Algorithmic Program Verification

Algorithmic Program Verification

... With applications to
weak memory models ...

Algorithmic Program Verification

... With applications to
weak memory models ...

Parosh Aziz Abdulla
Uppsala University

* Web page:

Home Page

Publications

Tutorials

Projects

Awards

Conferences

Teaching

Students

Parosh Aziz Abdulla
Algorithmic Program Verification, Spring 2022.
Postgraduate Course, 10 credits.

News

Next lecture: Wednesday, 2 February, 10:00-12:00, Zoom 589 726 9279.

Background

Current capabilities in computer technology allow enormously complicated implementations of such
systems, making the task of producing error-free products more and more difficult. In particular, during the
last decade, parallel systems have become a critical part of the infrastructure of our society due to the
emergence of modern platforms such as multicores and cloud technology.

It is of great practical and economic importance to developing methods that make the design process less
error-prone. There is a real need for techniques for testing and verifying software to guarantee a higher
degree of reliability.

Reasoning about concurrent systems is often conducted under the fundamental assumption of sequential
consistency (SC) where all components are strongly synchronized so that they all have a uniform view of
the global state of the system. However, nowadays, most parallel software run on platforms that do not
guarantee SC. More precisely, to satisfy demands on efficiency and energy-saving, such platforms
implement optimizations that lead to the relaxation of the inter-component synchronization, hence offering
only weak consistency guarantees. Weakly consistent platforms are found at all levels of system design,
such as multiprocessors, cache protocols, programming languages, and cloud systems.

Goal

The participants will learn:

e The principles of model checking: a technique that has led to the most notable advances in
algorithmic program verification during the last 20 years.
Frameworks for verifying communication protocols, distributed systems and algorithms, timed
systems, hardware circuits, concurrent programs, and multicore architectures.
Modeling and verification through classical models such as timed automata, push-down automata,
Petri nets, and lossy channels systems.
Modeling and verifying concurrent programs running on weakly consistent platforms, such as x86-
TSO, IBM Power, ARM, C11, and the cloud.

Contents

Model checking.

Infinite-state models.

Reachability analysis.

Petri nets.

Timed automata.

Push-down automata.

Lossy channel systems.

x86-TSO.

Cl11.

Well quasi-ordered systems.
Program abstraction: monotonic abstraction, view abstraction.
The Power and ARM architectures.
Parameterized systems.

Cloud platforms.

Structure

e 15 Lectures.

e Project work. The project will consist of implementing some of the algorithms discussed in the

class.

Examination

e Weekly assignments.
e Project work.

Prerequisites

e (Course suitable both for PhD and MSc students.

e Primary knowledge corresponding to three years of an undergraduate program in computer science.
However, I do not assume any prior knowledge of formal methods, program verification, or weak

memory models.

Slides (I will later add slides on
weak consistency)

L1. Petri Nets. pdf. keynote.

L2. Well-Quasi-Orderings. pdf. keynote.

L3. Lossy Channel Systems. pdf. keynote.

L4. Backward Reachability Analysis. pdf. keynote.
LS. Timed Petri Nets. pdf. keynote.

L6. Timed Automata. pdf. keynote.

L7-8. View Abstraction. pdf. keynote.

L9-10. Recursive Programs. Push-Down Automata.

Literature

e Parosh Aziz Abdulla. Well- and Better-Quasi-Ordered Transition Ssystems.

Contact Person

e Parosh Aziz Abdulla.

WAL L.AFAMmMERSWIDE.C oM

9 .S 8 S

S R B W B SRS RS9 @ Al» R8P BE PP »9 4
8 9 88 8 9 9 %S IRR S SR TR WA S W e e e R ho
-9 8 ® ¢) R R ;

&eostn@&toﬂ

D G D O -6 AP 9 & 8 & O
Y S R S N S ’00
LR S S m.o‘qc<

. - >
@ B0 0 8 B 08 8 08 Q
5 8 & 2 8 .6 99 B B N > 5 5 89 2 D B B BB ARG
&. 8 .3 b § B8 & 4 @ %S & 29 %S B @ B4 b ® -8 6 288 & D 68 ,O
0 O 0 &9 -8 ® :9 & 8 9 B & S B .0 4 S SR Y NP N R R A T S e R Y Y S N ey U A
B8 9 S 6 B €. 9 : P - 8 S & ¢ TREE TRET P S B8 B 8 .69 8 & o a 8 2
8 0 e R 9. 8 & B ¢ @6 & % 4§ T I ! v g NN 5 &
S Q .08 B .9 & & @

@
P 0' 'Q 0N SO SR R I R
) R e

e &

‘ % ' & . 0 2 H &
RS e 8 s e & D 6 . 4 'S o P >l i) @

: ¢ i)90 8 e B s 9 B B 8 B8 © 48 5 B B 6 8 0 906 H o8
o oo e S SL B S S RSN N U W e e 9 b & ; PGy S S Y

,‘ L el Sl Ne W N R ' 8 8 & 8 o 6) :

2 & 86 @®
. -9 9.8
(B SIS e 8 8La RIS B e
@ouosso;oo&.‘
-lN‘&OOOQD.Q

Outline
e Background

Outline

e Background
 Program Verification

Outline

e Background
 Program Verification
e Infinite-State Models

Outline

* Background
 Program Verification
e Infinite-State Models
* Petri Nets

Outline

* Background
 Program Verification
e Infinite-State Models
* Petri Nets

e Timed Automata

Outline

* Background
 Program Verification
e Infinite-State Models
* Petri Nets

e Timed Automata

e Push-Down Automata

Outline

* Background

 Program Verification

e Infinite-State Models

* Petri Nets

e Timed Automata

* Push-Down Automata
 Lossy Channel Systems

Outline

* Background

 Program Verification

e Infinite-State Models

* Petri Nets

e Timed Automata

e Push-Down Automata
 Lossy Channel Systems
e Parameterized Systems

Outline
* Background

 Program Verification

e Infinite-State Modeis

* Petri Nets

e Timed Automata

* Push-Down Automata
 Lossy Channel Systems
e Parameterized Syvstems

models

Outline
* Background

 Program Verification

e Infinite-State Modeis

* Petri Nets

e Timed Automata

e Push-Down Automata
 Lossy Channel Systems

e Parameterized Syvstems

s Well-Structured Systems

models

Outline
* Background

 Program Verification

e Infinite-State Modeis

* Petri Nets

e Timed Automata

e Push-Down Automata
 Lossy Channel Systems

e Parameterized Syvstems

s Well-Structured Systems
e Abstraction Techniques

models

Outline
* Background

 Program Verification

e Infinite-State Modeis

* Petri Nets

e Timed Automata

e Push-Down Automata
 Lossy Channel Systems

e Parameterized Systems

e Well-Structured Systems
e Abstraction Techniques

models

techniques

Outline
* Background

 Program Verification

e Infinite-State Modeis

* Petri Nets

e Timed Automata

e Push-Down Automata
 Lossy Channel Systems

e Parameterized Systems

e Well-Structured Systems
e Abstraction Techniques
%86

models

techniques

Outline
* Background

 Program Verification

e Infinite-State Modeis

* Petri Nets

e Timed Automata

e Push-Down Automata
 Lossy Channel Systems
e Parameterized Systems
e Well-Structured Systems
e Abstraction Techniques
%86

c ARM

models

techniques

Outline
* Background

 Program Verification

e Infinite-State Modeis

* Petri Nets

e Timed Automata

e Push-Down Automata
 Lossy Channel Systems
e Parameterized Systems
e Well-Structured Systems
e Abstraction Techniques
%86

c ARM

 IBM Power

models

techniques

Outline
* Background

 Program Verification

e Infinite-State Modeis

* Petri Nets

e Timed Automata

e Push-Down Automata
 Lossy Channel Systems
e Parameterized Systems
e Well-Structured Systems
e Abstraction Techniques
%86

c ARM

 IBM Power

Cl1

models

techniques

Outline
* Background

 Program Verification

e Infinite-State Modeis

* Petri Nets

e Timed Automata

e Push-Down Automata
 Lossy Channel Systems
e Parameterized Systems
e Well-Structured Systems
e Abstraction Techniques
%86

c ARM

 IBM Power

Cl1

 Cloud Platforms

models

techniques

Outline
* Background

 Program Verification

e Infinite-State Modeis

* Petri Nets

e Timed Automata

e Push-Down Automata
 Lossy Channel Systems
e Parameterized Systems
e Well-Structured Systems
e Abstraction Techniques
*X86

c ARM

 IBM Power

Cl1

 Cloud Platforms

models

techniques

weak
memory
models

Outline
* Background

 Program Verification

e Infinite-State Modeis

* Petri Nets

e Timed Automata

e Push-Down Automata
 Lossy Channel Systems
e Parameterized Systems
e Well-Structured Systems
e Abstraction Techniques
*X86

c ARM

 IBM Power

Cl1

 Cloud Platforms

models

techniques

weak
memory
models

concurrency

Outline
* Background

 Program Verification

e Infinite-State Modeis

* Petri Nets

e Timed Automata

e Push-Down Automata
 Lossy Channel Systems
e Parameterized Systems
e Well-Structured Systems
e Abstraction Techniques
*X86

c ARM

 IBM Power

Cl1

 Cloud Platforms

models

techniques

weak
memory
models

concurrency

common
theme

concurrency

concurrency

T motivation)

WAL L.AF A AMmEmSVUWiooDE.COoOmMm

concurrency

' Concurrent systems '

are everywhere

WAL LA AFPFERmRSWIDE.COoOMm

Concurrent systems '

are everywhere

, Multicore
BETNE pe et o g architectures

.-.A - - — e
Come 4 i Can & 1 | cemn
. | T 411 :
o 3 ¥ 1
mhankeatmdnntendd 1o .| A2 et B f4
Cone 3%) i; . Reovtar |84 <13 o n "
s 5 SRS IR B 3
__' G £ vaeenie | ¥ 3 =
! "A - W !
S0RAM J ' [« .
scrqa coWe e ol S MNETT. | o
Camn & Ca Comm 18 Comn)
yo " - e s
! an
!

—t
—5

:

2 13
1

|

|

:

WAL L.AFAFFERmRSWwWIDE.COoOMm

Multicore
architectures

Cand

Cawe %

SORAM
C onfpof

WAL L.AFAFERSWIDE.COM

, Multicore
SETRE e St @ e architectures

Com 4 B Coe 8 Oan I Comnt

Cotm 18

—_——

Distributed \
\ databases /

T P

WAL LA AFPFERmRSWIDE.COoOMm

, Multicore
SETWE e Eeveey @ architectures

| | it | a1 G 1
y p—y 585

=
oo 7o TR S)

-

Cotm 18

{ Facebook

—_——

{ Distributed Features
\, databases /

e -

Amazon
Aurora

Use Cases

WAL L.AFAFFERmRSWwWIDE.COoOMm

, Multicore
Erwl e eveay e architectures

‘‘‘‘‘‘‘‘‘‘‘

Concurrency with Modern C++

A |
shared_lock
C++20alutyyy,

PafalleIN dasync

i unique_lock X. * .
t%reids_ HKC++14
| BEAHCH+17
. - ~—_ achLél cﬁﬁ 3 rg%% se
¢/ Distributed Features " |
_ databases / Amazon
S Use Cases urora

WAL LA AFPFERmRSWIDE.COoOMm

Outline
* Background

 Program Verification

e Infinite-State Modeis

* Petri Nets

e Timed Automata

e Push-Down Automata
 Lossy Channel Systems
e Parameterized Systems
e Well-Structured Systems
e Abstraction Techniques
*X86

c ARM

 IBM Power

Cl1

 Cloud Platforms

models

techniques

weak
memory
models

concurrency

common
theme

- - T T e g o S D R N N e

fs‘ee.ocskocmfn«maa.
Al e e B a0 B N e %R e t*uo&mﬂscaeﬁooao‘
T08le 9 8 e s 0 s 8 e s &8 £ 6 8 5 5 2069 508 280 e e
BB IN 00 5 S 0 6 & 2 6 @ 3 O . B S S 86 B 9 B ORISR S ST
8 5 8 66 9 0 & 8 29 0 0 & & & B & B -»-xq.zsa&coz&toa.t.
£ Q. &9

e 8 o " -
. . B 96 & ¢ : 3 i ’ $ 3 b 8 &% 8 - N B R 3 =
e e 8 9 % e v e v P8 e 0 8 -0 & 8.8 84 SRR NS TR R & 9908 °0-0-6 0 S t ' » ?
SR8 9 0. 8 & B 5 9 6 @5 B » € 6.6 8 : . SECRRE SN SRS SN T NS e e Vet R 2

@ i * .“ 8 " H 2 5 6 5 9 3 b - @ S 0 6 8) 2 e'e
2 3 _Bae R Sl @ &F & SRR TR T N D 3 .0 8 & 0 99 o a @ .
- ' 8 8 88 B 99 e ® ® D LR RO LR B SR U N R :
‘ o AL Jbe A Bl B 3 24 8 & 85 &9) B 88 » & o 8.8 0 96 ¢ 6.9 € 00 85 B0 .00 1 _ i :
3 ‘ e ' B0 0 %S & 5 00 0 60 00589 e - LR IR RAE TR WO SR W YT VRSL SR N SR S St R SIS TR A)
v: Ch ¢ AL o~ P R n s s eie e h o080 s e e s e 8. €0 '8 0 0 6 9 8 299 0 88 A SIS0 8. 8 s .88l - B8 ' 9
Loss anne .) J S ieie o' 8 9.8 & 0 o 0 8 s & % . e 5 8.9 8 &) 8 S0 & 8 9 0898 o e 3
' ' A nod 0 SRR RS A ADL SFE 888 6 8 00 ¢ & & 2 b ®e S auaiele 8y T4 ‘ A 1 o ¥ 60 v A0 S i
CRE T 2 8 0 0.6 9 6 8 &) 8. . » 4 R L RN T e e . ol : 2 :

| - e LA 8 8 8. ® 6 8 8 2 8 6 6 5.0 -8 9.0 8.9 0.0 8 8 8.8 ®® 5 8 8 B e R0 e s es s e s aisesanislsialie SN - tllellle
o Q ~ L e a ol 9e 28 8 8 6 0.0 6 6 6 © 6 2 & 6 8 @ F B8 50 6 6 B0 6 888 8 e s e e alan o S) &84 ' i
Vl] : Loy § 27 Sraigaln s 8 00 8 0 8 0 0 8) e h » 8 e e e e s elele e ene 8l) ; S s

‘.-..,‘“,,1_ 8 g"."@,@‘ny;gt».&.'.-',.'.. ‘Za'f&ﬁﬁﬂ@#“&.. : == 3 T

_4.,,.:.;15"'" . - 4 o &% : - & e e 8 $- 8-S & 0 @ o2 A e e e 8 888 888 "
[') 3 o X : RS & 9.0 &% B R 8 & -8 ‘ o

By

RRE ALt S my : N TR N AN AN 2.0 o = i . " bo”“oé.',. '\ t;,w - :
- Well- truCtur A = N e . O P S 50 R T . e . ‘- ’ | @ @ fee S 8 80 0 S ' 85000 S IRISRES
ol ‘ ’ ',_.,Ooao&neua TR SR B MR e WU Wp YAty Wt S .-'e.esc-oooooo ST » : '
) 8 ' : LY S 8. B Q@ % % 8 oV ele AN &<l | R E i3 92 8 @ 88290 8 8 0 0% Y b 8.
) Y 8 S PP S, S B8 8 0S8R BSISISISS
8 9. 8 8 DP9 & 5 B 6.8 9 6 & 8 4
ODOOQO 59 9 & S 2 .5 9 0. S %
0 5 0 RO B @ AT % D & A 6 & & @
T 058 8 & 8 § KR €. .9 9 9 9. ® S
,0 SIS S 'S S B D B R G H W HGS QSR BB D RS B BN
8 8. 9 9 2. 8 5 9 8 .50 5 ¢ 58 S 2 S R B OH S SN SO ES
"0-'06000'059990&5«0m-pouawswconoo'ano

e
s~ A ¥ BT

%86
c ARM

IBM Power :
eC11 SoONR et

> LR (O L S T P T PN PR NSNS h'_...‘\‘-'_f\ D @ ;—\An/\ '-ﬂ»_f-‘.- e T et e e i e P R o~

 Cloud Platforms Pegsieie gislaia o ois asio s e st s aivs s salse sinaisieins sl

e e = 3 g ; A - ¢
e A s M S e e 0 e N S A B B b KR PP S A R o s L e e

Sequential Consistency (SC) Weak Semantics (WS)

+ simple & intuitive + efficient, realistic
- expensive - complicated

AN . L.AF/AnFERNRSVViIDoDE.COM

data becomes |
visible” |

Weak Consitence

Sequential Consistency (SC) Weak Semantics (WS)

+ simple & intuitive + efficient, realistic
- expensive - complicated

WAL L.AF A AMmEmSVUWiooDE.COoOmMm

data becomes |
visible” |

Sequential Consistency (SC) Weak Semantics (WS)

+ simple & intuitive + efficient, realistic
- expensive - complicated

WAL L.AF A AMmEmSVUWiooDE.COoOmMm

Arch1tectures ez ‘

” * Intel x86: Total Store Ordering (TSO)
l | «ARM l

|+ . *POWER

| Programming Languages #
| *Cll: Release-Acquire, Relaxed ’

“order in which |
| data becomes |
visible” |

| Dlst.nbuted Systems |

~ *Eventual Consistency |
5 Causal COhSlstency [\

Sequential Consistency (SC) Weak Semantics (WS)

+ simple & intuitive + efficient, realistic

- expensive - comphcated

(* e
' Arch1tectures |

r
- +Intel x86: Total Store Ordering (TSO)
| <ARM I

|

| <POWER
| i G R SRS e B SA L AR A A RIS R LI |
Baee-— | R +
- Programming Languages ‘ ;
| o
| *Cll: Release-Acquire, Relaxed 'l |
| Dlst.nbuted Systems ,
.~ *Eventual Consistency |
. Causal Cons:stency * \

Sequential Consistency (SC)
+ simple & intuitive
- expensive

| Weak Consistence

data becomes |
visible” |

data becomes |
persistent” |

Weak Persistence

Weak Semantics (WS)

+ efficient, realistic
- complicated

WAL L.AF A AMmEmSVUWiooDE.COoOmMm

~ Architectures L
- Intel x86: Total Store Ordering (TSO) ||

« ARM l
*POWER st

- Programming Languages g‘ ;
| | ‘

*Cll: Release-Acquire, Relaxed

data becomes

visible” |
Sz e aeiaTe \' data becomes |
| Dlst.nbuted Systems | \ - }
| | Weak Consistence \\‘ ersistence
. Causal Cons:stency -\ \ Fer:

Sequential Consistency (SC)
+ simple & intuitive
- expensive

Weak Semantics (WS)

+ efficient, realistic
- complicated

WAL L.AF A AMmEmSVUWiooDE.COoOmMm

~ Architectures L
- Intel x86: Total Store Ordering (TSO) ||

« ARM l
*POWER st

- Programming Languages g‘ ;
| | ‘

*Cll: Release-Acquire, Relaxed

data becomes

visible” |
Sz e aeiaTe \' data becomes |
| Dlst.nbuted Systems | \ - }
| | Weak Consistence \\‘ ersistence
. Causal Cons:stency -\ \ Fer:

Sequential Consistency (SC)
+ simple & intuitive
- expensive

Weak Semantics (WS)

+ efficient, realistic
- complicated

WAL L.AF A AMmEmSVUWiooDE.COoOmMm

recent work

- Programming Languages !‘ _
| ; | e
. +Cll: Release-Acquire, Relaxed | | “order in which |

data becomes |
visible” |

data becomes

| Dlst.nbuted Systems | \ Y,
| Even b e | Weak Consistence \\‘ ersistence
S Causal Con51stency |\ \ '
Sequential Consistency (SC) Weak Semantics (WS)
+ simple & intuitive + efficient, realistic
- expensive - complicated

WAL L.AF A AMmEmSVUWiooDE.COoOmMm

Sequential Consistency (SC) Weak Semantics (WS)

+ simple & intuitive + efficient, realistic
- expensive - complicated

AN . L.AF/AnFERNRSVViIDoDE.COM

Program Verification

(5C)

Sequential Consistency (SC) Weak Semantics (WS)

+ simple & intuitive + efficient, realistic
- expensive - complicated

AL L./ \nFENRSJVWiooDE.Com

Program Verification Program Verification
(SC) (WS)

Sequential Consistency (SC) Weak Semantics (WS)

+ simple & intuitive + efficient, realistic
- expensive - complicated

AL L./ \nFENRSJVWiooDE.Com

| Program Verlﬁcatmn Program Verlﬁcatmn k'
_(WS)

(5C)

L — —— — e ——— e ——— e ——— -_— — = — —

Sequential Consistency (SC) Weak Semantics (WS)
+ simple & intuitive + efficient, realistic

- expensive - comphcated

Outline

* Background

 Program Verification

e Infinite-State Models

* Petri Nets

e Timed Automata

e Push-Down Automata
 Lossy Channel Systems
e Parameterized Systems
s Well-Structured Systems
e Abstraction Techniques
%86

c ARM

 IBM Power

Cl1

 Cloud Platforms

Outline

 Background

 Program Verification

e Infinite-State Models

* Petri Nets

e Timed Automata

e Push-Down Automata
 Lossy Channel Systems
e Parameterized Systems
s Well-Structured Systems
e Abstraction Techniques
%86

c ARM

 IBM Power

Cl1

 Cloud Platforms

Model Checking

Model ‘: (safety) property

WAL L.AFAFERSWIDE.COM

Model Checking
Model ‘: (safety) property

Classical Approach
Finite-State Systems

WAL L.AFAFFERmRSWwWIDE.COoOMm

Model Checking
Model ‘: (safety) property

Classical Approach

Finite-State Systems Challenge;
Infinite-State Systems

WAL L.AFAFFERmRSWwWIDE.COoOMm

Model Checking
Model ‘: (safety) property

Classical Approach

Finite-State Systems Challenge;
Infinite-State Systems

Sources of “Infiniteness”:

WAL L.AFAFFERmRSWwWIDE.COoOMm

Model Checking
Model ‘: (safety) property

Classical Approach

Finite-State Systems Challenge;
Infinite-State Systems

Sources of “Infiniteness”:

Unbounded Data Structures
stacks (recursion)
queues (protocols)
counters (programs)
clocks (time)

lists, trees, graphs (heaps)

WAL L.AFAFFERmRSWwWIDE.COoOMm

Model Checking
Model ‘: (safety) property

Classical Approach

Finite-State Systems Challenge;
Infinite-State Systems

Sources of “Infiniteness”:

Unbounded Data Structures
stacks (recursion) Unbounded Control Structures
queues (protocols) * parameterized systems
counters (programs) * multithreaded programs
clocks (time) e concurrent libraries

lists, trees, graphs (heaps) * Petri nets

WAL L.AFAFFERmRSWwWIDE.COoOMm

Model Checking
Model ‘: (safety) property

Classical Approach

Finite-State Systems Challenge;
Infinite-State Systems

Sources of “Infiniteness”:

Unbounded Data Structures
stacks (recursion) Unbounded Control Structures
queues (protocols) * parameterized systems
counters (programs) * multithreaded programs
clocks (time) e concurrent libraries
lists, trees, graphs (heaps) * Petri nets

Multiple Sources:
timed Petri nets
recursive programs with unbounded data
channels with time stamps
etc

WAL L.AFAFFERmRSWwWIDE.COoOMm

