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Dual TSO - Monotonicity

•finite-state programs running on TSO:

• reachability analysis terminates

•reachability decidable
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Conclusion

• Weak Consistency

• Total Store Order (TSO)

• Dual TSO


Current Work
• Weak Cache Verification

• Other memory models, e.g., POWER, ARM, C11

• Stateless Model Checking

• Monitor Design
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