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News

Next lecture: Wednesday, 2 February, 10:00-12:00, Zoom 589 726 9279.

Background

Current capabilities in computer technology allow enormously complicated implementations of such
systems, making the task of producing error-free products more and more difficult. In particular, during the
last decade, parallel systems have become a critical part of the infrastructure of our society due to the
emergence of modern platforms such as multicores and cloud technology.

It is of great practical and economic importance to developing methods that make the design process less
error-prone. There is a real need for techniques for testing and verifying software to guarantee a higher
degree of reliability.

Reasoning about concurrent systems is often conducted under the fundamental assumption of sequential
consistency (SC) where all components are strongly synchronized so that they all have a uniform view of
the global state of the system. However, nowadays, most parallel software run on platforms that do not
guarantee SC. More precisely, to satisfy demands on efficiency and energy-saving, such platforms
implement optimizations that lead to the relaxation of the inter-component synchronization, hence offering
only weak consistency guarantees. Weakly consistent platforms are found at all levels of system design,
such as multiprocessors, cache protocols, programming languages, and cloud systems.

Goal

The participants will learn:

e The principles of model checking: a technique that has led to the most notable advances in
algorithmic program verification during the last 20 years.
Frameworks for verifying communication protocols, distributed systems and algorithms, timed
systems, hardware circuits, concurrent programs, and multicore architectures.
Modeling and verification through classical models such as timed automata, push-down automata,
Petri nets, and lossy channels systems.
Modeling and verifying concurrent programs running on weakly consistent platforms, such as x86-
TSO, IBM Power, ARM, C11, and the cloud.

Contents

Model checking.

Infinite-state models.

Reachability analysis.

Petri nets.

Timed automata.

Push-down automata.

Lossy channel systems.

x86-TSO.

Cl11.

Well quasi-ordered systems.
Program abstraction: monotonic abstraction, view abstraction.
The Power and ARM architectures.
Parameterized systems.

Cloud platforms.

Structure

e 15 Lectures.

e Project work. The project will consist of implementing some of the algorithms discussed in the

class.

Examination

e Weekly assignments.
e Project work.

Prerequisites

e (Course suitable both for PhD and MSc students.

e Primary knowledge corresponding to three years of an undergraduate program in computer science.
However, I do not assume any prior knowledge of formal methods, program verification, or weak

memory models.

Slides (I will later add slides on
weak consistency)

L1. Petri Nets. pdf. keynote.

L2. Well-Quasi-Orderings. pdf. keynote.

L3. Lossy Channel Systems. pdf. keynote.

L4. Backward Reachability Analysis. pdf. keynote.
LS. Timed Petri Nets. pdf. keynote.

L6. Timed Automata. pdf. keynote.

L7-8. View Abstraction. pdf. keynote.

L9-10. Recursive Programs. Push-Down Automata.

Literature

e Parosh Aziz Abdulla. Well- and Better-Quasi-Ordered Transition Ssystems.

Contact Person

e Parosh Aziz Abdulla.
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Model Checking
Model ‘: (safety) property

Classical Approach

Finite-State Systems Challenge;
Infinite-State Systems

Sources of “Infiniteness”:

Unbounded Data Structures
stacks (recursion) Unbounded Control Structures
queues (protocols) * parameterized systems
counters (programs) * multithreaded programs
clocks (time) e concurrent libraries
lists, trees, graphs (heaps) * Petri nets

Multiple Sources:
timed Petri nets
recursive programs with unbounded data
channels with time stamps
etc
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