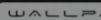
Background

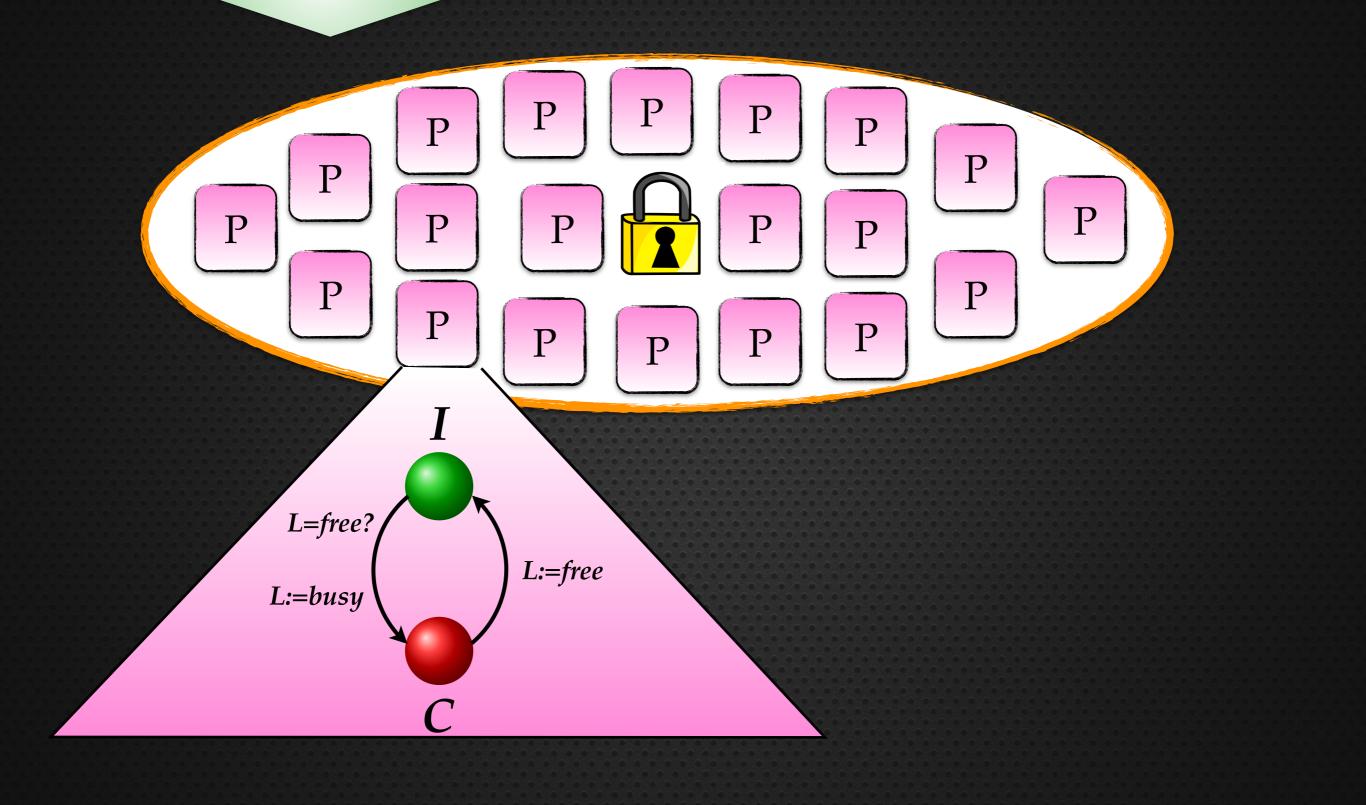
Parameterized Systems

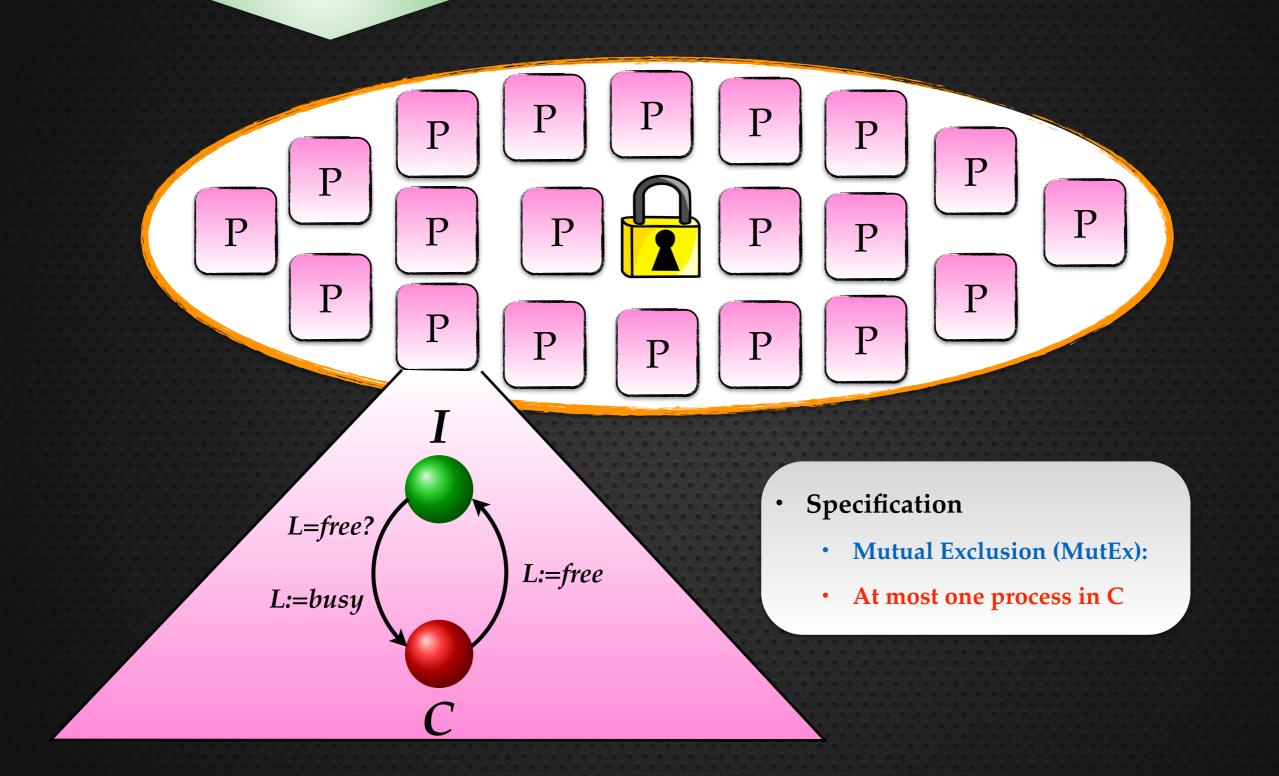
Petri Nets

Lossy Channel Systems

Timed Petri Nets







Р

Р

 $P^n|L$

Specification

Р

Р

Р

Р

P

Р

Р

Р

P

P

P

Р

Р

• Mutual Exclusion (MutEx):

Р

Р

P

• At most one process in C

P

Р

 $P^n|L$

Specification

P

P

P

- Mutual Exclusion (MutEx):
- At most one process in C

Р

Р

P

• Task = Parameterized Verification

Р

P

Р

Р

P

P

P

P

Р

Р

- Verify correctness regardless of the number of processes
- $\forall n. (P^n \mid L) \models MutEx$

P P Р P Infinite-State System Р Р P P P Р P $P^n|L$ Specification • **Mutual Exclusion (MutEx):** • At most one process in C •

- Task = Parameterized Verification
 - Verify correctness regardless of the number of processes
 - $\forall n. (P^n \mid L) \models MutEx$

Background

Parameterized Systems

Petri Nets

Lossy Channel Systems

Timed Petri Nets

Model

Configurations

Transitions

Ordering

Monotonicity

Upward Closed Sets

Computing Predecessors

Backward Reachability

Model

Configurations

Transitions

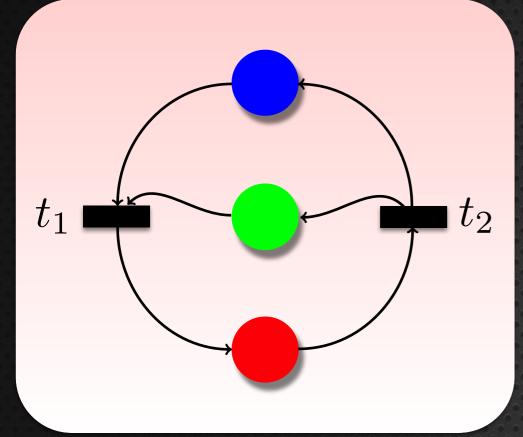
Ordering

Monotonicity

Upward Closed Sets

Computing Predecessors

Backward Reachability



 t_1

places

t₂

 t_1

places

t₂

transitions

Model

Configurations

Transitions

Ordering

Monotonicity

Upward Closed Sets

Computing Predecessors

Backward Reachability

Model

Configurations

Transitions

Ordering

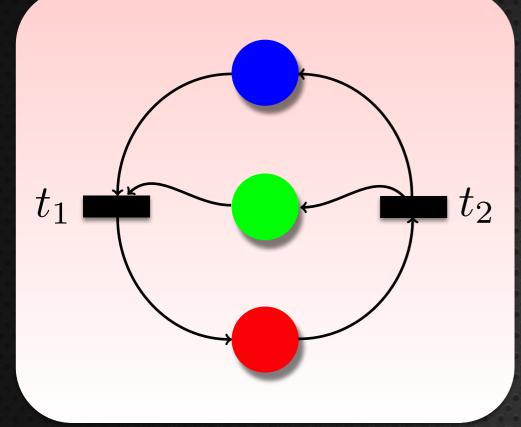
Monotonicity

Upward Closed Sets

Computing Predecessors

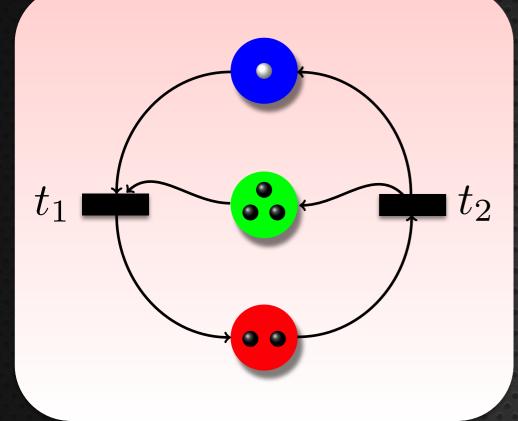
Backward Reachability

Markings

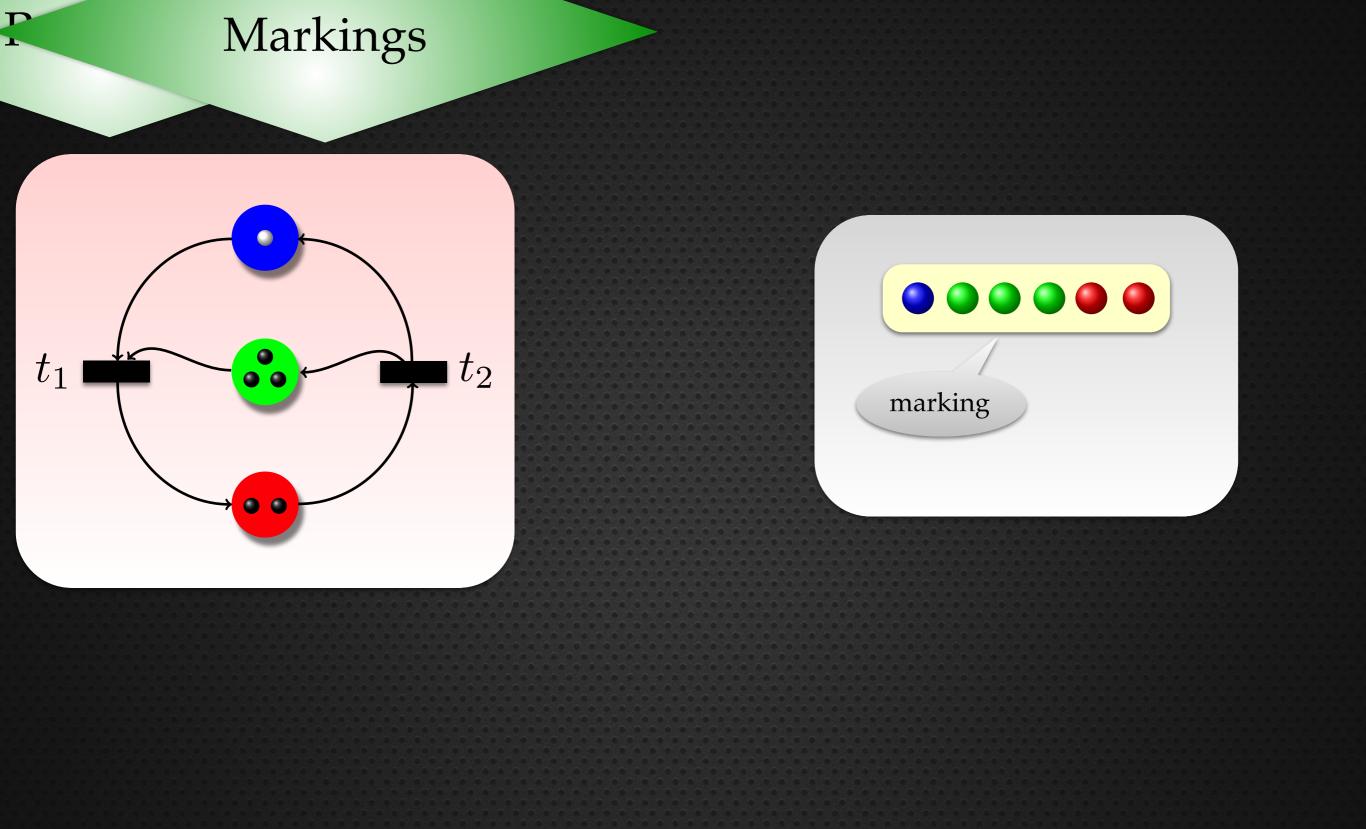


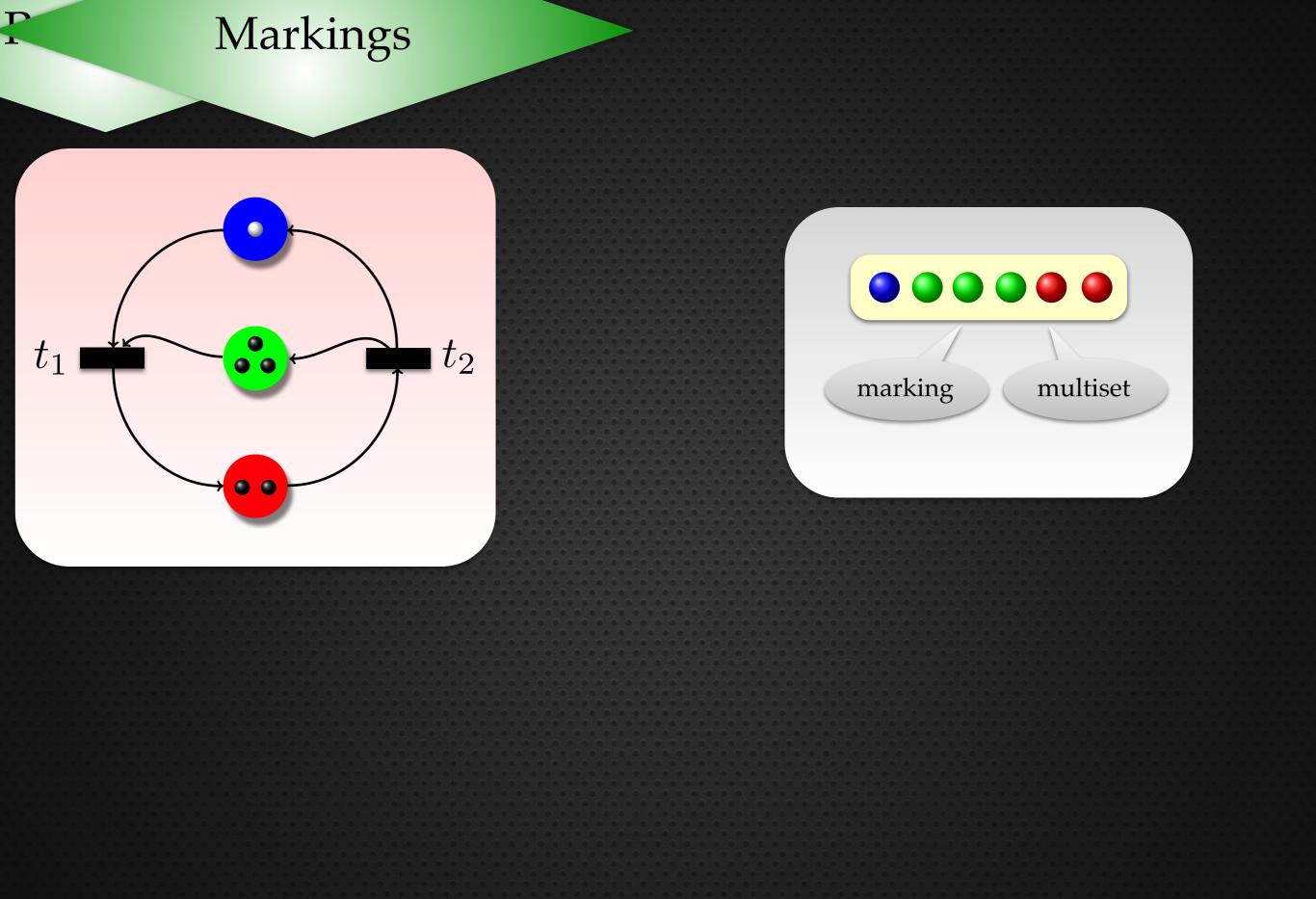
P

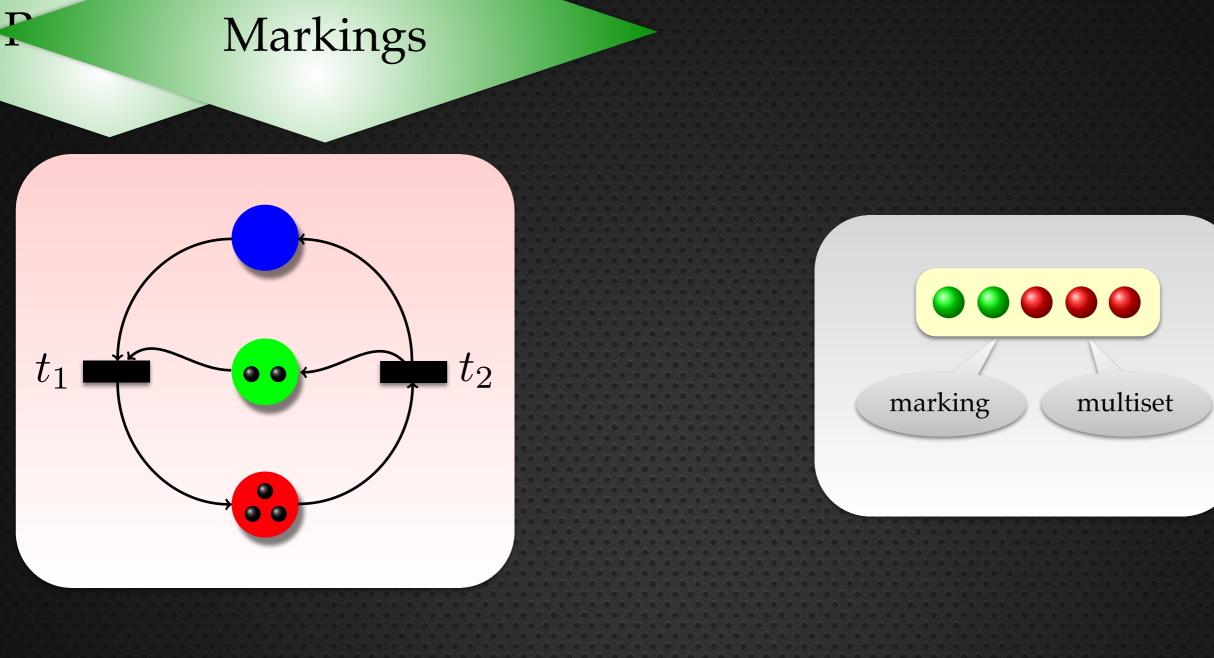
Markings

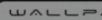


P









Model

Configurations

Transitions

Ordering

Monotonicity

Upward Closed Sets

Computing Predecessors

Backward Reachability

Model

Configurations

Transitions

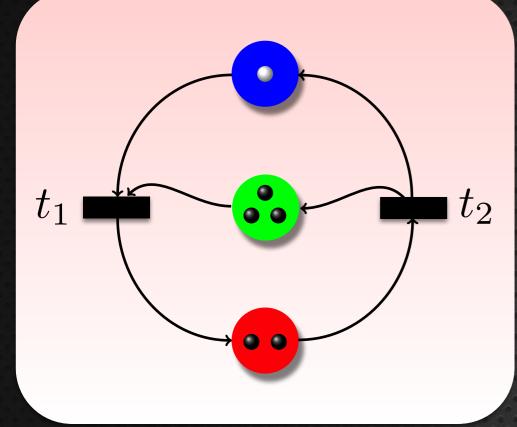
Ordering

Monotonicity

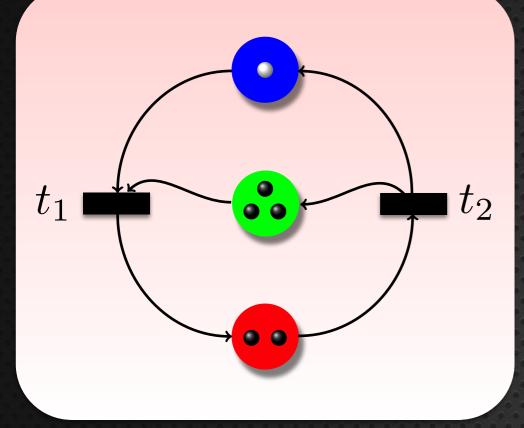
Upward Closed Sets

Computing Predecessors

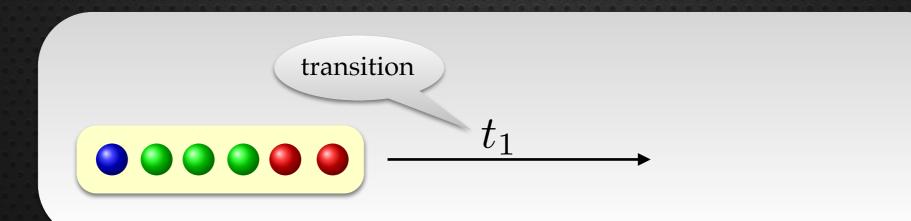
Backward Reachability

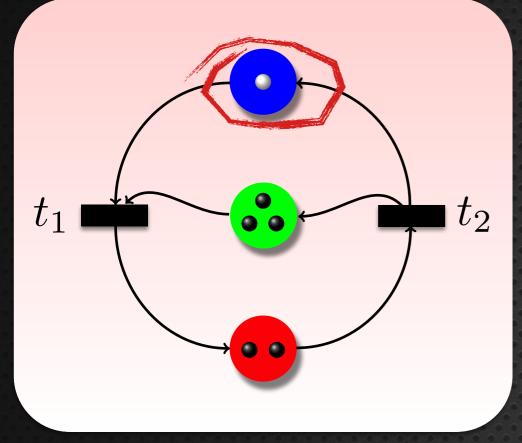


P

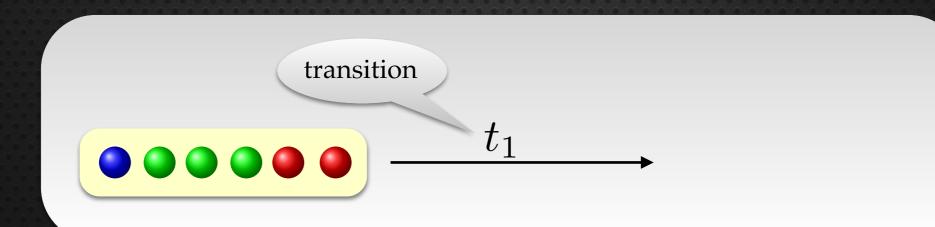


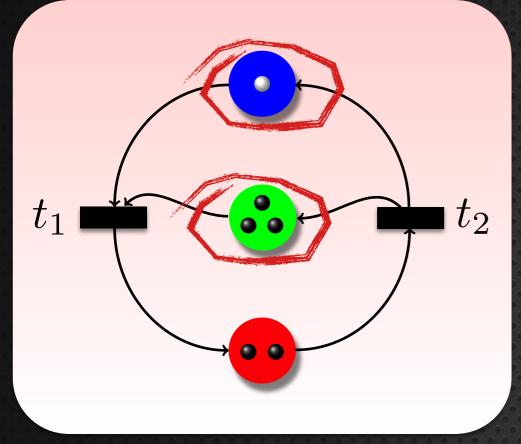
P



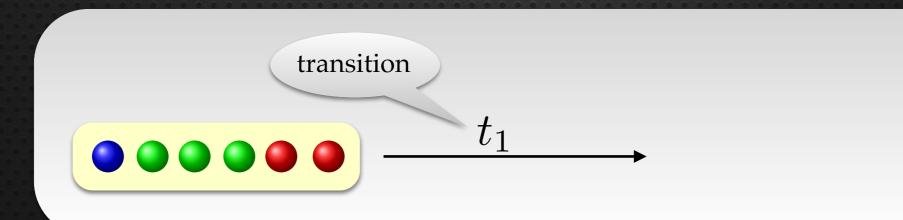


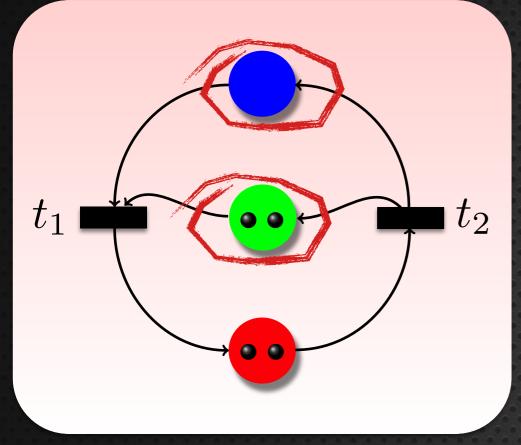
P



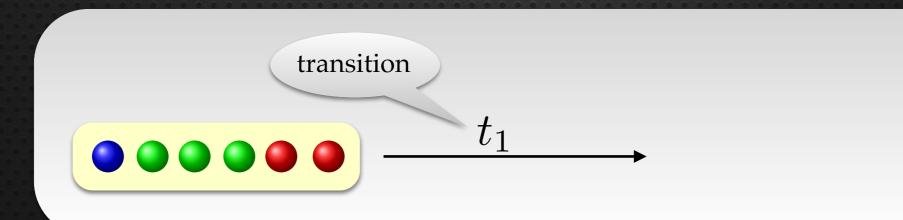


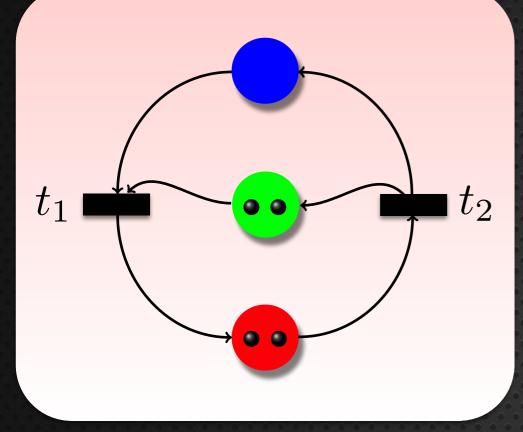
P



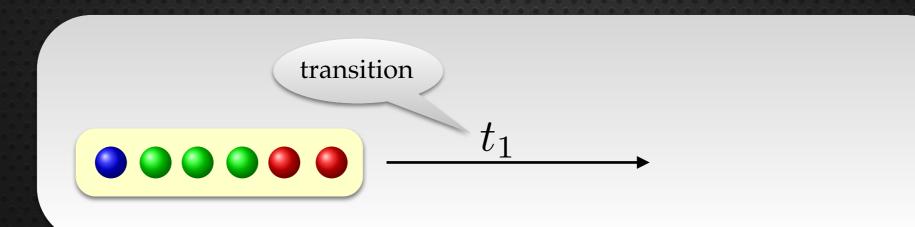


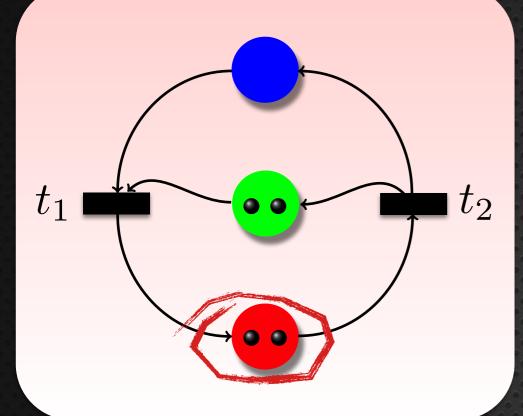
P



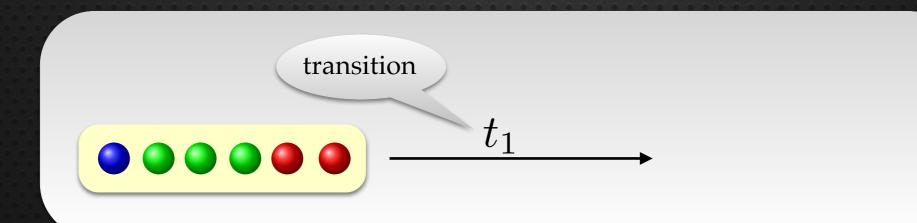


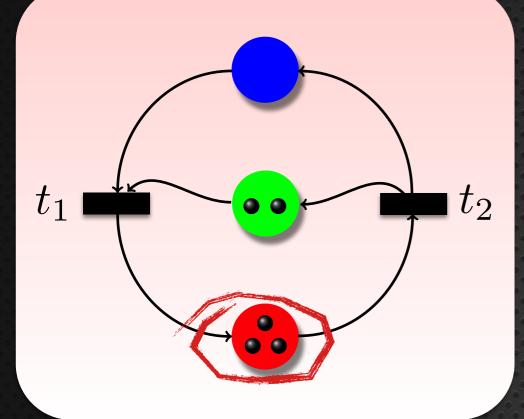
P



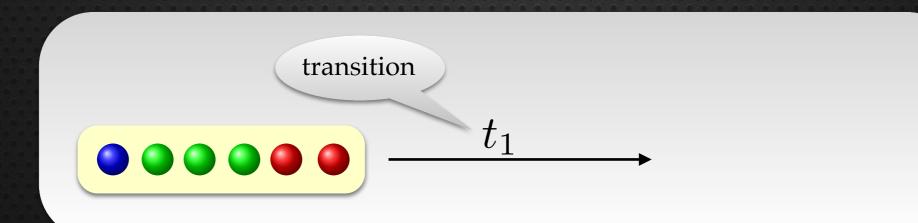


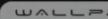
P

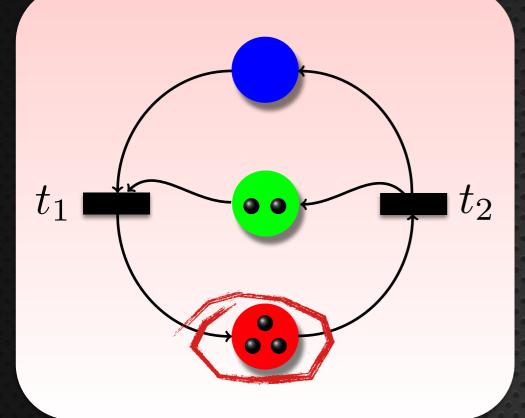




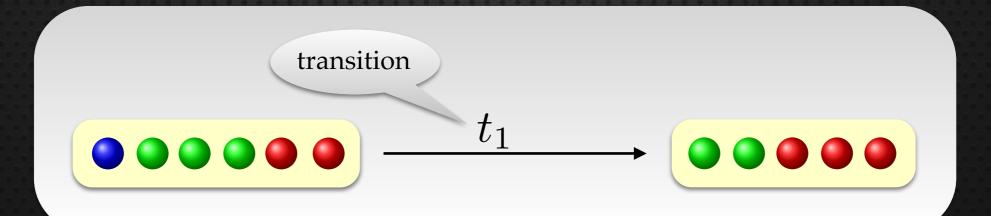
P

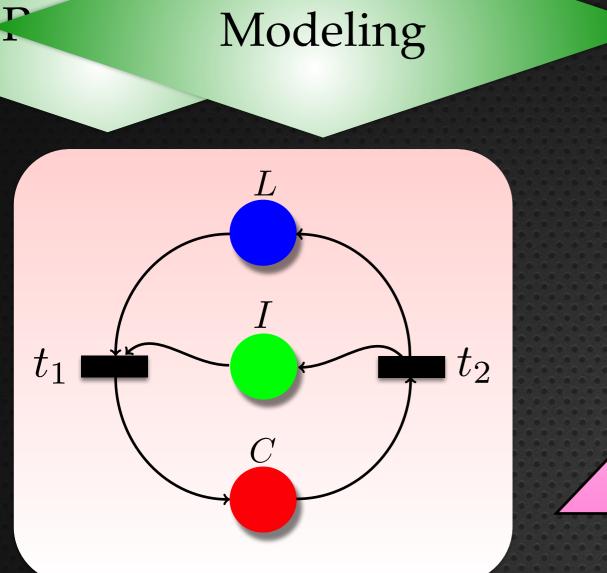


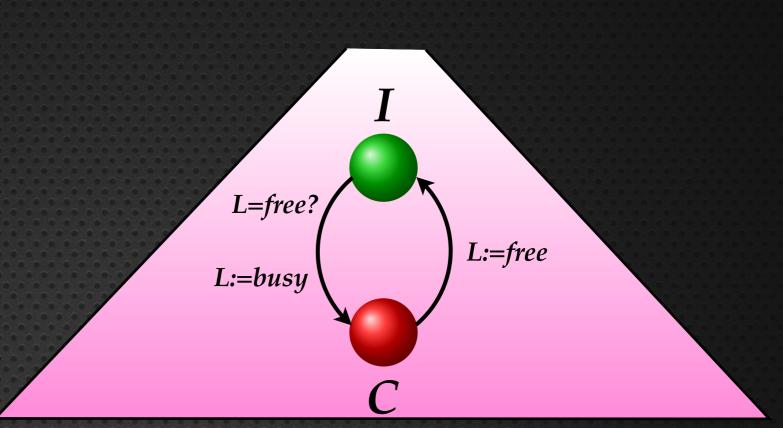




P







- Encoding (counter abstraction)
 - # tokens in 🔴
- = # processes in 🔴

=

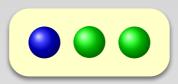
=

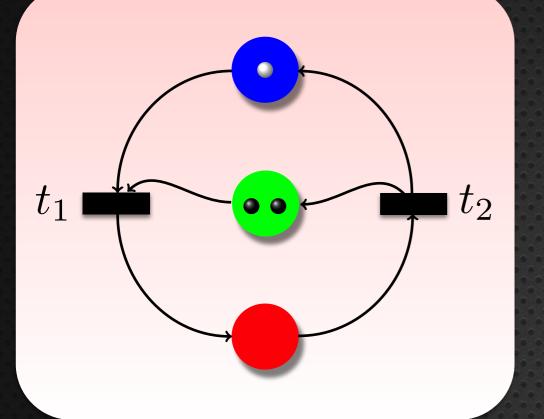
• # tokens in 🦲

•

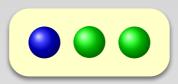
- . . .
- one/no token in 🔵
- # processes in 🥥
- lock free/busy

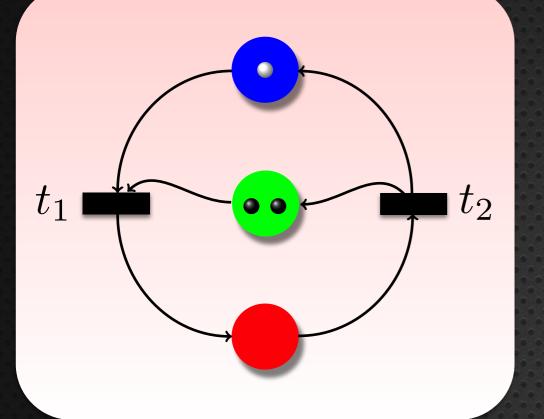
P

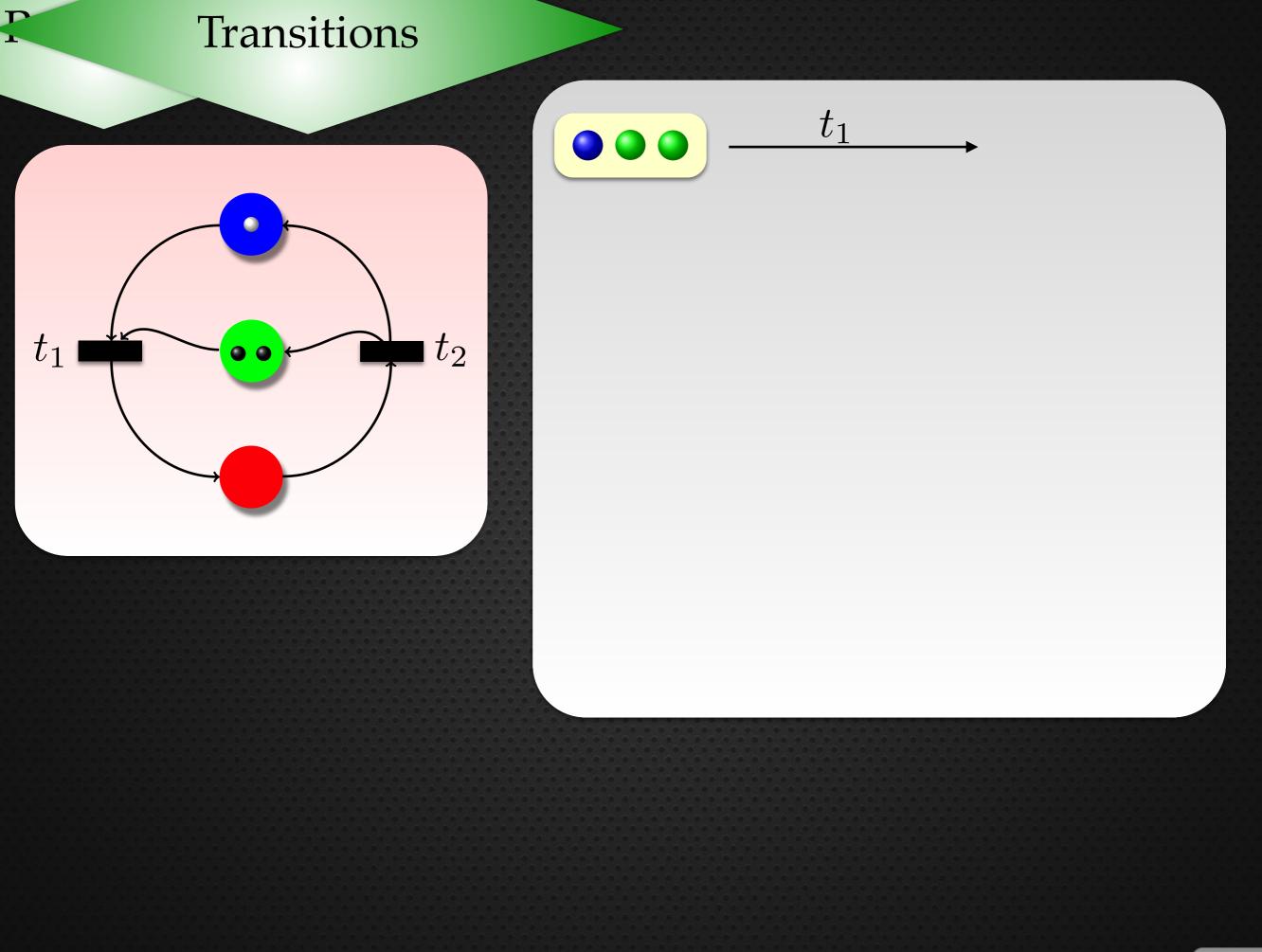


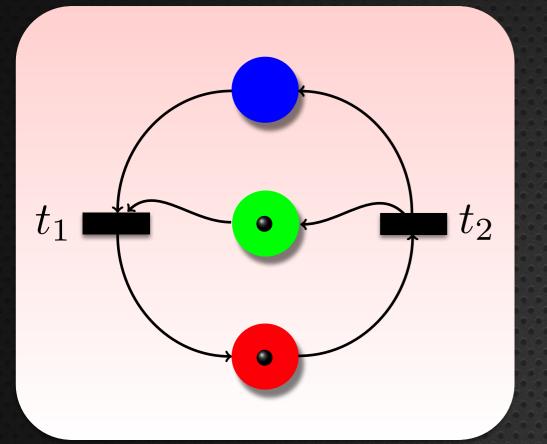


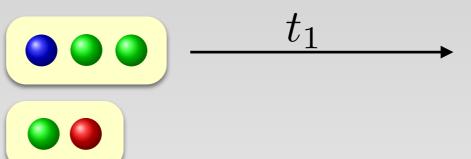
P

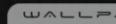


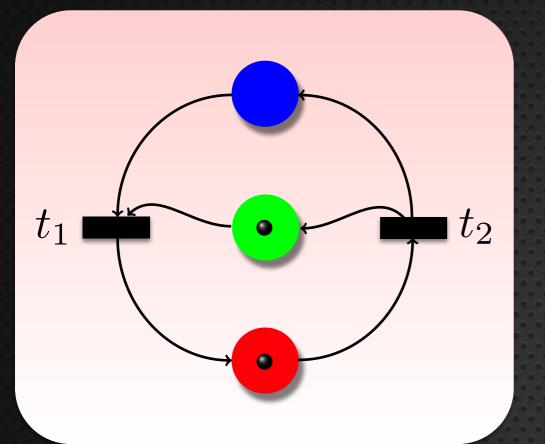






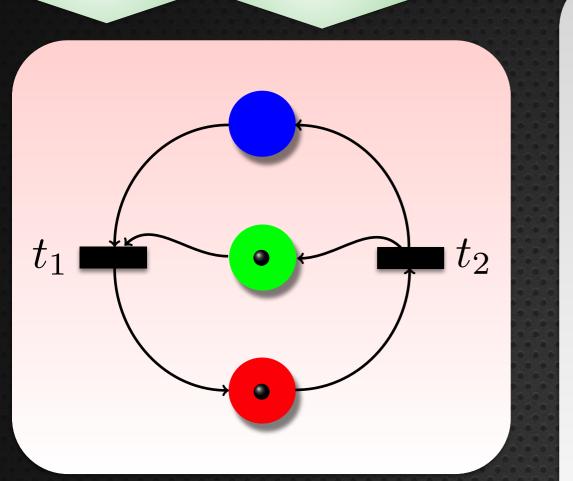


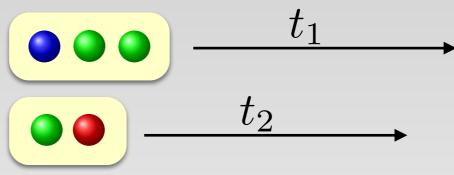


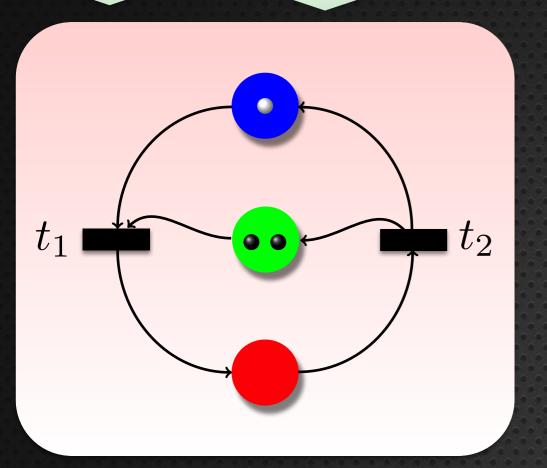


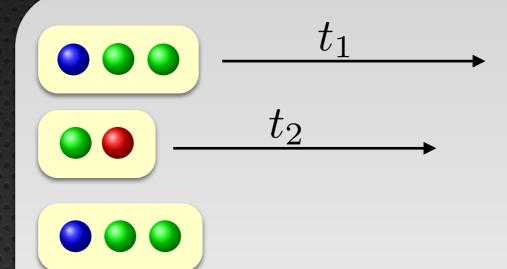
 $\begin{array}{c} \bullet \bullet \bullet \bullet \\ \bullet \bullet \bullet \end{array} \begin{array}{c} t_1 \\ \bullet \bullet \end{array}$

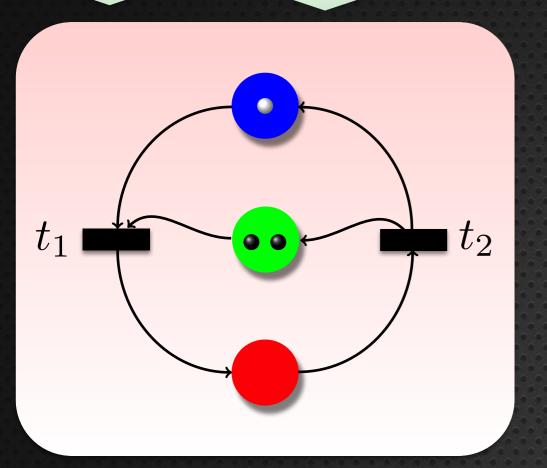
R

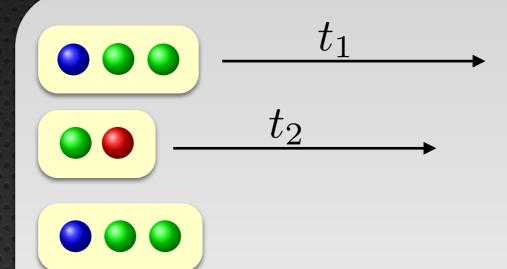


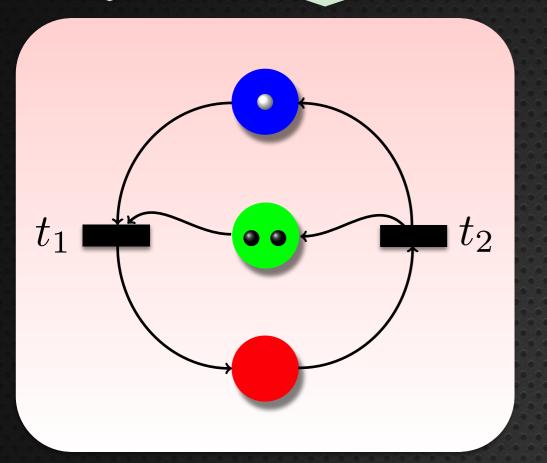


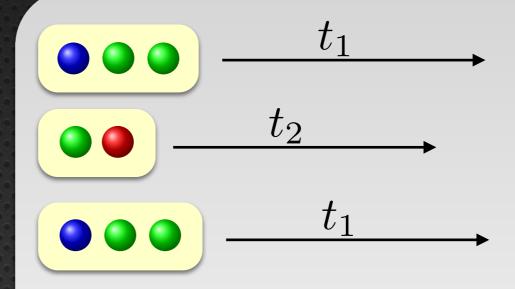


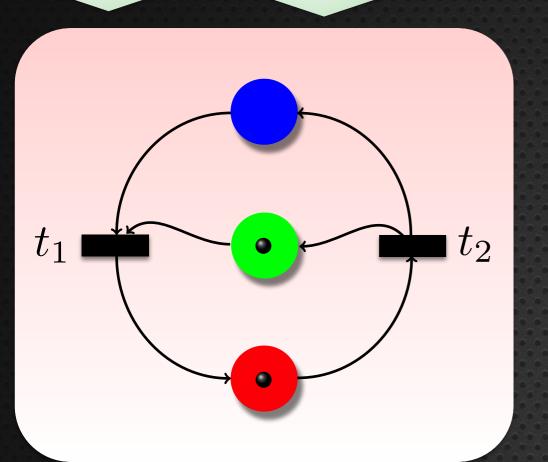


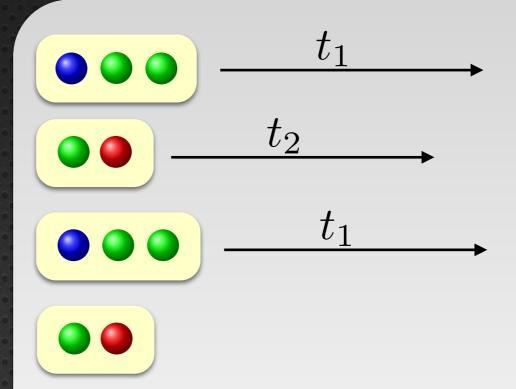


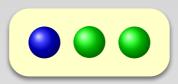


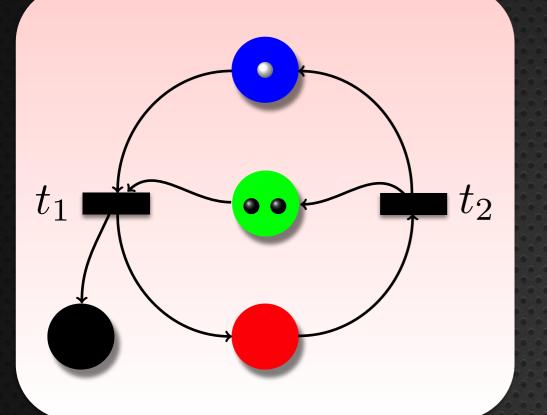


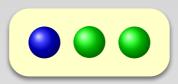


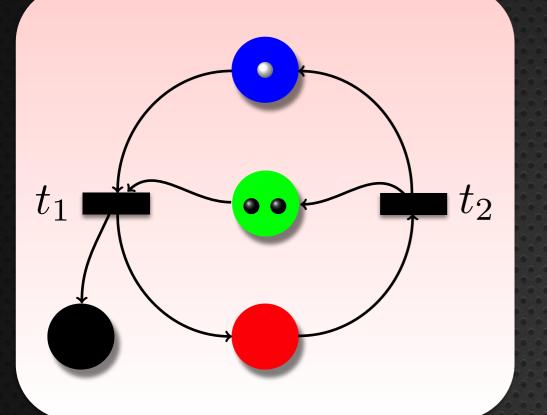




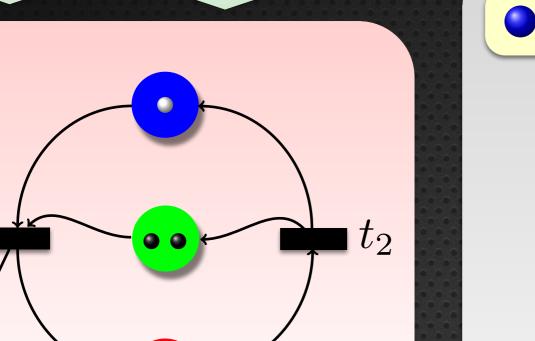


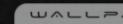


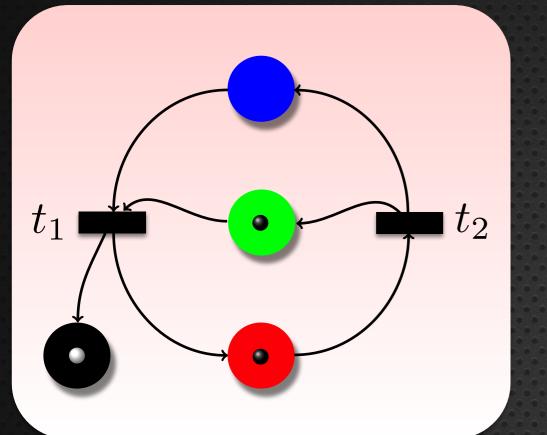




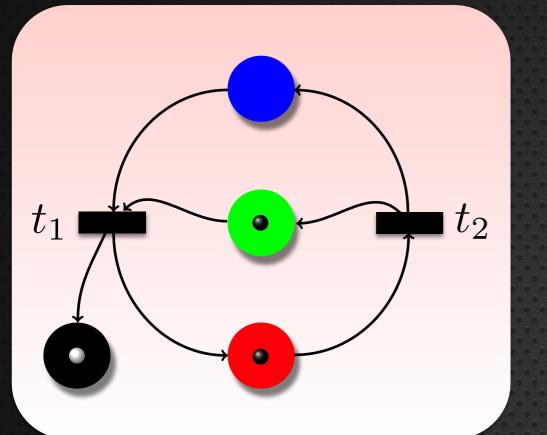
 t_1 |



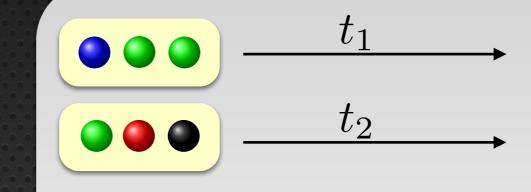


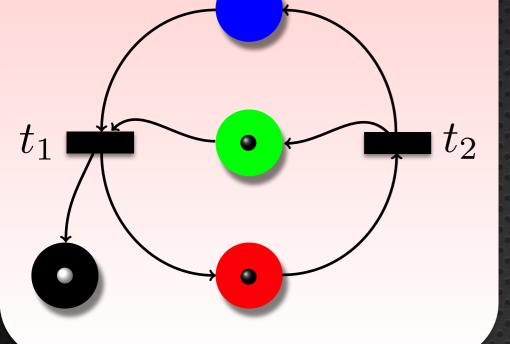


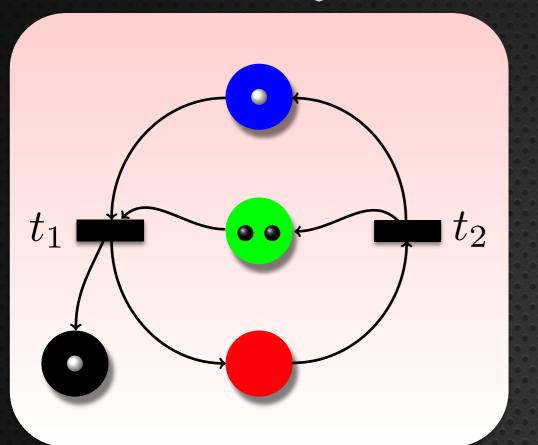
 $\begin{array}{c} \bullet \bullet \bullet \bullet \\ \bullet \bullet \bullet \bullet \end{array} \begin{array}{c} t_1 \\ \bullet \bullet \bullet \bullet \end{array}$

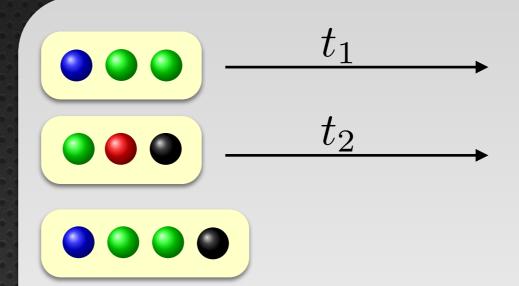


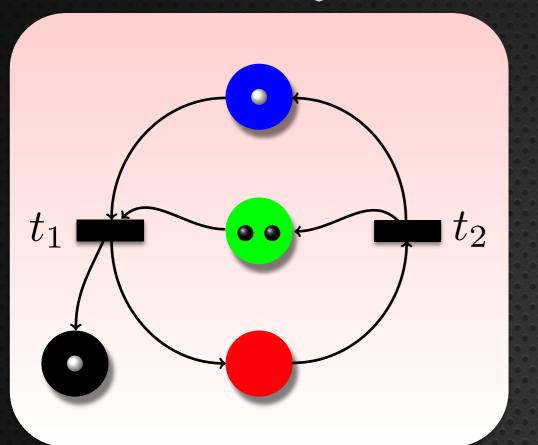
 $\begin{array}{c} \bullet \bullet \bullet \bullet \\ \bullet \bullet \bullet \bullet \end{array} \begin{array}{c} t_1 \\ \bullet \bullet \bullet \bullet \end{array}$

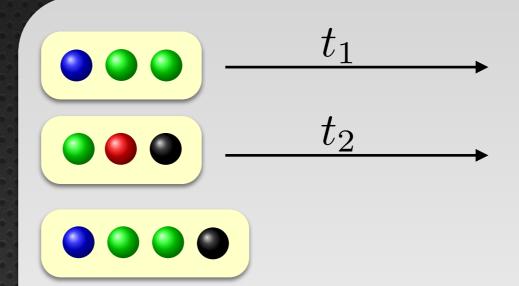


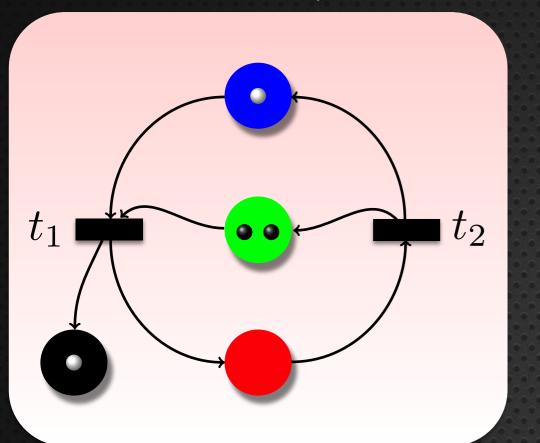


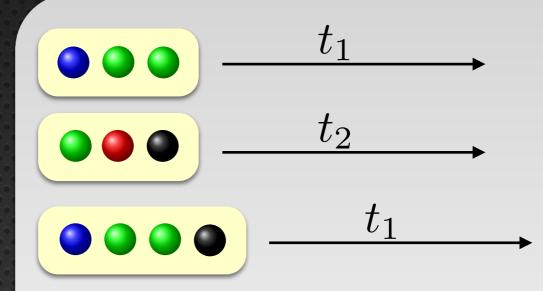


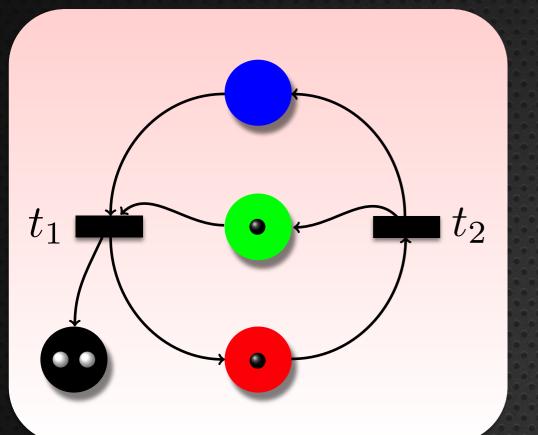


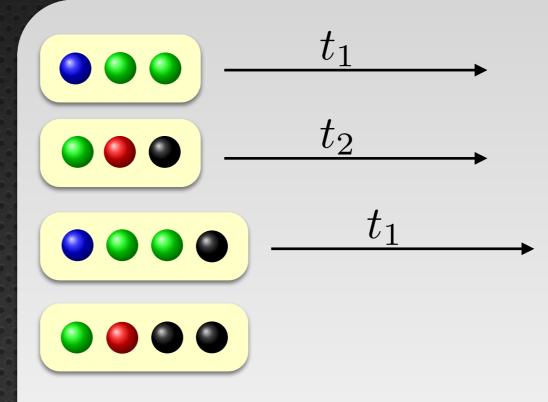


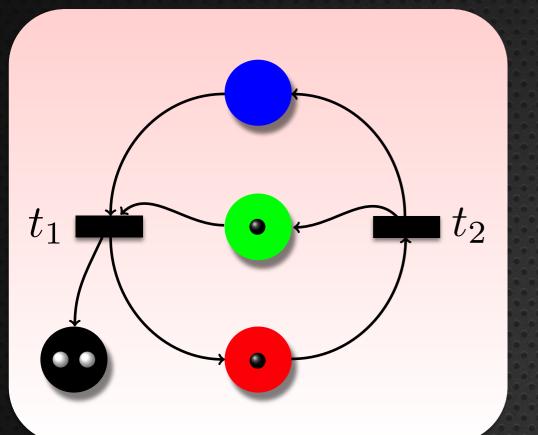


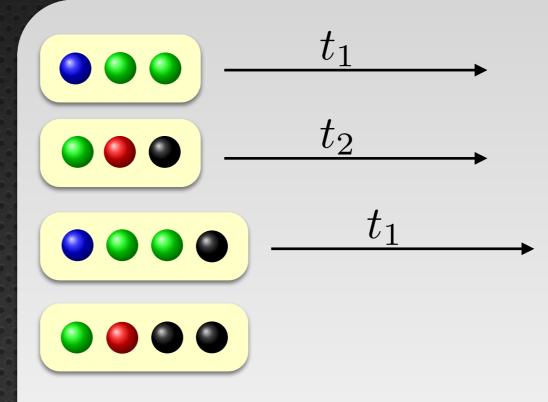


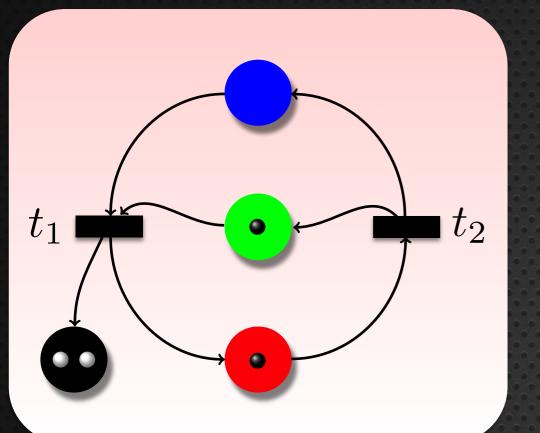


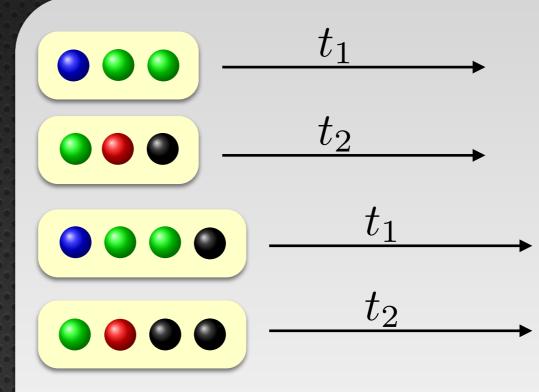


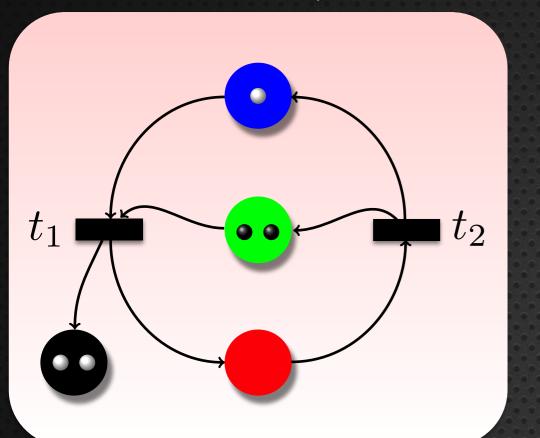


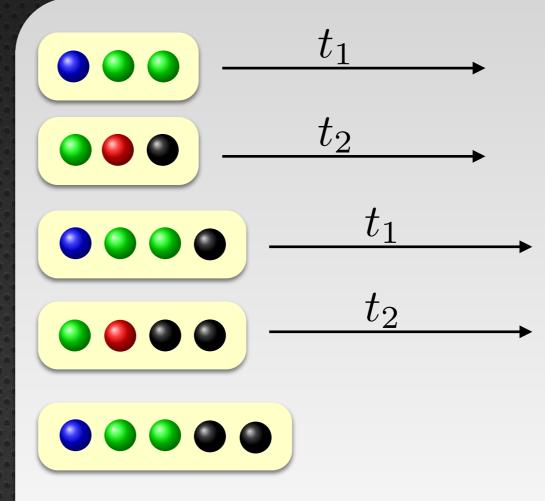


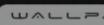


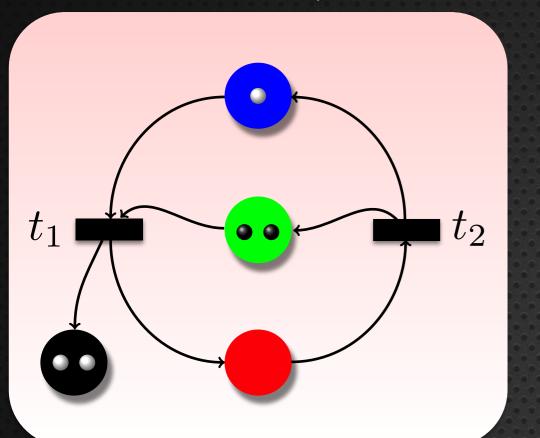


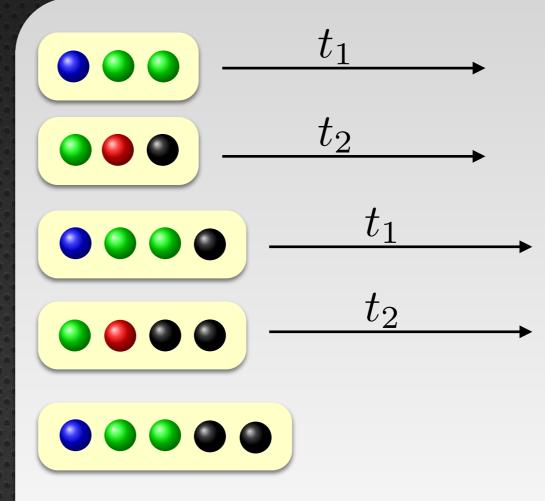


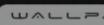


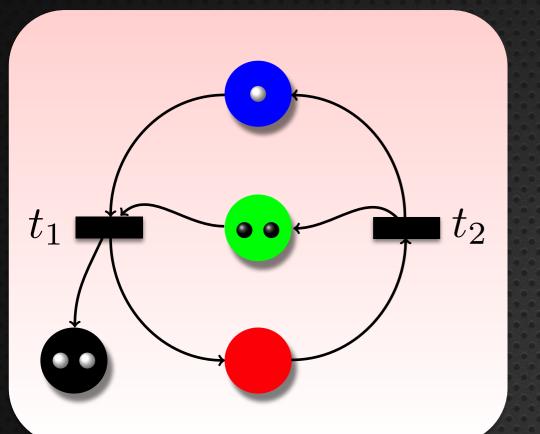


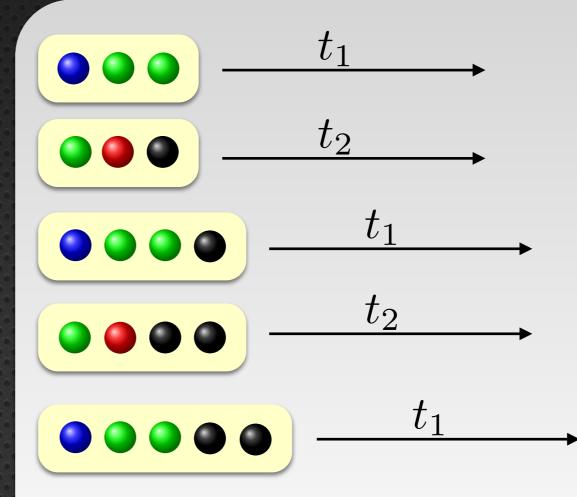




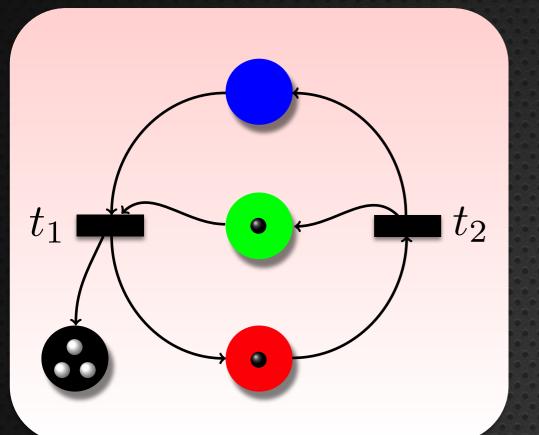


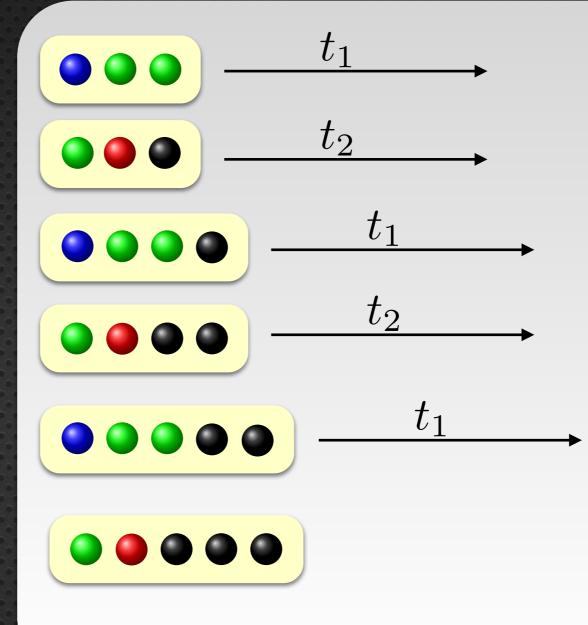






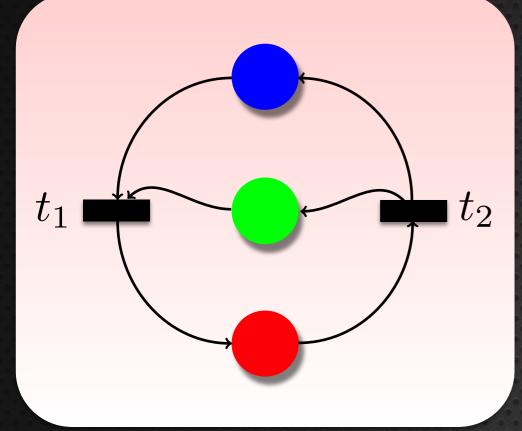
R

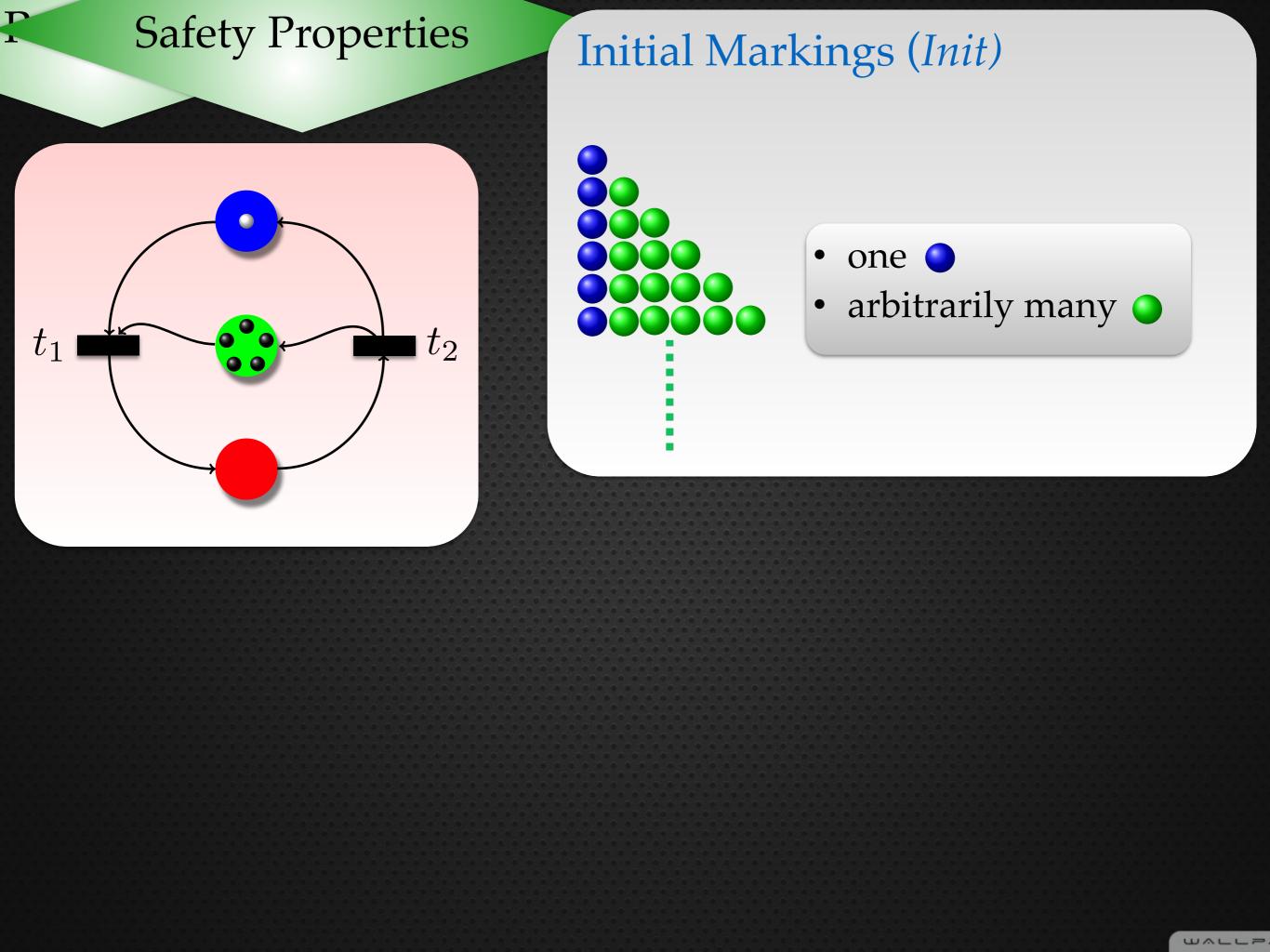


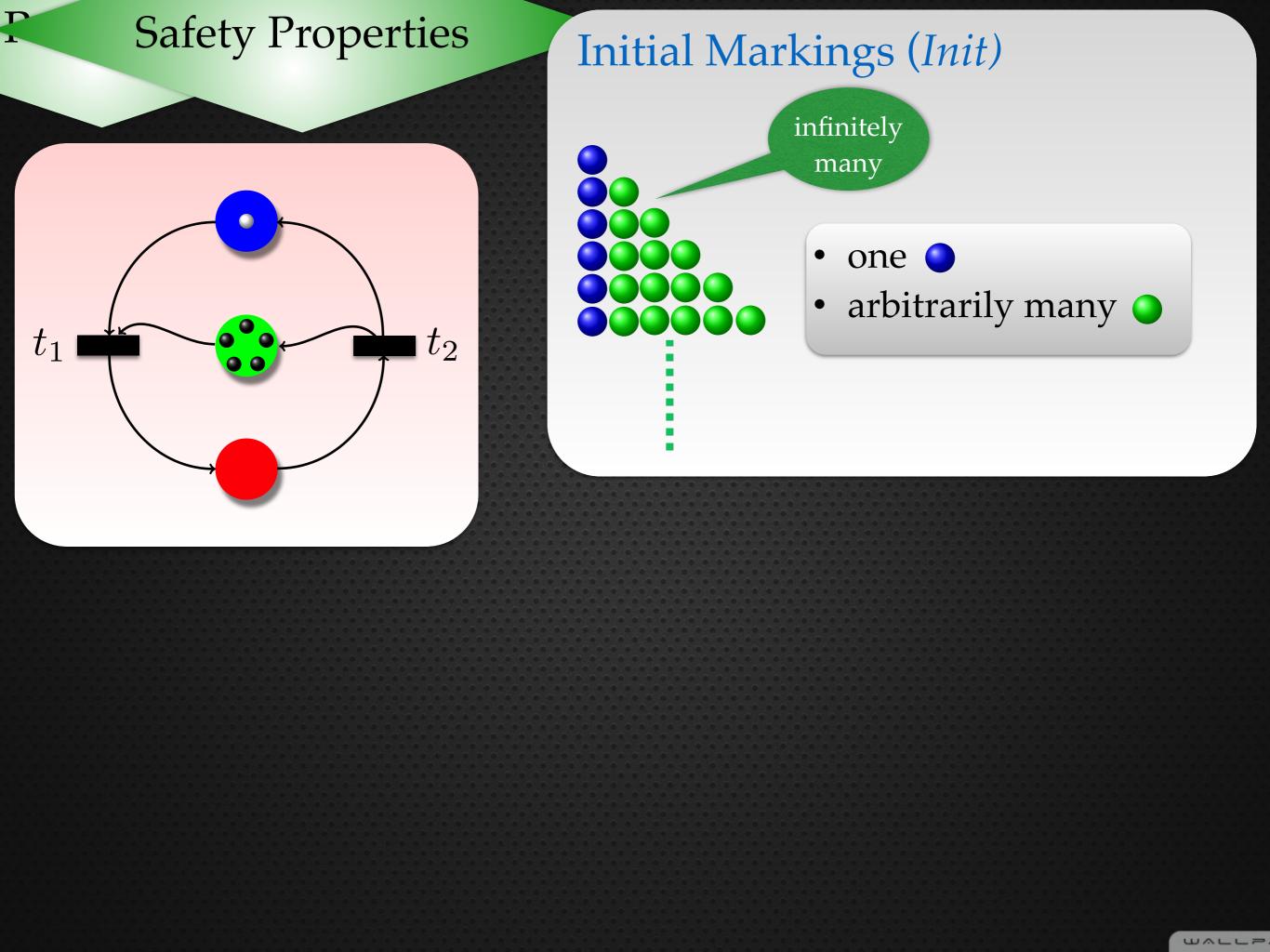


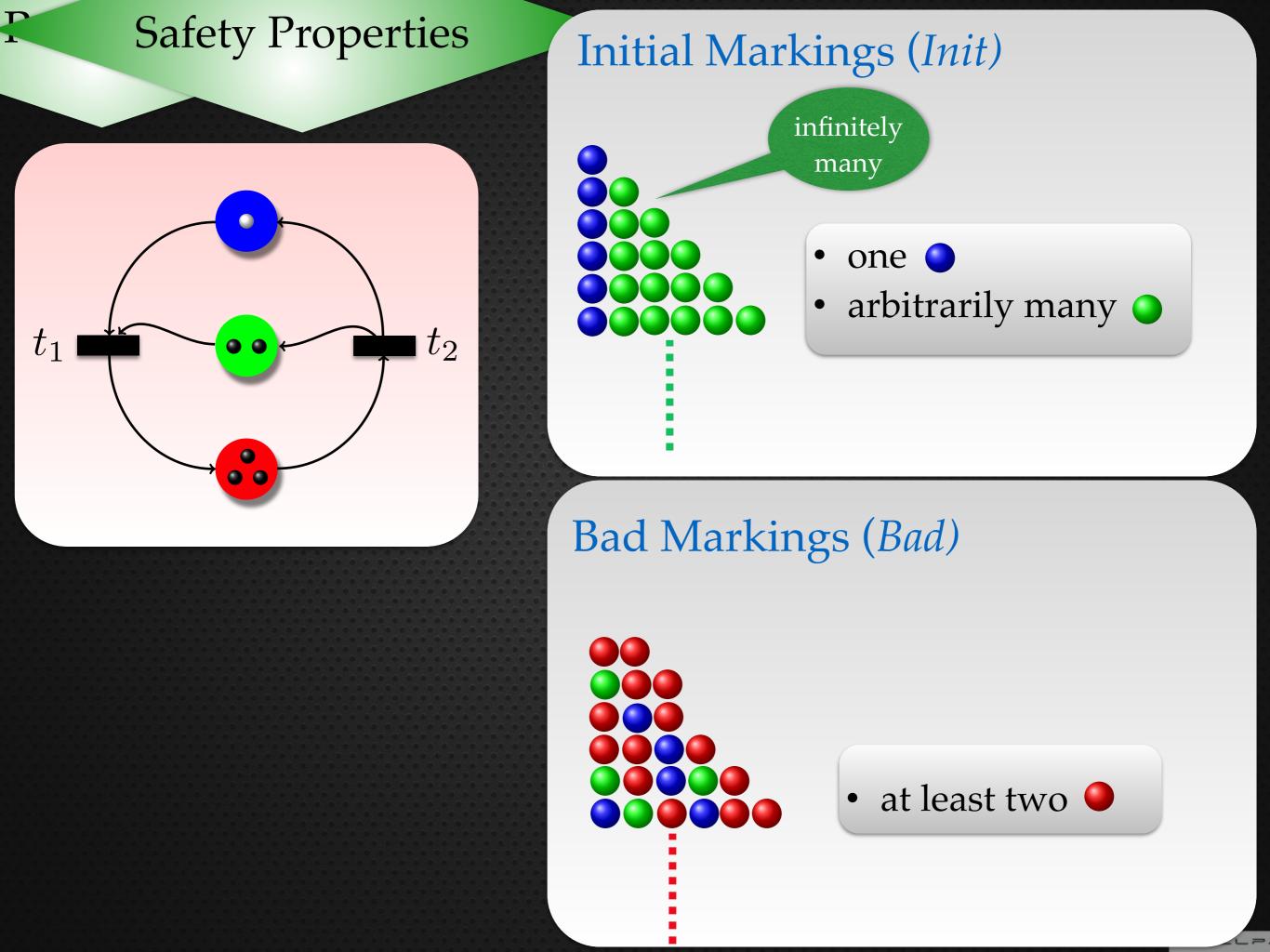
Safety Properties

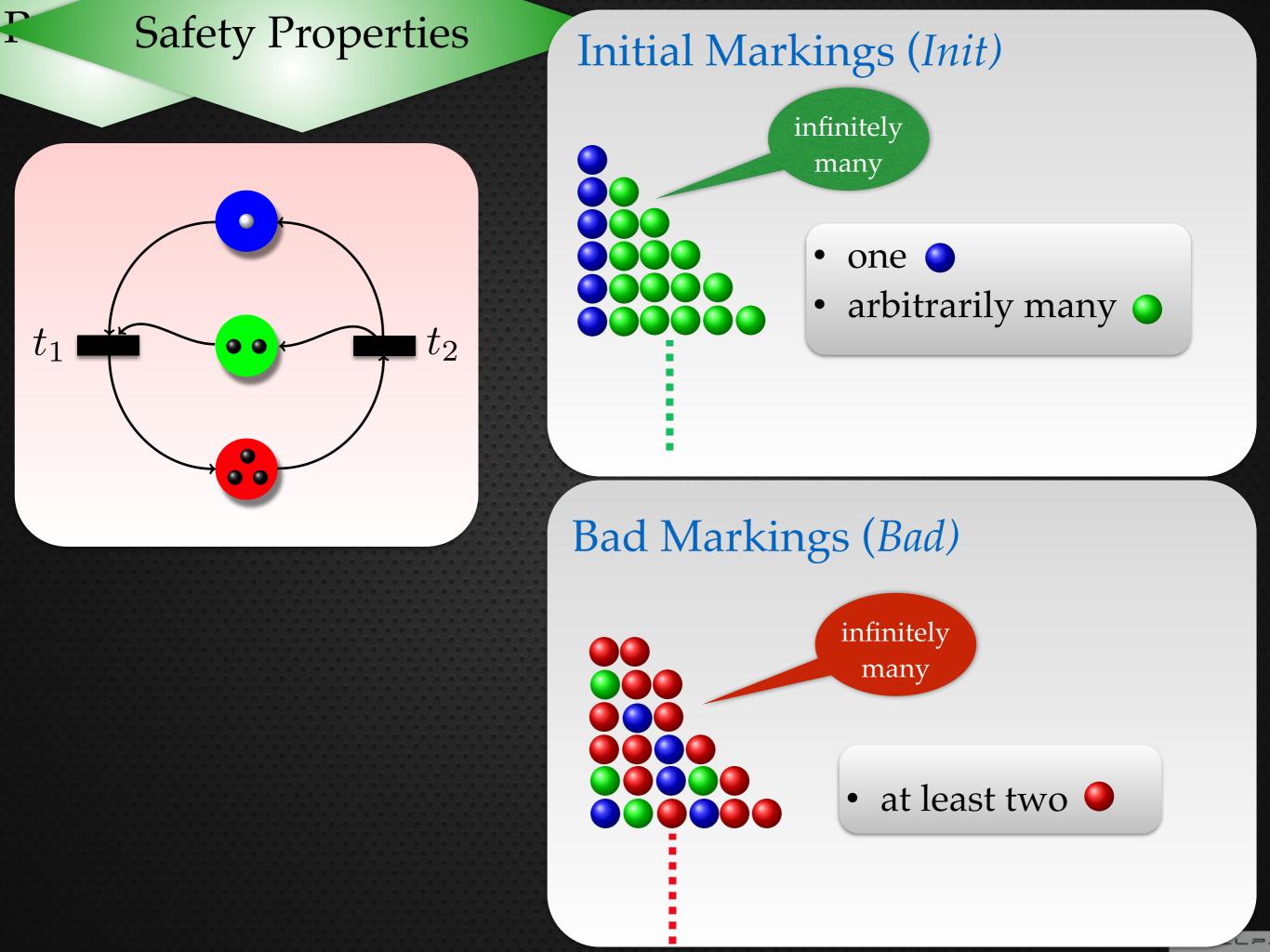
R

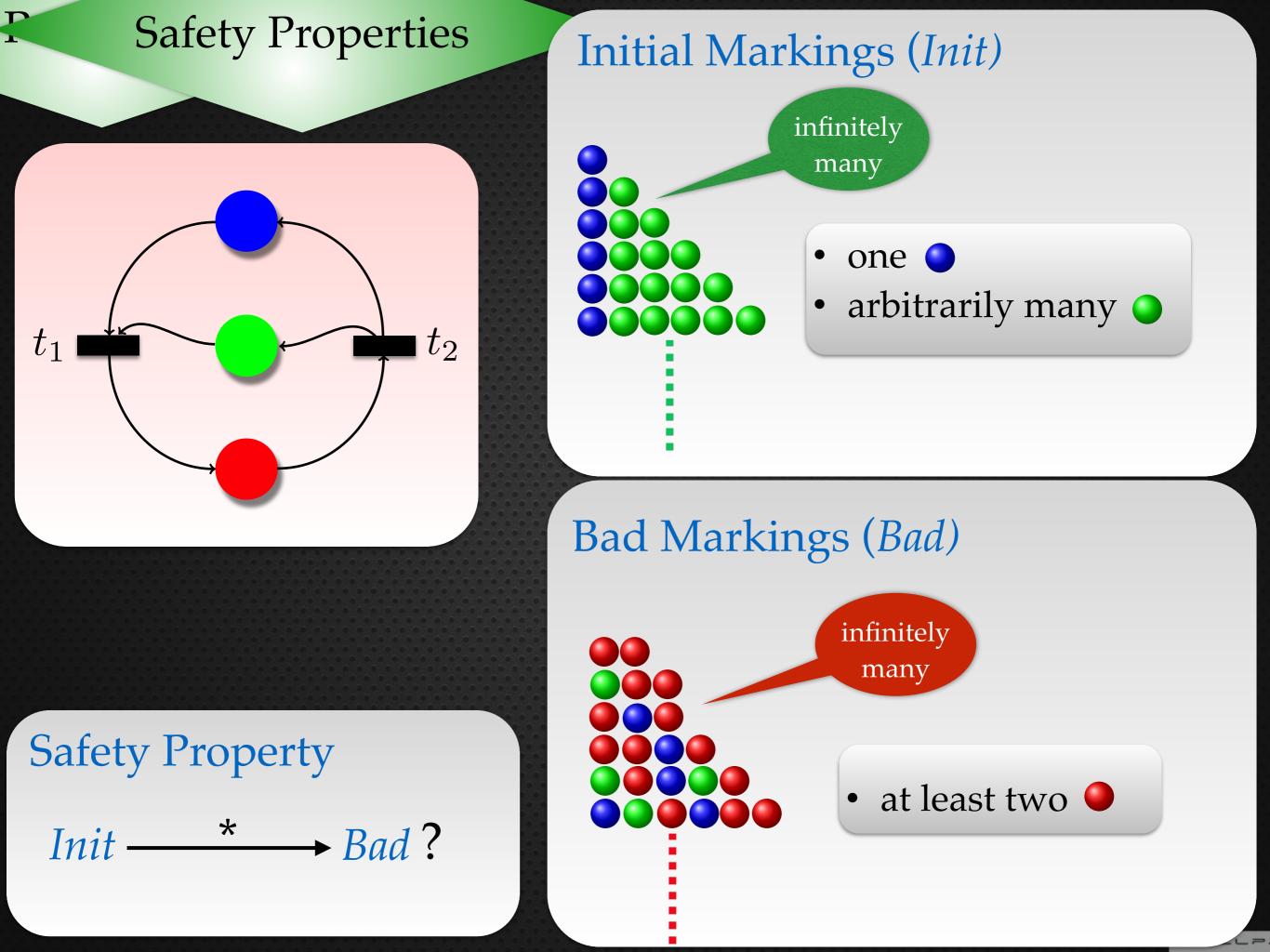


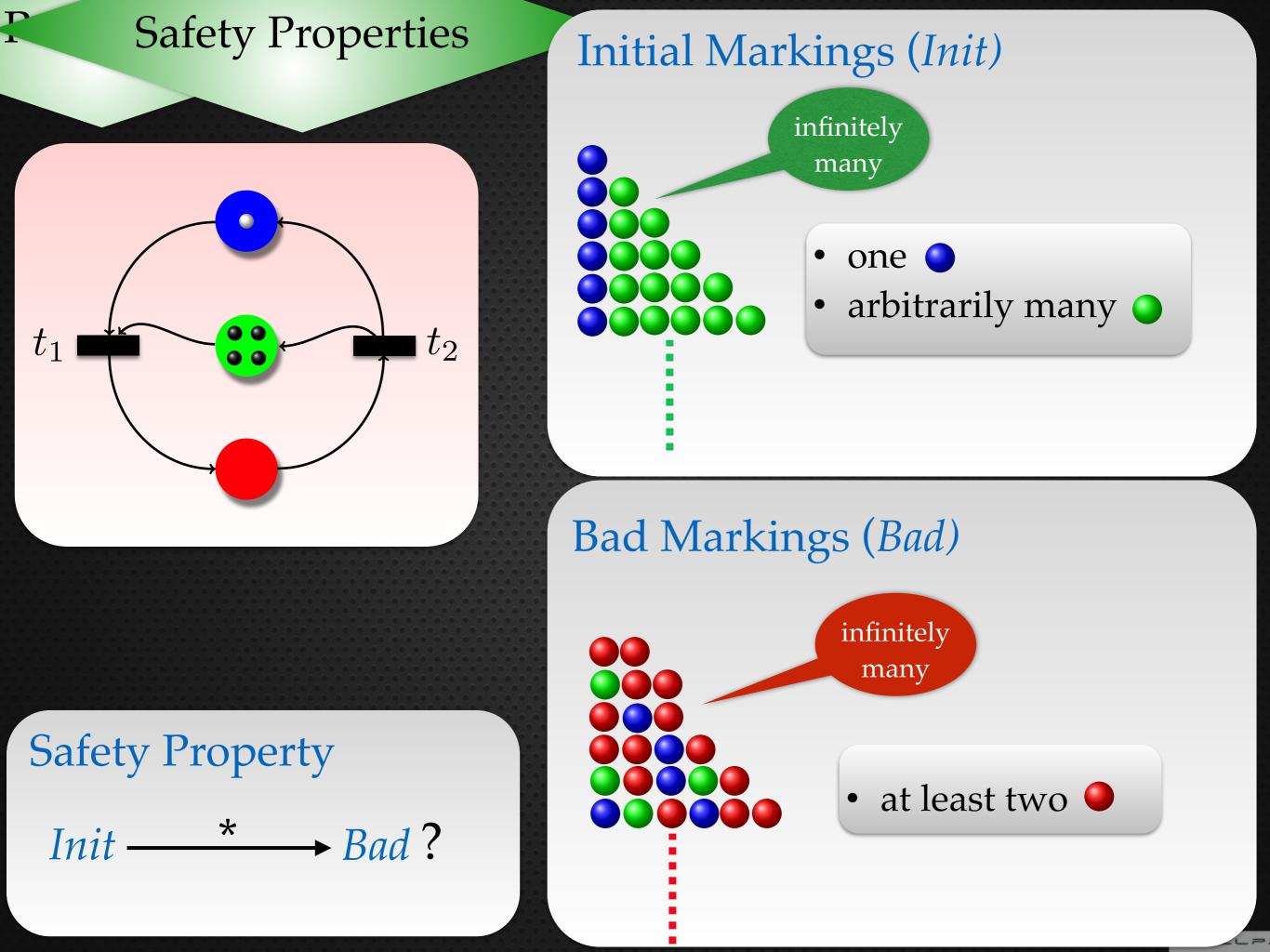


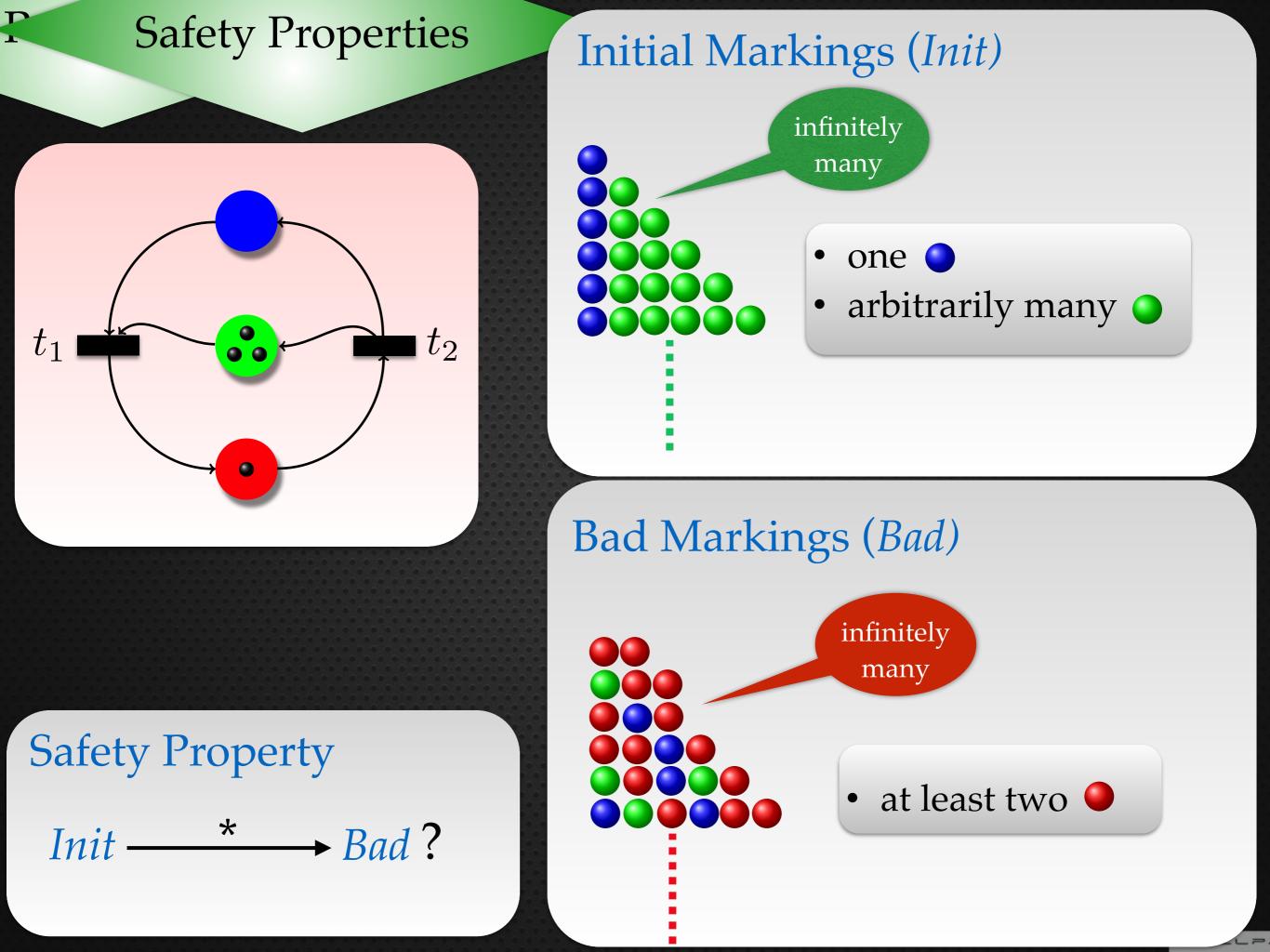


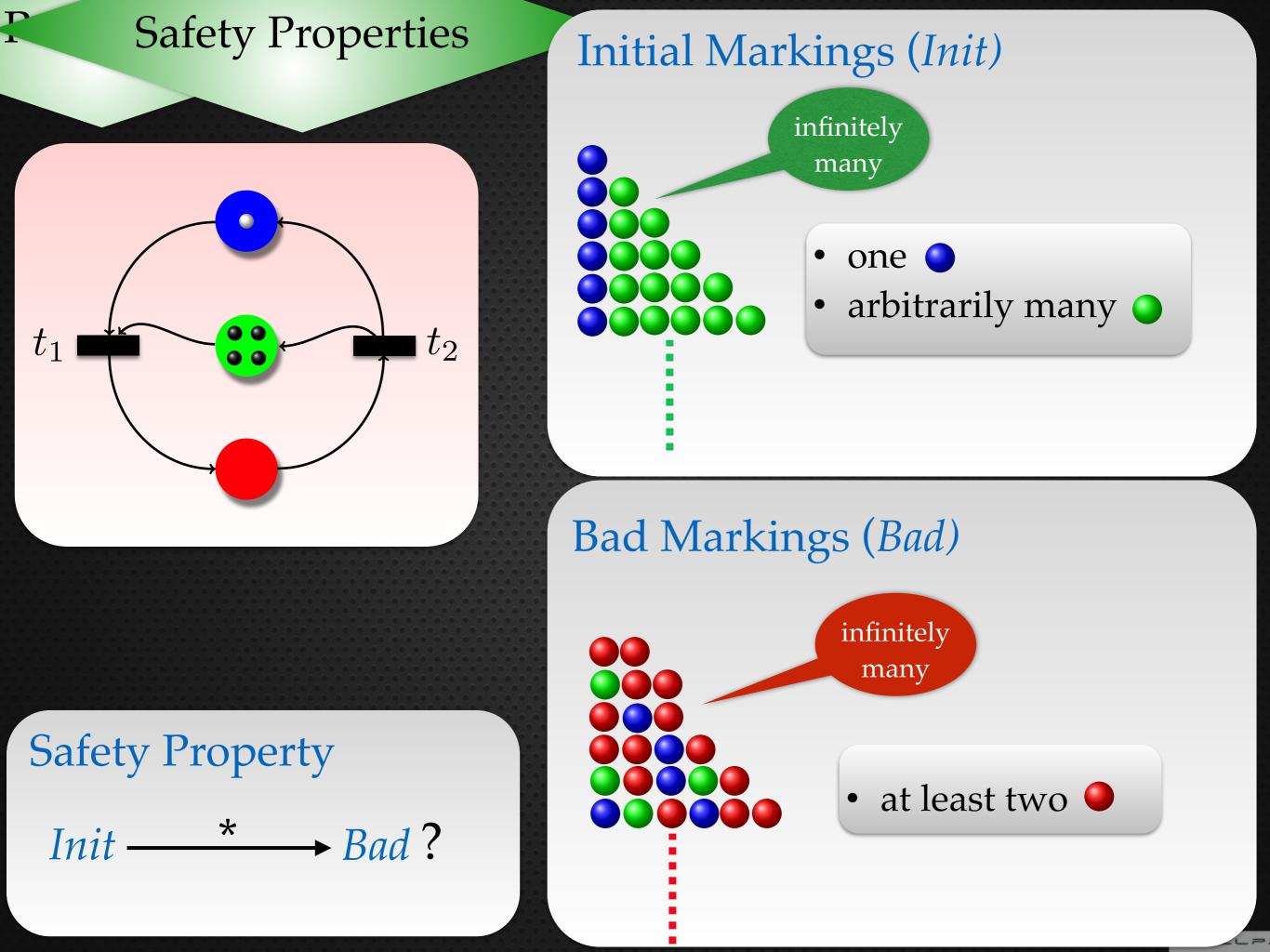


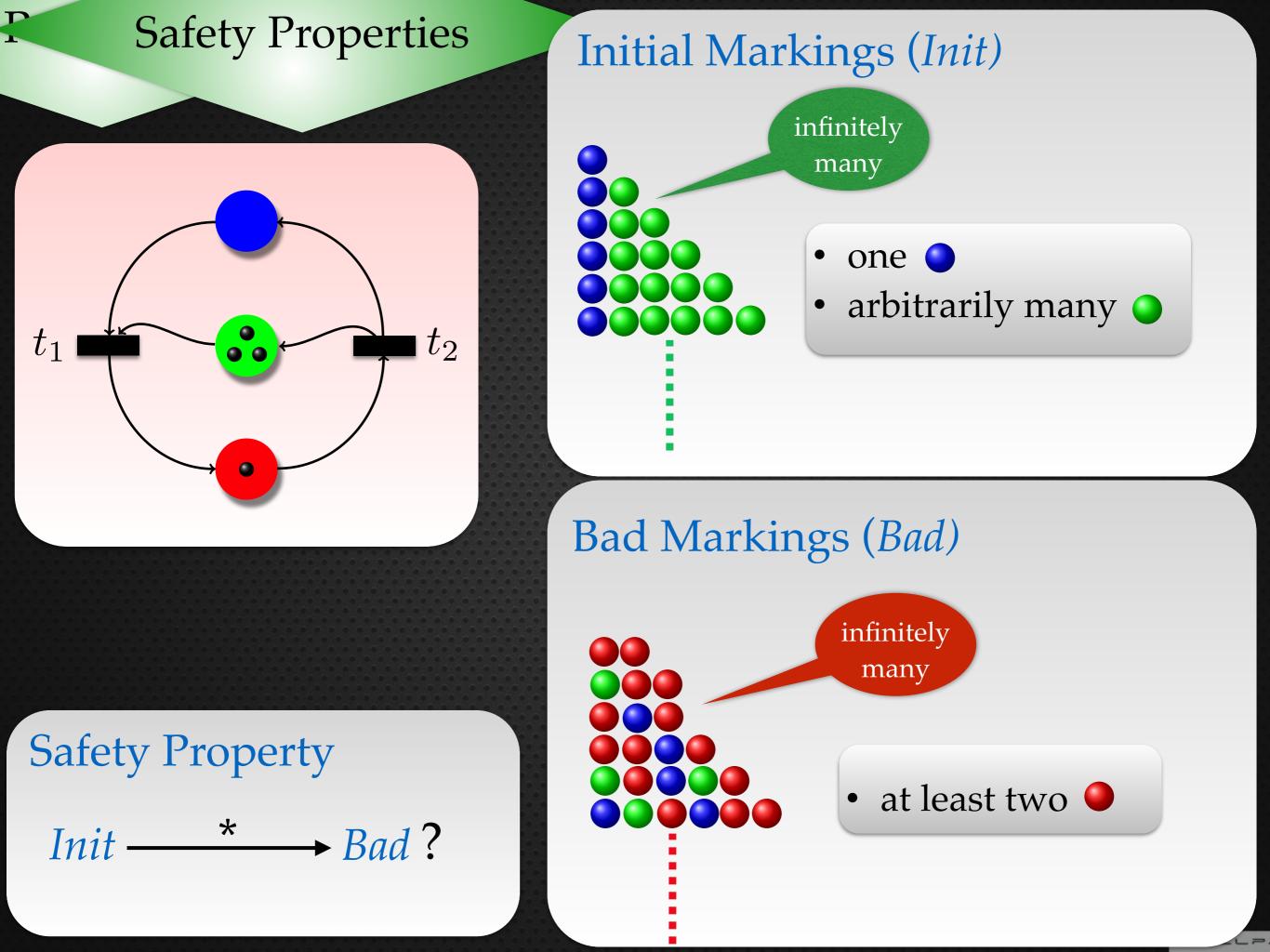


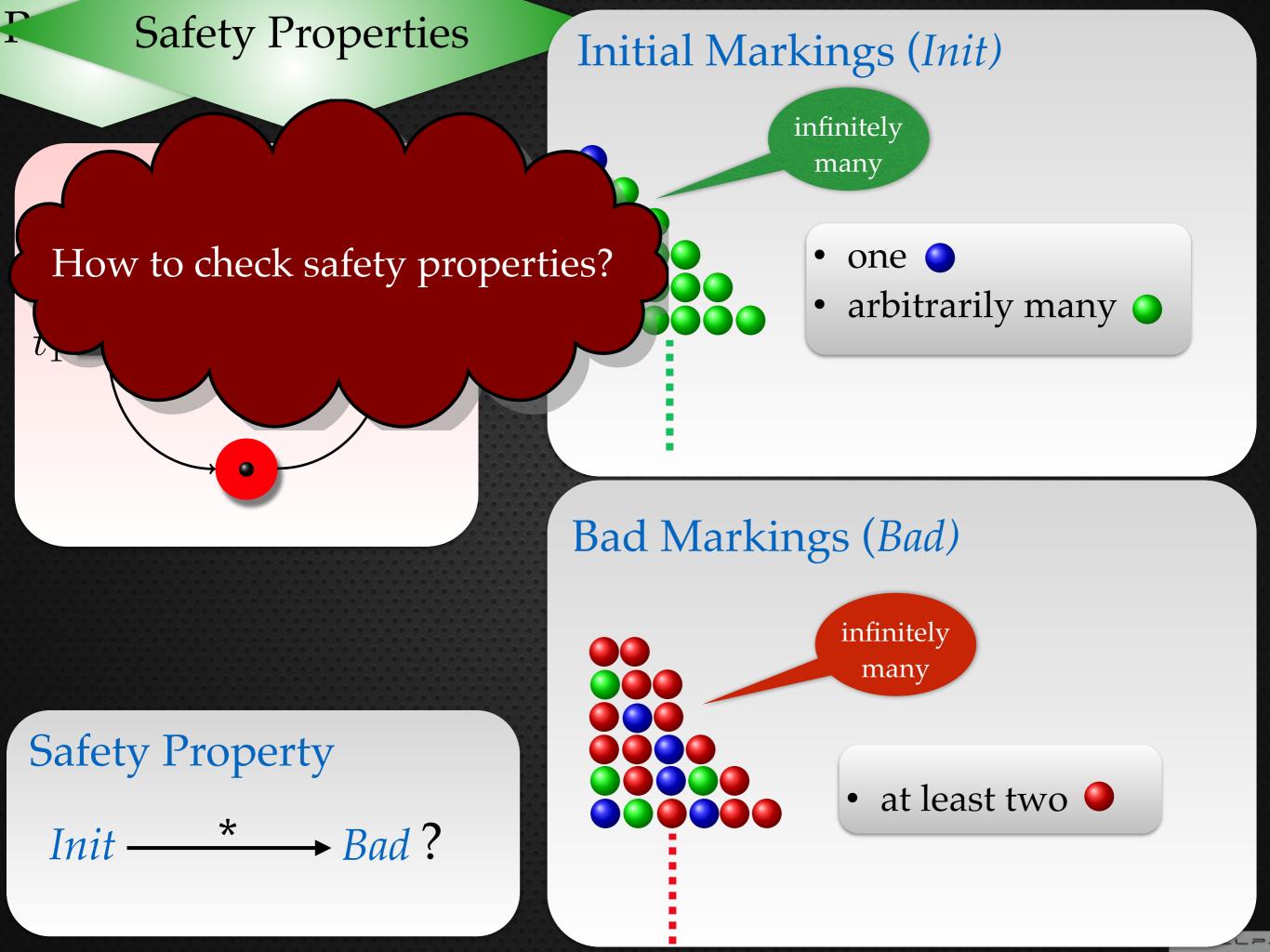


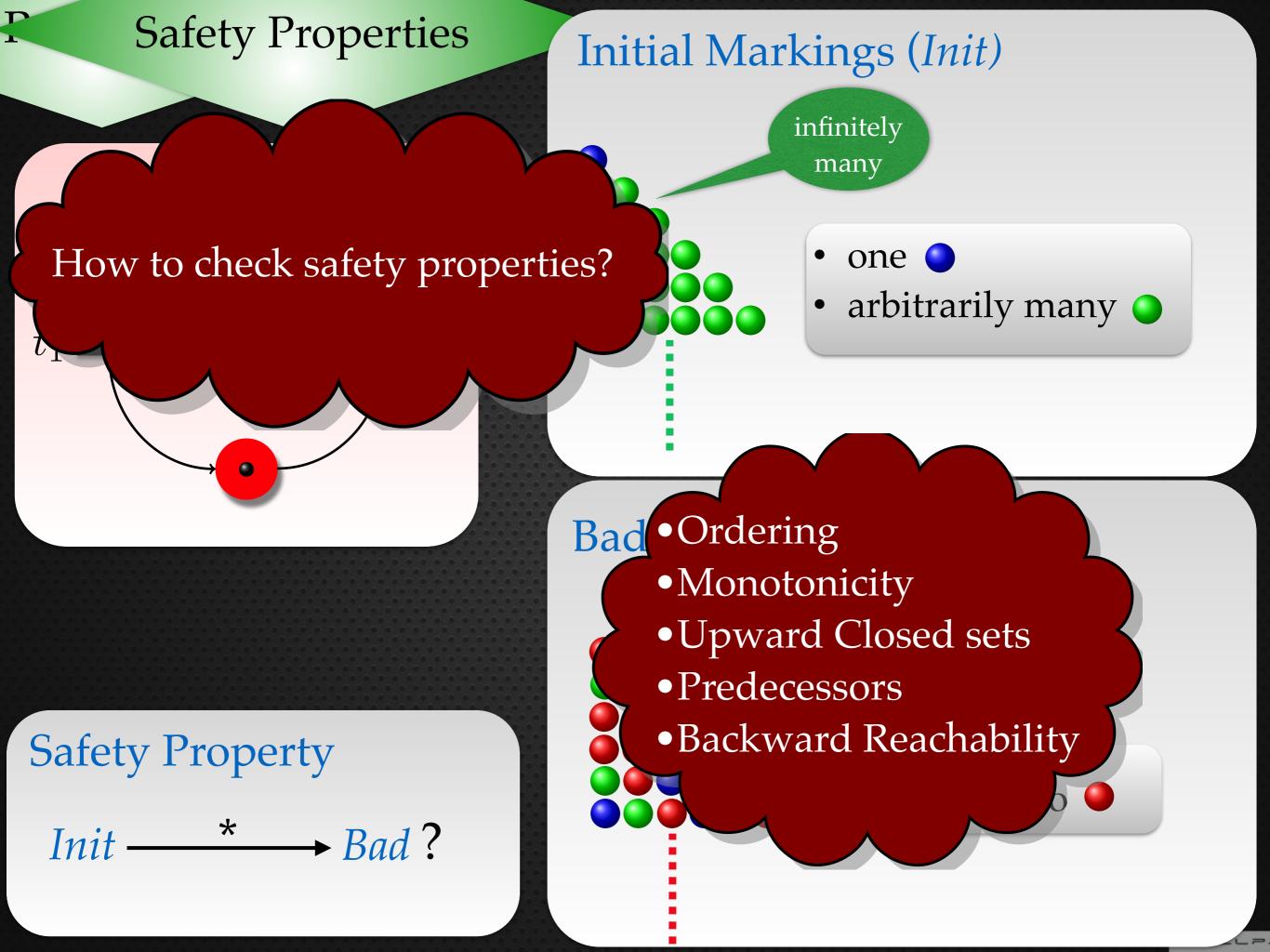












Model

Configurations

Transitions

Ordering

Monotonicity

Upward Closed Sets

Computing Predecessors

Backward Reachability

Model

Configurations

Transitions

Ordering

Monotonicity

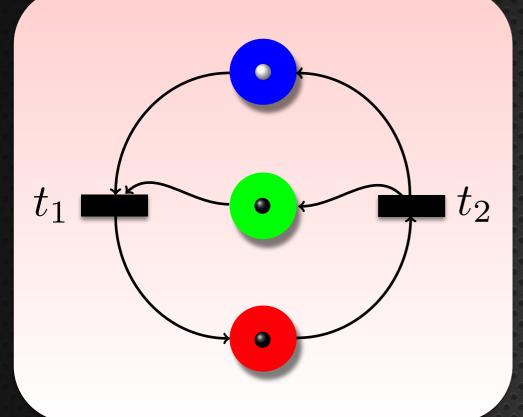
Upward Closed Sets

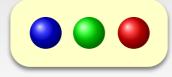
Computing Predecessors

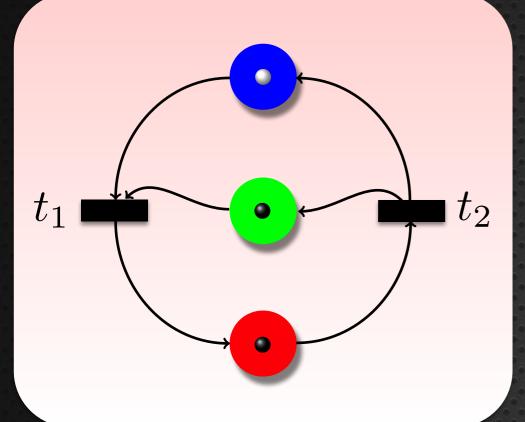
Backward Reachability

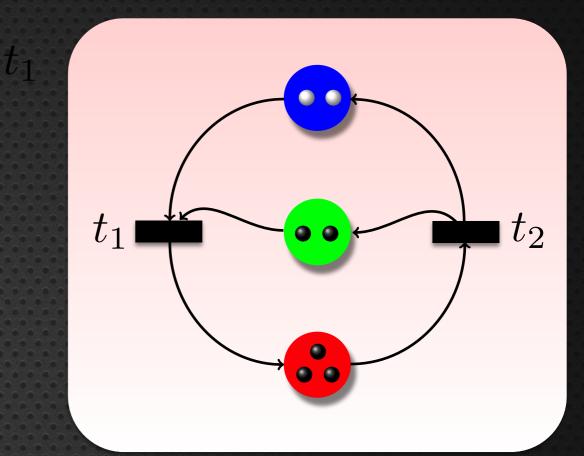
Ordering

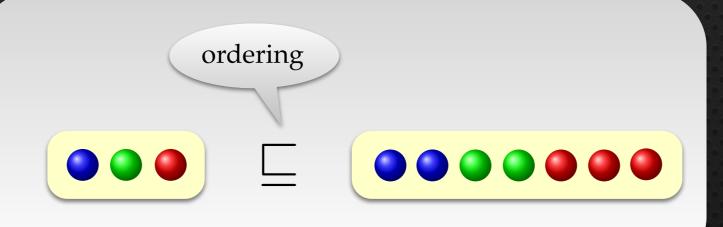
Pet











Model

Configurations

Transitions

Ordering

Monotonicity

Upward Closed Sets

Computing Predecessors

Backward Reachability

Model

Configurations

Transitions

Ordering

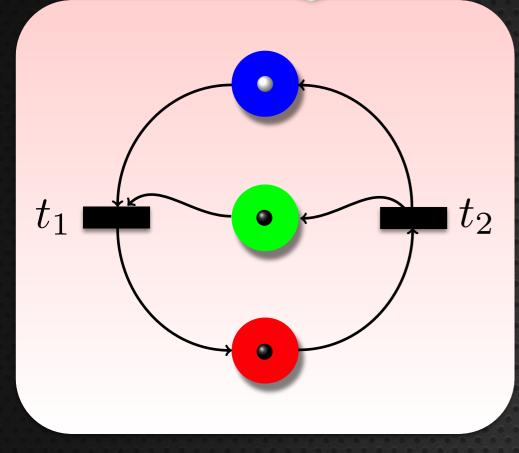
Monotonicity

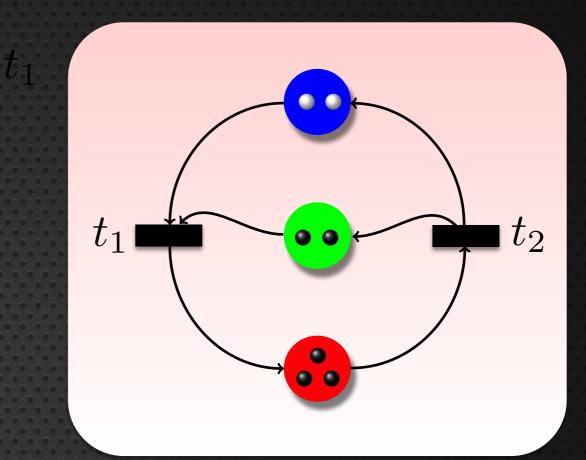
Upward Closed Sets

Computing Predecessors

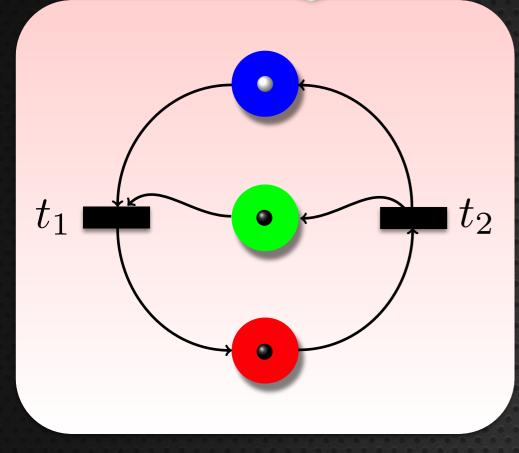
Backward Reachability

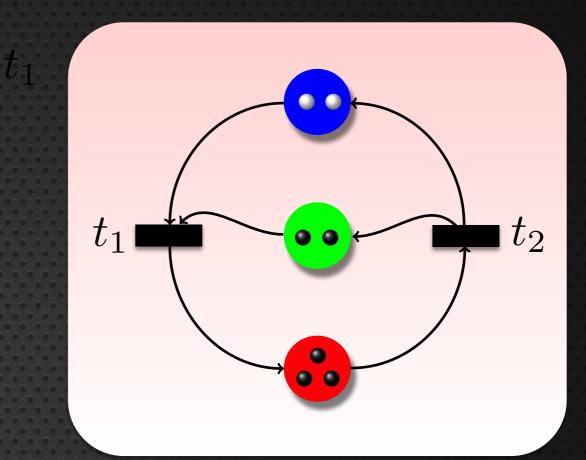
Per



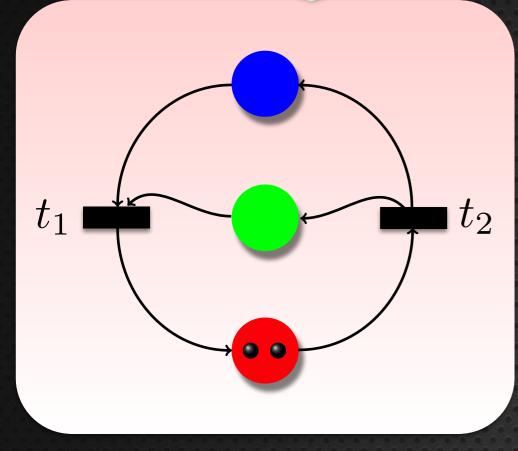


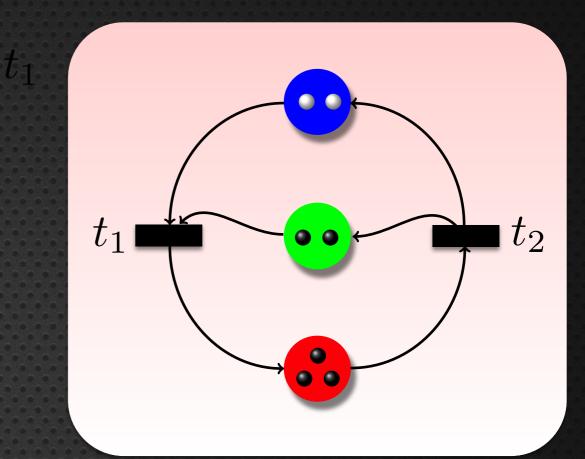
Per

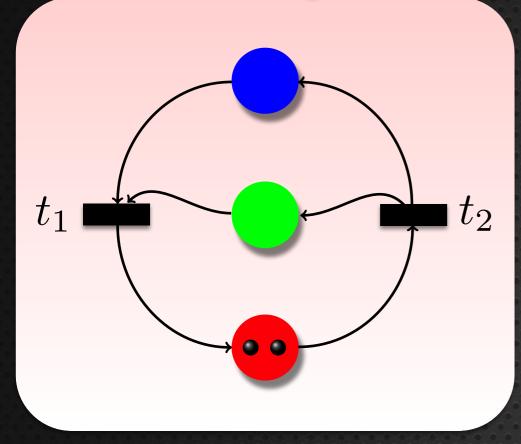


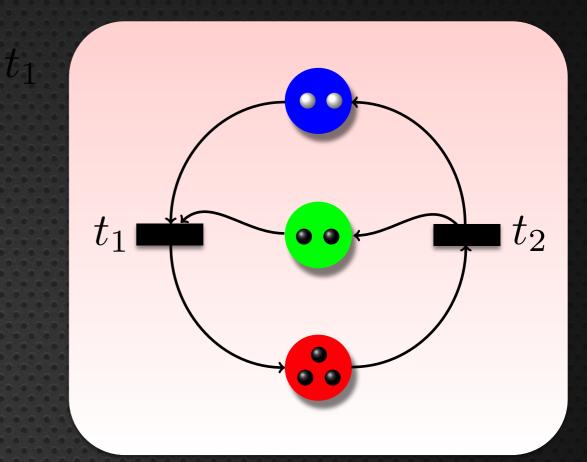


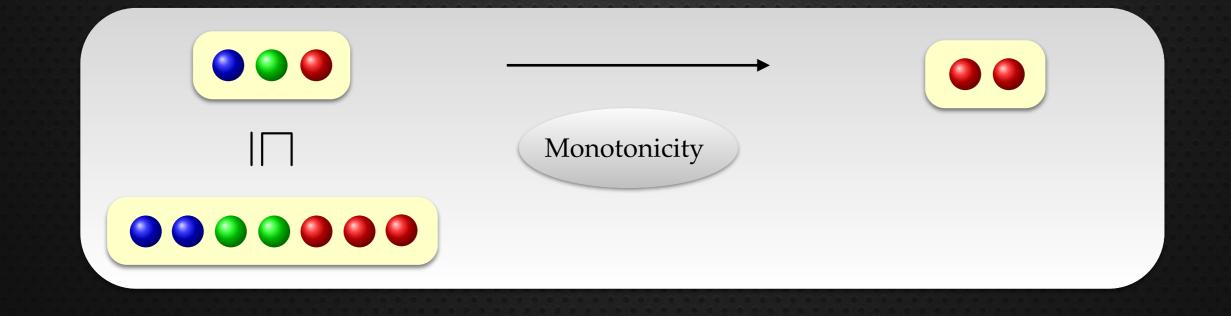
Per

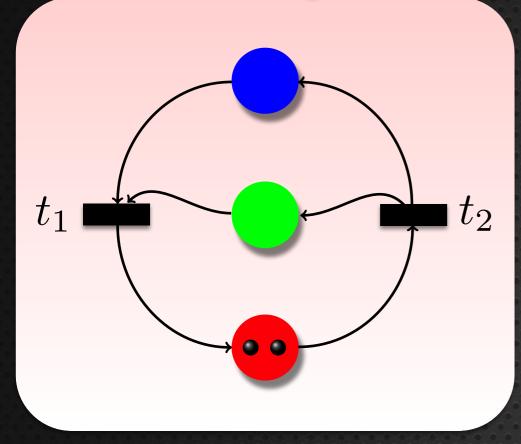


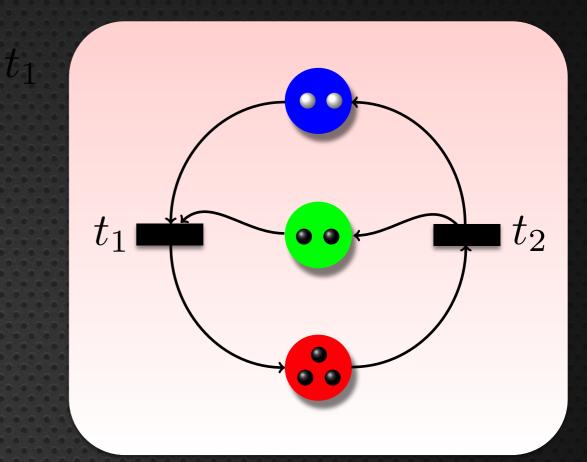


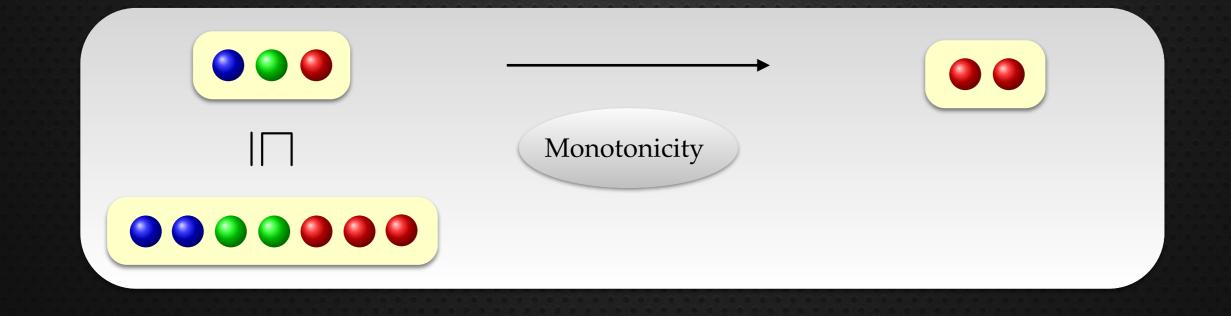


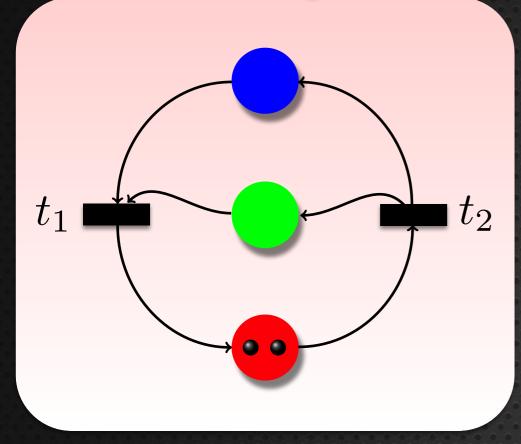


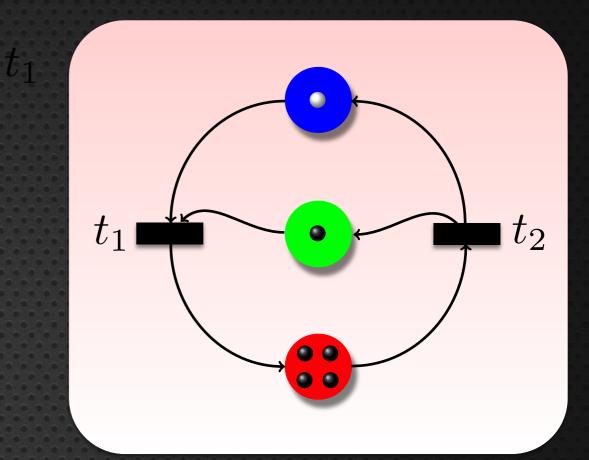


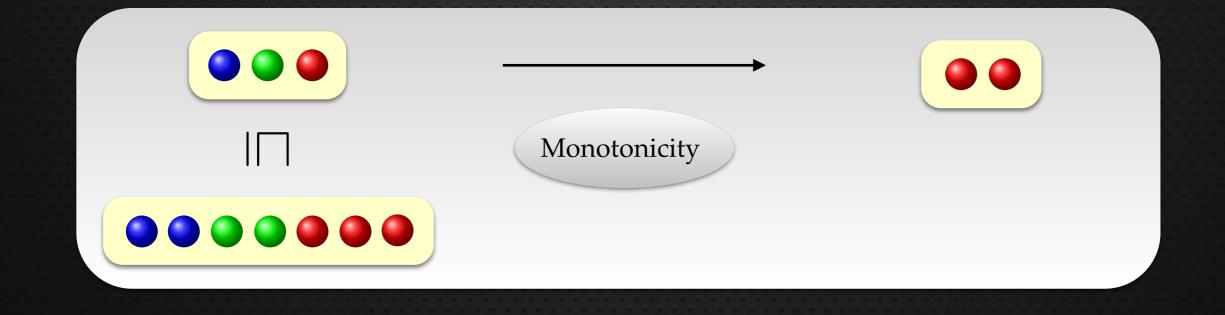




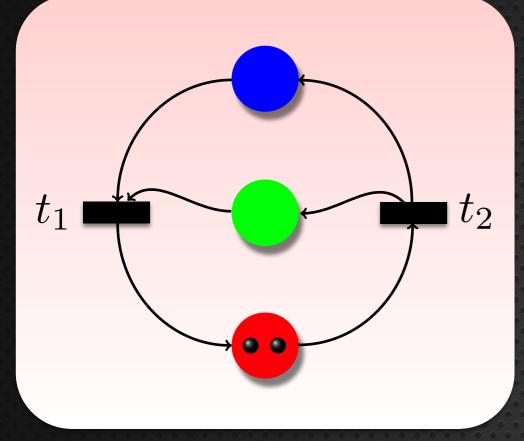


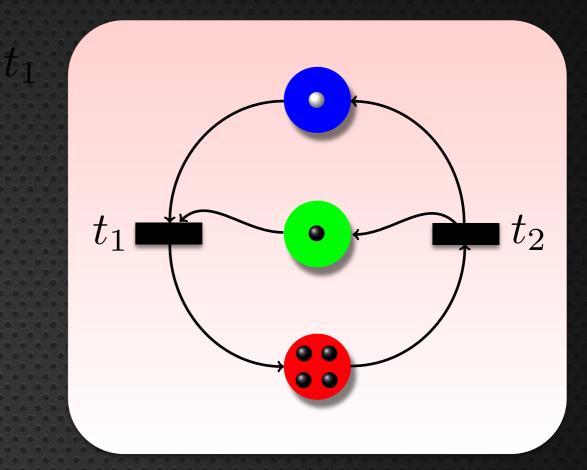


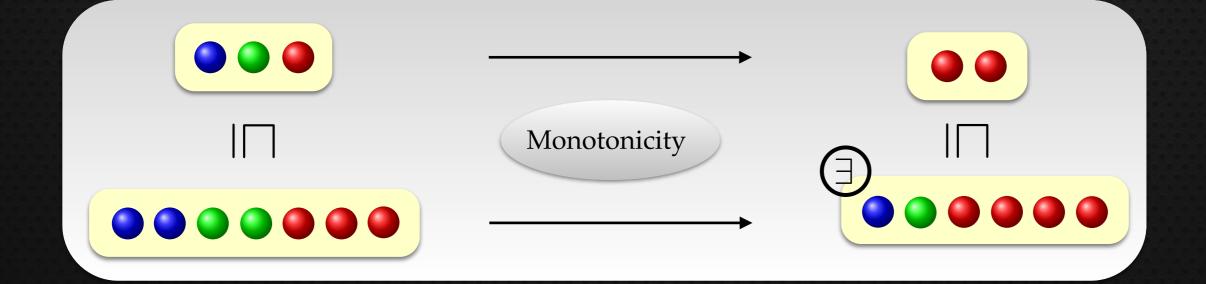




Per





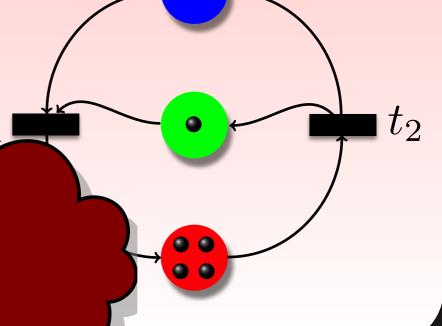


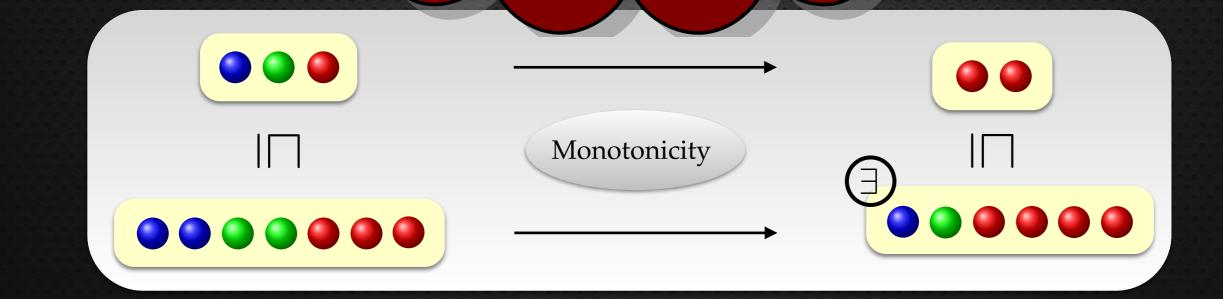
0 0

Pe

 t_1

larger configurations "simulate" smaller configurations





Model

Configurations

Transitions

Ordering

Monotonicity

Upward Closed Sets

Computing Predecessors

Backward Reachability

Model

Configurations

Transitions

Ordering

Monotonicity

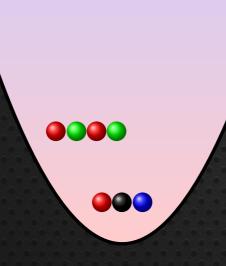
Upward Closed Sets

Computing Predecessors

Backward Reachability

Upward-Closed Set

- if $m_1 \in U$ and $m_1 \sqsubseteq m_2$
- then $m_2 \in U$

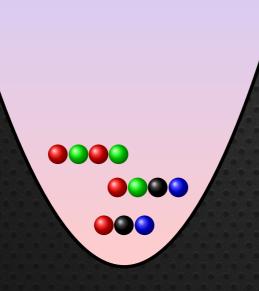


Upward-Closed Set

- if $m_1 \in U$ and $m_1 \sqsubseteq m_2$
- then $m_2 \in U$

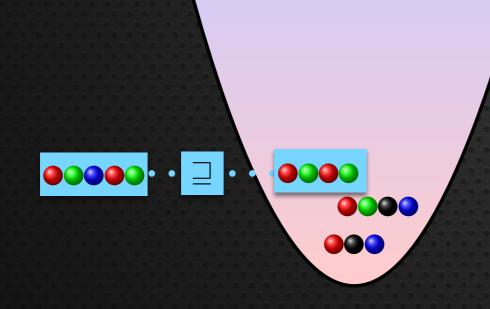
Upward-Closed Set

- if $m_1 \in U$ and $m_1 \sqsubseteq m_2$
- then $m_2 \in U$



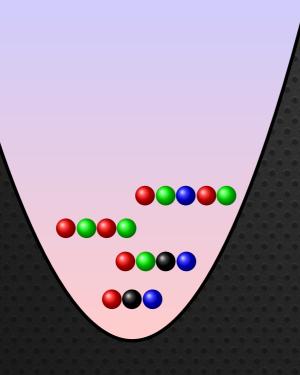
Upward-Closed Set

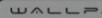
- if $m_1 \in U$ and $m_1 \sqsubseteq m_2$
- then $m_2 \in U$



Upward-Closed Set

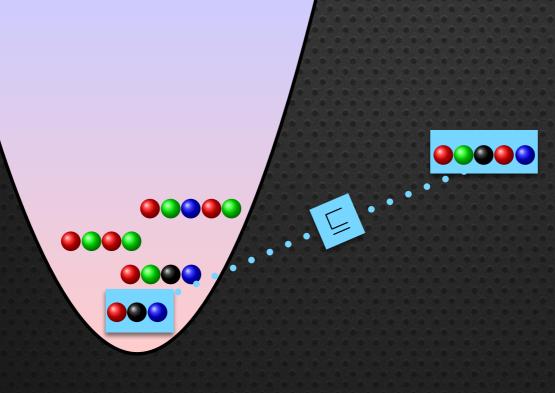
- if $m_1 \in U$ and $m_1 \sqsubseteq m_2$
- then $m_2 \in U$

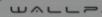




Upward-Closed Set

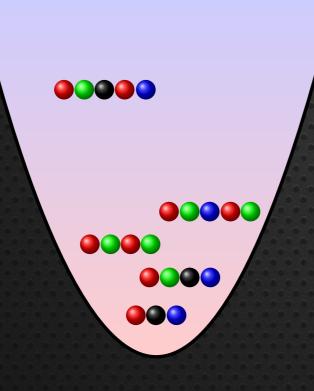
- if $m_1 \in U$ and $m_1 \sqsubseteq m_2$
- then $m_2 \in U$



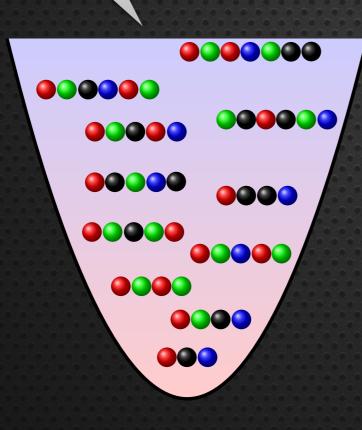


Upward-Closed Set

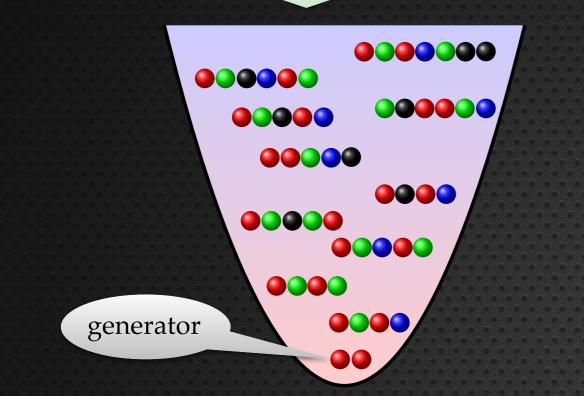
- if $m_1 \in U$ and $m_1 \sqsubseteq m_2$
- then $m_2 \in U$



Upward-Closed Set



- if $m_1 \in U$ and $m_1 \sqsubseteq m_2$
- then $m_2 \in U$



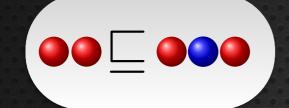
Upward Closed Set (UC)

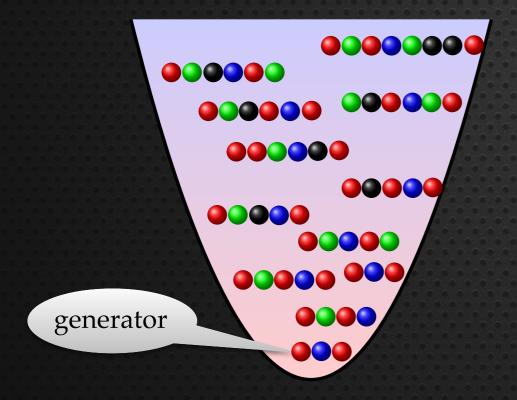
- if $m_1 \in U$ and $m_1 \sqsubseteq m_2$
- then $m_2 \in U$

critical section

Why UC?

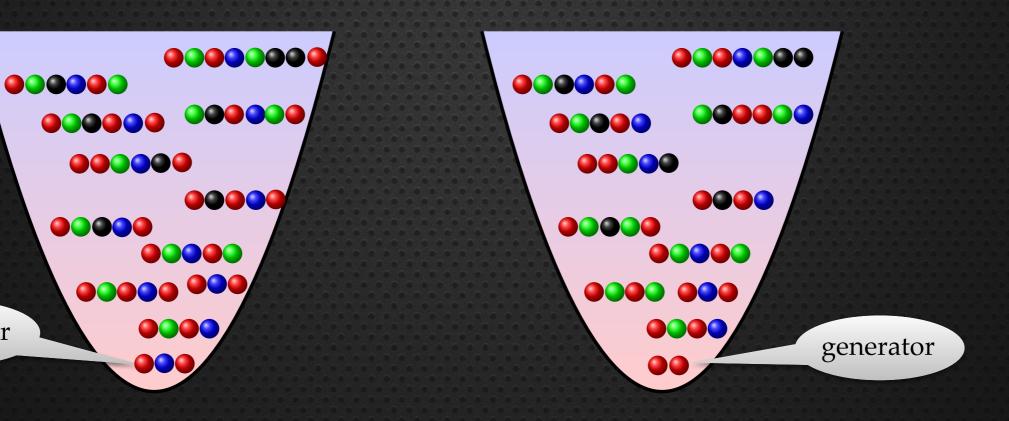
- Bad sets of markings are UC
 - checking safety properties = reachability of bad markings
- Uniquely characterized by generator
 - simple representation= finite multiset

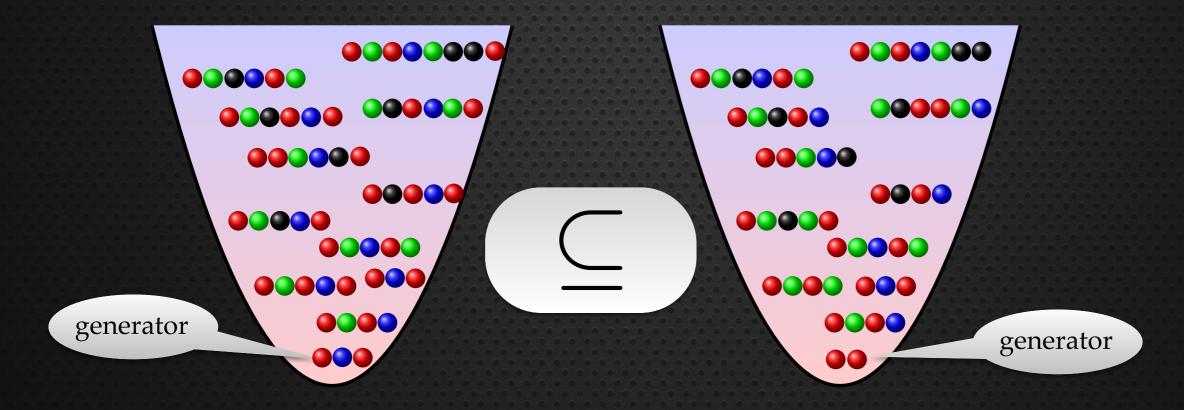




generator







Model

Configurations

Transitions

Ordering

Monotonicity

Upward Closed Sets

Computing Predecessors

Backward Reachability

Model

Configurations

Transitions

Ordering

Monotonicity

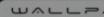
Upward Closed Sets

Computing Predecessors

Backward Reachability

Predecessors

Petr'



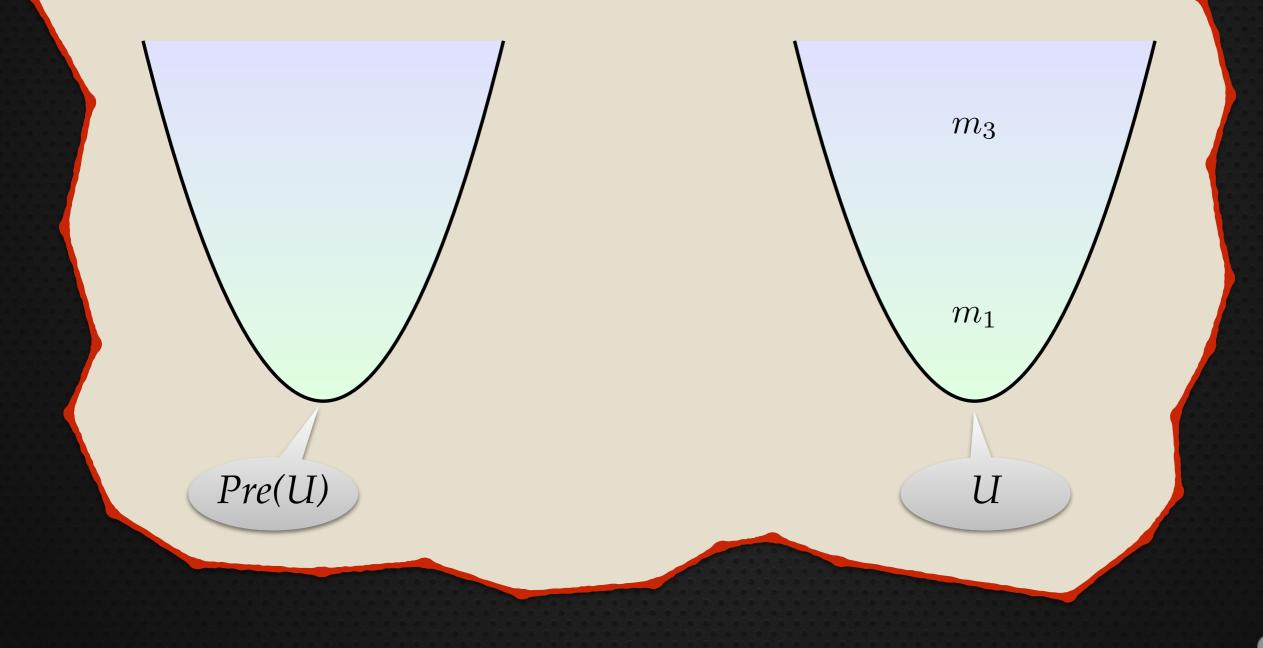
 m_3

 m_1

U

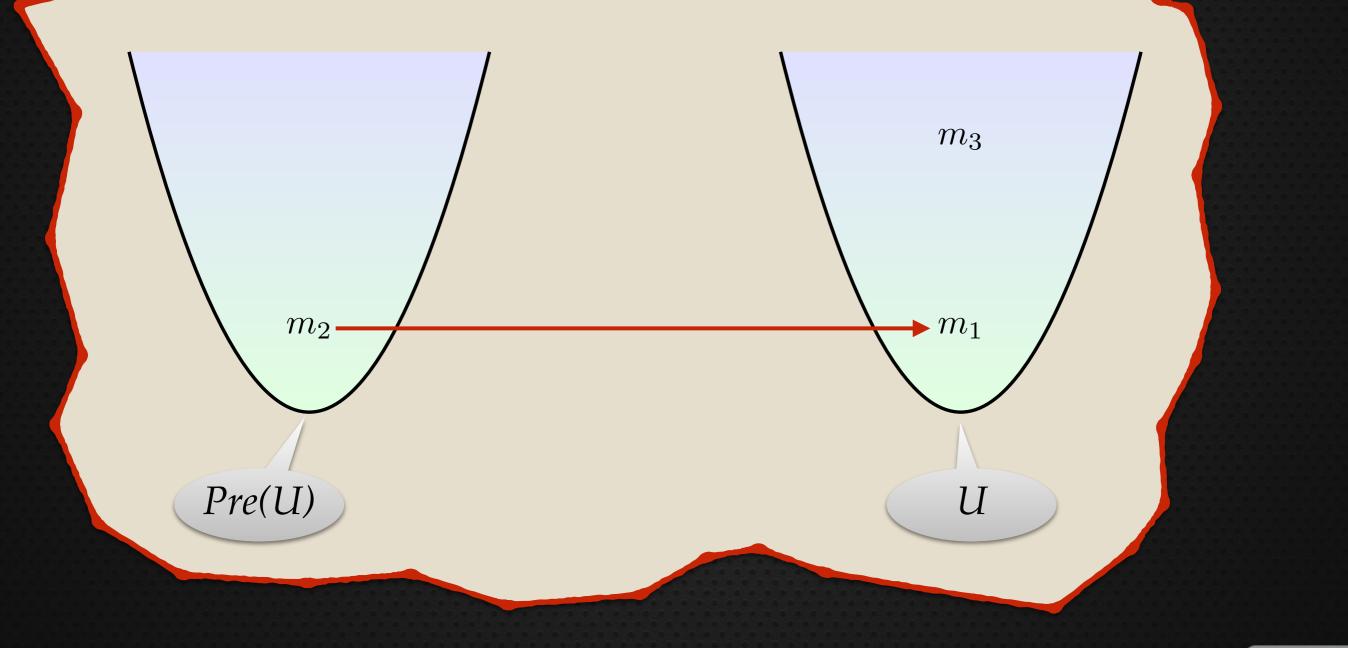
Predecessors

Petr'

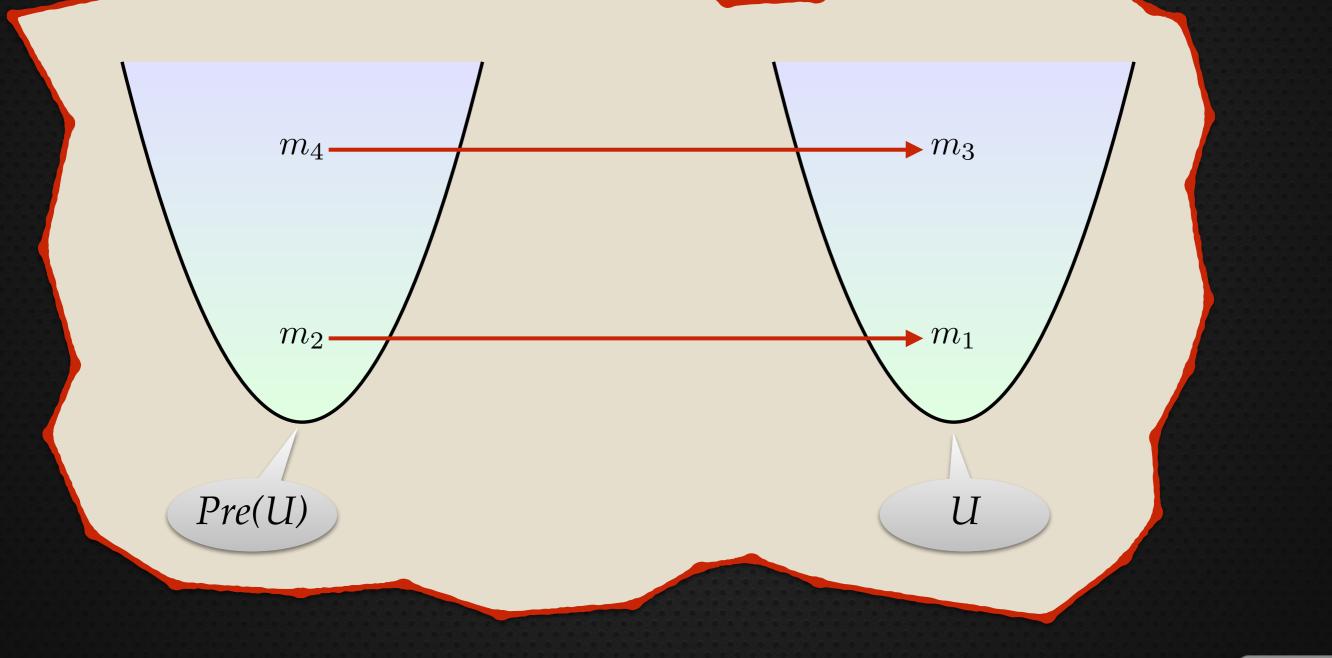


Predecessors

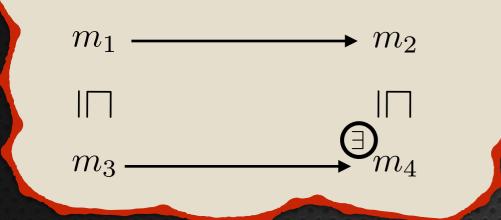
Pet"

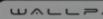


Pet"



Pet.

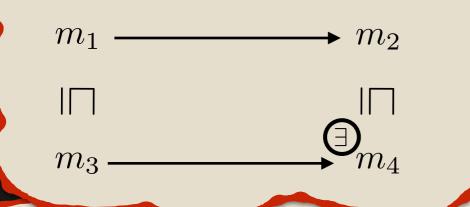




Pet*

Monotonicity: UC persevered by Pre

U



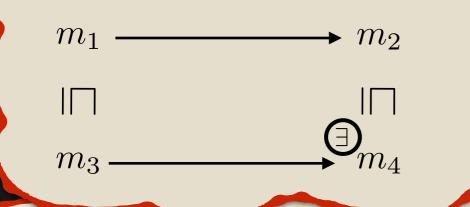
Pre(U) upward closed?

upward closed

Pet*

Monotonicity: UC persevered by Pre

U



 m_1

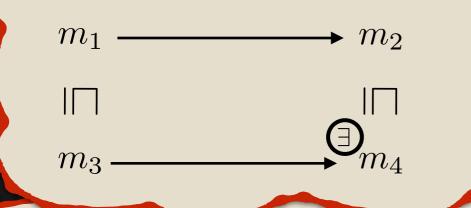
upward closed

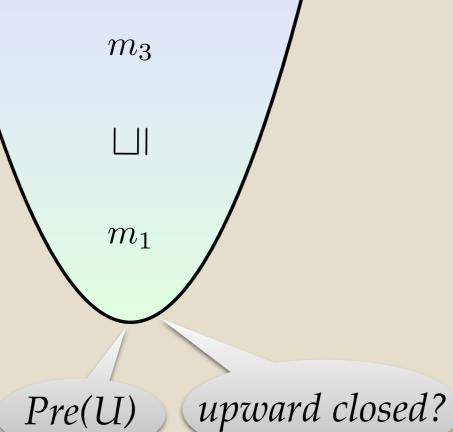
Pre(U) upward closed?

Pet-

Monotonicity: UC persevered by Pre

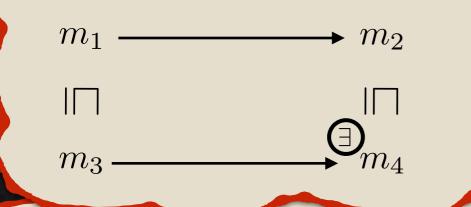
U

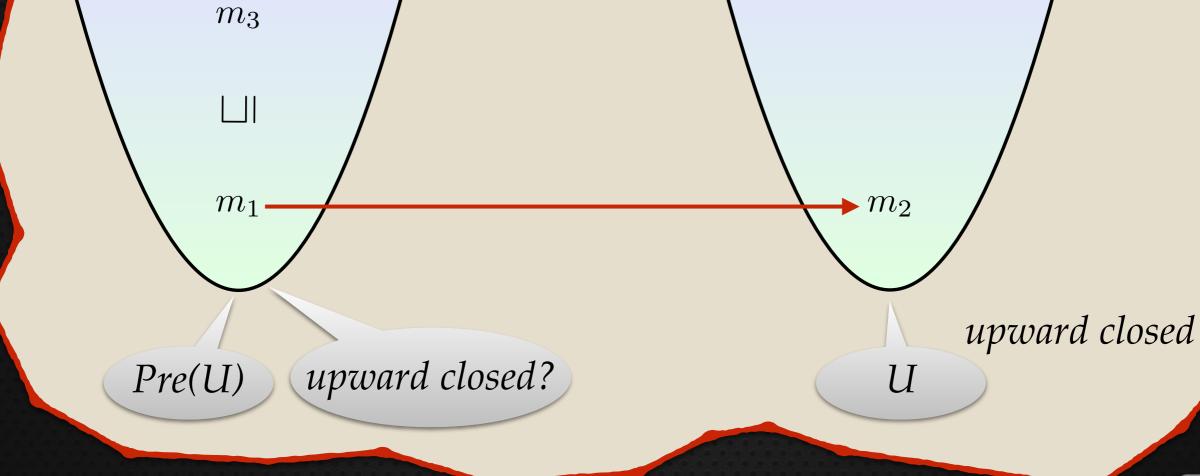




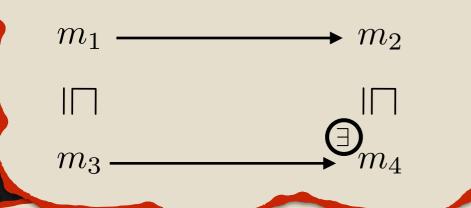
upward closed

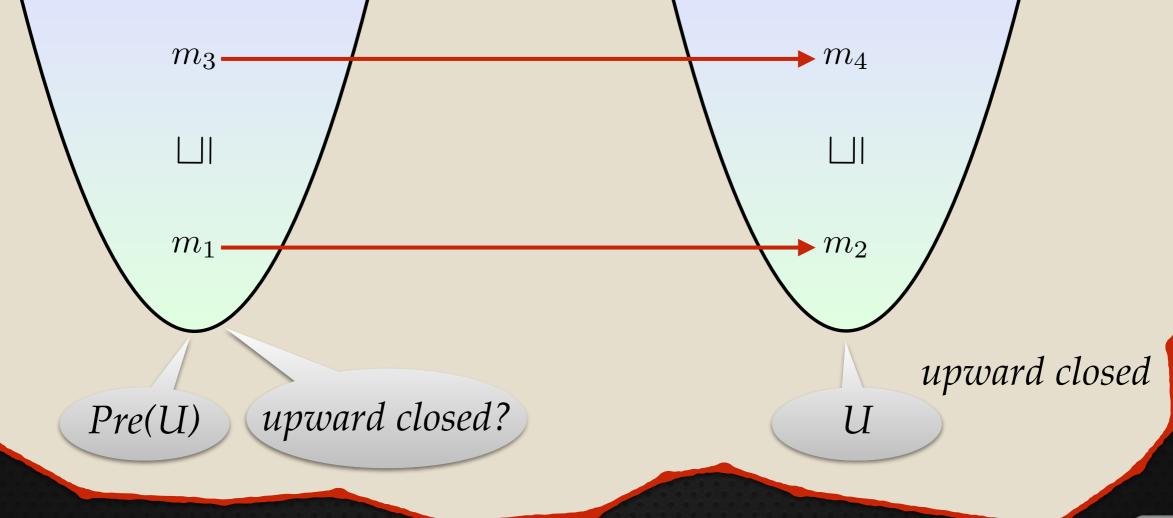
Pet-



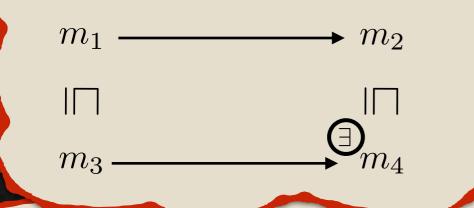


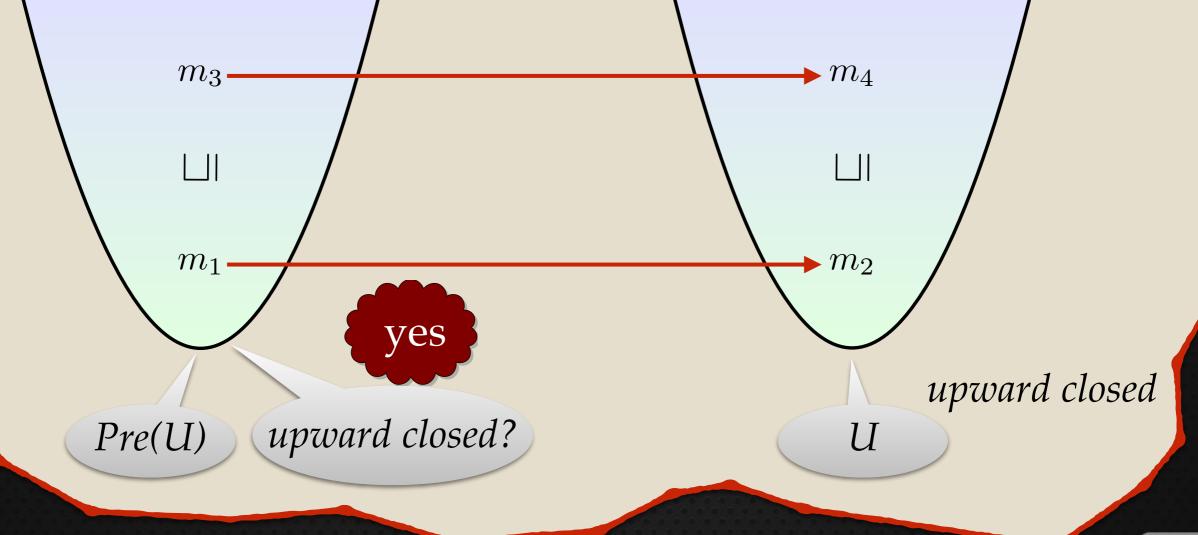
Pet-

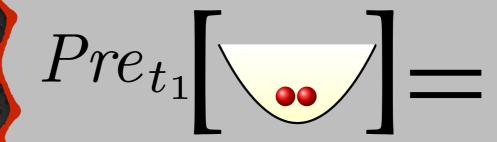


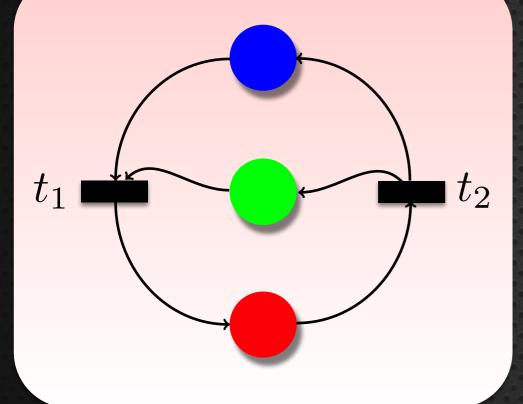


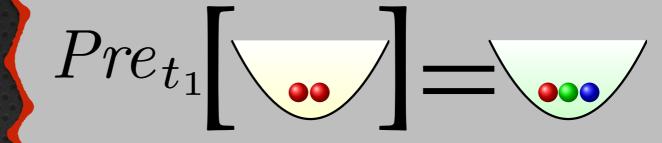
Pet-

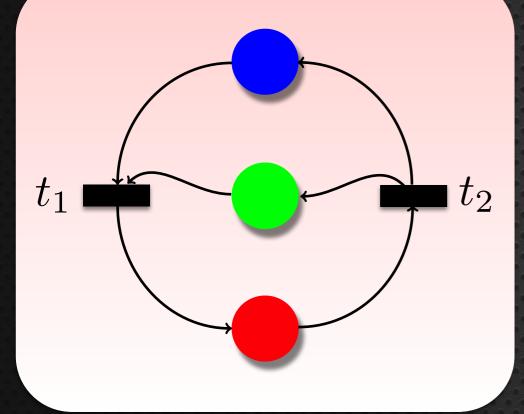


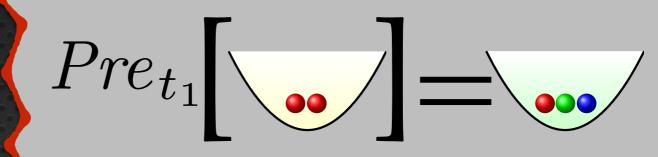


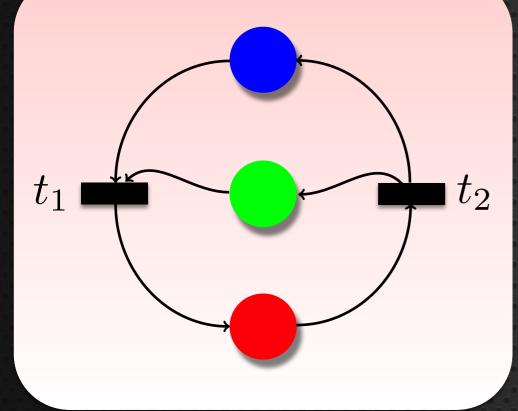


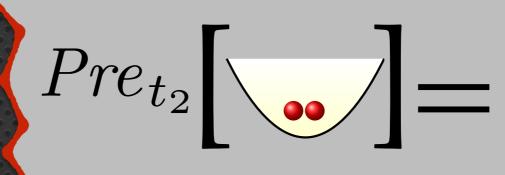


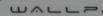


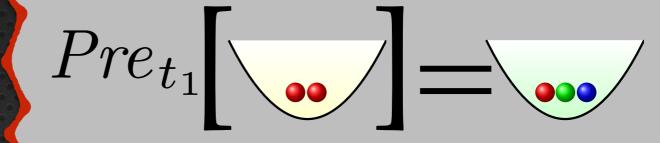


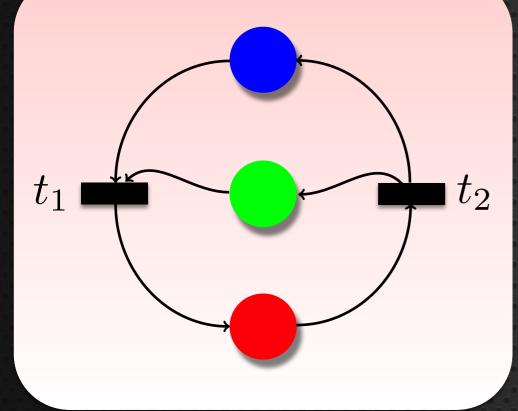


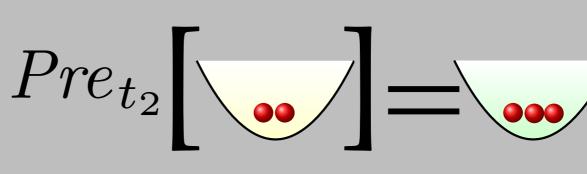


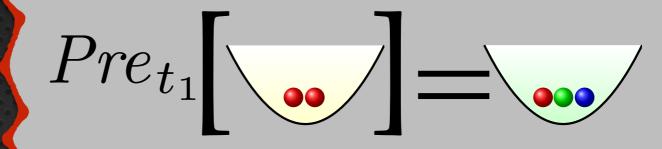


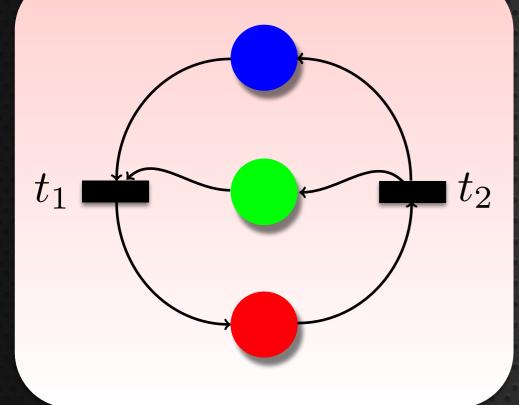


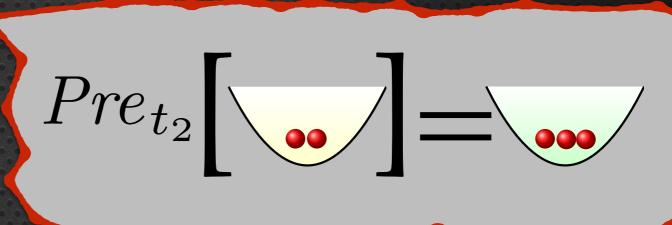


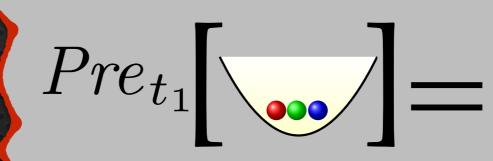


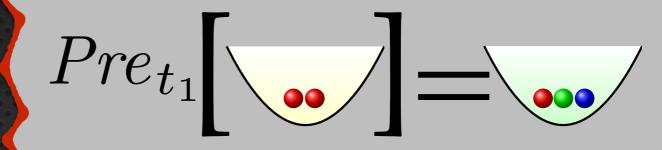


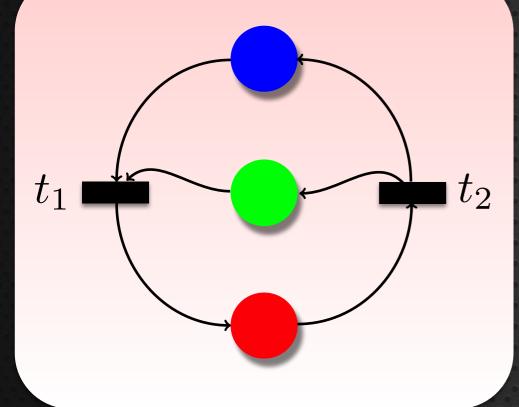


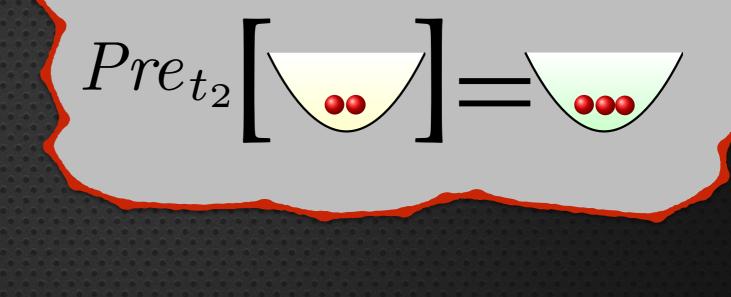


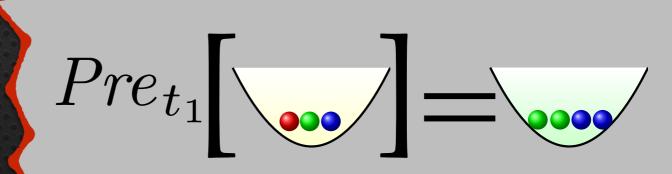












Petri Nets

Model

Configurations

Transitions

Ordering

Monotonicity

Upward Closed Sets

Computing Predecessors

Backward Reachability

Petri Nets

Model

Configurations

Transitions

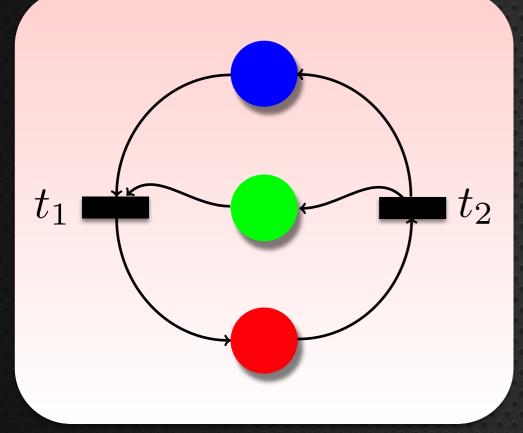
Ordering

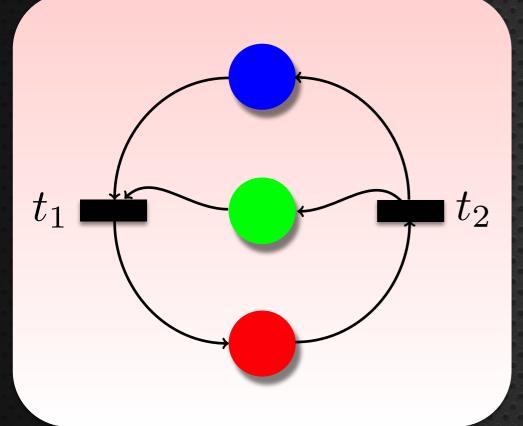
Monotonicity

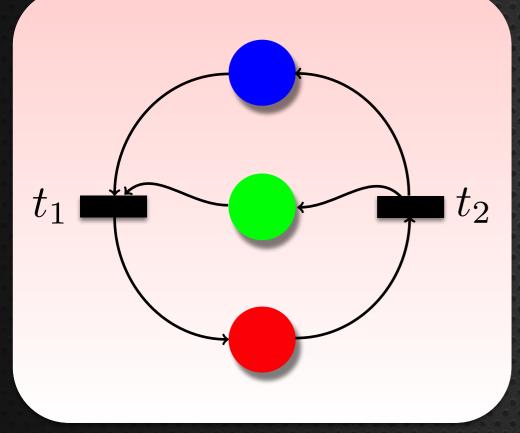
Upward Closed Sets

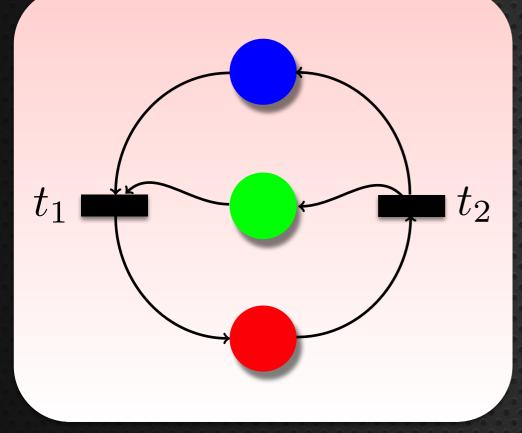
Computing Predecessors

Backward Reachability

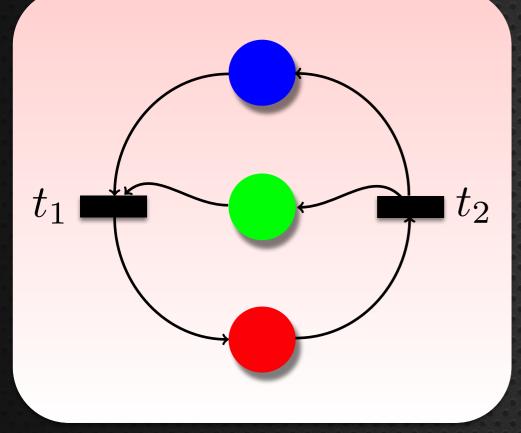




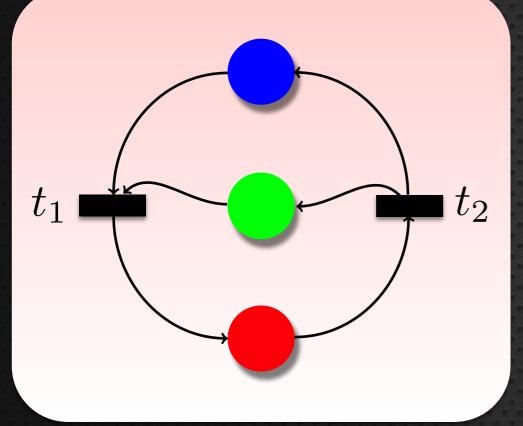




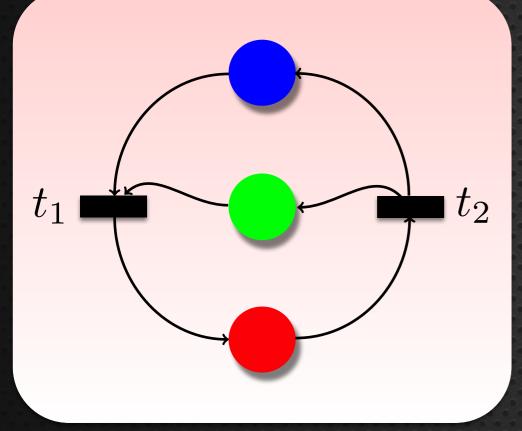
 t_{1}

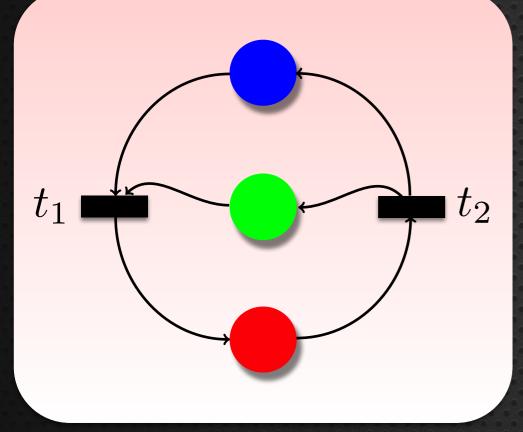


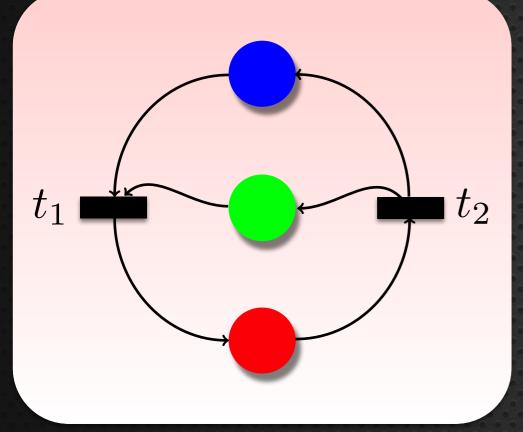
•••

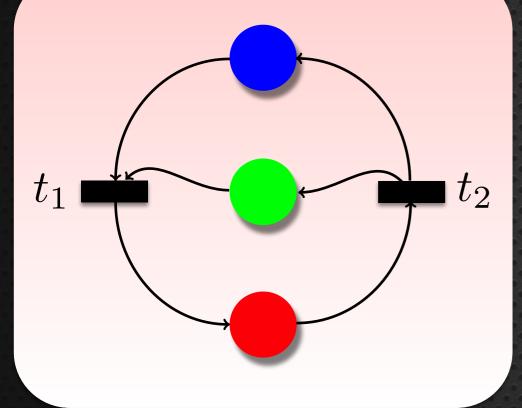


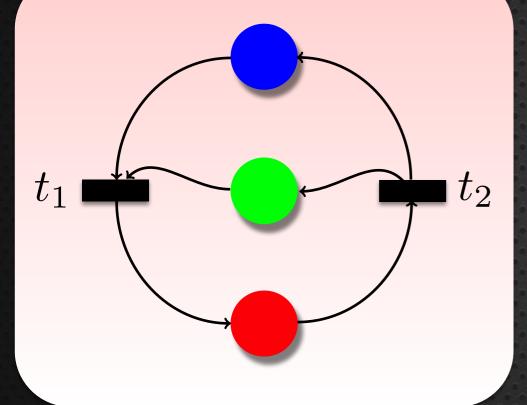
 999



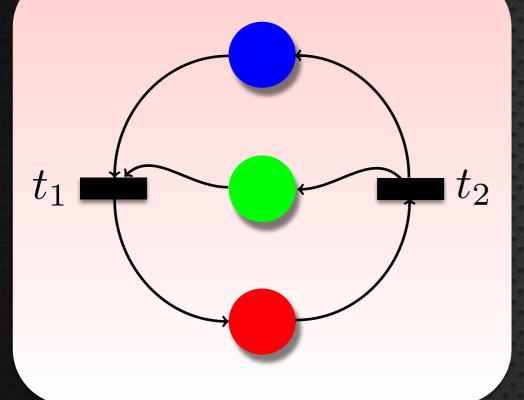


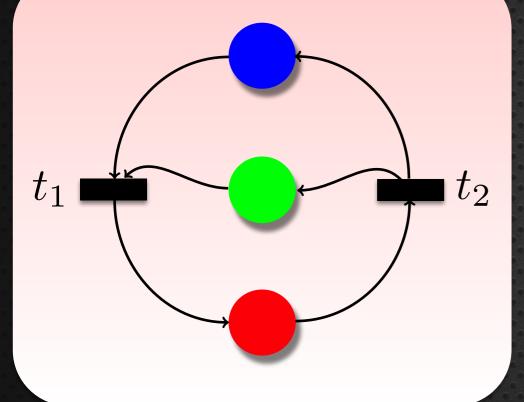






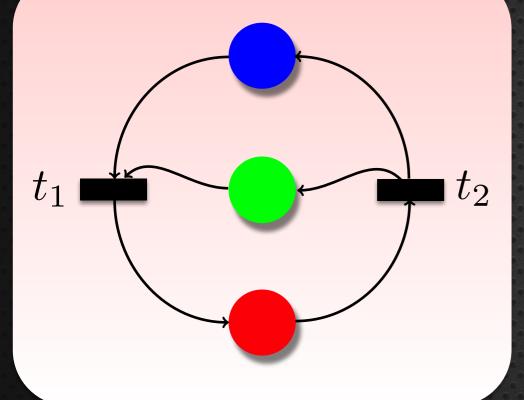
 t_1





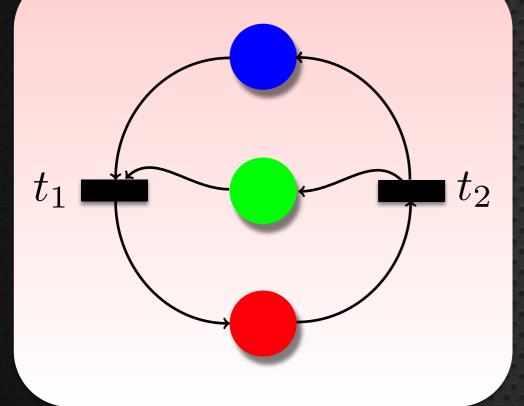
WALLP

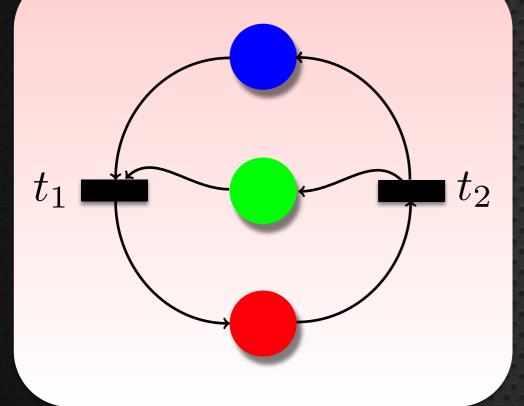
 t_2

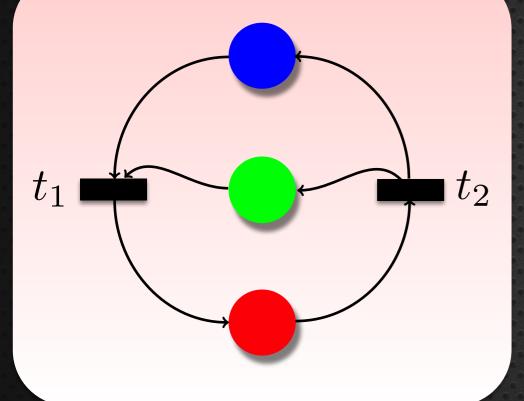


•••

 \mathbf{O}







 t_2

 t_1

•••

 t_1

 t_2

 t_1

•••

 t_2

 t_1

 •••

 t_1

 t_2

•••

 t_2

 t_1

 t_2

•••

 •••

 t_1

•••

 t_2

[]

 t_1

*t*₂

[]

•••

 t_1

•••

 t_2

•••

•••

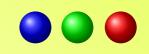
 t_1

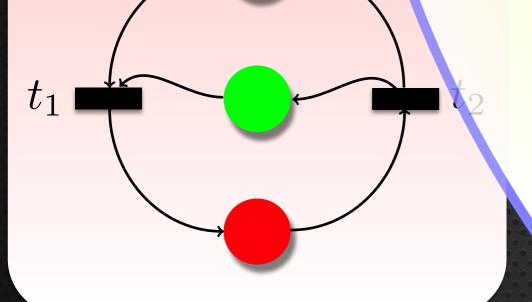
 t_2

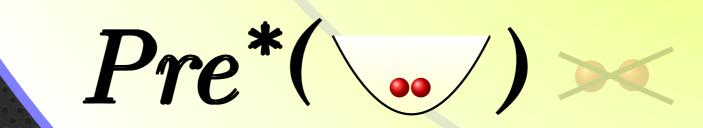
•••

 t_1

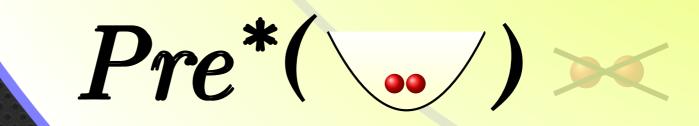
 $\bigcirc \bigcirc$







initial markings

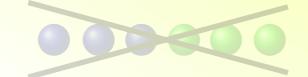


Í

System Safe !

initial markings

Pre*(___) ><



System Safe !

 \mathbf{O} \mathbf{C}

symbolic representation = finite multisets

Pre*(___)>

initial markings

initial

markings

System Safe !

00

symbolic representation = finite multisets

Termination: multisets well quasi-ordered

Well Quasi-Ordering

Petr

Well Quasi-Ordering

infinite sequence of markings

 $m_0, m_1, m_2, \ldots, m_i, \ldots, m_j, \ldots$

Well Quasi-Ordering

Petr

Well Quasi-Ordering

infinite sequence of markings

 $m_0, m_1, m_2, \ldots, m_i, \ldots, m_j, \ldots$

$$\exists i < j : m_i \sqsubseteq m_j$$

Well Quasi-Ordering

Petr

Well Quasi-Ordering
 m_0, m_1, m_2, \dots infinite sequence of markings m_0, m_1, m_2, \dots m_j, \dots \subseteq $\exists i < j : m_i \sqsubseteq m_j$

WALLP

Assume: non-termination

Petr:

Backwa

 $\mathbf{m}_{\mathbf{0}}$

Assume: non-termination

Petr:

Backwa

WALLP

Assume: non-termination

Petr

Backwa

 \mathbf{m}_0

Assume: non-termination

Backwa

Petr

 \mathbf{m}_0

Assume: non-termination

Petr

Backwa

 \mathbf{m}_0

Assume: non-termination

Pet-

Backwa

 \mathbf{m}_0

Backwa

Pet-

Termination

Assume: non-termination

 $\dot{m_1}$

Backwa

Pet-

Termination

Assume: non-termination

 \mathbf{m}_1

 \mathbf{m}_0

Backwa

Petr

Termination

Assume: non-termination

 \mathbf{m}_0

ņ

 m_2

Petri Backwa

Termination

....**m**0

ņ

 m_2

Assume: non-termination

WALLP

 $\cdot \mathbf{m}_0$

ņ

 m_2

Assume: non-termination

Petr

Backwa

 $\cdot \mathbf{m}_0$

ņ

 m_2

Assume: non-termination

Petr,

Backwa

Assume: non-termination

Petr,

Backwa

 \mathbf{m}_3

 $\cdot \mathbf{m}_0$

ņ

 m_2

....m₀

ņ

m

 $\mathbf{m}_{\mathbf{3}}$

Assume: non-termination

Petr

Backwa

....**m**0

m₂

 \mathbf{m}_3

Assume: non-termination

Petr

Backwa

Assume: non-termination

Petr

Backwa

m₃

m₂

m₂

m₃

 \mathbf{m}_0

Assume: non-termination

Petr

Backwa

m₂

m₃

m

Assume: non-termination

Petr

Backwa

initial

markings

System Safe !

00

symbolic representation = finite multisets

Termnination: multisets well quasi-ordered

Petri Backward Reag

Ordering:

- monotonicity
- computing predecessors

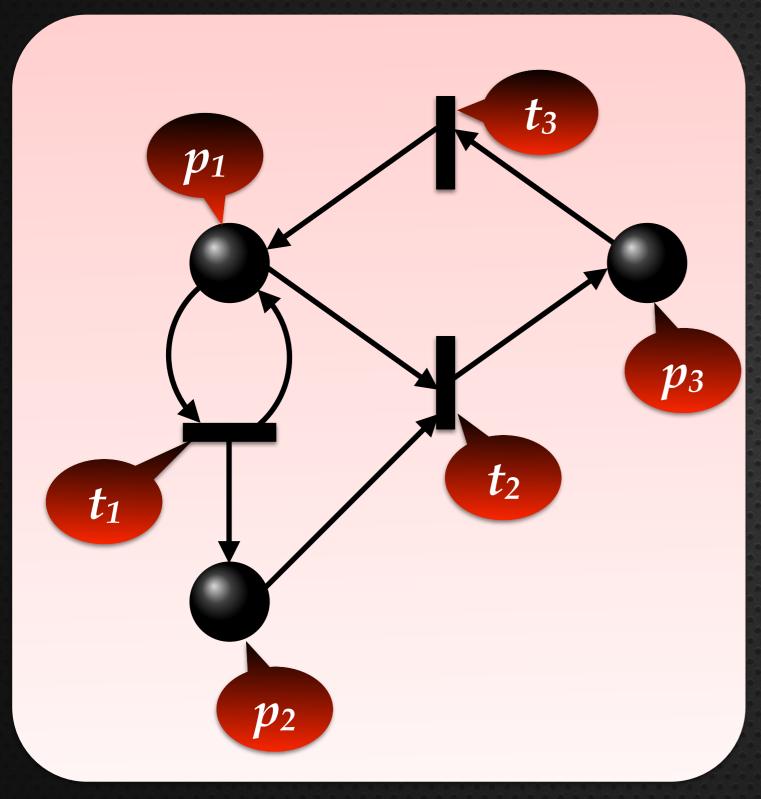
sets

rdered

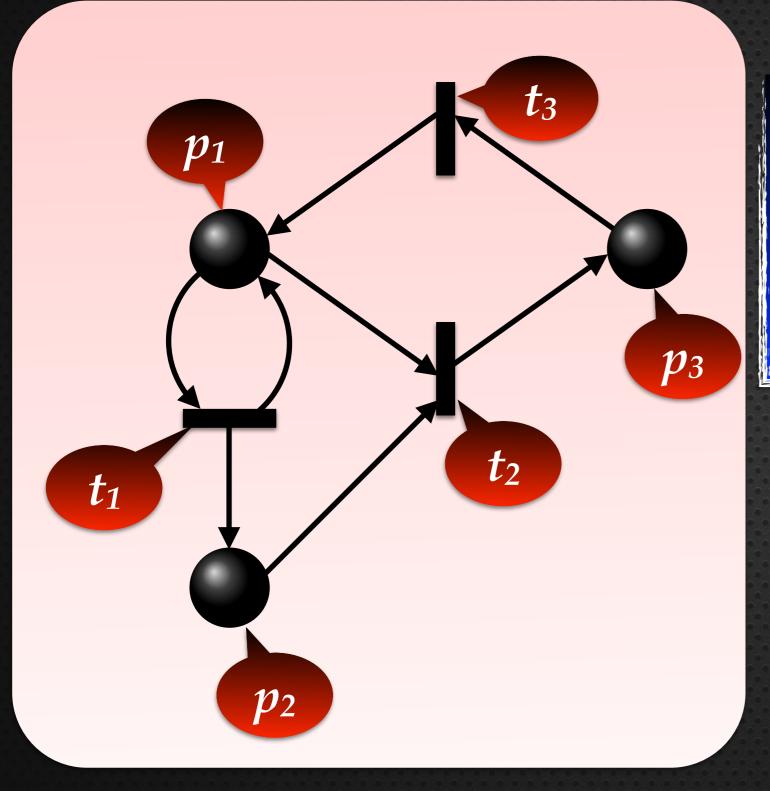
• well quasi-ordering

initial markings

Petri Nets



Petri Nets



- Perform backward reachability analysis from [p3,p3]
 Reachable from:
 [p1,p1]?
 - [p1,p2]?

