
Verifying

Weakly Consistent Systems

(TSO as an Example)

Parosh Aziz Abdulla1 Ahmed Bouajjani2Mohamed Faouzi Atig1

Tuan Phong Ngo1 1Uppsala University
2IRIF, Université Paris Diderot & IUF 1

Outline
• Weak Consistency

• Total Store Order (TSO)

• Dual TSO

• Verification

• Monitors

• Synthesis

Outline
• Weak Consistency

• Total Store Order (TSO)

• Dual TSO

• Verification

• Monitors

• Synthesis

Sequential Consistency (SC)
• Shared memory

Processes

memory

P1

P2

write

write
read

read

• Interleaving of the operations
• Processes: atomic read/write

Sequential Consistency (SC)
• Shared memory

Execution

Processes

memory

P1

P2

write

write
read

read

• Interleaving of the operations
• Processes: atomic read/write

Sequential Consistency (SC)
• Shared memory

Execution

Processes

memory

P1

P2

write

write
read

read

P1: w(x,1)

• Interleaving of the operations
• Processes: atomic read/write

Sequential Consistency (SC)
• Shared memory

Execution

Processes

memory

P1

P2

write

write
read

read

P1: w(x,1) P2: r(x,1)

• Interleaving of the operations
• Processes: atomic read/write

Sequential Consistency (SC)
• Shared memory

Execution

Processes

memory

P1

P2

write

write
read

read

P1: w(x,1) P2: r(x,1) P2: w(y,1)

• Interleaving of the operations
• Processes: atomic read/write

Sequential Consistency (SC)
• Shared memory

Execution

Processes

memory

P1

P2

write

write
read

read

P1: w(x,1) P2: r(x,1) P2: w(y,1) P1: r(y,1)

• Interleaving of the operations
• Processes: atomic read/write

Sequential Consistency (SC)
• Shared memory

Execution

Processes

memory

P1

P2

write

write
read

read

P1: w(x,1) P2: r(x,1) P2: w(y,1) P1: r(y,1)

• Interleaving of the operations
• Processes: atomic read/write

+ Simple and intuitive

Sequential Consistency (SC)
• Shared memory

Execution

Processes

memory

P1

P2

write

write
read

read

P1: w(x,1) P2: r(x,1) P2: w(y,1) P1: r(y,1)

• Interleaving of the operations
• Processes: atomic read/write

+ Simple and intuitive
- Too strong

5

TSO - Total Store Order

- Used by Sun SPARCv9
- Formalization of Intel x86

• Widely used:

- Write operations are slow
- Introduce store buffers

• Memory access optimization:

P1

P2

x=0

y=0

processes shared

variables

5

TSO - Total Store Order

- Used by Sun SPARCv9
- Formalization of Intel x86

• Widely used:

- Write operations are slow
- Introduce store buffers

• Memory access optimization:

P1

P2

x=0

y=0

processes shared

variables

store

buffer

FIFO

buffer

6

TSO - Classical Semantics

P1

P2

x=0

y=0P1: read: x = 2

P1: write: x = 1

P1: read: y = 0

P1: write: x = 2

7

TSO - Classical Semantics

P1

P2

x=0

y=0P1: read: x = 2

P1: write: x = 1

P1: read: y = 0

P1: write: x = 2
x=1

7

TSO - Classical Semantics

P1

P2

x=0

y=0P1: read: x = 2

P1: write: x = 1

P1: read: y = 0

P1: write: x = 2

write to
buffer

x=1

TSO - Classical Semantics

P1: read: x = 2

P1: write: x = 1

P1: read: y = 0

P1: write: x = 2

8

P1

P2

x=0

y=0

x=1

TSO - Classical Semantics

P1: read: x = 2

P1: write: x = 1

P1: read: y = 0

P1: write: x = 2

8

P1

P2

x=0

y=0

x=1x=2

write to
buffer

TSO - Classical Semantics

P1: read: x = 2

P1: write: x = 1

P1: read: y = 0

P1: write: x = 2

9

P1

P2

x=0

y=0

x=2 x=1

TSO - Classical Semantics

P1: read: x = 2

P1: write: x = 1

P1: read: y = 0

P1: write: x = 2

9

P1

P2

x=0

y=0

x=2

read from
buffer

x=1

TSO - Classical Semantics

P1: read: x = 2

P1: write: x = 1

P1: read: y = 0

P1: write: x = 2

10

P1

P2

x=0

y=0

x=2 x=1

TSO - Classical Semantics

P1: read: x = 2

P1: write: x = 1

P1: read: y = 0

P1: write: x = 2

10

P1

P2

x=0

y=0

read from
memory

x=2 x=1

TSO - Classical Semantics

P1: read: x = 2

P1: write: x = 1

P1: read: y = 0

P1: write: x = 2

11

P1

P2

x=0

y=0

x=2 x=1

TSO - Classical Semantics

P1: read: x = 2

P1: write: x = 1

P1: read: y = 0

P1: write: x = 2

11

P1

P2

x=0

y=0

update
memory

x=2 x=1

TSO - Classical Semantics

P1: read: x = 2

P1: write: x = 1

P1: read: y = 0

P1: write: x = 2

12

P1

P2

x=1

y=0

x=2

TSO - Classical Semantics

P1: read: x = 2

P1: write: x = 1

P1: read: y = 0

P1: write: x = 2

12

P1

P2

x=1

y=0

update
memory

x=2

TSO - Classical Semantics

P1: read: x = 2

P1: write: x = 1

P1: read: y = 0

P1: write: x = 2

13

P1

P2

x=2

y=0

•write to buffer

•read from buffer

•read from memory

•update memory

TSO - Classical Semantics

P1: read: x = 2

P1: write: x = 1

P1: read: y = 0

P1: write: x = 2

13

P1

P2

x=2

y=0

•write to buffer

•read from buffer

•read from memory

•update memory

TSO - Classical Semantics

P1: read: x = 2

P1: write: x = 1

P1: read: y = 0

P1: write: x = 2

13

P1

P2

x=2

y=0

•write to buffer

•read from buffer

•read from memory

•update memory

•Extra behaviors

•Potentially bad behaviors

TSO

x = 0
y = 0

Initially: x = y = 0

write: x = 1

read: y = 0
critical section

write: y = 1

read: x = 0
critical section

Sequential Consistency = Interleaving

14

Dekker Protocol

P1

P2

P1 P2

x = 0
y = 0

Initially: x = y = 0

write: x = 1

read: y = 0
critical section

write: y = 1

read: x = 0
critical section

Sequential Consistency = Interleaving

At most one
process at its CS

at any time

14

Dekker Protocol

P1

P2

P1 P2

x = 0
y = 0

Initially: x = y = 0

write: x = 1

read: y = 0
critical section

write: y = 1

read: x = 0
critical section

TSO

15

Dekker Protocol

P1

P2

P1 P2

x = 0
y = 0

Initially: x = y = 0

write: x = 1

read: y = 0
critical section

write: y = 1

read: x = 0
critical section

TSO

16

Dekker Protocol

P1

P2

P1 P2

x = 0
y = 0

Initially: x = y = 0

write: x = 1

read: y = 0
critical section

write: y = 1

read: x = 0
critical section

TSO

17

Dekker Protocol

P1

P2

P1 P2

x = 0
y = 0

Initially: x = y = 0

write: x = 1

read: y = 0
critical section

write: y = 1

read: x = 0
critical section

TSO

18

x=1

write

 to buffer

Dekker Protocol

P1

P2

P1 P2

x = 0
y = 0

Initially: x = y = 0

write: x = 1

read: y = 0
critical section

write: y = 1

read: x = 0
critical section

TSO

19

x=1

Dekker Protocol

P1

P2

P1 P2

x = 0
y = 0

P1

P2

Initially: x = y = 0

write: x = 1

critical section

write: y = 1

read: x = 0
critical section

TSO

P1 P2

20

x=1

read: y = 0

Dekker Protocol

x = 0
y = 0

Initially: x = y = 0

write: x = 1

critical section

write: y = 1

read: x = 0
critical section

TSO

21

x=1

read from
memory

read: y = 0

Dekker Protocol

P1

P2

P1 P2

x = 0
y = 0

Initially: x = y = 0

write: x = 1

critical section

write: y = 1

read: x = 0
critical section

TSO

22

x=1

enter CS

read: y = 0

Dekker Protocol

P1

P2

P1 P2

x = 0
y = 0

Initially: x = y = 0

write: x = 1

critical section

write: y = 1

read: x = 0
critical section

TSO

23

x=1

read: y = 0

Dekker Protocol

P1

P2

P1 P2

x = 0
y = 0

Initially: x = y = 0

write: x = 1

read: y = 0
critical section

write: y = 1

read: x = 0
critical section

TSO

24

x=1

Dekker Protocol

P1

P2

P1 P2

x = 0
y = 0

Initially: x = y = 0

write: x = 1

read: y = 0
critical section

write: y = 1

read: x = 0
critical section

TSO

25

x=1

write to
buffer

y=1

Dekker Protocol

P1

P2

P1 P2

x = 0
y = 0

Initially: x = y = 0

write: x = 1

read: y = 0
critical section

write: y = 1

critical section

TSO

26

x=1

y=1

read: x = 0

Dekker Protocol

P1

P2

P1 P2

x = 0
y = 0

Initially: x = y = 0

write: x = 1

read: y = 0
critical section

write: y = 1

critical section

TSO

27

x=1

y=1

read: x = 0

read from
memory

Dekker Protocol

P1

P2

P1 P2

x = 0
y = 0

Initially: x = y = 0

write: x = 1

read: y = 0
critical section

write: y = 1

critical section

TSO

28

x=1

y=1

read: x = 0

enter CS

Dekker Protocol

P1

P2

P1 P2

x = 0
y = 0

Initially: x = y = 0

write: x = 1

read: y = 0
critical section

write: y = 1

critical section

TSO

29

x=1

y=1

read: x = 0

2 processes in CS

at the same time

Dekker Protocol

P1

P2

P1 P2

x = 0
y = 0

Initially: x = y = 0

write: x = 1

read: y = 0
critical section

write: y = 1

critical section

TSO

30

x=1

y=1

read: x = 0

Dekker Protocol

P1

P2

P1 P2

x = 0
y = 0

Initially: x = y = 0

write: x = 1

read: y = 0
critical section

write: y = 1

critical section

TSO

31

x=1

y=1

read: x = 0

Dekker Protocol

P1

P2

P1 P2

x = 0
y = 0

Initially: x = y = 0

write: x = 1

read: y = 0
critical section

write: y = 1

critical section

TSO

31

x=1

y=1

read: x = 0

“read

overtaking

write”

Dekker Protocol

P1

P2

P1 P2

x = 0
y = 0

Initially: x = y = 0

write: x = 1

read: y = 0
critical section

write: y = 1

critical section

TSO

31

x=1

y=1

read: x = 0

“read

overtaking

write”
“read

overtaking

write”

Dekker Protocol

P1

P2

P1 P2

32

Weakly Consistent Systems

•Cloud

•Weak memories

•Weak cache protocols
•Languages: C11

+ Efficiency

- Non-intuitive behaviours

33

Weakly Consistent Systems

+ Efficiency

- Non-intuitive behaviours

• Semantics

• Correctness analysis: simulation, testing,
verification, synthesis

• Methods and tools: decidability, complexity,
algorithms

• Monitoring

•Cloud

•Weak memories

•Weak cache protocols
•Languages: C11

Outline
• Weak Consistency

• Total Store Order (TSO)

• Dual TSO

• Verification

• Specification

• Synthesis

x = 0
y = 0

P0

P1

Initially: x = y = 0

write: x = 1

read: y = 0
critical section

write: y = 1

critical section

TSO

P0 P1

35

x=1

y=1

read: x = 0
mfence mfence

fence
instruction

Potential Bad Behaviour -
Dekker

x = 0
y = 0

P0

P1

Initially: x = y = 0

write: x = 1

read: y = 0
critical section

write: y = 1

critical section

TSO

P0 P1

35

x=1

y=1

read: x = 0
mfence mfence

fence
instruction

flushes the
buffer

Potential Bad Behaviour -
Dekker

x = 0
y = 0

P0

P1

Initially: x = y = 0

write: x = 1

read: y = 0
critical section

write: y = 1

critical section

TSO

P0 P1

35

x=1

y=1

read: x = 0
mfence mfence

fence
instruction

flushes the
buffer

prevents

re-ordeirng

Potential Bad Behaviour -
Dekker

Verification and Correction

reachability

analysis reachable? execution

analysis preventable?

program correct program incorrect

specification

no

yes

yes

no

insert fences

36

program

Verification and Correction

reachability

analysis reachable? execution

analysis preventable?

program correct program incorrect

no

yes

yes

no

insert fences

37

specification

program

Verification and Correction

reachability

analysis reachable? execution

analysis preventable?

program correct program incorrect

no

yes

yes

no

insert fences

38

specification

program

Verification and Correction

reachability

analysis reachable? execution

analysis preventable?

program correct program incorrect

no

yes

yes

no

insert fences

39

specification

program

Verification and Correction

reachability

analysis reachable? execution

analysis preventable?

program correct program incorrect

no

yes

yes

no

insert fences

40

specification

program

Verification and Correction

reachability

analysis reachable? execution

analysis preventable?

program correct program incorrect

no

yes

yes

no

insert fences

41

specification

program

Verification and Correction

reachability

analysis reachable? execution

analysis preventable?

program correct program incorrect

no

yes

yes

no

insert fences

42

specification

program

Verification and Correction

reachability

analysis reachable? execution

analysis preventable?

program correct program incorrect

no

yes

yes

no

insert fences

42

no reordering

=

bug not due to
memory model

specification

program

Verification and Correction

reachability

analysis reachable? execution

analysis preventable?

program correct program incorrect

no

yes

yes

no

insert fences

43

specification

program

Verification and Correction

reachability

analysis reachable? execution

analysis preventable?

program correct program incorrect

no

yes

yes

no

insert fences

43

specification

program

find reordering

and

prevent it

Verification and Correction

reachability

analysis reachable? execution

analysis preventable?

program correct program incorrect

no

yes

yes

no

insert fences

44

specification

program

Verification and Correction

reachability

analysis reachable? execution

analysis preventable?

program correct program incorrect

no

yes

yes

no

insert fences

44

specification

program

try again

Verification and Correction

reachability

analysis reachable? execution

analysis preventable?

program correct program incorrect

no

yes

yes

no

insert fences

44

specification

program

try again

optimality = smallest set of fences
needed for correctness

P0
x = 0
y = 0

Verification under TSO is
Difficult

while (1)

 write: x=1

45

P0
x = 0
y = 0

Verification under TSO is
Difficult

while (1)

 write: x=1

P0: write: x = 1

P0: write: x = 1

P0: write: x = 1
…

…

45

P0
x = 0
y = 0

Verification under TSO is
Difficult

while (1)

 write: x=1

P0: write: x = 1

P0: write: x = 1

P0: write: x = 1
…

…

45

P0
x = 0
y = 0

Verification under TSO is
Difficult

while (1)

 write: x=1

P0: write: x = 1

P0: write: x = 1

P0: write: x = 1
…

…

x=1

46

P0
x = 0
y = 0

Verification under TSO is
Difficult

while (1)

 write: x=1

P0: write: x = 1

P0: write: x = 1

P0: write: x = 1
…

…

x=1x=1

47

P0
x = 0
y = 0

Verification under TSO is
Difficult

while (1)

 write: x=1

P0: write: x = 1

P0: write: x = 1

P0: write: x = 1
…

…

x=1x=1…x=1

48

P0
x = 0
y = 0

Verification under TSO is
Difficult

while (1)

 write: x=1

P0: write: x = 1

P0: write: x = 1

P0: write: x = 1
…

…

x=1x=1…x=1

unbounded

buffer

48

P0
x = 0
y = 0

Verification under TSO is
Difficult

while (1)

 write: x=1

P0: write: x = 1

P0: write: x = 1

P0: write: x = 1
…

…

x=1x=1…x=1

infinite state

space

unbounded

buffer

48

Outline
• Weak Consistency

• Total Store Order (TSO)

• Dual TSO

• Verification

• Monitors

• Synthesis

Dual TSO

P1

P2

x=0

y=0

processes shared

variables

load

buffer

FIFO

buffer

•store buffer load buffer

•write immediately updates memory

•buffers contain expected reads

•messages: self, other

x,1,self

y,2,other

Dual TSO

P1

P2

x=0

y=0

processes shared

variables

load

buffer

FIFO

buffer

•store buffer load buffer

•write immediately updates memory

•buffers contain expected reads

•messages: self, other

Dual TSO

P1: read: y = 0

P1: write: x = 1
P1: read: x = 1

P1 x=0

y=0P2

Dual TSO

P1: read: y = 0

P1: write: x = 1
P1: read: x = 1

P1 x=0

y=0P2

Dual TSO

P1: read: y = 0

P1: write: x = 1
P1: read: x = 1

P1 x=1

y=0P2

update

memory

Dual TSO

P1: read: y = 0

P1: write: x = 1
P1: read: x = 1

P1 x=1

y=0P2

x=1,self

update

memory

Dual TSO

P1: read: y = 0

P1: write: x = 1
P1: read: x = 1

P1 x=1

y=0P2

x=1,self

update

memory

propagate
to yourself

Dual TSO

P1: read: y = 0

P1: write: x = 1
P1: read: x = 1

P1 x=1

y=0P2

x=1,self

Dual TSO

P1: read: y = 0

P1: write: x = 1
P1: read: x = 1

P1 x=1

y=0P2

x=1,self

propagate
from

memory

Dual TSO

P1: read: y = 0

P1: write: x = 1
P1: read: x = 1

P1 x=1

y=0P2

x=1,self

y=0,other

propagate
from

memory

Dual TSO

P1: read: y = 0

P1: write: x = 1
P1: read: x = 1

P1 x=1

y=0P2

x=1,self y=0,other

propagate
from

memory

Dual TSO

P1: read: y = 0

P1: write: x = 1
P1: read: x = 1

P1 x=1

y=0P2

x=1,self y=0,other

Dual TSO

P1: read: y = 0

P1: write: x = 1
P1: read: x = 1

P1 x=1

y=0P2

x=1,self y=0,other

read own
write

Dual TSO

P1: read: y = 0

P1: write: x = 1
P1: read: x = 1

P1 x=1

y=0P2

x=1,self y=0,other

Dual TSO

P1: read: y = 0

P1: write: x = 1
P1: read: x = 1

P1 x=1

y=0P2

x=1,self y=0,other

remove
oldest write

Dual TSO

P1: read: y = 0

P1: write: x = 1
P1: read: x = 1

P1 x=1

y=0P2

y=0,other

P1: read: y = 0

P1: write: x = 1
P1: read: x = 1

P1 x=1

y=0P2

y=0,other

Dual TSO

P1: read: y = 0

P1: write: x = 1
P1: read: x = 1

P1 x=1

y=0P2

y=0,other

read oldest
write

Dual TSO

P1: read: y = 0

P1: write: x = 1
P1: read: x = 1

P1 x=1

y=0P2

y=0,other

read oldest
write

Dual TSO

P1: write: x = 1
P1: read: x = 1

P1 x=1

y=0P2

y=0,other

P1: read: y = 0

•write + self-propagation

•propagate from memory

•read own-writes

•read oldest write

•remove oldest write

Dual TSO

P1: write: x = 1
P1: read: x = 1

P1 x=1

y=0P2

y=0,other

P1: read: y = 0

•write + self-propagation

•propagate from memory

•read own-writes

•read oldest write

•remove oldest write

Dual TSO

P1: write: x = 1
P1: read: x = 1

P1 x=1

y=0P2

y=0,other

P1: read: y = 0

•write + self-propagation

•propagate from memory

•read own-writes

•read oldest write

•remove oldest write

TSO Dual-TSO⌘⌘⌘

Dual TSO

P1: write: x = 1
P1: read: x = 1

P1 x=1

y=0P2

y=0,other

P1: read: y = 0

•write + self-propagation

•propagate from memory

•read own-writes

•read oldest write

•remove oldest write

TSO Dual-TSO⌘⌘⌘

reachability

Dual TSO

P1

P2

x=0

y=0

Classical
TSO

P1

P2

x=0

y=0

P1: w(x,2)

Classical
TSO

P1

P2

x=0

y=0

P1: w(x,2)

x=2

Classical
TSO

P1

P2

x=0

y=0

P1: w(x,2) P1: r(y,0)

x=2

Classical
TSO

P1

P2

x=0

y=0

P1: w(x,2) P1: r(y,0) P2: w(y,1)

x=2

Classical
TSO

P1 x=0

y=0

P1: w(x,2)

x=2

P1: r(y,0) P2: w(y,1)

y=1P2

Classical
TSO

P1

P2

x=0

y=0

P1: w(x,2)

x=2

P1: r(y,0) P2: w(y,1)

y=1

P2: w(x,1)

Classical
TSO

P1

P2

x=0

y=0

P1: w(x,2)

x=2

P1: r(y,0) P2: w(y,1)

y=1

P2: w(x,1)

Classical
TSO

x=0

y=0y=1x=1

x=2P1

P2

P1: w(x,2) P1: r(y,0) P2: w(y,1) P2: w(x,1)

Classical
TSO

x=0

y=0y=1x=1

x=2P1

P2

P1: w(x,2) P1: r(y,0) P2: w(y,1) P2: w(x,1)

Classical
TSO

x=0

y=0y=1

x=1x=2P1

P2

P1: w(x,2) P1: r(y,0) P2: w(y,1) P2: w(x,1)

Classical
TSO

x=0

y=0y=1

x=1x=2P1

P2

P1: w(x,2) P1: r(y,0) P2: w(y,1) P2: w(x,1)

Classical
TSO

x=2

y=1

P1: w(x,2) P1: r(y,0) P2: w(y,1) P2: w(x,1)

P1

P2

Classical
TSO

P2: r(x,2)

x=0

y=0

P1

P2

P1: w(x,2) P1: r(y,0) P2: w(y,1) P2: w(x,1)

Classical
TSO

P2: r(x,2)

x=0

y=0

P1

P2

P1: w(x,2) P1: r(y,0) P2: w(y,1) P2: w(x,1)

Dual TSO

Classical
TSO

P2: r(x,2)

y=0

x=0P1

P2

P1: w(x,2) P1: r(y,0) P2: w(y,1) P2: w(x,1)

Dual TSO

Classical
TSO

P2: r(x,2)

y=0,other

y=0

x=0P1

P2

P1: w(x,2) P1: r(y,0) P2: w(y,1) P2: w(x,1)

Dual TSO

Classical
TSO

P2: r(x,2)

y=0,other

x=0

y=0

y=0,other

P2: w(y,1)

P1

P2

P1: w(x,2) P1: r(y,0) P2: w(y,1) P2: w(x,1)

Dual TSO

Classical
TSO

P2: r(x,2)

x=0

y=1

y=0,other

P2: w(y,1)

P1

P2

P1: w(x,2) P1: r(y,0) P2: w(y,1) P2: w(x,1)

Dual TSO

Classical
TSO

P2: r(x,2)

x=0

y=1

y=0,other

P2: w(y,1)

y=1,self

P1

P2

P1: w(x,2) P1: r(y,0) P2: w(y,1) P2: w(x,1)

Dual TSO

Classical
TSO

P2: r(x,2)

x=0

y=1

y=0,other

P2: w(y,1)

y=1,self

P1

P2

P1: w(x,2) P1: r(y,0) P2: w(y,1) P2: w(x,1)

Dual TSO

Classical
TSO

P2: r(x,2)

x=0

y=1

y=0,other

P2: w(y,1)

y=1,self

P2: w(x,1)

P1

P2

P1: w(x,2) P1: r(y,0) P2: w(y,1) P2: w(x,1)

Dual TSO

Classical
TSO

P2: r(x,2)

x=1

y=1

y=0,other

P2: w(y,1)

y=1,self

P2: w(x,1)

P1

P2

P1: w(x,2) P1: r(y,0) P2: w(y,1) P2: w(x,1)

Dual TSO

Classical
TSO

P2: r(x,2)

x=1

y=1

y=0,other

P2: w(y,1)

y=1,self

P2: w(x,1)

x=1,selfP1

P2

P1: w(x,2) P1: r(y,0) P2: w(y,1) P2: w(x,1)

Dual TSO

Classical
TSO

P2: r(x,2)

x=1

y=1

y=0,other

P2: w(y,1)

y=1,self

P2: w(x,1)

x=1,self

P1

P2

P1: w(x,2) P1: r(y,0) P2: w(y,1) P2: w(x,1)

Dual TSO

Classical
TSO

P2: r(x,2)

x=1

y=1

y=0,other

P2: w(y,1)

y=1,self

P2: w(x,1)

x=1,self

P1

P2

P1: w(x,2) P1: r(y,0) P2: w(y,1) P2: w(x,1)

P1: w(x,2)

Dual TSO

Classical
TSO

P2: r(x,2)

x=2

y=1

y=0,other

P2: w(y,1)

y=1,self

P2: w(x,1)

x=1,self

P1

P2

P1: w(x,2) P1: r(y,0) P2: w(y,1) P2: w(x,1)

P1: w(x,2)

Dual TSO

Classical
TSO

P2: r(x,2)

x=2

y=1

y=0,other

P2: w(y,1)

y=1,self

P2: w(x,1)

x=1,self

P1

P2

P1: w(x,2) P1: r(y,0) P2: w(y,1) P2: w(x,1)

P1: w(x,2)

x=2,self

Dual TSO

Classical
TSO

P2: r(x,2)

x=2

y=1

y=0,other

P2: w(y,1)

y=1,self

P2: w(x,1)

x=1,self

P1

P2

P1: w(x,2) P1: r(y,0) P2: w(y,1) P2: w(x,1)

P1: w(x,2)

x=2,self

Dual TSO

Classical
TSO

P2: r(x,2)

x=2

y=1

y=0,other

P2: w(y,1) P2: w(x,1)

x=1,self

P1

P2

P1: w(x,2) P1: r(y,0) P2: w(y,1) P2: w(x,1)

P1: w(x,2)

x=2,self

Dual TSO

Classical
TSO

P2: r(x,2)

x=2

y=1

y=0,other

P2: w(y,1) P2: w(x,1)

P1

P2

P1: w(x,2) P1: r(y,0) P2: w(y,1) P2: w(x,1)

P1: w(x,2)

x=2,self

Dual TSO

Classical
TSO

P2: r(x,2)

x=2

y=1

y=0,other

P2: w(y,1) P2: w(x,1)

P1

P2

P1: w(x,2) P1: r(y,0) P2: w(y,1) P2: w(x,1)

P1: w(x,2)

x=2,self x=2,other

Dual TSO

Classical
TSO

P2: r(x,2)

x=2

y=1

y=0,other

P2: w(y,1) P2: w(x,1)

P1

P2

P1: w(x,2) P1: r(y,0) P2: w(y,1) P2: w(x,1)

P1: w(x,2)

x=2,self

x=2,other

Dual TSO

Classical
TSO

P2: r(x,2)

x=2

y=1

y=0,other

P2: w(y,1) P2: w(x,1)

P1

P2

P1: w(x,2) P1: r(y,0) P2: w(y,1) P2: w(x,1)

P1: w(x,2)

x=2,self

x=2,other

Dual TSO

Classical
TSO

P2: r(x,2)

P2: r(x,2)

x=2

y=1

y=0,other

P2: w(y,1) P2: w(x,1)

P1

P2

P1: w(x,2) P1: r(y,0) P2: w(y,1) P2: w(x,1)

P1: w(x,2)

x=2,self

x=2,other

P1: r(y,0)

Dual TSO

Classical
TSO

P2: r(x,2)

P2: r(x,2)

x=2

y=1

P2: w(y,1) P2: w(x,1)

P1

P2

P1: w(x,2) P1: r(y,0) P2: w(y,1) P2: w(x,1)

P1: w(x,2)

x=2,self

x=2,other

P1: r(y,0)

Dual TSO

Classical
TSO

P2: r(x,2)

P2: r(x,2)

x=2

y=1

P2: w(y,1) P2: w(x,1)

P1

P2

P1: w(x,2) P1: r(y,0) P2: w(y,1) P2: w(x,1)

P1: w(x,2)

x=2,other

P1: r(y,0)

Dual TSO

Classical
TSO

P2: r(x,2)

P2: r(x,2)

x=2

y=1

P2: w(y,1) P2: w(x,1)

P1

P2

P1: w(x,2) P1: r(y,0) P2: w(y,1) P2: w(x,1)

P1: w(x,2) P1: r(y,0)

Dual TSO

Classical
TSO

P2: r(x,2)

P2: r(x,2)

x=2

y=1

P2: w(x,1)

P1

P2

P1: w(x,2) P1: r(y,0) P2: w(y,1) P2: w(x,1) P2: r(x,2)

P1: w(x,2) P2: r(x,2) P1: r(y,0)

Dual TSO

Classical
TSO

P2: w(y,1)

x=2

y=1

P2: w(x,1)

P1

P2

P1: w(x,2) P1: r(y,0) P2: w(y,1) P2: w(x,1) P2: r(x,2)

P1: w(x,2) P2: r(x,2) P1: r(y,0)

Dual TSO

Classical
TSO

P2: w(y,1)

x=2

y=1

P2: w(x,1)

P1

P2

P1: w(x,2) P1: r(y,0) P2: w(y,1) P2: w(x,1) P2: r(x,2)

P1: w(x,2) P2: r(x,2) P1: r(y,0)

Dual TSO

Classical
TSO

P2: w(y,1)

x=2

y=1

P2: w(x,1)

P1

P2

P1: w(x,2) P1: r(y,0) P2: w(y,1) P2: w(x,1) P2: r(x,2)

P1: w(x,2) P2: r(x,2) P1: r(y,0)

Dual TSO

Classical
TSO

P2: w(y,1)

Outline
• Weak Consistency

• Total Store Order (TSO)

• Dual TSO

• Verification

• Monitors

• Synthesis

x=2,self y=1,self y=0,self

partition of
load buffer

x=1,other x=0,other

Old New

88

Dual TSO - Monotonicity

x=2,self y=1,self y=0,self

partition of
load buffer

x=1,other x=0,other

Old New
newest self

message on y

88

Dual TSO - Monotonicity

x=2,self y=1,self y=0,self

partition of
load buffer

x=1,other x=0,other

Old New
newest self

message on x
newest self

message on y

88

Dual TSO - Monotonicity

x=2,self y=1,self y=0,self

partition of
load buffer

x=1,other x=0,other

Old New
newest self

message on x
newest self

message on y

88

Dual TSO - Monotonicity

x=2,self y=1,self y=0,selfx=1,other x=0,other

x=2,self y=1,self y=0,self x=0,other

89

Dual TSO - Monotonicity

Ordering on Buffers

x=2,self y=1,self y=0,selfx=1,other x=0,other

x=2,self y=1,self y=0,self x=0,other

= =

89

Dual TSO - Monotonicity

Ordering on Buffers

x=2,self y=1,self y=0,selfx=1,other x=0,other

x=2,self y=1,self y=0,self x=0,other

= =

90

Dual TSO - Monotonicity

Ordering on Buffers

x=2,self y=1,self y=0,selfx=1,other x=0,other

x=2,self y=1,self y=0,self x=0,other

= =⊑ ⊑

90

subword
 subword

Dual TSO - Monotonicity

Ordering on Buffers

x=2,self y=1,self y=0,selfx=1,other x=0,other

x=2,self y=1,self y=0,self x=0,other

= =⊑ ⊑

91

subword
 subword

Dual TSO - Monotonicity

Ordering on Buffers

ab v xaybzab v xaybzab v xaybz

x=2,self y=1,self y=0,selfx=1,other x=0,other

x=2,self y=1,self y=0,self x=0,other

= =⊑ ⊑

91

subword
 subword

Dual TSO - Monotonicity

Ordering on Buffers

ab v xaybzab v xaybzab v xaybz

P1

P2

P1 P2

x = 1
y = 0

x,1,other

x=1,self

…

…

…

…

92

•identical process states

•identical memory state

•sub-word relation on buffers

Dual TSO - Monotonicity

Ordering on Configurations

P1

P2

P1 P2

x = 1
y = 0

x,1,other

x=1,self

…

…

…

…

92

•identical process states

•identical memory state

•sub-word relation on buffers

Dual TSO - Monotonicity

Ordering on Configurations

P1

P2

P1 P2

x = 1
y = 0

x,1,other

x=1,self

…

…

…

…

93

•identical process states

•identical memory state

•sub-word relation on buffers

Dual TSO - Monotonicity

Ordering on Configurations

x = 1
y = 0

P1

P2 x,1,other

x=1,self

…

…

…

…

P1 P2

94

•identical process states

•identical memory state

•sub-word relation on buffers

Dual TSO - Monotonicity

Ordering on Configurations

95

Dual TSO - Monotonicity

Ordering on Configurations

Monotonicity

v

c1

c3

c2

95

Dual TSO - Monotonicity

Ordering on Configurations

Monotonicity

v

c1

c3

c2

v

9 c4

96

Dual TSO - Monotonicity

•finite-state programs running on TSO:

• reachability analysis terminates

•reachability decidable

Tool:
Memorax

Experimental

Results

https://github.com/memorax/memorax

standard
benchmarks:

litmus tests and mutual
exclusion

Tool:
Memorax

time (secs)
generated

configurations
Experimental

Results

Tool:
Memorax

time (secs)

parameterized

verification

generated
configurations

Experimental

Results

Outline
• Weak Consistency

• Total Store Order (TSO)

• Dual TSO

• Verification

• Monitors

• Synthesis

101

Cache

Coherence

Protocol
SC

?

|=
?

|=
?

|=

101

SC
?

|=
?

|=
?

|=

102

TSO
?

|=
?

|=
?

|=Cache

Coherence

Protocol

monitors

102

TSO
?

|=
?

|=
?

|=

monitors

TSO-Counter-
Examples

TSO-Counter-
Examples

P1: w(x,1)

TSO-Counter-
Examples

P1: w(x,1) P2: r(x,1)

TSO-Counter-
Examples

P1: w(x,1) P2: r(x,1) P3: w(x,2)

TSO-Counter-
Examples

P1: w(x,1) P2: r(x,1) P3: w(x,2)

TSO-Counter-
Examples

P4: r(x,2)

P1: w(x,1) P2: r(x,1) P3: w(x,2) P5: r(x,1)

TSO-Counter-
Examples

P4: r(x,2)

P1: w(x,1) P2: r(x,1) P3: w(x,2) P5: r(x,1)

TSO-Counter-
Examples

P4: r(x,2)

P1: w(x,1) P2: r(x,1) P3: w(x,2) P4: r(y,1)

P5: r(x,1)

P3: w(y,1)

P1: w(x,1) P2: r(x,1) P3: w(x,2) P5: r(x,1)

TSO-Counter-
Examples

P4: r(x,2)

P1: w(x,1) P2: r(x,1) P3: w(x,2) P4: r(y,1)

P5: r(x,1)

P3: w(y,1)

TSO ⌘⌘⌘ 12 counter-examples

Conclusion

• Weak Consistency

• Total Store Order (TSO)

• Dual TSO

Current Work
• Weak Cache Verification

• Other memory models, e.g., POWER, ARM, C11

• Stateless Model Checking

• Monitor Design

Dual-TSO vs Memorax

• Running time

• Memory consumption

Experimental Results

https://www.it.uu.se/katalog/tuang296/dual-tso
105

https://www.it.uu.se/katalog/tuang296/dual-tso

Dual-TSO vs Memorax

• Running time

• Memory consumption

Experimental Results
Single buffer

approach (exact method
[TACAS12+13])

https://www.it.uu.se/katalog/tuang296/dual-tso
105

https://www.it.uu.se/katalog/tuang296/dual-tso

Dual-TSO vs Memorax

• Running time

• Memory consumption

Experimental Results

106

standard
benchmarks:

litmus tests and mutual
exclusion algorithms

Dual-TSO vs Memorax

• Running time

• Memory consumption

Experimental Resultsrunning time
in seconds

107

Dual-TSO vs Memorax

• Running time

• Memory consumption

Experimental Results
generated

configurations

108

Dual-TSO vs Memorax

• Running time

• Memory consumption

Experimental Results
generated

configurations

Dual-TSO is faster and uses
less memory in most of

examples

108

Experimental Results

Parameterised Cases

109

Experimental Results

Parameterised Cases

unbounded
number of processes

109

increasing
the number of

processes

110

Experimental Results

Parameterised Cases

Dual-TSO is
more scalable

111

 0

 200

 400

 600

 2 3 4 5 6 7 8 9 10

LB

Dual-TSO

Memorax

Experimental Results

Parameterised Cases

Dual-TSO is more efficient

and scalable

112

Experimental Results

Parameterised Cases

