

concurrency

motivationconcurrency

Concurrent systems
are everywhere

motivationconcurrency

Concurrent systems
are everywhere

motivation

Multicore
architectures

concurrency

Concurrent systems
are everywhere

intel ARM IBM
Power

motivation

Multicore
architectures

concurrency

Concurrent systems
are everywhere

intel ARM IBM
Power

Distributed
databases

motivation

Multicore
architectures

concurrency

Concurrent systems
are everywhere

intel ARM IBM
Power

Facebook

Distributed
databases

motivation

Multicore
architectures

concurrency

Concurrent systems
are everywhere

intel ARM IBM
Power

Facebook

Distributed
databases

Programming
languages

motivation

Multicore
architectures

concurrency

Outline
•Background
•Program Verification
•Infinite-State Models
•Petri Nets
•Timed Automata
•Push-Down Automata
•Lossy Channel Systems
•Parameterized Systems
•Well-Structured Systems
•Abstraction Techniques
•x86

•IBM Power
•ARM

•C11
• Cloud Platforms

models

techniques

weak
memory
models

common
themeconcurrency

Outline
•Background
•Program Verification
•Infinite-State Models
•Petri Nets
•Timed Automata
•Push-Down Automata
•Lossy Channel Systems
•Parameterized Systems
•Well-Structured Systems
•Abstraction Techniques
•x86

•IBM Power
•ARM

•C11
• Cloud Platforms

models

techniques

weak
memory
models

common
themeconcurrency

Sequential Consistency (SC)
+ simple & intuitive
- expensive

Weak Semantics (WS)
+ efficient, realistic
- complicated

Sequential Consistency (SC)
+ simple & intuitive
- expensive

Weak Semantics (WS)
+ efficient, realistic
- complicated

“order in which
data becomes

visible”

Weak Consistence

Sequential Consistency (SC)
+ simple & intuitive
- expensive

Weak Semantics (WS)
+ efficient, realistic
- complicated

“order in which
data becomes

visible”

Weak Consistence

Sequential Consistency (SC)
+ simple & intuitive
- expensive

Weak Semantics (WS)
+ efficient, realistic
- complicated

“order in which
data becomes

visible”

Weak Consistence

•C11: Release-Acquire, Relaxed
•Java

Programming Languages

Distributed Systems

•Causal Consistency
•Eventual Consistency

•Intel x86:
Architectures

•ARM
•POWER

Total Store Ordering (TSO)

Sequential Consistency (SC)
+ simple & intuitive
- expensive

Weak Semantics (WS)
+ efficient, realistic
- complicated

“order in which
data becomes

visible” “order in which
data becomes

persistent”

Weak Consistence Weak Persistence

•C11: Release-Acquire, Relaxed
•Java

Programming Languages

Distributed Systems

•Causal Consistency
•Eventual Consistency

•Intel x86:
Architectures

•ARM
•POWER

Total Store Ordering (TSO)

Sequential Consistency (SC)
+ simple & intuitive
- expensive

Weak Semantics (WS)
+ efficient, realistic
- complicated

“order in which
data becomes

visible” “order in which
data becomes

persistent”

Weak Consistence Weak Persistence

•C11: Release-Acquire, Relaxed
•Java

Programming Languages

Distributed Systems

•Causal Consistency
•Eventual Consistency

•Intel x86:
Architectures

•ARM
•POWER

Total Store Ordering (TSO) •NVRAMs
•Intermittent Computing
•File Systems

Sequential Consistency (SC)
+ simple & intuitive
- expensive

Weak Semantics (WS)
+ efficient, realistic
- complicated

“order in which
data becomes

visible” “order in which
data becomes

persistent”

Weak Consistence Weak Persistence

•C11: Release-Acquire, Relaxed
•Java

Programming Languages

Distributed Systems

•Causal Consistency
•Eventual Consistency

•Intel x86:
Architectures

•ARM
•POWER

Total Store Ordering (TSO) •NVRAMs
•Intermittent Computing
•File Systems

Sequential Consistency (SC)
+ simple & intuitive
- expensive

Weak Semantics (WS)
+ efficient, realistic
- complicated

“order in which
data becomes

visible” “order in which
data becomes

persistent”

Weak Consistence Weak Persistence

•C11: Release-Acquire, Relaxed
•Java

Programming Languages

Distributed Systems

•Causal Consistency
•Eventual Consistency

•Intel x86:
Architectures

•ARM
•POWER

Total Store Ordering (TSO) •NVRAMs
•Intermittent Computing
•File Systems

recent work

Sequential Consistency (SC)
+ simple & intuitive
- expensive

Weak Semantics (WS)
+ efficient, realistic
- complicated

Program Verification
(SC)

Sequential Consistency (SC)
+ simple & intuitive
- expensive

Weak Semantics (WS)
+ efficient, realistic
- complicated

Program Verification
(SC)

Program Verification
(WS)

Sequential Consistency (SC)
+ simple & intuitive
- expensive

Weak Semantics (WS)
+ efficient, realistic
- complicated

Program Verification
(SC)

Program Verification
(WS)

Sequential Consistency (SC)
+ simple & intuitive
- expensive

Weak Semantics (WS)
+ efficient, realistic
- complicated

Outline
•Background
•Program Verification
•Infinite-State Models
•Petri Nets
•Timed Automata
•Push-Down Automata
•Lossy Channel Systems
•Parameterized Systems
•Well-Structured Systems
•Abstraction Techniques
•x86

•IBM Power
•ARM

•C11
• Cloud Platforms

Outline
•Background
•Program Verification
•Infinite-State Models
•Petri Nets
•Timed Automata
•Push-Down Automata
•Lossy Channel Systems
•Parameterized Systems
•Well-Structured Systems
•Abstraction Techniques
•x86

•IBM Power
•ARM

•C11
• Cloud Platforms

Model (safety) property
Model Checking

|=

Classical Approach
Finite-State Systems

Model (safety) property
Model Checking

|=

Classical Approach
Finite-State Systems

Model (safety) property
Model Checking

|=
Challenge:

Infinite-State Systems

Classical Approach
Finite-State Systems

Model (safety) property
Model Checking

|=
Challenge:

Infinite-State Systems

Sources of “Infiniteness”:

Classical Approach
Finite-State Systems

Model (safety) property
Model Checking

|=
Challenge:

Infinite-State Systems

Sources of “Infiniteness”:

Unbounded Data Structures
• stacks (recursion)
• queues (protocols)
• counters (programs)
• clocks (time)
• lists, trees, graphs (heaps)

Classical Approach
Finite-State Systems

Model (safety) property
Model Checking

|=
Challenge:

Infinite-State Systems

Sources of “Infiniteness”:

Unbounded Data Structures
• stacks (recursion)
• queues (protocols)
• counters (programs)
• clocks (time)
• lists, trees, graphs (heaps)

Unbounded Control Structures
• parameterized systems
• multithreaded programs
• concurrent libraries
• Petri nets

Classical Approach
Finite-State Systems

Multiple Sources:
• timed Petri nets
• recursive programs with unbounded data
• channels with time stamps
• etc

Model (safety) property
Model Checking

|=
Challenge:

Infinite-State Systems

Sources of “Infiniteness”:

Unbounded Data Structures
• stacks (recursion)
• queues (protocols)
• counters (programs)
• clocks (time)
• lists, trees, graphs (heaps)

Unbounded Control Structures
• parameterized systems
• multithreaded programs
• concurrent libraries
• Petri nets

