
26

Parameterized Verification under TSO is PSPACE-Complete

PAROSH AZIZ ABDULLA, Uppsala University, Sweden
MOHAMED FAOUZI ATIG, Uppsala University, Sweden
ROJIN REZVAN, Sharif University, Iran

We consider parameterized verification of concurrent programs under the Total Store Order (TSO) semantics.
A program consists of a set of processes that share a set of variables on which they can perform read and
write operations. We show that the reachability problem for a system consisting of an arbitrary number
of identical processes is PSPACE-complete. We prove that the complexity is reduced to polynomial time if
the processes are not allowed to read the initial values of the variables in the memory. When the processes
are allowed to perform atomic read-modify-write operations, the reachability problem has a non-primitive
recursive complexity.

CCS Concepts: • Theory of computation→ Verification by model checking; • Software and its engi-
neering→ Formal software verification.

Additional Key Words and Phrases: Model-Checking, Parameterized Verification, Weak Memory Models, Total
Store Ordering

ACM Reference Format:
Parosh Aziz Abdulla, Mohamed Faouzi Atig, and Rojin Rezvan. 2020. Parameterized Verification under
TSO is PSPACE-Complete. Proc. ACM Program. Lang. 4, POPL, Article 26 (January 2020), 30 pages. https:
//doi.org/10.1145/3371094

1 INTRODUCTION
A parameterized system consists of an arbitrary number of identical concurrent processes. Parame-
terized verification means that we analyze the correctness of the system regardless of the number
of processes. Such systems have been extensively studied both theoretically and practically for
almost three decades (see e.g. [Abdulla and Delzanno 2016; Apt and Kozen 1986; Bloem et al. 2016;
German and Sistla 1992]), and it is the subject of one chapter of the recent Handbook of Model
Checking [Abdulla et al. 2018d].
Most previous research on parameterized verification has been made under the fundamental

assumption that the processes behave according to the classical Sequential Consistency (SC)
semantics. Under SC, the processes perform read and write operations atomically on a set of shared
variables, and the runs of the program consist of interleavings of the process executions. However,
it is unrealistic to assume SC behaviors in modern applications. The reason is that, due to hardware
and compiler optimizations, most modern platforms allow more relaxed program behaviors than
those allowed under SC, leading to so called weak memory models. Weakly consistent platforms
are found at all levels of system design such as multiprocessor architectures (e.g., [Sarkar et al.
2011; Sewell et al. 2010]), Cache protocols (e.g., [Elver and Nagarajan 2014; Ros and Kaxiras 2016]),
language level concurrency (e.g., [Lahav et al. 2016]), and distributed data stores (e.g., [Burckhardt

Authors’ addresses: Parosh Aziz Abdulla, Uppsala University, Sweden, parosh@it.uu.se; Mohamed Faouzi Atig, Uppsala
University, Sweden, mohamed_faouzi.atig@it.uu.se; Rojin Rezvan, Sharif University, Iran, rojinrezvan@gmail.com.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).
© 2020 Copyright held by the owner/author(s).
2475-1421/2020/1-ART26
https://doi.org/10.1145/3371094

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 26. Publication date: January 2020.

https://doi.org/10.1145/3371094
https://doi.org/10.1145/3371094
https://doi.org/10.1145/3371094

26:2 Parosh Aziz Abdulla, Mohamed Faouzi Atig, and Rojin Rezvan

2014]). Notwithstanding, very little research has been conducted on parameterized verification
of concurrent programs under weak memory models. In fact, parameterized systems give rise to
difficult verification problems already in the case of SC; and the task becomes even harder due to
the intricate extra behaviors that are introduced due to weak consistency.

In this paper, we study parameterized verification of programs running on weak memory models.
More precisely, we consider the decidability and complexity of parameterized verification, where
an unbounded number of finite-state processes run concurrently under the Total Store Order (TSO)
semantics. TSO is one of the most well-known memory models, and has previously been adopted
by Sun’s SPARC multiprocessors [Weaver and Germond 1994], and used as a formalization of the
x86-TSO memory model [Owens et al. 2009; Sewell et al. 2010]. The operational model of programs
running under TSO inserts an unbounded buffer between each process and the shared memory.
The buffer contains a sequence of pending write messages that have been performed by the process
but not yet reached the memory. Write operations are not atomic in the sense that they are initially
stored in the buffer of the process, and hence they are not immediately visible to the rest of the
processes. Messages can non-deterministically be used to update the memory, i.e., be moved from
the buffer to the shared memory in a FIFO manner. A read operation on a variable x fetches the
latest value of x stored in the buffer of the process. If there are no pending write operations on x
in the buffer, the process reads the value of x from the memory. Since the buffers are unbounded,
the system has an infinite state space even if the considered program is finite-state. In fact, the
complexity of the reachability problem for finite-state programs is non-primitive recursive under
the TSO semantics [Atig et al. 2010], as opposed to the well-known Pspace complexity in the case
of the SC semantics. Notice that the class of systems we consider in this paper are infinite in two
dimensions, namely we have an unbounded number of processes, each with an unbounded buffer.

We analyze the complexity of the reachability problem for the case where we have an arbitrary
number of finite-state processes. We prove that the problem is PSpace-complete, thus reducing the
non-primitive recursive complexity of the non-parameterized case. The proof of membership in
PSpace relies on a novel abstraction, called pivot abstraction, which is exact wrt. reachability, i.e., a
given process state is reachable under the pivot semantics iff it is reachable under the concrete TSO
semantics. The abstraction defines a scheme that translates each run of the concurrent program
under TSO to a new run performed by a set of abstract processes that are executed in a sequential
manner. The abstract states, called views, are defined to meet two necessary objectives, namely:
(i) exactness: to enable the abstract processes to simulate the concrete program faithfully, and (ii)
compactness: to allow reachability analysis to be performed using only a polynomial amount of
space. The definition of views relies on the notion of an assignment which corresponds to a write
operation performed by a process, assigning a given value to a shared variable. The definition of
a view uses three key properties of assignments. (i) Unbounded supply: Due to parameterization,
if any process can generate an assignment a, then any number of processes may generate a. In
other words, there is an unbounded supply of a that can be used by read operations of the other
processes. (ii) Pivots: These are points along a run of the program at which assignments are moved
from the buffers of the processes to the memory. For each assignment a, we identify the unique
pivot corresponding to the first time a hits the memory. (iii) Rankings: The pivot points induce
a natural ranking on the set of assignments in which an assignment a is ranked lower than an
assignment a′ if the pivot point of a occurs before the pivot point of a′. An important observation
is that, to generate a given assignment a, it is sufficient to generate all the assignments with a rank
lower than that of a. Since there are finitely many assignments, we can run finitely many processes,
called the (assignment) providers whose roles are to generate the assignments one after the other in
increasing rank order. Pivot abstraction defines exactly the amount of information to store in the
view so that we can run the providers while satisfying both the exactness and compactness criteria.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 26. Publication date: January 2020.

Parameterized Verification under TSO is PSPACE-Complete 26:3

We also show a Pspace lower bound for the reachability problem through a reduction from the
reachability problem for 1-safe Petri nets. The reduction relies crucially on the use of initial values
of the variables in the memory. This is also confirmed by the fact that, for the case where we do
not allow the processes to read the initial values, we show that the reachability problem can be
solved in polynomial time. The reason is that, now, we only need to keep track of the set of write
operations that have been issued by the processes, leading to a polynomial-sized abstraction.
Finally, we explain why adding read-modify-write operations will make the model retrieve the

non-primitive recursive complexity of the reachability problem. This is straightforward since
the proof for the non-parameterized case involves only two processes [Atig et al. 2010]. If we
allow read-modify-write operations (where a sequence of read and write operations are allowed
to execute atomically), then such sequences can be used to identify two distinguished members
among the set of processes, even when all the processes are initially identical, thus going back to
the non-parameterized case.

Related Work. Parameterized verification has been studied for many years (see [Abdulla et al.
2018d; Bloem et al. 2016] for recent surveys of the field.) The problem was originally shown to be
undecidable even when assuming that each process has a finite state space [Apt and Kozen 1986].
Therefore, special classes of systems have been studied. Such systems are characterized by their
topology (un-ordered, arrays, trees, graphs, rings, etc), the allowed communication mechanisms
(shared memory, rendez-vous, broadcast, lossy channels, etc), and the types of processes (anony-
mous, with IDs, with priorities, etc) [Delzanno et al. 2010; Emerson and Kahlon 2003, 2004; Esparza
et al. 1999; Ganty and Majumdar 2012; Namjoshi and Trefler 2016]. Another line of research has
been to define abstractions based on regular model checking [Abdulla 2012; Boigelot et al. 2003;
Bouajjani et al. 2012; Kesten et al. 2001], monotonic abstraction [Abdulla et al. 2010], and symmetry
reduction [Abdulla et al. 2016b; Emerson et al. 2000; Kaiser et al. 2010].

One of the first decidability results was reported in [German and Sistla 1992], where the authors
consider the verification of systems consisting of an arbitrary number of processes. In the model,
the processes are finite-state machines that interact through rendez-vous communication. The
paper shows that the model checking problem is Expspace-complete. In a series of more recent
papers, parameterized verification has been considered in the case where the individual processes
are push-down automata. In [Kahlon 2008] it is shown that the reachability problem is decidable
when the system consists of an arbitrary number of identical push-down automata. The paper
[Hague 2011] extends this result to the case of having one distinguished leader process together
with arbitrarily many slave processes. In [Esparza et al. 2016] it is shown that the problem is in fact
Pspace-complete. The above results are extended further to the case of higher-order pushdown
automata [La Torre et al. 2015], and to the case of push-down automata with dynamic thread
creation [Muscholl et al. 2017]. In [Fortin et al. 2017] it is shown that the verification of regular
properties of executions satisfying some stuttering conditions is Nexptime-complete.
Several papers have also considered parameterized verification of timed processes. The paper

[Abdulla and Jonsson 2003] shows that reachability is decidable if each process has a single clock.
The paper [Abdulla et al. 2004] shows that the problem becomes undecidable when allowing two
clocks. The paper [Abdulla et al. 2018b] shows that the problem is Pspace-complete.
In contrast to this paper, all the above works assume the SC semantics. The paper [Abdulla

et al. 2018a] considers parameterized verification of programs running under TSO. However, the
paper applies the framework of well-structured systems where the buffers of the processes are
modelled as lossy channels, and hence the complexity of the algorithm is non-primitive recursive.
In particular, the paper does not give any complexity bounds for the reachability problem (or any
other verification problems). The PSPACE-completeness result of this paper represents a substantial

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 26. Publication date: January 2020.

26:4 Parosh Aziz Abdulla, Mohamed Faouzi Atig, and Rojin Rezvan

improvement from a theoretical point of view, and we believe that it will potentially help in
designing more efficient algorithms for parameterized systems under TSO. The paper [Bouajjani
et al. 2013] considers checking the robustness property against SC for parameterized systems
running under the TSO semantics. However, the robustness problem is entirely different from
reachability, and the techniques and results developed in the paper cannot be applied in our setting.
In fact, the paper shows that the problem is ExpSpace-hard.

Outline. In the next two sections we give some preliminaries and recall the classical semantics of
TSO. We define pivot abstraction in Section 4, and prove its correctness in Section 5. In Section 6
we show PSpace-completeness of the reachability problem. In Section 7 we prove polynomial
time complexity for the case where the processes are not allowed to read the initial values of the
variables. Finally, in Section 8, we present some conclusions, discussions, and directions for future
work.

2 PRELIMINARIES
Notation. We use N and B = {true, false} to represent the sets of natural numbers and Boolean

values respectively.
For sets A and B, we write f : A→ B to denote that f is a (possibly partial) function that maps

elements from A to B, and write f (a) = ⊥ when f is undefined for a. We define f [a ← b] to be the
function f ′ such that f ′(a) = b and f ′(a′) = f (a′) if a′ , a. We write f : A

•
→ B to indicate that

the function f is total. We use [A→ B] and
[
A
•
→ B

]
to represent the sets of functions resp. total

functions from A to B.
Assume a finite set A. We let |A| be the size of A. We use A∗ to denote the set of finite words

over A. For a word w , we let |w | be the length of w , and for i : 1 ≤ i ≤ |w |, we letw[i] be the ith
element ofw , andw[i · · j] to be the subwordw[i]w[i + 1] · · ·w[j]. We write a ∈ w whenw[i] = a
for some i . We define last (w) := w[|w |], i.e., it is the last symbol that occurs inw . We say thatw
is differentiated ifw[i] , w[j] whenever i , j, i.e.,w contains pairwise distinct elements. We use
ADiff to denote the set of all differentiated words over A. For a differentiated wordw ∈ ADiff and
a ∈ w , we define Pos (w) (a) to be the unique i such thatw[i] = a, i.e., it is the position inw where
a occurs. We assume that Pos (w) (a) = ⊥ in case a < w . For words w1 and w2, we let w1 •w2 be
their concatenation.

We view a multiset overA as a functionM : A
•
→ NwhereM (a) gives the number of occurrences

of a inM . We use A⃝⋆ to be the set of finite multisets over A. For multisetsM1,M2 ∈ A
⃝⋆, we write

M1 ≤ M2 whenM1(a) ≤ M2(a) for all a ∈ A. We defineM1+M2 := M whereM (a) = M1(a)+M2(a)
for all a ∈ A. IfM1 ≤ M2, we defineM2 −M1 := M whereM (a) = M2(a) −M1(a) for all a ∈ A.

Transition Systems. A labeled transition system is a triple ⟨C,Cinit, L, ⟩ where C is a (potentially
infinite) set of configurations, Cinit ⊆ C is the set of initial configurations, L is a finite set of labels,
and ⊆ C × L × C is the transition relation. As usual, we write c1 l c2 instead of ⟨c1, l, c2⟩ ∈ .
We write c1 c2 to denote that c1 l c2 for some l ∈ L. For sets of configurations C1,C2 ⊆ C, we
writeC1 C2 to denote that c1 c2 for some c1 ∈ C1 and c2 ∈ C2. We define ∗ to be the reflexive
transitive closure of . If C1

∗ C2 then we say that C2 is reachable from C1. Sometimes, we write
C1 c2 instead of C1 {c2}, and say that c2 is reachable from C1, (and similarly for {c1} C2
and {c1} {c2}). A run ρ is a sequence

c0
l1 c1

l2 c2 · · ·
ln cn

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 26. Publication date: January 2020.

Parameterized Verification under TSO is PSPACE-Complete 26:5

In such a case we write c0 n cn to emphasize that c0 can reach cn in n steps, and also write
c0

ρ
cn to emphasize that c0 reaches cn through the run ρ. Notice that c ∗ c ′ iff c n c ′ for

some n ≥ 0 iff c
ρ

c ′ for some run ρ. Abusing notation, we write c ∈ ρ to denote that c = ci for
some i : 0 ≤ i ≤ n, i.e., c appears somewhere along the run. Similarly, we write l ∈ ρ to denote that
l = li for some i : 1 ≤ i ≤ n. We define #ρ := n. We say that ρ is initialized if c0 ∈ Cinit . We define
start (ρ) := c0 end (ρ) := cn , i.e., they are the first and end configurations in ρ respectively.
Two runs ρ1 and ρ2 are said to be matching if end (ρ1) = start (ρ2). For matching runs c0 l1

c1 · · ·
lm cm and cm lm+1 cm+1 · · ·

ln cn , we define ρ1 • ρ2 to be the run c0
l1 c1 · · ·

lm

cm
lm+1 cm+1 · · ·

ln cn Furthermore, for runs ρ1 and ρ2 with end (ρ1) = c1, start (ρ2) = c2,
and c1 l c2, we define [ρ1] l [ρ2] to be the run ρ1 •

(
c1

l c2
)
• ρ2.

For i, j : 0 ≤ i, j ≤ n, we define the sub-run of ρ from i to j:

ρ[i · · j] := ci li+1 ci+1
li+2 ci+2 · · ·

lj c j

In other words, it is the segment of ρ from i to j. For run ρ1 and ρ2, we say that ρ2 is a sub-run of
ρ1 if ρ2 = ρ1[i · · j] for some i and j. If ρ2 is a sub-run of ρ1 then ρ1 = ρ3 • ρ2 • ρ4 for some ρ3 and
ρ4. As a special case, we define ρ[i] := ρ[i · · i] = ci .

3 TOTAL STORE ORDERING (TSO)
In this section, we will recall the classical definition of the Total Store Order (TSO) semantics
[Owens et al. 2009; Sewell et al. 2010], adapt it to the parameterized setting, and introduce the
parameterized reachability problem over TSO.

3.1 Syntax
We assume a finite set X of shared variables ranging over a finite domain D of data values, where
each variable x ∈ X has an initial value init (x) ∈ D. We consider a set of processes that communicate
through the shared variables. A process definition P is a triple ⟨Q,qinit,∆⟩ where Q is a finite set of
(process) states, qinit ∈ Q is the initial state, and ∆ is a finite set of transitions. A transition δ ∈ ∆ is a
triple ⟨q,σ ,q′⟩ where q,q′ ∈ Q are states and σ is an instruction. An instruction is either the empty
instruction skip, a write instruction w (x,d) where x ∈ X is a variable and d ∈ D is a value, a read
instruction r (x,d) with x ∈ X and d ∈ D, or the memory fence instruction mf.

3.2 Semantics
We describe the concrete operational semantics of programs under TSO as a labeled transition
system that is induced by a process definition. To that end, we will define the set of configurations
and then define a transition relation on this set. In the TSO semantics, an unbounded FIFO buffer is
inserted between each process and the shared memory. The buffer contains a sequence of “pending”
write messages (write operations) of the process, each corresponding to the assignment of a given
value to a given variable. More precisely, an assignment a is a pair ⟨x,d⟩ where x ∈ X is a variable
and d ∈ D is a value. We let A = X × D be the set of assignments. A buffer state represents the
content of a buffer, and it is a member of the set A∗. A (concrete) configuration of the system
consists of the local states (process states and buffer contents) of a finite (but unbounded) set of
processes, together with the state of the memory. Formally, a (concrete) configuration is a tuple
γ = ⟨I,Q,B,M⟩ where I is a finite index set, each index representing one process, Q : I

•
→ Q

defines the local states of the processes, B : I
•
→ A∗ defines the buffer states, i.e., the buffer

contents of the processes, andM : X
•
→ D is the memory state defining the value of each variable

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 26. Publication date: January 2020.

26:6 Parosh Aziz Abdulla, Mohamed Faouzi Atig, and Rojin Rezvan

hq, skip, q0i 2 � , ◆ 2 I , Q (◆) = q

hI,Q,B,Mi h◆, skipi
c hI,Q[◆ q0],B,Mi

skip
hq, w (x, d) , q0i 2 � , ◆ 2 I , Q (◆) = q

hI,Q,B,Mi h◆, w (x, d)i
c hI,Q[◆ q0],B[◆ hx, di • B (◆)],Mi

write

hq, r (x, d) , q0i 2 � , ◆ 2 I , Q (◆) = q , LVal (B (◆)) (x) = d

hI,Q,B,Mi h◆, row (x, d)i
c hI,Q[◆ q0],B,Mi

read-own-write

hq, r (x, d) , q0i 2 � , ◆ 2 I , Q (◆) = q , LVal (B (◆)) (x) = ↵ , M (x) = d

hI,Q,B,Mi h◆, rfm (x, d)i
c hI,Q[◆ q0],B,Mi

read-from-memory

B (◆) = w • hx, di , ◆ 2 I

hI,Q,B,Mi h◆, u (x, d)i
c hI,Q,B[◆ w],M[x d]i

memory-update
hq, mf, q0i 2 � , ◆ 2 I , Q (◆) = q , B (◆) = ✏

hI,Q,B,Mi h◆, mfi
c hI,Q[◆ q0],B,Mi

fence

Fig. 1. The operational semantics of TSO. Here, we assume that ι ∈ I.

in the shared memory. We use C c to denote the set of concrete configurations. Here, c stands
for the concrete semantics as opposed to the different abstract semantics that we will introduce in
the later sections. We define the function LVal : A∗

•
→

[
X
•
→ D ∪ {⊘}

]
, where ⊘ < D, such that

(i) LVal (w) (x) := d if w = w1 • ⟨x,d⟩ •w2 and there is no d ′ ∈ D such that ⟨x,d ′⟩ ∈ w1; and (ii)
LVal (w) (x) := ⊘ if there is no d ∈ D such that ⟨x,d⟩ ∈ w . The function gives the value of the last
pending write message on a variable if such a message exists; otherwise the value is given by the
special “no-last” symbol ⊘. We write x ∈ w to denote that LVal (w) (x) , ⊘, i.e., to indicate that x
occurs inw .

The transition relation on configurations is defined through the set of inference rules shown in
Fig. 1. The semantics defines a labeled transition relation λ

c on the set of configurations. Each
transition step is labeled with an event λ that corresponds to a process performing one step. Such
a step is either the execution of an instruction, or performing a memory update. More precisely,
an event is a pair λ = ⟨ι, op⟩ where ι ∈ I is the index of the process performing the transition,
and op describes the operation performed by the process. An operation op is of one of the forms
skip, w (x,d), row (x,d), rfm (x,d), u (x,d), or mf, where x ∈ X is a variable and d ∈ D is a value.
The different types of operations are explained as we introduce the inference rules below. The
skip operation only changes the state of the process. When a process executes a write instruction
w (x,d) the message ⟨x,d⟩ is appended to the end of its buffer. In order to perform a read instruction
r (x,d), the last write message on x in the buffer of the process should be of the form ⟨x,d⟩. In such
a case we say that the process is performing a read-own-write operation. If there is no pending write
message on x in the buffer of the process, the value of x in the memory should be d . In this case we
say that the process is reading from the memory. At any point in the execution of the program, the
write message (of form ⟨x,d⟩) at the head of the buffer of a process may non-deterministically be
chosen, removed from the buffer, and used to update the value of x in the memory to d . A fence
operation can be performed by a process only if its buffer is empty. We observe that the set of
processes is not changed when performing transitions. However, the set I of indices is not a priori
bounded.
An initial configuration is of the form ⟨I,Qinit,Binit,Minit⟩, where Qinit (ι) = qinit , Binit (ι) = ϵ

for all ι ∈ I, andMinit (x) = init (x) for all x ∈ X. In other words, all the processes start from the
initial state with an empty buffer, and the initial memory state is defined by the initial values of the
variables. We use Γinit to denote the set of initial configurations. The set Γinit is infinite since there
is no bound on the size of the set I.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 26. Publication date: January 2020.

Parameterized Verification under TSO is PSPACE-Complete 26:7

We define the types and arguments of operations. Consider an operation op. We define op ·type ∈
{skip, w, row, rfm, u, mf} depending on the type of the operation. We define op · var := x and
op · val := d where x ∈ X and d ∈ D are the variable and the value used in op respectively (if such
an x and d exist). For instance, if op is of the form rfm (x,d) then op · type = rfm, op · var = x ,
and op · val = d . If op is of the form skip or mf then op · var and op · val are not defined. We
extend these definitions to events. For an event λ = ⟨ι, op⟩, we define λ · index := ι, λ · opr := op,
λ · type := op · type, λ · var := op · var, and λ · val := op · val.
We use R c to denote the set of initialized runs under the concrete semantics. Consider an

initialized run:

ρ = γ0
λ1

c γ1
λ2

c γ2 · · ·
λn

c γn ∈ R
c

For an i : 0 ≤ i ≤ n and a variable x ∈ X, we define Clean (ρ) (i) (x) := true if there are no d ∈ D
and j : 1 ≤ j ≤ i such that λj · opr = u (x,d), and define Clean (ρ) (i) (x) := false otherwise. In
other words, the value of x is clean in the memory up to the point i in ρ in the sense that the initial
value of x has not been overwritten by any update operations. Notice that the runs of a program
are dirty-stable in the sense that, once a variable is overwritten in the memory, i.e., once it becomes
“dirty”, then it will remain dirty for the rest of the run.

3.3 The Reachability Problem
For a set Γ of configurations and a state q, we write Γ c q (resp. Γ ∗

c q) to denote that there
are configurations γ ∈ Γ, and γ ′ = ⟨I,Q,B,M⟩, such that γ c γ

′ (resp. γ ∗
c γ
′) and Q (ι) = q

for some ι ∈ I.
An instance of the parameterized reachability problem for TSO is given by a process definition
⟨Q,qinit,∆⟩ and a state qtarget ∈ Q . The question is whether Γinit ∗ c qtarget , i.e., whether qtarget is
reachable from some initial configuration.

Remark. In the class of systems we consider, all the processes start from the same initial state.
However, the analysis we perform in the subsequent sections will go though even if we allow the
processes to start from different initial processes, and thus allow different process definitions rather
than a single one. The only requirement is that we allow an arbitrary number of processes to start
from each initial state.

4 PIVOT ABSTRACTION
In this section we take the first step in showing that the parameterized reachability problem for
TSO is in Pspace. More precisely, we will define an abstraction, called pivot abstraction, that is exact
wrt. the reachability problem in the sense that, for a given program and a given process state, the
process state is reachable from an initial configuration under the pivot semantics iff it is reachable
from an initial configuration under the concrete semantics.
Pivot abstraction relies on a scheme in which each concrete run ρ ∈ R

c of the concurrent
program is translated to a new run ρ ′ performed by a set of processes that are executed sequentially
(one after the other without overlapping). To derive the scheme, we will identify a set of pivot
points along the original run ρ. Each pivot point corresponds to a unique assignment pair a ∈ A.
More precisely, it is the first update operation involving a that hits the shared memory in ρ. The
pivot points induce a natural ranking on the set of assignments in which an assignment a is ranked
lower than an assignment a′ if the pivot point of a occurs before the pivot point of a′. A crucial
observation is that to generate an assignment a, we only need to generate the assignments with a
lower rank than a. The abstraction then runs one process at a time, each with the goal of generating

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 26. Publication date: January 2020.

26:8 Parosh Aziz Abdulla, Mohamed Faouzi Atig, and Rojin Rezvan

one particular assignment. The process generating the assignment a will start running only after
the termination of all the processes that generate assignments that have lower ranks than a.
In the rest of the section we will formalize these ideas. First, we introduce the main concepts

behind pivot abstraction, followed by an informal description of the pivot transition system.
Then, we define the semantics formally by introducing the pivot transition system, i.e., the set of
configurations and the transition relation on them, and adapt the definition of the reachability
problem to the case of the pivot semantics. In the end of this section, we will describe some
characteristics of program runs under the pivot semantics that we will use later to present the
correctness arguments, and also illustrate the main concepts through a detailed example.
In the later sections, we show the correctness of pivot abstraction, i.e., show its soundness and

completeness wrt. reachability, and also show that checking reachability on the set of abstract
configurations can be carried out in polynomial space.

4.1 Concepts
Pivot abstraction keeps track of the order in which assignments are updated to the shared memory
in a given concrete run of the program. In the rest of this sub-section, we fix an initialized concrete
run

ρ = γ0
λ1

c γ1
λ2

c γ2 · · ·
λn

c γn ∈ R
c

We will identify certain pivot points and pivot processes along ρ that play a special role in our
abstraction. We will do that in three steps: (i) We define the points at which a given assignment is
updated to the memory for the first time. (ii) We identify the write operations that generate these
updates. (iii) We identify the processes that generate these write operations. Furthermore, we will
rank pivot updates according to the order in which they occur, and translate this into a ranking of
assignments, write events, and processes.

For an assignment a ∈ A, we define the first position in ρ where an update is performed using a.
Formally:

first (ρ) (a) := min {i | λi · opr = u (a)}

Although the assignment a may occur multiple times in the buffers of the processes, the function
first only considers the first time a hits the memory. Also, first (ρ) (a) , ⊥ iff λi · opr = u (a)
for some i : 1 ≤ i ≤ n, i.e., the function is defined exactly for the set assignments that are updated
to the memory along ρ. We define the update pivot points along ρ to be exactly the points that
correspond to the “first-time” updates of the different assignments:

UPivots(ρ) = {i | (1 ≤ i ≤ n) ∧ (∃a ∈ A. first (ρ) (a) = i)}

We rank the set of update pivot points according to the order in which they occur in ρ. For an
i ∈ UPivots(ρ), we define:

rank (ρ) (i) := | {j | (j ≤ i) ∧ (j ∈ UPivots(ρ))} |

We define the rank of a run ρ to be the largest rank of an update operation in ρ:

rank (ρ) := |UPivots(ρ)|

The value of rank (ρ) is equal to the number of distinct assignments that appear in ρ. For k : 1 ≤ k ≤
rank (ρ), we define UPivot(ρ)(k) to be the unique i ∈ UPivots(ρ) such that rank (ρ) (i) = k . We
extend the ranking to the set of assignments. For an assignment a ∈ A such that first (ρ) (a) , ⊥,
we define:

rank (ρ) (a) := rank (ρ) (first (ρ) (a))

In other words, we rank the assignments according to the first times they hit the memory. Given
two assignments a and a′, we rank a lower than a′ if the first message carrying a reaches the

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 26. Publication date: January 2020.

Parameterized Verification under TSO is PSPACE-Complete 26:9

memory before the first message carrying a′ reaches the memory. The order among the rest of the
messages carrying a or a′ is not relevant for the ranking. We define the pivot assignment sequence:

PASeq (ρ) := a1,a2 · · ·an where n = rank (ρ) and rank (ρ) (ai) = i

In other words, it is the sequence of assignments that are updated to the memory along ρ, ordered
according to their ranks in ρ. Notice that PASeq (ρ) ∈ ADiff, and hence the |PASeq (ρ) | ≤ |X| · |D|
for any ρ ∈ R c .
Next, we derive the set of write pivot points of ρ from the set of update pivot points. For an

i : 1 ≤ i ≤ n, where λi = ⟨ι, u (a)⟩, we define GetW(ρ)(i) to be the unique j such that:

(λj = ⟨ι, w (a)⟩) ∧ |{k | (1 ≤ k < i) ∧ (λk = ⟨ι, u (a)⟩)}| = |{k | (1 ≤ k < j) ∧ (λk = ⟨ι, w (a)⟩)}|

This means that we identify the write corresponding to an update, i.e., both the update and the
write operations are performed by the same process ι, and the number of the update operations
performed by ι before i is equal to the number of write operations performed by ι before j. For an
i : 1 ≤ i ≤ n, where λi = ⟨ι, w (a)⟩, we define GetU(ρ)(i) to be the unique j (if j exists) such that
GetW(ρ)(j) = i . Notice that GetU(ρ)(i) = ⊥ if there is no corresponding update in ρ, i.e., if the write
message remains in the buffer until the end of the run.

We define the set of pivot write points in ρ. They are the points corresponding to write operations
that induce the pivot updates.

WPivots(ρ) := {i | ∃j ∈ UPivots(ρ). i = GetW(ρ)(j)} ∪ {n + 1}

For technical convenience, the definition also adds the point n + 1 (which is outside the run ρ).
We rank the members of WPivots(ρ) according to the update operations they induce, i.e., for an
i ∈ WPivots(ρ), we have:

rank (ρ) (i) :=
{
rank (ρ) (GetU(ρ)(i)) if 1 ≤ i ≤ n
rank (ρ) + 1 if i = n + 1

The definition assigns the special rank rank (ρ)+1 to the position n+1. For k : 1 ≤ k ≤ rank (ρ)+1,
we define WPivot(ρ)(k) to be the unique i ∈ WPivots(ρ) such that rank (ρ) (i) = k .

Finally, we extend the notion of a pivot to the set of processes. A process may generate more
than one pivot update. Therefore, we define the rank of a process, with index ι as a set:

rank (ρ) (ι) := {rank (ρ) (i) | (i ∈ UPivots(ρ)) ∧ (λi · index = ι)} ∪ {rank (ρ) + 1}

Notice that we assign the special rank rank (ρ) + 1 to all the processes.

4.2 Informal Description
The pivot semantics simulates the behavior of the processes in a concrete run using a sequence of
abstract processes that run one after the other. Each abstract process simulates the behavior of a
concrete process with rank k for a given k . If the set of ranks of a concrete process is not a singleton,
it is simulated by several abstract processes in the pivot semantics, namely one process for each of
its ranks. The goal of each abstract process is to eventually provide the update of rank k for a given
k . We call such an abstract process a k-provider. The simulation runs the k-providers sequentially
one after the other for increasing values of k . The k-provider then simulates a concrete process
with rank k from its initial state up to the point where it generates the write operation of rank k .
The only values that the k-provider reads from memory (and that are not initial values) are the ones
that correspond to assignments with rank less than k , i.e., assignments provided by ℓ-providers
with ℓ < k . Additionally, there is an abstract process, called the verifier, which is run last and whose
role is to reach the target state. The verifier can use the updates generated by all the providers but
will itself not provide any updates used by the other processes. We can assume without loss of

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 26. Publication date: January 2020.

26:10 Parosh Aziz Abdulla, Mohamed Faouzi Atig, and Rojin Rezvan

generality that there is only one verifier in ρ. The reason is that the reachability problem asks for
a target state, and it is sufficient that a single process reaches the target state in order to have a
positive instance. Furthermore, the verifier does not provide any variable updates to the providers.
For convenience, we sometime refer to the verifier process as the (rank (ρ) + 1)-provider.
In a run of the system, the same assignment a may be used multiple times. However, the pivot

semantics uses only one provider to provide all instances of a. The justification lies in the fact that,
due to parameterization, if any process can provide a then an arbitrary number of processes may
provide a. This implies an unbounded-supply property: if any process has a pending write message
available in its buffer (corresponding to the assignment a), then there is an unbounded supply
of such write messages that can be used by read operations of the other processes. In particular,
once a has hit the memory, then an unbounded supply of a will be available, since any number of
processes may perform identical steps, reaching a point where they can provide a. Notice that the
property does not hold in a single run, but it holds over the set of all runs. However, this is exactly
what we need to check safety properties: If a process can reach a state then, for any k , there is
another run in which k processes will reach the same state.

4.3 The Pivot Transition System
Based on the concepts introduced above, we describe the pivot transition system. For a given
program, the pivot transition system will simulate the concrete transition system of Section 3. Fix a
process definition ⟨Q,qinit,∆⟩. First, we define the pivot configurations which we call views, and
then define the pivot transition relation through a set of inference rules.

Roughly speaking, a view is a data-structure that describes the current state of some k-provider
along a run with a given pivot sequence of assignments. The definition of views allows to achieve
two goals, namely: (i) to enable the processes to carry out the simulation faithfully, and (ii) to allow
reachability analysis to be performed using only a polynomial amount of space. We define the views
in a stepwise manner, by identifying the types of information the providers need to store locally.
To have a faithful abstraction, a provider needs to know (i) the state of the concrete process it is
simulating, and (ii) the values the process can currently read from the different variables. Handling
the state is straightforward, since we can simply allow a view to store the current state of the
process. Handling readable values is more complicated, since write messages may be anywhere
inside the (unbounded) buffer of the process, and also in the shared memory. To deal with this
problem, we recall from the semantics of TSO (Section 3) that a process may fetch the value of a
variable either by reading its own writes, or by reading from the memory. For reading own writes,
we let the view data-structure store the latest value the process has written to each variable in the
program. For reading from the memory, we let the view for a k-provider use the set of assignments
up to rank (k − 1). Such assignments are the values that the k-provider needs in order to perform
its simulation. Finally, to simulate the reading of the initial value of a variable, we enable the
provider to decide whether it has ever written to that variable, and whether the variable is clean
in the memory. To that end, we let a view store the highest ranked assignment the process has
observed up to the current point of the run. The provider can now tell precisely whether it has
already observed an update on a variable or not. More precisely, it can check the sequence of seen
assignments and check whether the given variable occurs in the sequence or not.
A view v is a tuple ⟨q,L,ω,ϕE ,ϕL,ϕP ⟩. The tuple represents the “view” of a provider when

simulating a concrete run ρ ∈ R c of the program. Here, q ∈ Q is a process state. The function
L : X

•
→ D ∪ {⊘} describes the latest (i.e., most recent) write instruction the process has performed

on a variable. If such an instruction exists and it is of the form w (x,d) then L (x) = d . If the process
has not performed any write operations on x and x is clean in the memory then then L (x) = ⊘.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 26. Publication date: January 2020.

Parameterized Verification under TSO is PSPACE-Complete 26:11

hq, skip, q0i 2 �

hq,L,!,�E ,�L,�P i
skip

p hq0,L,!,�E ,�L,�P i
skip

hq, r (x, d) , q0i 2 � , L (x) = d

hq,L,!,�E ,�L,�P i
r (1) (x, d)

p hq0,L,!,�E ,�L,�P i
read(1)

hq, r (x, d) , q0i 2 � , L (x) = ↵ , x 62 ![1 · · �E] , d = init (x)

hq,L,!,�E ,�L,�P i
r (2) (x, d)

p hq0,L,!,�E ,�L,�P i
read(2)

hq, mf, q0i 2 � , �0
E = max(�E ,�max

L)

hq,L,!,�E ,�L,�P i mf
p hq0,L,!,�0

E ,�L,�P i
fence

hq, w (x, d) , q0i 2 � , hx, di 2 ![1 · · �P � 1] , �0
L = �L [x max (�max

L , Pos (!) (x, d))]

hq,L,!,�E ,�L,�P i
w (1) (x, d)

p hq0,L[x d],!,�E ,�0
L,�P i

write(1)

hq, w (x, d) , q0i 2 � , hx, di = ![�P]

hq,L,!,�E ,�L,�P i
w (2) (x, d)

p vinit (!) (�P + 1)

write(2)

hq, r (x, d) , q0i 2 � , hx, di 2 ![1 · · �P � 1] , �0
E = max(�E ,�L (x) , Pos (!) (x, d))

hq,L,!,�E ,�L,�P i
r (3) (x, d)

p hq0,L,!,�0
E ,�L,�P i

read(3)

Fig. 2. Transitions of the pivot semantics.

We define L⊘ such that L⊘ (x) = ⊘ for all x ∈ X. Furthermore, ω ∈ ADiff is a differentiated word
that gives the pivot assignment sequence of the simulated concrete run ρ. This word is not changed
when performing transitions, and hence it will remain the same throughout the whole pivot run.
Notice that Pos (ω) (a) = rank (ρ) (a). The External pointer, ϕE ∈ {0, 1, . . . , |ω |} helps the provider
to keep track of the sequence of assignments, possibly performed by other processes, that the
simulated process has observed. More precisely, for any assignment a ∈ ω[1 · · ϕE] either a itself
or some assignment a′ with rank (ρ) (a′) > rank (ρ) (a) and rank (ρ) (a′) ∈ ω[1 · · ϕE] has been
observed by the process. The Local pointer ϕL : X

•
→ {0, 1, . . . , |ω |} is a set of pointers, one for each

variable x ∈ X. It stores the highest ranked write operation the process itself has performed (on any
variable) before it performed the latest write on x . We define ϕmax

L := max {ϕL (x) | x ∈ X}, i.e., it is
the local pointer with the highest value, and define ϕ0L such that ϕ0L (x) = 0 for all variables x ∈ X,
i.e., the pointers are all in the leftmost position. The Progress pointer ϕP ∈ {1, 2, . . . , |ω | + 1} gives
the rank of the process the current provider is simulating. We definev ·state := q,v ·LWrite := L,
v · eptr := ϕE , v · stamp := ω, v · lptr := ϕL , v · maxlptr := ϕmax

L , and v · pptr := ϕP . We define
the signature sig (v) := ⟨ϕP ,ϕE⟩, i.e., it is the values of progress and external pointers of the view
(in that order). As we shall see when we define the inference rules, all the views we generate will
satisfy the invariant that ϕE < ϕP , and ϕL (x) < ϕP for all variables x ∈ X, i.e., the values of the
external and internal pointers are all smaller than the progress pointer. This reflects the fact that a
k-provider only uses (i.e., reads and writes) assignments with ranks lower than k . In particular, the
second property implies that ϕmax

L < |ϕP |. We useV to denote the set of views.
For ω ∈ ADiff and k : 1 ≤ k ≤ |ω | + 1, we define the initial view induced by ω and k as

vinit (ω) (k) :=
〈
qinit,L⊘,ω, 0,ϕ0L,k

〉
. This view reflects initial state of the k-provider. The process is

in its initial stateqinit , and it has not performed any write operations (indicated byL⊘). Furthermore,
it has not observed any assignments, and hence its external pointer is 0. Since the process has not
performed any write operation yet, its local pointer is also 0 for every variable. The value of the
progress pointer is k , i.e., the provider is allowed to use assignments up to rank k − 1.

We define the pivot semantics by defining a labeled transition relation
op

p on the set of views,
as described by the inference rules in Fig. 2. Since we do not have process indices in the pivot
semantics, we represent an event simply by the corresponding operation which is of one of the
forms skip, w (1) (x,d), w (2) (x,d), r (1) (x,d), r (2) (x,d), r (3) (x,d), and mf, with x ∈ X and d ∈ D.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 26. Publication date: January 2020.

26:12 Parosh Aziz Abdulla, Mohamed Faouzi Atig, and Rojin Rezvan

The inference rule skip reflects the situation where there is a transition taking a process from
a state q to a state q′ through the skip instruction. The state of the process changes from q to q′
while the latest-writes on variables, and the pointers are not affected.

We have two rules describing the execution of a write instruction w (x,d). In write(1), the
process uses an assignment whose rank is smaller than its progress pointer. In such a case, the
process updates its state and changes the value of its latest write operation on x to d . Furthermore,
it updates the local pointer for x to indicate that its value will now be the maximal value among all
local pointers and at least as large as the rank of the current assignment ⟨x,d⟩. Updating L (x) to d
implies that the process has already performed a write instruction on x . While L (x) may later be
updated to other values, its value will never change back to ⊘ in the run.
In write(2), the process uses an assignment whose rank is equal to its progress pointer. This

means that the current process, which is the ϕP -provider has “accomplished its mission” and
generated the needed assignment, i.e., ω[ϕP]. In such a case, the process stops its execution, and
initiates the next provider, i.e., the (ϕP + 1)-provider. The new provider starts from its initial view.
We have three rules describing the execution of a read instruction r (x,d). In read(1), the

latest write operation by the process on the variable assigns d to x . Therefore, the process has the
possibility of performing a read-own-write operation. In such a case, the pointers are not affected.
In the rule read(2), the process has not performed any write operation on x (as implied by

the condition L (x) = ⊘), and it has not seen any updates on x (as implied by the condition
x < ω[1 · · ϕE]). Therefore, the process can read the initial value of x from the memory. Even here,
the pointers are not affected.

In the rule read(3), the process has either not performed any write operation on x or the latest
value it has assigned to x is different from d . The given assignment should be within the progress
pointer. We move the external pointer to the position given by max(ϕE ,ϕL (x) , Pos (ω) (x,d)). The
first argument, i.e., ϕE implies that the value of the external pointer is never decreased, reflecting
the fact that the sequence of seen updates will at least remain the same after a transition. The
second argument, i.e., ϕL (x) means that the external pointer will become at least equal to the local
pointer of x . This is because the message corresponding to the latest write operation by the process
on x has already been moved to the memory (otherwise, we would not be able to read d from x .)
This in turn implies that the assignments corresponding to all the preceding write operations must
also have been transferred to the memory. Finally, the process has now observed the assignment
⟨x,d⟩ so its external pointer should reflect that.
In the rule fence, the process performs the fence operation. Since its buffer must be empty, all

the assignments inside its buffer have been moved to the memory, and hence its external pointer is
updated so that it is at least equal to the local pointers of all the variables.

Notice that all views in a run have the same stamp, since the stamp of the view is not changed by
any inference rule. For a pivot run ρ, we define ρ · stamp := ω where ω is the unique differentiated
word such that v · stamp = ω for all v ∈ ρ.

The set of initial views is given byVinit :=
{
vinit (ω) (1) | ω ∈ ADiff

}
. This is the set of possible

initial views of the 1-provider. The set Vinit is finite since the set ADiff is finite. We use R p to
denote the set of initialized runs under the pivot semantics.

4.4 The Reachability Problem under the Pivot Semantics
We define the reachability of process states in a similar manner to Section 3. For a state q and a set
V of views, we writeV ∗

p q to denote that there are viewsv ∈ V andv ′ such thatv ′ · state = q

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 26. Publication date: January 2020.

Parameterized Verification under TSO is PSPACE-Complete 26:13

and v ∗
p v ′. An instance of the reachability problem under the pivot semantics is given by a

process definition ⟨Q,qinit,∆⟩ and a state qtarget ∈ Q . The question is whetherVinit
∗

p qtarget .

4.5 Epochs, Phases, and Stages
We will take a closer look at runs under the pivot semantics and extract three concepts, namely
epochs, phases, and stages, that we will later use to prove the correctness of the abstraction. Consider
an initialized run ρ ∈ R p in the pivot semantics:

v0
op1

p v1
op2

p v2 · · ·
opn

p vn

From the manner in which the inference rules in Fig. 2 are defined, the run ρ contains always
certain patterns, as described below.
Let i1, i2, . . . , im be the maximal sub-sequence of 1, 2, . . . ,n such that opi j = w (2)

(
aj
)
for some

aj ∈ A. Since any a can be the argument of a w (2) operation at most once, we have that al , aj if
l , j. Define ω := a1.a2 · · ·am ∈ A

Diff.
The run ρ consists of a number of consecutive segments, called epochs, along which all the

views have progress pointers with identical values. The operations during an epoch are performed
by a given k-provider, where k : 1 ≤ k ≤ rank (ρ) + 1, and hence the values of all the progress
pointers are equal to k . For k : 1 ≤ k ≤ |ω | + 1, we define the k-epoch of ρ, denoted epoch (ρ) (k),
to be the maximal sub-run ρ ′ of ρ such that v · pptr = k for all v ∈ ρ ′. Now, we can write ρ as
ρ = [ρ1] op1 [ρ2] op2 [ρ2] · · · [ρm] opm [ρm+1] where ρk = epoch (ρ) (k), and opk = w (2) (ak). In
other words, the run ρ is the concatenation ofm + 1 sub-runs, each with views whose progress
pointers have a value that is one larger than of those in the previous sub-run. The transition from
the k th-sub-run to the (k + 1)th-sub-run is performed by a write transition of type w (2) on the
k th element of the sequence ω, i.e., the assignment ak . This follows from the fact that the only
inference rule that changes the value of the progress pointer is write(2) which increases the value
by exactly one.

The k-epoch is itself composed of a number consecutive segments, called phases, where the views
appearing along a phase have all identical signatures ⟨k, ℓ⟩. For a run ρ, a k : 1 ≤ k ≤ rank (ρ) + 1,
and an ℓ : 0 ≤ ℓ < k , we define the ⟨k, ℓ⟩-phase of ρ, denoted phase (ρ) (k) (ℓ), to be the maximal
sub-run ρ ′ such that sig (v) = ⟨k, ℓ⟩ for all v ∈ ρ ′. It is possible that phase (ρ) (k) (ℓ) = ϵ , which
will be the case when no view v with sig (v) = ⟨k, ℓ⟩ occurs along the run. We define the set of
phases of the k-provider:

phases (ρ) (k) := {ℓ | phase (ρ) (k) (ℓ) , ϵ}

By definition, it is always the case that 0 ∈ phases (ρ) (k), and ℓ < phases (ρ) (k) if ℓ ≥ k . We
can write epoch (ρ) (k) as

[
ρi0

]
opi1

[
ρi1

]
opi2

[
ρi2

]
· · ·

[
ρim−1

]
opim

[
ρim

]
for somem ≥ 0, where

(i) phases (ρ) (k) = {i0, i1, i2, . . . , im}. (ii) 0 = i1 < i2 < · · · < im < k . (ii) sig (v) =
〈
k, i j

〉
for each

j : 1 ≤ j ≤ m and v ∈ ρi j . (iii) either opj · type = r (3) or opj · type = mf. In other words, the
k-phase is the concatenation ofm sub-runs for somem, each with views whose progress pointers are
identical, and whose external pointers are identical within the same sub-run but strictly increasing
from one sub-run to the next. This follows from the fact that the only inference rules that change
the value of the external pointer are read(3) and fence. These two rules never decrease the value
of the external pointer but they may increase the external pointer by more than one.
Finally, a stage i in the ⟨k, ℓ⟩-phase is the i th-view generated by the k-provider dur-

ing phase ℓ. Formally, if ℓ ∈ phases (ρ) (k), and i : 0 ≤ i ≤ #(phase (ρ) (k) (ℓ)),
then we define stage (ρ) (k) (ℓ) (i) := phase (ρ) (k) (ℓ) [i]. We define maxstage (ρ) (k) (ℓ) :=
stage (ρ) (k) (ℓ) (#phase (ρ) (k) (ℓ)), i.e., it is the last view that occurs in the ⟨k, ℓ⟩-phase.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 26. Publication date: January 2020.

26:14 Parosh Aziz Abdulla, Mohamed Faouzi Atig, and Rojin Rezvan

r(y,0)

r(x,0)

w(x,1)

w(y,1)

w(y,2)

u(y,1)

r(x,0)

u(x,1)

r(y,2)

r(y,1)

2

3

1

1

2

3w(y,2)

u(y,1)

r(x,1)

w(y,1)

u(y,2)

p1
<latexit sha1_base64="7PHmMElTmBD3X4nY4DCEDpkiVhI=">AAAC1nicbZFLj9MwEMfd8FqWVxeOXCIqJA6oSrovuK3gwgVpEXS3UhNVjjPdWutHZE+2RFa4Ia58AK5w5PvwbXDSaEVLR7L8139+I49nskJwi1H0pxfcuHnr9p2du7v37j94+Ki/9/jM6tIwGDMttJlk1ILgCsbIUcCkMEBlJuA8u3zb5M+vwFiu1SesCkglvVB8zhlFb836/STTIreV9JcrZnE96w+iYdRG+L+IOzEgXZzO9nq/k1yzUoJCJqi10zgqMHXUIGcC6t2ktFBQdkkvYOqlohJs6trW6/C5d/Jwro0/CsPW/bfCUWmb7jwpKS7sZq4xt+WmJc5fpY6rokRQbPXQvBQh6rCZQ5hzAwxF5QVlhvteQ7aghjL001p7Jcvk2ifce/WxnddLi5KayuQ+rWDJtJRU5clywRGmceoShM/Y/si1Xu0Gcb3OZqLcRBtrC2kg3wC9s4WrQAi93EBXZke3Gz6MRwfHR36xh6Oj+PX+9WKvxdloGO8PRx8OBidvul3vkKfkGXlBYnJMTsg7ckrGhJEr8oP8JL+CSfAl+Bp8W6FBr6t5QtYi+P4XsQzqsQ==</latexit>

p2
<latexit sha1_base64="7V0VMKkipf1H6VoVnUsxDD2H1Cc=">AAAC1nicbZFLb9NAEMc35tWWVwpHLhYREgcU2e4LblW5cEEqgrSRYitaryfNqvuwdscNlmVuFVc+AFc49vvwbVg7VkVCRlrtX//5jXZ2Js0FtxgEf3renbv37j/Y2t55+Ojxk6f93WdnVheGwYhpoc04pRYEVzBCjgLGuQEqUwHn6eX7Jn9+BcZyrb5gmUMi6YXiM84oOmva78epFpktpbuqfBrV0/4gGAZt+P+LsBMD0sXpdLd3E2eaFRIUMkGtnYRBjklFDXImoN6JCws5ZZf0AiZOKirBJlXbeu2/ck7mz7RxR6Hfuv9WVFTapjtHSopzu55rzE25SYGzt0nFVV4gKLZ8aFYIH7XfzMHPuAGGonSCMsNdrz6bU0MZummtvJKmcuUT1Uf1uZ3XG4uSmtJkLq1gwbSUVGXxYs4RJmFSxQhfsf1R1Xp1NQjrVTYVxTraWBtIA9ka6JwNXAlC6MUaujQ7ut3wQRjtHx26xR5Eh+G7vdvF3oqzaBjuDaNP+4Pjk27XW+QFeUlek5AckWPygZySEWHkivwkv8hvb+x9866970vU63U1z8lKeD/+ArNu6rI=</latexit>

p3
<latexit sha1_base64="grLXX7yaFLnuCQGVevtyBGMdYxo=">AAAC1nicbZFLb9NAEMc35tWWV1qOXCwiJA4ospM+bxVcuCAVQdpIsRWt15Nm1X1Yu+OmlmVuiCsfgCsc+334NqwdqyIhI632r//8Rjs7k2SCWwyCPx3v3v0HDx9tbe88fvL02fPu7t651blhMGJaaDNOqAXBFYyQo4BxZoDKRMBFcvW+zl9cg7Fcqy9YZBBLeqn4jDOKzpp2u1GiRWoL6a4ymw6rabcX9IMm/P9F2IoeaeNsutu5jVLNcgkKmaDWTsIgw7ikBjkTUO1EuYWMsit6CRMnFZVg47JpvfJfOyf1Z9q4o9Bv3H8rSipt3Z0jJcW5Xc/V5qbcJMfZcVxyleUIii0fmuXCR+3Xc/BTboChKJygzHDXq8/m1FCGblorrySJXPlE+VF9bub11qKkpjCpSytYMC0lVWm0mHOESRiXEcINNj8qG68qe2G1yiYiX0drawNpIF0DnbOBK0AIvVhDl2ZLNxs+CAf7R4dusQeDw/BkeLfYO3E+6IfD/uDTfu/0XbvrLfKSvCJvSEiOyCn5QM7IiDByTX6SX+S3N/a+et+870vU67Q1L8hKeD/+ArXQ6rM=</latexit>

(a)

1
2
3
4
5

6

7
8

9
10
11
12
13
14
15

x← �
<latexit sha1_base64="S2GGD+5vIGUeV36pKK37wWrrqpU=">AAAC53icbZFLb9NAEMc35lXKK6XHXgwREgcU2ekLbhVcekEqgrSVYitar8fNqvuwdsekluUzR24VVz4AHOGz8G1YO1ZFQkZa7V//+Y12ZybJBbcYBH963q3bd+7e27i/+eDho8dP+ltPT60uDIMx00Kb84RaEFzBGDkKOM8NUJkIOEsu3zX5s89gLNfqE5Y5xJJeKJ5xRtFZ0/6zKNEitaV0V3UVCciQGqPnEcgcSwtYT/uDYBi04f8vwk4MSBcn063ezyjVrJCgkAlq7SQMcowrapAzAfVmVFjIKbukFzBxUlEJNq7aXmr/hXNSP9PGHYV+6/5bUVFpm+86UlKc2dVcY67LTQrMXscVV3mBoNjioawQPmq/GYyfcgMMRekEZYa7v/psRg1l6Ma39EqSyKUmqvfqYzvAVxYlNaVJXVrBnGkpqUqj+YwjTMK4ihCusO2oar26GoT1MpuIYhVtrDWkgXQFdM4argQh9HwFXZgd3W54PxztHR64xe6PDsI3uzeLvRGno2G4Oxx92Bscve12vUF2yHPykoTkkByRY3JCxoSRL+QH+UV+e9z76l173xao1+tqtslSeN//Ar8L8tw=</latexit>

y ← �
<latexit sha1_base64="HAsg/WPPpp9SN2cowP6vXhBey2E=">AAAC53icbZFLb9NAEMc3Lo9SHk3hyMUQIXFAkZ2+4FaVCxekIkhbKbai9XrcrLoPa3dMsCyfe+wNceUDwBE+C9+GtWNVJGSk1f71n99od2aSXHCLQfCn523cun3n7ua9rfsPHj7a7u88PrW6MAzGTAttzhNqQXAFY+Qo4Dw3QGUi4Cy5fNvkzz6DsVyrT1jmEEt6oXjGGUVnTfvPokSL1JbSXVUZCciQGqPnEcgcSwtYT/uDYBi04f8vwk4MSBcn053ezyjVrJCgkAlq7SQMcowrapAzAfVWVFjIKbukFzBxUlEJNq7aXmr/hXNSP9PGHYV+6/5bUVFpm+86UlKc2dVcY67LTQrMXscVV3mBoNjioawQPmq/GYyfcgMMRekEZYa7v/psRg1l6Ma39EqSyKUmqvfqYzvAVxYlNaVJXVrBnGkpqUqj+YwjTMK4ihC+YNtR1Xp1NQjrZTYRxSraWGtIA+kK6Jw1XAlC6PkKujA7ut3wfjjaOzxwi90fHYRvdm8WeyNOR8Nwdzj6sDc4Ou52vUmekufkJQnJITki78gJGRNGrsgP8ov89rh37X31vi1Qr9fVPCFL4X3/C8GA8t0=</latexit>

0 x← 0
<latexit sha1_base64="4i7clh16yplKNk1VTHr2AoXZhMY=">AAAC33icbZFLa9tAEMfX6itJX057Kr2ImkIPxUjOq72F9NJLIaV1ErCEWa1G8ZJ9iN1RHSFEj7mVXvsBek0+T79NV7IIteuBZf/85zfszkySC24xCP70vDt3791/sLG59fDR4ydP+9vPTqwuDIMx00Kbs4RaEFzBGDkKOMsNUJkIOE0uPjT5029gLNfqK5Y5xJKeK55xRtFZ0/6LKNEitaV0V3UZCciQGqPnQT3tD4Jh0Ib/vwg7MSBdHE+3e9dRqlkhQSET1NpJGOQYV9QgZwLqraiwkFN2Qc9h4qSiEmxctT3U/mvnpH6mjTsK/db9t6Ki0jbfdKSkOLOrucZcl5sUmL2LK67yAkGxxUNZIXzUfjMQP+UGGIrSCcoMd3/12YwaytCNbemVJJFLTVSf1Jd2cG8tSmpKk7q0gjnTUlKVRvMZR5iEcRUhXGLbUdV6dTUI62U2EcUq2lhrSAPpCuicNVwJQuj5CrowO7rd8F442j3Yd4vdG+2H73duF3srTkbDcGc4+rw7ODzqdr1BXpJX5A0JyQE5JB/JMRkTRr6T3+Sa3HjUu/J+eD8XqNfrap6TpfB+/QV9KO7l</latexit>

y ← 0
<latexit sha1_base64="4/sm9X6X8ysTvKbvAHw0Qp8FLYs=">AAAC33icbZFLb9NAEMc35lXKoymcEBeLCIkDiuz0BbeKXrggtSppK8VWtF6Pm1X3Ye2OCZZlceSGeuUDcC2fh2/D2rEqEjLSav/6z2+0OzNJLrjFIPjT8+7cvXf/wcbDzUePnzzd6m8/O7O6MAzGTAttLhJqQXAFY+Qo4CI3QGUi4Dy5Omry51/AWK7VZyxziCW9VDzjjKKzpv0XUaJFakvprqqMBGRIjdHzoJ72B8EwaMP/X4SdGJAujqfbvZso1ayQoJAJau0kDHKMK2qQMwH1ZlRYyCm7opcwcVJRCTau2h5q/7VzUj/Txh2Ffuv+W1FRaZtvOlJSnNnVXGOuy00KzN7FFVd5gaDY4qGsED5qvxmIn3IDDEXpBGWGu7/6bEYNZejGtvRKksilJqpP6rQd3FuLkprSpC6tYM60lFSl0XzGESZhXEUIX7HtqGq9uhqE9TKbiGIVbaw1pIF0BXTOGq4EIfR8BV2YHd1ueC8c7R7su8XujfbD9zu3i70VZ6NhuDMcnewODj90u94gL8kr8oaE5IAcko/kmIwJI9/IL3JDfnvU++798K4XqNfrap6TpfB+/gV/le7m</latexit>

1

r(1)(y,0)
<latexit sha1_base64="54hxRSaKt9nv/JxpwHuhw81gho0=">AAAC4nicbZFLb9NAEMc35lXKoykc4WARIaVSFdnpk1sFFy5IRZC2UmxF6/WkWXUf1u6Y1LJ84cgNceUDcEKCb8O3Ye1YFQkZabV//ec32p2ZJBPcYhD86Xi3bt+5e2/j/uaDh48eb3W3n5xZnRsGI6aFNhcJtSC4ghFyFHCRGaAyEXCeXL2p8+efwFiu1UcsMoglvVR8yhlFZ026z6NEi9QW0l1lGSH6puqHO/1iN9ipJt1eMAia8P8XYSt6pI3TyXbnZ5RqlktQyAS1dhwGGcYlNciZgGozyi1klF3RSxg7qagEG5dNG5X/0jmpP9XGHYV+4/5bUVJp6586UlKc2dVcba7LjXOcHsclV1mOoNjioWkufNR+PRM/5QYYisIJygx3f/XZjBrK0E1u6ZUkkUtNlO/Uh2Z2uxYlNYVJXVrBnGkpqUqj+YwjjMPYTRausemobLyq7IXVMpuIfBWtrTWkgXQFdM4argAh9HwFXZgt3Wz4IBzuHx26xR4MD8NXezeLvRFnw0G4Nxi+3++dvG53vUGekRekT0JyRE7IW3JKRoSRz+QH+UV+e6n3xfvqfVugXqeteUqWwvv+FxlM7p8=</latexit>

x← �
<latexit sha1_base64="S2GGD+5vIGUeV36pKK37wWrrqpU=">AAAC53icbZFLb9NAEMc35lXKK6XHXgwREgcU2ekLbhVcekEqgrSVYitar8fNqvuwdsekluUzR24VVz4AHOGz8G1YO1ZFQkZa7V//+Y12ZybJBbcYBH963q3bd+7e27i/+eDho8dP+ltPT60uDIMx00Kb84RaEFzBGDkKOM8NUJkIOEsu3zX5s89gLNfqE5Y5xJJeKJ5xRtFZ0/6zKNEitaV0V3UVCciQGqPnEcgcSwtYT/uDYBi04f8vwk4MSBcn063ezyjVrJCgkAlq7SQMcowrapAzAfVmVFjIKbukFzBxUlEJNq7aXmr/hXNSP9PGHYV+6/5bUVFpm+86UlKc2dVcY67LTQrMXscVV3mBoNjioawQPmq/GYyfcgMMRekEZYa7v/psRg1l6Ma39EqSyKUmqvfqYzvAVxYlNaVJXVrBnGkpqUqj+YwjTMK4ihCusO2oar26GoT1MpuIYhVtrDWkgXQFdM4argQh9HwFXZgd3W54PxztHR64xe6PDsI3uzeLvRGno2G4Oxx92Bscve12vUF2yHPykoTkkByRY3JCxoSRL+QH+UV+e9z76l173xao1+tqtslSeN//Ar8L8tw=</latexit>

y ← �
<latexit sha1_base64="HAsg/WPPpp9SN2cowP6vXhBey2E=">AAAC53icbZFLb9NAEMc3Lo9SHk3hyMUQIXFAkZ2+4FaVCxekIkhbKbai9XrcrLoPa3dMsCyfe+wNceUDwBE+C9+GtWNVJGSk1f71n99od2aSXHCLQfCn523cun3n7ua9rfsPHj7a7u88PrW6MAzGTAttzhNqQXAFY+Qo4Dw3QGUi4Cy5fNvkzz6DsVyrT1jmEEt6oXjGGUVnTfvPokSL1JbSXVUZCciQGqPnEcgcSwtYT/uDYBi04f8vwk4MSBcn053ezyjVrJCgkAlq7SQMcowrapAzAfVWVFjIKbukFzBxUlEJNq7aXmr/hXNSP9PGHYV+6/5bUVFpm+86UlKc2dVcY67LTQrMXscVV3mBoNjioawQPmq/GYyfcgMMRekEZYa7v/psRg1l6Ma39EqSyKUmqvfqYzvAVxYlNaVJXVrBnGkpqUqj+YwjTMK4ihC+YNtR1Xp1NQjrZTYRxSraWGtIA+kK6Jw1XAlC6PkKujA7ut3wfjjaOzxwi90fHYRvdm8WeyNOR8Nwdzj6sDc4Ou52vUmekufkJQnJITki78gJGRNGrsgP8ov89rh37X31vi1Qr9fVPCFL4X3/C8GA8t0=</latexit>

0 x← 0
<latexit sha1_base64="4i7clh16yplKNk1VTHr2AoXZhMY=">AAAC33icbZFLa9tAEMfX6itJX057Kr2ImkIPxUjOq72F9NJLIaV1ErCEWa1G8ZJ9iN1RHSFEj7mVXvsBek0+T79NV7IIteuBZf/85zfszkySC24xCP70vDt3791/sLG59fDR4ydP+9vPTqwuDIMx00Kbs4RaEFzBGDkKOMsNUJkIOE0uPjT5029gLNfqK5Y5xJKeK55xRtFZ0/6LKNEitaV0V3UZCciQGqPnQT3tD4Jh0Ib/vwg7MSBdHE+3e9dRqlkhQSET1NpJGOQYV9QgZwLqraiwkFN2Qc9h4qSiEmxctT3U/mvnpH6mjTsK/db9t6Ki0jbfdKSkOLOrucZcl5sUmL2LK67yAkGxxUNZIXzUfjMQP+UGGIrSCcoMd3/12YwaytCNbemVJJFLTVSf1Jd2cG8tSmpKk7q0gjnTUlKVRvMZR5iEcRUhXGLbUdV6dTUI62U2EcUq2lhrSAPpCuicNVwJQuj5CrowO7rd8F442j3Yd4vdG+2H73duF3srTkbDcGc4+rw7ODzqdr1BXpJX5A0JyQE5JB/JMRkTRr6T3+Sa3HjUu/J+eD8XqNfrap6TpfB+/QV9KO7l</latexit>

y ← 0
<latexit sha1_base64="4/sm9X6X8ysTvKbvAHw0Qp8FLYs=">AAAC33icbZFLb9NAEMc35lXKoymcEBeLCIkDiuz0BbeKXrggtSppK8VWtF6Pm1X3Ye2OCZZlceSGeuUDcC2fh2/D2rEqEjLSav/6z2+0OzNJLrjFIPjT8+7cvXf/wcbDzUePnzzd6m8/O7O6MAzGTAttLhJqQXAFY+Qo4CI3QGUi4Dy5Omry51/AWK7VZyxziCW9VDzjjKKzpv0XUaJFakvprqqMBGRIjdHzoJ72B8EwaMP/X4SdGJAujqfbvZso1ayQoJAJau0kDHKMK2qQMwH1ZlRYyCm7opcwcVJRCTau2h5q/7VzUj/Txh2Ffuv+W1FRaZtvOlJSnNnVXGOuy00KzN7FFVd5gaDY4qGsED5qvxmIn3IDDEXpBGWGu7/6bEYNZejGtvRKksilJqpP6rQd3FuLkprSpC6tYM60lFSl0XzGESZhXEUIX7HtqGq9uhqE9TKbiGIVbaw1pIF0BXTOGq4EIfR8BV2YHd1ueC8c7R7su8XujfbD9zu3i70VZ6NhuDMcnewODj90u94gL8kr8oaE5IAcko/kmIwJI9/IL3JDfnvU++798K4XqNfrap6TpfB+/gV/le7m</latexit>

1

w(2)(x,1)
<latexit sha1_base64="eQfkW4bo3v7dfTTPkR1ju7qol9Y=">AAAC4nicbZFLb9NAEMc3Lo9SXmk5wsEiQkqlKordF9wquHBBKoK0lWIrWq8nzar7sHbHpJblC0duiCsfgBMSfBu+DWvHqkjISKv96z+/0e7MJJngFofDPx1v49btO3c3723df/Dw0ePu9s6Z1blhMGJaaHORUAuCKxghRwEXmQEqEwHnydWbOn/+CYzlWn3EIoNY0kvFp5xRdNak+yxKtEhtId1VlhGiP6/64W7/ei/YrSbd3nAwbML/XwSt6JE2TifbnZ9RqlkuQSET1NpxMMwwLqlBzgRUW1FuIaPsil7C2ElFJdi4bNqo/BfOSf2pNu4o9Bv334qSSlv/1JGS4syu5mpzXW6c4/RlXHKV5QiKLR6a5sJH7dcz8VNugKEonKDMcPdXn82ooQzd5JZeSRK51ET5Tn1oZrdnUVJTmNSlFcyZlpKqNJrPOMI4iN1k4RqbjsrGq8peUC2zichX0dpaQxpIV0DnrOEKEELPV9CF2dLNhg+D8OD4yC32MDwKXu3fLPZGnIWDYH8Qvj/onbxud71JnpLnpE8CckxOyFtySkaEkc/kB/lFfnup98X76n1boF6nrXlClsL7/hcnye6l</latexit>

2x← �
<latexit sha1_base64="S2GGD+5vIGUeV36pKK37wWrrqpU=">AAAC53icbZFLb9NAEMc35lXKK6XHXgwREgcU2ekLbhVcekEqgrSVYitar8fNqvuwdsekluUzR24VVz4AHOGz8G1YO1ZFQkZa7V//+Y12ZybJBbcYBH963q3bd+7e27i/+eDho8dP+ltPT60uDIMx00Kb84RaEFzBGDkKOM8NUJkIOEsu3zX5s89gLNfqE5Y5xJJeKJ5xRtFZ0/6zKNEitaV0V3UVCciQGqPnEcgcSwtYT/uDYBi04f8vwk4MSBcn063ezyjVrJCgkAlq7SQMcowrapAzAfVmVFjIKbukFzBxUlEJNq7aXmr/hXNSP9PGHYV+6/5bUVFpm+86UlKc2dVcY67LTQrMXscVV3mBoNjioawQPmq/GYyfcgMMRekEZYa7v/psRg1l6Ma39EqSyKUmqvfqYzvAVxYlNaVJXVrBnGkpqUqj+YwjTMK4ihCusO2oar26GoT1MpuIYhVtrDWkgXQFdM4argQh9HwFXZgd3W54PxztHR64xe6PDsI3uzeLvRGno2G4Oxx92Bscve12vUF2yHPykoTkkByRY3JCxoSRL+QH+UV+e9z76l173xao1+tqtslSeN//Ar8L8tw=</latexit>

y ← �
<latexit sha1_base64="HAsg/WPPpp9SN2cowP6vXhBey2E=">AAAC53icbZFLb9NAEMc3Lo9SHk3hyMUQIXFAkZ2+4FaVCxekIkhbKbai9XrcrLoPa3dMsCyfe+wNceUDwBE+C9+GtWNVJGSk1f71n99od2aSXHCLQfCn523cun3n7ua9rfsPHj7a7u88PrW6MAzGTAttzhNqQXAFY+Qo4Dw3QGUi4Cy5fNvkzz6DsVyrT1jmEEt6oXjGGUVnTfvPokSL1JbSXVUZCciQGqPnEcgcSwtYT/uDYBi04f8vwk4MSBcn053ezyjVrJCgkAlq7SQMcowrapAzAfVWVFjIKbukFzBxUlEJNq7aXmr/hXNSP9PGHYV+6/5bUVFpm+86UlKc2dVcY67LTQrMXscVV3mBoNjioawQPmq/GYyfcgMMRekEZYa7v/psRg1l6Ma39EqSyKUmqvfqYzvAVxYlNaVJXVrBnGkpqUqj+YwjTMK4ihC+YNtR1Xp1NQjrZTYRxSraWGtIA+kK6Jw1XAlC6PkKujA7ut3wfjjaOzxwi90fHYRvdm8WeyNOR8Nwdzj6sDc4Ou52vUmekufkJQnJITki78gJGRNGrsgP8ov89rh37X31vi1Qr9fVPCFL4X3/C8GA8t0=</latexit>

0 x← 0
<latexit sha1_base64="4i7clh16yplKNk1VTHr2AoXZhMY=">AAAC33icbZFLa9tAEMfX6itJX057Kr2ImkIPxUjOq72F9NJLIaV1ErCEWa1G8ZJ9iN1RHSFEj7mVXvsBek0+T79NV7IIteuBZf/85zfszkySC24xCP70vDt3791/sLG59fDR4ydP+9vPTqwuDIMx00Kbs4RaEFzBGDkKOMsNUJkIOE0uPjT5029gLNfqK5Y5xJKeK55xRtFZ0/6LKNEitaV0V3UZCciQGqPnQT3tD4Jh0Ib/vwg7MSBdHE+3e9dRqlkhQSET1NpJGOQYV9QgZwLqraiwkFN2Qc9h4qSiEmxctT3U/mvnpH6mjTsK/db9t6Ki0jbfdKSkOLOrucZcl5sUmL2LK67yAkGxxUNZIXzUfjMQP+UGGIrSCcoMd3/12YwaytCNbemVJJFLTVSf1Jd2cG8tSmpKk7q0gjnTUlKVRvMZR5iEcRUhXGLbUdV6dTUI62U2EcUq2lhrSAPpCuicNVwJQuj5CrowO7rd8F442j3Yd4vdG+2H73duF3srTkbDcGc4+rw7ODzqdr1BXpJX5A0JyQE5JB/JMRkTRr6T3+Sa3HjUu/J+eD8XqNfrap6TpfB+/QV9KO7l</latexit>

y ← 0
<latexit sha1_base64="4/sm9X6X8ysTvKbvAHw0Qp8FLYs=">AAAC33icbZFLb9NAEMc35lXKoymcEBeLCIkDiuz0BbeKXrggtSppK8VWtF6Pm1X3Ye2OCZZlceSGeuUDcC2fh2/D2rEqEjLSav/6z2+0OzNJLrjFIPjT8+7cvXf/wcbDzUePnzzd6m8/O7O6MAzGTAttLhJqQXAFY+Qo4CI3QGUi4Dy5Omry51/AWK7VZyxziCW9VDzjjKKzpv0XUaJFakvprqqMBGRIjdHzoJ72B8EwaMP/X4SdGJAujqfbvZso1ayQoJAJau0kDHKMK2qQMwH1ZlRYyCm7opcwcVJRCTau2h5q/7VzUj/Txh2Ffuv+W1FRaZtvOlJSnNnVXGOuy00KzN7FFVd5gaDY4qGsED5qvxmIn3IDDEXpBGWGu7/6bEYNZejGtvRKksilJqpP6rQd3FuLkprSpC6tYM60lFSl0XzGESZhXEUIX7HtqGq9uhqE9TKbiGIVbaw1pIF0BXTOGq4EIfR8BV2YHd1ueC8c7R7su8XujfbD9zu3i70VZ6NhuDMcnewODj90u94gL8kr8oaE5IAcko/kmIwJI9/IL3JDfnvU++798K4XqNfrap6TpfB+/gV/le7m</latexit>

2x← �
<latexit sha1_base64="S2GGD+5vIGUeV36pKK37wWrrqpU=">AAAC53icbZFLb9NAEMc35lXKK6XHXgwREgcU2ekLbhVcekEqgrSVYitar8fNqvuwdsekluUzR24VVz4AHOGz8G1YO1ZFQkZa7V//+Y12ZybJBbcYBH963q3bd+7e27i/+eDho8dP+ltPT60uDIMx00Kb84RaEFzBGDkKOM8NUJkIOEsu3zX5s89gLNfqE5Y5xJJeKJ5xRtFZ0/6zKNEitaV0V3UVCciQGqPnEcgcSwtYT/uDYBi04f8vwk4MSBcn063ezyjVrJCgkAlq7SQMcowrapAzAfVmVFjIKbukFzBxUlEJNq7aXmr/hXNSP9PGHYV+6/5bUVFpm+86UlKc2dVcY67LTQrMXscVV3mBoNjioawQPmq/GYyfcgMMRekEZYa7v/psRg1l6Ma39EqSyKUmqvfqYzvAVxYlNaVJXVrBnGkpqUqj+YwjTMK4ihCusO2oar26GoT1MpuIYhVtrDWkgXQFdM4argQh9HwFXZgd3W54PxztHR64xe6PDsI3uzeLvRGno2G4Oxx92Bscve12vUF2yHPykoTkkByRY3JCxoSRL+QH+UV+e9z76l173xao1+tqtslSeN//Ar8L8tw=</latexit>

y ← �
<latexit sha1_base64="HAsg/WPPpp9SN2cowP6vXhBey2E=">AAAC53icbZFLb9NAEMc3Lo9SHk3hyMUQIXFAkZ2+4FaVCxekIkhbKbai9XrcrLoPa3dMsCyfe+wNceUDwBE+C9+GtWNVJGSk1f71n99od2aSXHCLQfCn523cun3n7ua9rfsPHj7a7u88PrW6MAzGTAttzhNqQXAFY+Qo4Dw3QGUi4Cy5fNvkzz6DsVyrT1jmEEt6oXjGGUVnTfvPokSL1JbSXVUZCciQGqPnEcgcSwtYT/uDYBi04f8vwk4MSBcn053ezyjVrJCgkAlq7SQMcowrapAzAfVWVFjIKbukFzBxUlEJNq7aXmr/hXNSP9PGHYV+6/5bUVFpm+86UlKc2dVcY67LTQrMXscVV3mBoNjioawQPmq/GYyfcgMMRekEZYa7v/psRg1l6Ma39EqSyKUmqvfqYzvAVxYlNaVJXVrBnGkpqUqj+YwjTMK4ihC+YNtR1Xp1NQjrZTYRxSraWGtIA+kK6Jw1XAlC6PkKujA7ut3wfjjaOzxwi90fHYRvdm8WeyNOR8Nwdzj6sDc4Ou52vUmekufkJQnJITki78gJGRNGrsgP8ov89rh37X31vi1Qr9fVPCFL4X3/C8GA8t0=</latexit>

0 x← 0
<latexit sha1_base64="4i7clh16yplKNk1VTHr2AoXZhMY=">AAAC33icbZFLa9tAEMfX6itJX057Kr2ImkIPxUjOq72F9NJLIaV1ErCEWa1G8ZJ9iN1RHSFEj7mVXvsBek0+T79NV7IIteuBZf/85zfszkySC24xCP70vDt3791/sLG59fDR4ydP+9vPTqwuDIMx00Kbs4RaEFzBGDkKOMsNUJkIOE0uPjT5029gLNfqK5Y5xJKeK55xRtFZ0/6LKNEitaV0V3UZCciQGqPnQT3tD4Jh0Ib/vwg7MSBdHE+3e9dRqlkhQSET1NpJGOQYV9QgZwLqraiwkFN2Qc9h4qSiEmxctT3U/mvnpH6mjTsK/db9t6Ki0jbfdKSkOLOrucZcl5sUmL2LK67yAkGxxUNZIXzUfjMQP+UGGIrSCcoMd3/12YwaytCNbemVJJFLTVSf1Jd2cG8tSmpKk7q0gjnTUlKVRvMZR5iEcRUhXGLbUdV6dTUI62U2EcUq2lhrSAPpCuicNVwJQuj5CrowO7rd8F442j3Yd4vdG+2H73duF3srTkbDcGc4+rw7ODzqdr1BXpJX5A0JyQE5JB/JMRkTRr6T3+Sa3HjUu/J+eD8XqNfrap6TpfB+/QV9KO7l</latexit>

y ← 0
<latexit sha1_base64="4/sm9X6X8ysTvKbvAHw0Qp8FLYs=">AAAC33icbZFLb9NAEMc35lXKoymcEBeLCIkDiuz0BbeKXrggtSppK8VWtF6Pm1X3Ye2OCZZlceSGeuUDcC2fh2/D2rEqEjLSav/6z2+0OzNJLrjFIPjT8+7cvXf/wcbDzUePnzzd6m8/O7O6MAzGTAttLhJqQXAFY+Qo4CI3QGUi4Dy5Omry51/AWK7VZyxziCW9VDzjjKKzpv0XUaJFakvprqqMBGRIjdHzoJ72B8EwaMP/X4SdGJAujqfbvZso1ayQoJAJau0kDHKMK2qQMwH1ZlRYyCm7opcwcVJRCTau2h5q/7VzUj/Txh2Ffuv+W1FRaZtvOlJSnNnVXGOuy00KzN7FFVd5gaDY4qGsED5qvxmIn3IDDEXpBGWGu7/6bEYNZejGtvRKksilJqpP6rQd3FuLkprSpC6tYM60lFSl0XzGESZhXEUIX7HtqGq9uhqE9TKbiGIVbaw1pIF0BXTOGq4EIfR8BV2YHd1ueC8c7R7su8XujfbD9zu3i70VZ6NhuDMcnewODj90u94gL8kr8oaE5IAcko/kmIwJI9/IL3JDfnvU++798K4XqNfrap6TpfB+/gV/le7m</latexit>

r(1)(x,0)
<latexit sha1_base64="UjY4njnnjDEFilR04mQisRKVHoU=">AAAC4nicbZFLb9NAEMc3Lo9SXmk5wsEiQkqlKrLTF9wquHBBKoK0lWIrWq8nzar7sHbHpJblC0duiCsfgBMSfBu+DWvHqkjISKv96z+/0e7MJJngFoPgT8fbuHX7zt3Ne1v3Hzx89Li7vXNmdW4YjJgW2lwk1ILgCkbIUcBFZoDKRMB5cvWmzp9/AmO5Vh+xyCCW9FLxKWcUnTXpPosSLVJbSHeVZYTom6of7vav94LdatLtBYOgCf9/EbaiR9o4nWx3fkapZrkEhUxQa8dhkGFcUoOcCai2otxCRtkVvYSxk4pKsHHZtFH5L5yT+lNt3FHoN+6/FSWVtv6pIyXFmV3N1ea63DjH6cu45CrLERRbPDTNhY/ar2fip9wAQ1E4QZnh7q8+m1FDGbrJLb2SJHKpifKd+tDMbs+ipKYwqUsrmDMtJVVpNJ9xhHEYu8nCNTYdlY1Xlb2wWmYTka+itbWGNJCugM5ZwxUghJ6voAuzpZsNH4bDg+Mjt9jD4VH4av9msTfibDgI9wfD9we9k9ftrjfJU/Kc9ElIjskJeUtOyYgw8pn8IL/Iby/1vnhfvW8L1Ou0NU/IUnjf/wIW5+6e</latexit>

w(2)(y,1)
<latexit sha1_base64="z26x7Chjsmwjh6sfsBbcLJrLaoo=">AAAC4nicbZFLb9NAEMc35lXKoykc4WARIaVSFcXuk1sFFy5IRZC2UmxF6/WkWXUf1u6Y1LJ84cgNceUDcEKCb8O3Ye1YFQkZabV//ec32p2ZJBPc4nD4p+Pdun3n7r2N+5sPHj56vNXdfnJmdW4YjJgW2lwk1ILgCkbIUcBFZoDKRMB5cvWmzp9/AmO5Vh+xyCCW9FLxKWcUnTXpPo8SLVJbSHeVZYToz6t+uNMvdoOdatLtDQfDJvz/RdCKHmnjdLLd+RmlmuUSFDJBrR0HwwzjkhrkTEC1GeUWMsqu6CWMnVRUgo3Lpo3Kf+mc1J9q445Cv3H/rSiptPVPHSkpzuxqrjbX5cY5To/jkqssR1Bs8dA0Fz5qv56Jn3IDDEXhBGWGu7/6bEYNZegmt/RKksilJsp36kMzu12LkprCpC6tYM60lFSl0XzGEcZB7CYL19h0VDZeVfaCaplNRL6K1tYa0kC6AjpnDVeAEHq+gi7Mlm42fBCE+0eHbrEH4WHwau9msTfiLBwEe4Pw/X7v5HW76w3yjLwgfRKQI3JC3pJTMiKMfCY/yC/y20u9L95X79sC9TptzVOyFN73vyou7qY=</latexit>

x← �
<latexit sha1_base64="S2GGD+5vIGUeV36pKK37wWrrqpU=">AAAC53icbZFLb9NAEMc35lXKK6XHXgwREgcU2ekLbhVcekEqgrSVYitar8fNqvuwdsekluUzR24VVz4AHOGz8G1YO1ZFQkZa7V//+Y12ZybJBbcYBH963q3bd+7e27i/+eDho8dP+ltPT60uDIMx00Kb84RaEFzBGDkKOM8NUJkIOEsu3zX5s89gLNfqE5Y5xJJeKJ5xRtFZ0/6zKNEitaV0V3UVCciQGqPnEcgcSwtYT/uDYBi04f8vwk4MSBcn063ezyjVrJCgkAlq7SQMcowrapAzAfVmVFjIKbukFzBxUlEJNq7aXmr/hXNSP9PGHYV+6/5bUVFpm+86UlKc2dVcY67LTQrMXscVV3mBoNjioawQPmq/GYyfcgMMRekEZYa7v/psRg1l6Ma39EqSyKUmqvfqYzvAVxYlNaVJXVrBnGkpqUqj+YwjTMK4ihCusO2oar26GoT1MpuIYhVtrDWkgXQFdM4argQh9HwFXZgd3W54PxztHR64xe6PDsI3uzeLvRGno2G4Oxx92Bscve12vUF2yHPykoTkkByRY3JCxoSRL+QH+UV+e9z76l173xao1+tqtslSeN//Ar8L8tw=</latexit>

y ← �
<latexit sha1_base64="HAsg/WPPpp9SN2cowP6vXhBey2E=">AAAC53icbZFLb9NAEMc3Lo9SHk3hyMUQIXFAkZ2+4FaVCxekIkhbKbai9XrcrLoPa3dMsCyfe+wNceUDwBE+C9+GtWNVJGSk1f71n99od2aSXHCLQfCn523cun3n7ua9rfsPHj7a7u88PrW6MAzGTAttzhNqQXAFY+Qo4Dw3QGUi4Cy5fNvkzz6DsVyrT1jmEEt6oXjGGUVnTfvPokSL1JbSXVUZCciQGqPnEcgcSwtYT/uDYBi04f8vwk4MSBcn053ezyjVrJCgkAlq7SQMcowrapAzAfVWVFjIKbukFzBxUlEJNq7aXmr/hXNSP9PGHYV+6/5bUVFpm+86UlKc2dVcY67LTQrMXscVV3mBoNjioawQPmq/GYyfcgMMRekEZYa7v/psRg1l6Ma39EqSyKUmqvfqYzvAVxYlNaVJXVrBnGkpqUqj+YwjTMK4ihC+YNtR1Xp1NQjrZTYRxSraWGtIA+kK6Jw1XAlC6PkKujA7ut3wfjjaOzxwi90fHYRvdm8WeyNOR8Nwdzj6sDc4Ou52vUmekufkJQnJITki78gJGRNGrsgP8ov89rh37X31vi1Qr9fVPCFL4X3/C8GA8t0=</latexit>

0 x← 0
<latexit sha1_base64="4i7clh16yplKNk1VTHr2AoXZhMY=">AAAC33icbZFLa9tAEMfX6itJX057Kr2ImkIPxUjOq72F9NJLIaV1ErCEWa1G8ZJ9iN1RHSFEj7mVXvsBek0+T79NV7IIteuBZf/85zfszkySC24xCP70vDt3791/sLG59fDR4ydP+9vPTqwuDIMx00Kbs4RaEFzBGDkKOMsNUJkIOE0uPjT5029gLNfqK5Y5xJKeK55xRtFZ0/6LKNEitaV0V3UZCciQGqPnQT3tD4Jh0Ib/vwg7MSBdHE+3e9dRqlkhQSET1NpJGOQYV9QgZwLqraiwkFN2Qc9h4qSiEmxctT3U/mvnpH6mjTsK/db9t6Ki0jbfdKSkOLOrucZcl5sUmL2LK67yAkGxxUNZIXzUfjMQP+UGGIrSCcoMd3/12YwaytCNbemVJJFLTVSf1Jd2cG8tSmpKk7q0gjnTUlKVRvMZR5iEcRUhXGLbUdV6dTUI62U2EcUq2lhrSAPpCuicNVwJQuj5CrowO7rd8F442j3Yd4vdG+2H73duF3srTkbDcGc4+rw7ODzqdr1BXpJX5A0JyQE5JB/JMRkTRr6T3+Sa3HjUu/J+eD8XqNfrap6TpfB+/QV9KO7l</latexit>

y ← 0
<latexit sha1_base64="4/sm9X6X8ysTvKbvAHw0Qp8FLYs=">AAAC33icbZFLb9NAEMc35lXKoymcEBeLCIkDiuz0BbeKXrggtSppK8VWtF6Pm1X3Ye2OCZZlceSGeuUDcC2fh2/D2rEqEjLSav/6z2+0OzNJLrjFIPjT8+7cvXf/wcbDzUePnzzd6m8/O7O6MAzGTAttLhJqQXAFY+Qo4CI3QGUi4Dy5Omry51/AWK7VZyxziCW9VDzjjKKzpv0XUaJFakvprqqMBGRIjdHzoJ72B8EwaMP/X4SdGJAujqfbvZso1ayQoJAJau0kDHKMK2qQMwH1ZlRYyCm7opcwcVJRCTau2h5q/7VzUj/Txh2Ffuv+W1FRaZtvOlJSnNnVXGOuy00KzN7FFVd5gaDY4qGsED5qvxmIn3IDDEXpBGWGu7/6bEYNZejGtvRKksilJqpP6rQd3FuLkprSpC6tYM60lFSl0XzGESZhXEUIX7HtqGq9uhqE9TKbiGIVbaw1pIF0BXTOGq4EIfR8BV2YHd1ueC8c7R7su8XujfbD9zu3i70VZ6NhuDMcnewODj90u94gL8kr8oaE5IAcko/kmIwJI9/IL3JDfnvU++798K4XqNfrap6TpfB+/gV/le7m</latexit>

3

4x← �
<latexit sha1_base64="S2GGD+5vIGUeV36pKK37wWrrqpU=">AAAC53icbZFLb9NAEMc35lXKK6XHXgwREgcU2ekLbhVcekEqgrSVYitar8fNqvuwdsekluUzR24VVz4AHOGz8G1YO1ZFQkZa7V//+Y12ZybJBbcYBH963q3bd+7e27i/+eDho8dP+ltPT60uDIMx00Kb84RaEFzBGDkKOM8NUJkIOEsu3zX5s89gLNfqE5Y5xJJeKJ5xRtFZ0/6zKNEitaV0V3UVCciQGqPnEcgcSwtYT/uDYBi04f8vwk4MSBcn063ezyjVrJCgkAlq7SQMcowrapAzAfVmVFjIKbukFzBxUlEJNq7aXmr/hXNSP9PGHYV+6/5bUVFpm+86UlKc2dVcY67LTQrMXscVV3mBoNjioawQPmq/GYyfcgMMRekEZYa7v/psRg1l6Ma39EqSyKUmqvfqYzvAVxYlNaVJXVrBnGkpqUqj+YwjTMK4ihCusO2oar26GoT1MpuIYhVtrDWkgXQFdM4argQh9HwFXZgd3W54PxztHR64xe6PDsI3uzeLvRGno2G4Oxx92Bscve12vUF2yHPykoTkkByRY3JCxoSRL+QH+UV+e9z76l173xao1+tqtslSeN//Ar8L8tw=</latexit>

y ← �
<latexit sha1_base64="HAsg/WPPpp9SN2cowP6vXhBey2E=">AAAC53icbZFLb9NAEMc3Lo9SHk3hyMUQIXFAkZ2+4FaVCxekIkhbKbai9XrcrLoPa3dMsCyfe+wNceUDwBE+C9+GtWNVJGSk1f71n99od2aSXHCLQfCn523cun3n7ua9rfsPHj7a7u88PrW6MAzGTAttzhNqQXAFY+Qo4Dw3QGUi4Cy5fNvkzz6DsVyrT1jmEEt6oXjGGUVnTfvPokSL1JbSXVUZCciQGqPnEcgcSwtYT/uDYBi04f8vwk4MSBcn053ezyjVrJCgkAlq7SQMcowrapAzAfVWVFjIKbukFzBxUlEJNq7aXmr/hXNSP9PGHYV+6/5bUVFpm+86UlKc2dVcY67LTQrMXscVV3mBoNjioawQPmq/GYyfcgMMRekEZYa7v/psRg1l6Ma39EqSyKUmqvfqYzvAVxYlNaVJXVrBnGkpqUqj+YwjTMK4ihC+YNtR1Xp1NQjrZTYRxSraWGtIA+kK6Jw1XAlC6PkKujA7ut3wfjjaOzxwi90fHYRvdm8WeyNOR8Nwdzj6sDc4Ou52vUmekufkJQnJITki78gJGRNGrsgP8ov89rh37X31vi1Qr9fVPCFL4X3/C8GA8t0=</latexit>

0 x← 0
<latexit sha1_base64="4i7clh16yplKNk1VTHr2AoXZhMY=">AAAC33icbZFLa9tAEMfX6itJX057Kr2ImkIPxUjOq72F9NJLIaV1ErCEWa1G8ZJ9iN1RHSFEj7mVXvsBek0+T79NV7IIteuBZf/85zfszkySC24xCP70vDt3791/sLG59fDR4ydP+9vPTqwuDIMx00Kbs4RaEFzBGDkKOMsNUJkIOE0uPjT5029gLNfqK5Y5xJKeK55xRtFZ0/6LKNEitaV0V3UZCciQGqPnQT3tD4Jh0Ib/vwg7MSBdHE+3e9dRqlkhQSET1NpJGOQYV9QgZwLqraiwkFN2Qc9h4qSiEmxctT3U/mvnpH6mjTsK/db9t6Ki0jbfdKSkOLOrucZcl5sUmL2LK67yAkGxxUNZIXzUfjMQP+UGGIrSCcoMd3/12YwaytCNbemVJJFLTVSf1Jd2cG8tSmpKk7q0gjnTUlKVRvMZR5iEcRUhXGLbUdV6dTUI62U2EcUq2lhrSAPpCuicNVwJQuj5CrowO7rd8F442j3Yd4vdG+2H73duF3srTkbDcGc4+rw7ODzqdr1BXpJX5A0JyQE5JB/JMRkTRr6T3+Sa3HjUu/J+eD8XqNfrap6TpfB+/QV9KO7l</latexit>

y ← 0
<latexit sha1_base64="4/sm9X6X8ysTvKbvAHw0Qp8FLYs=">AAAC33icbZFLb9NAEMc35lXKoymcEBeLCIkDiuz0BbeKXrggtSppK8VWtF6Pm1X3Ye2OCZZlceSGeuUDcC2fh2/D2rEqEjLSav/6z2+0OzNJLrjFIPjT8+7cvXf/wcbDzUePnzzd6m8/O7O6MAzGTAttLhJqQXAFY+Qo4CI3QGUi4Dy5Omry51/AWK7VZyxziCW9VDzjjKKzpv0XUaJFakvprqqMBGRIjdHzoJ72B8EwaMP/X4SdGJAujqfbvZso1ayQoJAJau0kDHKMK2qQMwH1ZlRYyCm7opcwcVJRCTau2h5q/7VzUj/Txh2Ffuv+W1FRaZtvOlJSnNnVXGOuy00KzN7FFVd5gaDY4qGsED5qvxmIn3IDDEXpBGWGu7/6bEYNZejGtvRKksilJqpP6rQd3FuLkprSpC6tYM60lFSl0XzGESZhXEUIX7HtqGq9uhqE9TKbiGIVbaw1pIF0BXTOGq4EIfR8BV2YHd1ueC8c7R7su8XujfbD9zu3i70VZ6NhuDMcnewODj90u94gL8kr8oaE5IAcko/kmIwJI9/IL3JDfnvU++798K4XqNfrap6TpfB+/gV/le7m</latexit>

r(1)(x,0)
<latexit sha1_base64="UjY4njnnjDEFilR04mQisRKVHoU=">AAAC4nicbZFLb9NAEMc3Lo9SXmk5wsEiQkqlKrLTF9wquHBBKoK0lWIrWq8nzar7sHbHpJblC0duiCsfgBMSfBu+DWvHqkjISKv96z+/0e7MJJngFoPgT8fbuHX7zt3Ne1v3Hzx89Li7vXNmdW4YjJgW2lwk1ILgCkbIUcBFZoDKRMB5cvWmzp9/AmO5Vh+xyCCW9FLxKWcUnTXpPosSLVJbSHeVZYTom6of7vav94LdatLtBYOgCf9/EbaiR9o4nWx3fkapZrkEhUxQa8dhkGFcUoOcCai2otxCRtkVvYSxk4pKsHHZtFH5L5yT+lNt3FHoN+6/FSWVtv6pIyXFmV3N1ea63DjH6cu45CrLERRbPDTNhY/ar2fip9wAQ1E4QZnh7q8+m1FDGbrJLb2SJHKpifKd+tDMbs+ipKYwqUsrmDMtJVVpNJ9xhHEYu8nCNTYdlY1Xlb2wWmYTka+itbWGNJCugM5ZwxUghJ6voAuzpZsNH4bDg+Mjt9jD4VH4av9msTfibDgI9wfD9we9k9ftrjfJU/Kc9ElIjskJeUtOyYgw8pn8IL/Iby/1vnhfvW8L1Ou0NU/IUnjf/wIW5+6e</latexit>

w(1)(y,1)
<latexit sha1_base64="9NE333u6ICm8EnoPZ0+1dD6WAQA=">AAAC4nicbZFNb9NAEIY35quUj6ZwhINFhJRKVeRNP7lVcOGCVARpK8VWtF5PmlV319bumNSyfOHIDXHlB3BCgn/Dv2HtWBUJGWm1r955RrszE2dSWAyCPx3v1u07d+9t3N988PDR463u9pMzm+aGw4inMjUXMbMghYYRCpRwkRlgKpZwHl+9qfPnn8BYkeqPWGQQKXapxVRwhs6adJ+HcSoTWyh3lWWI6M+rPt3pF7t0p5p0e8EgaML/X9BW9Egbp5Ptzs8wSXmuQCOXzNoxDTKMSmZQcAnVZphbyBi/YpcwdlIzBTYqmzYq/6VzEn+aGnc0+o37b0XJlK1/6kjFcGZXc7W5LjfOcXoclUJnOYLmi4emufQx9euZ+IkwwFEWTjBuhPurz2fMMI5uckuvxLFaaqJ8pz80s9u1qJgpTOLSGuY8VYrpJJzPBMKYRm6ycI1NR2XjVWWPVstsLPNVtLbWkAaSFdA5a7gCpEznK+jCbOlmwwd0uH906BZ7MDykr/ZuFnsjzoYDujcYvt/vnbxud71BnpEXpE8oOSIn5C05JSPCyWfyg/wiv73E++J99b4tUK/T1jwlS+F9/wsnxu6l</latexit>

r(3)(x,1)
<latexit sha1_base64="T5hSXSIc+P8gafzrp1z/EQE7bzI=">AAAC4nicbZFLb9NAEMc35lXKK4UjHCwipFSqIjvpA24VXLggFUHaSrEVrdeTZtV9WLtjUsvyhSM3xJUPwAkJvg3fhrVjVSRkpNX+9Z/faHdmkkxwi0Hwp+PduHnr9p2tu9v37j94+Ki78/jU6twwGDMttDlPqAXBFYyRo4DzzACViYCz5PJNnT/7BMZyrT5ikUEs6YXiM84oOmvafRYlWqS2kO4qywjRN1V/tNu/2gt3q2m3FwyCJvz/RdiKHmnjZLrT+RmlmuUSFDJBrZ2EQYZxSQ1yJqDajnILGWWX9AImTioqwcZl00blv3BO6s+0cUeh37j/VpRU2vqnjpQU53Y9V5ubcpMcZy/jkqssR1Bs+dAsFz5qv56Jn3IDDEXhBGWGu7/6bE4NZegmt/JKksiVJsp36kMzuz2LkprCpC6tYMG0lFSl0WLOESZh7CYLV9h0VDZeVfbCapVNRL6O1tYG0kC6BjpnA1eAEHqxhi7Nlm42fBAO948O3WIPhofhq9H1Yq/F6XAQjgbD9/u949ftrrfIU/Kc9ElIjsgxeUtOyJgw8pn8IL/Iby/1vnhfvW9L1Ou0NU/ISnjf/wIeGu6h</latexit>

w(2)(y,2)
<latexit sha1_base64="tpfgLrkTjd8FgmDRmRTMOHg3acg=">AAAC4nicbZFLb9NAEMc35lXKoykc4WARIaVSFcXuk1sFFy5IRZC2UmxF6/WkWXUf1u6Y1LJ84cgNceUDcEKCb8O3Ye1YFQkZabV//ec32p2ZJBPc4nD4p+Pdun3n7r2N+5sPHj56vNXdfnJmdW4YjJgW2lwk1ILgCkbIUcBFZoDKRMB5cvWmzp9/AmO5Vh+xyCCW9FLxKWcUnTXpPo8SLVJbSHeVZYToz6t+uNMvdsOdatLtDQfDJvz/RdCKHmnjdLLd+RmlmuUSFDJBrR0HwwzjkhrkTEC1GeUWMsqu6CWMnVRUgo3Lpo3Kf+mc1J9q445Cv3H/rSiptPVPHSkpzuxqrjbX5cY5To/jkqssR1Bs8dA0Fz5qv56Jn3IDDEXhBGWGu7/6bEYNZegmt/RKksilJsp36kMzu12LkprCpC6tYM60lFSl0XzGEcZB7CYL19h0VDZeVfaCaplNRL6K1tYa0kC6AjpnDVeAEHq+gi7Mlm42fBCE+0eHbrEH4WHwau9msTfiLBwEe4Pw/X7v5HW76w3yjLwgfRKQI3JC3pJTMiKMfCY/yC/y20u9L95X79sC9TptzVOyFN73vyyR7qc=</latexit>

x← �
<latexit sha1_base64="S2GGD+5vIGUeV36pKK37wWrrqpU=">AAAC53icbZFLb9NAEMc35lXKK6XHXgwREgcU2ekLbhVcekEqgrSVYitar8fNqvuwdsekluUzR24VVz4AHOGz8G1YO1ZFQkZa7V//+Y12ZybJBbcYBH963q3bd+7e27i/+eDho8dP+ltPT60uDIMx00Kb84RaEFzBGDkKOM8NUJkIOEsu3zX5s89gLNfqE5Y5xJJeKJ5xRtFZ0/6zKNEitaV0V3UVCciQGqPnEcgcSwtYT/uDYBi04f8vwk4MSBcn063ezyjVrJCgkAlq7SQMcowrapAzAfVmVFjIKbukFzBxUlEJNq7aXmr/hXNSP9PGHYV+6/5bUVFpm+86UlKc2dVcY67LTQrMXscVV3mBoNjioawQPmq/GYyfcgMMRekEZYa7v/psRg1l6Ma39EqSyKUmqvfqYzvAVxYlNaVJXVrBnGkpqUqj+YwjTMK4ihCusO2oar26GoT1MpuIYhVtrDWkgXQFdM4argQh9HwFXZgd3W54PxztHR64xe6PDsI3uzeLvRGno2G4Oxx92Bscve12vUF2yHPykoTkkByRY3JCxoSRL+QH+UV+e9z76l173xao1+tqtslSeN//Ar8L8tw=</latexit>

y ← �
<latexit sha1_base64="HAsg/WPPpp9SN2cowP6vXhBey2E=">AAAC53icbZFLb9NAEMc3Lo9SHk3hyMUQIXFAkZ2+4FaVCxekIkhbKbai9XrcrLoPa3dMsCyfe+wNceUDwBE+C9+GtWNVJGSk1f71n99od2aSXHCLQfCn523cun3n7ua9rfsPHj7a7u88PrW6MAzGTAttzhNqQXAFY+Qo4Dw3QGUi4Cy5fNvkzz6DsVyrT1jmEEt6oXjGGUVnTfvPokSL1JbSXVUZCciQGqPnEcgcSwtYT/uDYBi04f8vwk4MSBcn053ezyjVrJCgkAlq7SQMcowrapAzAfVWVFjIKbukFzBxUlEJNq7aXmr/hXNSP9PGHYV+6/5bUVFpm+86UlKc2dVcY67LTQrMXscVV3mBoNjioawQPmq/GYyfcgMMRekEZYa7v/psRg1l6Ma39EqSyKUmqvfqYzvAVxYlNaVJXVrBnGkpqUqj+YwjTMK4ihC+YNtR1Xp1NQjrZTYRxSraWGtIA+kK6Jw1XAlC6PkKujA7ut3wfjjaOzxwi90fHYRvdm8WeyNOR8Nwdzj6sDc4Ou52vUmekufkJQnJITki78gJGRNGrsgP8ov89rh37X31vi1Qr9fVPCFL4X3/C8GA8t0=</latexit>

0 x← 0
<latexit sha1_base64="4i7clh16yplKNk1VTHr2AoXZhMY=">AAAC33icbZFLa9tAEMfX6itJX057Kr2ImkIPxUjOq72F9NJLIaV1ErCEWa1G8ZJ9iN1RHSFEj7mVXvsBek0+T79NV7IIteuBZf/85zfszkySC24xCP70vDt3791/sLG59fDR4ydP+9vPTqwuDIMx00Kbs4RaEFzBGDkKOMsNUJkIOE0uPjT5029gLNfqK5Y5xJKeK55xRtFZ0/6LKNEitaV0V3UZCciQGqPnQT3tD4Jh0Ib/vwg7MSBdHE+3e9dRqlkhQSET1NpJGOQYV9QgZwLqraiwkFN2Qc9h4qSiEmxctT3U/mvnpH6mjTsK/db9t6Ki0jbfdKSkOLOrucZcl5sUmL2LK67yAkGxxUNZIXzUfjMQP+UGGIrSCcoMd3/12YwaytCNbemVJJFLTVSf1Jd2cG8tSmpKk7q0gjnTUlKVRvMZR5iEcRUhXGLbUdV6dTUI62U2EcUq2lhrSAPpCuicNVwJQuj5CrowO7rd8F442j3Yd4vdG+2H73duF3srTkbDcGc4+rw7ODzqdr1BXpJX5A0JyQE5JB/JMRkTRr6T3+Sa3HjUu/J+eD8XqNfrap6TpfB+/QV9KO7l</latexit>

y ← 0
<latexit sha1_base64="4/sm9X6X8ysTvKbvAHw0Qp8FLYs=">AAAC33icbZFLb9NAEMc35lXKoymcEBeLCIkDiuz0BbeKXrggtSppK8VWtF6Pm1X3Ye2OCZZlceSGeuUDcC2fh2/D2rEqEjLSav/6z2+0OzNJLrjFIPjT8+7cvXf/wcbDzUePnzzd6m8/O7O6MAzGTAttLhJqQXAFY+Qo4CI3QGUi4Dy5Omry51/AWK7VZyxziCW9VDzjjKKzpv0XUaJFakvprqqMBGRIjdHzoJ72B8EwaMP/X4SdGJAujqfbvZso1ayQoJAJau0kDHKMK2qQMwH1ZlRYyCm7opcwcVJRCTau2h5q/7VzUj/Txh2Ffuv+W1FRaZtvOlJSnNnVXGOuy00KzN7FFVd5gaDY4qGsED5qvxmIn3IDDEXpBGWGu7/6bEYNZejGtvRKksilJqpP6rQd3FuLkprSpC6tYM60lFSl0XzGESZhXEUIX7HtqGq9uhqE9TKbiGIVbaw1pIF0BXTOGq4EIfR8BV2YHd1ueC8c7R7su8XujfbD9zu3i70VZ6NhuDMcnewODj90u94gL8kr8oaE5IAcko/kmIwJI9/IL3JDfnvU++798K4XqNfrap6TpfB+/gV/le7m</latexit>

3

0 3x← 0
<latexit sha1_base64="4i7clh16yplKNk1VTHr2AoXZhMY=">AAAC33icbZFLa9tAEMfX6itJX057Kr2ImkIPxUjOq72F9NJLIaV1ErCEWa1G8ZJ9iN1RHSFEj7mVXvsBek0+T79NV7IIteuBZf/85zfszkySC24xCP70vDt3791/sLG59fDR4ydP+9vPTqwuDIMx00Kbs4RaEFzBGDkKOMsNUJkIOE0uPjT5029gLNfqK5Y5xJKeK55xRtFZ0/6LKNEitaV0V3UZCciQGqPnQT3tD4Jh0Ib/vwg7MSBdHE+3e9dRqlkhQSET1NpJGOQYV9QgZwLqraiwkFN2Qc9h4qSiEmxctT3U/mvnpH6mjTsK/db9t6Ki0jbfdKSkOLOrucZcl5sUmL2LK67yAkGxxUNZIXzUfjMQP+UGGIrSCcoMd3/12YwaytCNbemVJJFLTVSf1Jd2cG8tSmpKk7q0gjnTUlKVRvMZR5iEcRUhXGLbUdV6dTUI62U2EcUq2lhrSAPpCuicNVwJQuj5CrowO7rd8F442j3Yd4vdG+2H73duF3srTkbDcGc4+rw7ODzqdr1BXpJX5A0JyQE5JB/JMRkTRr6T3+Sa3HjUu/J+eD8XqNfrap6TpfB+/QV9KO7l</latexit>

y ← 2
<latexit sha1_base64="kyZzTnRUQvXVjNiK3LrSacBKciw=">AAAC4HicbZFLi9RAEMd74mtdHzurN70EB8GDDEn2pbdFL16EFZ3dhUkYOp3KTrP9CN0VxxACHr2JVz+AR/Xr+G3sZMLijFPQ9J9//YruqkoLwS0GwZ+Bd+36jZu3tm5v37l77/7OcPfBqdWlYTBhWmhznlILgiuYIEcB54UBKlMBZ+nl6zZ/9hGM5Vp9wKqARNILxXPOKDprNnwUp1pktpLuqqtYQI7UGL3wo2Y2HAXjoAv/fxH2YkT6OJntDn7GmWalBIVMUGunYVBgUlODnAlotuPSQkHZJb2AqZOKSrBJ3TXR+E+dk/m5Nu4o9Dv334qaStv+05GS4tyu51pzU25aYv4iqbkqSgTFlg/lpfBR++1E/IwbYCgqJygz3P3VZ3NqKEM3t5VX0lSuNFG/Ve+7yT23KKmpTObSChZMS0lVFi/mHGEaJnWM8Am7jurOa+pR2KyyqSjX0dbaQBrI1kDnbOAqEEIv1tCl2dPdhg/CaP/o0C32IDoMX+5dLfZKnEbjcG8cvdsfHb/qd71FHpMn5BkJyRE5Jm/ICZkQRj6TH+QX+e2l3hfvq/dtiXqDvuYhWQnv+18Ake8S</latexit>

x← �
<latexit sha1_base64="S2GGD+5vIGUeV36pKK37wWrrqpU=">AAAC53icbZFLb9NAEMc35lXKK6XHXgwREgcU2ekLbhVcekEqgrSVYitar8fNqvuwdsekluUzR24VVz4AHOGz8G1YO1ZFQkZa7V//+Y12ZybJBbcYBH963q3bd+7e27i/+eDho8dP+ltPT60uDIMx00Kb84RaEFzBGDkKOM8NUJkIOEsu3zX5s89gLNfqE5Y5xJJeKJ5xRtFZ0/6zKNEitaV0V3UVCciQGqPnEcgcSwtYT/uDYBi04f8vwk4MSBcn063ezyjVrJCgkAlq7SQMcowrapAzAfVmVFjIKbukFzBxUlEJNq7aXmr/hXNSP9PGHYV+6/5bUVFpm+86UlKc2dVcY67LTQrMXscVV3mBoNjioawQPmq/GYyfcgMMRekEZYa7v/psRg1l6Ma39EqSyKUmqvfqYzvAVxYlNaVJXVrBnGkpqUqj+YwjTMK4ihCusO2oar26GoT1MpuIYhVtrDWkgXQFdM4argQh9HwFXZgd3W54PxztHR64xe6PDsI3uzeLvRGno2G4Oxx92Bscve12vUF2yHPykoTkkByRY3JCxoSRL+QH+UV+e9z76l173xao1+tqtslSeN//Ar8L8tw=</latexit>

y ← 1
<latexit sha1_base64="qUP6I6nUdVpgY9kehaWIwFS802c=">AAAC33icbZFLb9NAEMc35lXKoymcEBeLCIkDiuz0BbeKXrggtSppK8VWtF6Pm1X3Ye2OCZZlceSGeuUDcC2fh2/D2rEqEjLSav/6z2+0OzNJLrjFIPjT8+7cvXf/wcbDzUePnzzd6m8/O7O6MAzGTAttLhJqQXAFY+Qo4CI3QGUi4Dy5Omry51/AWK7VZyxziCW9VDzjjKKzpv0XUaJFakvprqqMBGRIjdHzsJ72B8EwaMP/X4SdGJAujqfbvZso1ayQoJAJau0kDHKMK2qQMwH1ZlRYyCm7opcwcVJRCTau2h5q/7VzUj/Txh2Ffuv+W1FRaZtvOlJSnNnVXGOuy00KzN7FFVd5gaDY4qGsED5qvxmIn3IDDEXpBGWGu7/6bEYNZejGtvRKksilJqpP6rQd3FuLkprSpC6tYM60lFSl0XzGESZhXEUIX7HtqGq9uhqE9TKbiGIVbaw1pIF0BXTOGq4EIfR8BV2YHd1ueC8c7R7su8XujfbD9zu3i70VZ6NhuDMcnewODj90u94gL8kr8oaE5IAcko/kmIwJI9/IL3JDfnvU++798K4XqNfrap6TpfB+/gWB9+7n</latexit>

1 3x← 0
<latexit sha1_base64="4i7clh16yplKNk1VTHr2AoXZhMY=">AAAC33icbZFLa9tAEMfX6itJX057Kr2ImkIPxUjOq72F9NJLIaV1ErCEWa1G8ZJ9iN1RHSFEj7mVXvsBek0+T79NV7IIteuBZf/85zfszkySC24xCP70vDt3791/sLG59fDR4ydP+9vPTqwuDIMx00Kbs4RaEFzBGDkKOMsNUJkIOE0uPjT5029gLNfqK5Y5xJKeK55xRtFZ0/6LKNEitaV0V3UZCciQGqPnQT3tD4Jh0Ib/vwg7MSBdHE+3e9dRqlkhQSET1NpJGOQYV9QgZwLqraiwkFN2Qc9h4qSiEmxctT3U/mvnpH6mjTsK/db9t6Ki0jbfdKSkOLOrucZcl5sUmL2LK67yAkGxxUNZIXzUfjMQP+UGGIrSCcoMd3/12YwaytCNbemVJJFLTVSf1Jd2cG8tSmpKk7q0gjnTUlKVRvMZR5iEcRUhXGLbUdV6dTUI62U2EcUq2lhrSAPpCuicNVwJQuj5CrowO7rd8F442j3Yd4vdG+2H73duF3srTkbDcGc4+rw7ODzqdr1BXpJX5A0JyQE5JB/JMRkTRr6T3+Sa3HjUu/J+eD8XqNfrap6TpfB+/QV9KO7l</latexit>

y ← 2
<latexit sha1_base64="kyZzTnRUQvXVjNiK3LrSacBKciw=">AAAC4HicbZFLi9RAEMd74mtdHzurN70EB8GDDEn2pbdFL16EFZ3dhUkYOp3KTrP9CN0VxxACHr2JVz+AR/Xr+G3sZMLijFPQ9J9//YruqkoLwS0GwZ+Bd+36jZu3tm5v37l77/7OcPfBqdWlYTBhWmhznlILgiuYIEcB54UBKlMBZ+nl6zZ/9hGM5Vp9wKqARNILxXPOKDprNnwUp1pktpLuqqtYQI7UGL3wo2Y2HAXjoAv/fxH2YkT6OJntDn7GmWalBIVMUGunYVBgUlODnAlotuPSQkHZJb2AqZOKSrBJ3TXR+E+dk/m5Nu4o9Dv334qaStv+05GS4tyu51pzU25aYv4iqbkqSgTFlg/lpfBR++1E/IwbYCgqJygz3P3VZ3NqKEM3t5VX0lSuNFG/Ve+7yT23KKmpTObSChZMS0lVFi/mHGEaJnWM8Am7jurOa+pR2KyyqSjX0dbaQBrI1kDnbOAqEEIv1tCl2dPdhg/CaP/o0C32IDoMX+5dLfZKnEbjcG8cvdsfHb/qd71FHpMn5BkJyRE5Jm/ICZkQRj6TH+QX+e2l3hfvq/dtiXqDvuYhWQnv+18Ake8S</latexit>

x← �
<latexit sha1_base64="S2GGD+5vIGUeV36pKK37wWrrqpU=">AAAC53icbZFLb9NAEMc35lXKK6XHXgwREgcU2ekLbhVcekEqgrSVYitar8fNqvuwdsekluUzR24VVz4AHOGz8G1YO1ZFQkZa7V//+Y12ZybJBbcYBH963q3bd+7e27i/+eDho8dP+ltPT60uDIMx00Kb84RaEFzBGDkKOM8NUJkIOEsu3zX5s89gLNfqE5Y5xJJeKJ5xRtFZ0/6zKNEitaV0V3UVCciQGqPnEcgcSwtYT/uDYBi04f8vwk4MSBcn063ezyjVrJCgkAlq7SQMcowrapAzAfVmVFjIKbukFzBxUlEJNq7aXmr/hXNSP9PGHYV+6/5bUVFpm+86UlKc2dVcY67LTQrMXscVV3mBoNjioawQPmq/GYyfcgMMRekEZYa7v/psRg1l6Ma39EqSyKUmqvfqYzvAVxYlNaVJXVrBnGkpqUqj+YwjTMK4ihCusO2oar26GoT1MpuIYhVtrDWkgXQFdM4argQh9HwFXZgd3W54PxztHR64xe6PDsI3uzeLvRGno2G4Oxx92Bscve12vUF2yHPykoTkkByRY3JCxoSRL+QH+UV+e9z76l173xao1+tqtslSeN//Ar8L8tw=</latexit>

y ← 1
<latexit sha1_base64="qUP6I6nUdVpgY9kehaWIwFS802c=">AAAC33icbZFLb9NAEMc35lXKoymcEBeLCIkDiuz0BbeKXrggtSppK8VWtF6Pm1X3Ye2OCZZlceSGeuUDcC2fh2/D2rEqEjLSav/6z2+0OzNJLrjFIPjT8+7cvXf/wcbDzUePnzzd6m8/O7O6MAzGTAttLhJqQXAFY+Qo4CI3QGUi4Dy5Omry51/AWK7VZyxziCW9VDzjjKKzpv0XUaJFakvprqqMBGRIjdHzsJ72B8EwaMP/X4SdGJAujqfbvZso1ayQoJAJau0kDHKMK2qQMwH1ZlRYyCm7opcwcVJRCTau2h5q/7VzUj/Txh2Ffuv+W1FRaZtvOlJSnNnVXGOuy00KzN7FFVd5gaDY4qGsED5qvxmIn3IDDEXpBGWGu7/6bEYNZejGtvRKksilJqpP6rQd3FuLkprSpC6tYM60lFSl0XzGESZhXEUIX7HtqGq9uhqE9TKbiGIVbaw1pIF0BXTOGq4EIfR8BV2YHd1ueC8c7R7su8XujfbD9zu3i70VZ6NhuDMcnewODj90u94gL8kr8oaE5IAcko/kmIwJI9/IL3JDfnvU++798K4XqNfrap6TpfB+/gWB9+7n</latexit>

x← �
<latexit sha1_base64="S2GGD+5vIGUeV36pKK37wWrrqpU=">AAAC53icbZFLb9NAEMc35lXKK6XHXgwREgcU2ekLbhVcekEqgrSVYitar8fNqvuwdsekluUzR24VVz4AHOGz8G1YO1ZFQkZa7V//+Y12ZybJBbcYBH963q3bd+7e27i/+eDho8dP+ltPT60uDIMx00Kb84RaEFzBGDkKOM8NUJkIOEsu3zX5s89gLNfqE5Y5xJJeKJ5xRtFZ0/6zKNEitaV0V3UVCciQGqPnEcgcSwtYT/uDYBi04f8vwk4MSBcn063ezyjVrJCgkAlq7SQMcowrapAzAfVmVFjIKbukFzBxUlEJNq7aXmr/hXNSP9PGHYV+6/5bUVFpm+86UlKc2dVcY67LTQrMXscVV3mBoNjioawQPmq/GYyfcgMMRekEZYa7v/psRg1l6Ma39EqSyKUmqvfqYzvAVxYlNaVJXVrBnGkpqUqj+YwjTMK4ihCusO2oar26GoT1MpuIYhVtrDWkgXQFdM4argQh9HwFXZgd3W54PxztHR64xe6PDsI3uzeLvRGno2G4Oxx92Bscve12vUF2yHPykoTkkByRY3JCxoSRL+QH+UV+e9z76l173xao1+tqtslSeN//Ar8L8tw=</latexit>

y ← �
<latexit sha1_base64="HAsg/WPPpp9SN2cowP6vXhBey2E=">AAAC53icbZFLb9NAEMc3Lo9SHk3hyMUQIXFAkZ2+4FaVCxekIkhbKbai9XrcrLoPa3dMsCyfe+wNceUDwBE+C9+GtWNVJGSk1f71n99od2aSXHCLQfCn523cun3n7ua9rfsPHj7a7u88PrW6MAzGTAttzhNqQXAFY+Qo4Dw3QGUi4Cy5fNvkzz6DsVyrT1jmEEt6oXjGGUVnTfvPokSL1JbSXVUZCciQGqPnEcgcSwtYT/uDYBi04f8vwk4MSBcn053ezyjVrJCgkAlq7SQMcowrapAzAfVWVFjIKbukFzBxUlEJNq7aXmr/hXNSP9PGHYV+6/5bUVFpm+86UlKc2dVcY67LTQrMXscVV3mBoNjioawQPmq/GYyfcgMMRekEZYa7v/psRg1l6Ma39EqSyKUmqvfqYzvAVxYlNaVJXVrBnGkpqUqj+YwjTMK4ihC+YNtR1Xp1NQjrZTYRxSraWGtIA+kK6Jw1XAlC6PkKujA7ut3wfjjaOzxwi90fHYRvdm8WeyNOR8Nwdzj6sDc4Ou52vUmekufkJQnJITki78gJGRNGrsgP8ov89rh37X31vi1Qr9fVPCFL4X3/C8GA8t0=</latexit>

0 x← 0
<latexit sha1_base64="4i7clh16yplKNk1VTHr2AoXZhMY=">AAAC33icbZFLa9tAEMfX6itJX057Kr2ImkIPxUjOq72F9NJLIaV1ErCEWa1G8ZJ9iN1RHSFEj7mVXvsBek0+T79NV7IIteuBZf/85zfszkySC24xCP70vDt3791/sLG59fDR4ydP+9vPTqwuDIMx00Kbs4RaEFzBGDkKOMsNUJkIOE0uPjT5029gLNfqK5Y5xJKeK55xRtFZ0/6LKNEitaV0V3UZCciQGqPnQT3tD4Jh0Ib/vwg7MSBdHE+3e9dRqlkhQSET1NpJGOQYV9QgZwLqraiwkFN2Qc9h4qSiEmxctT3U/mvnpH6mjTsK/db9t6Ki0jbfdKSkOLOrucZcl5sUmL2LK67yAkGxxUNZIXzUfjMQP+UGGIrSCcoMd3/12YwaytCNbemVJJFLTVSf1Jd2cG8tSmpKk7q0gjnTUlKVRvMZR5iEcRUhXGLbUdV6dTUI62U2EcUq2lhrSAPpCuicNVwJQuj5CrowO7rd8F442j3Yd4vdG+2H73duF3srTkbDcGc4+rw7ODzqdr1BXpJX5A0JyQE5JB/JMRkTRr6T3+Sa3HjUu/J+eD8XqNfrap6TpfB+/QV9KO7l</latexit>

y ← 0
<latexit sha1_base64="4/sm9X6X8ysTvKbvAHw0Qp8FLYs=">AAAC33icbZFLb9NAEMc35lXKoymcEBeLCIkDiuz0BbeKXrggtSppK8VWtF6Pm1X3Ye2OCZZlceSGeuUDcC2fh2/D2rEqEjLSav/6z2+0OzNJLrjFIPjT8+7cvXf/wcbDzUePnzzd6m8/O7O6MAzGTAttLhJqQXAFY+Qo4CI3QGUi4Dy5Omry51/AWK7VZyxziCW9VDzjjKKzpv0XUaJFakvprqqMBGRIjdHzoJ72B8EwaMP/X4SdGJAujqfbvZso1ayQoJAJau0kDHKMK2qQMwH1ZlRYyCm7opcwcVJRCTau2h5q/7VzUj/Txh2Ffuv+W1FRaZtvOlJSnNnVXGOuy00KzN7FFVd5gaDY4qGsED5qvxmIn3IDDEXpBGWGu7/6bEYNZejGtvRKksilJqpP6rQd3FuLkprSpC6tYM60lFSl0XzGESZhXEUIX7HtqGq9uhqE9TKbiGIVbaw1pIF0BXTOGq4EIfR8BV2YHd1ueC8c7R7su8XujfbD9zu3i70VZ6NhuDMcnewODj90u94gL8kr8oaE5IAcko/kmIwJI9/IL3JDfnvU++798K4XqNfrap6TpfB+/gV/le7m</latexit>

4r(1)(y,0)
<latexit sha1_base64="54hxRSaKt9nv/JxpwHuhw81gho0=">AAAC4nicbZFLb9NAEMc35lXKoykc4WARIaVSFdnpk1sFFy5IRZC2UmxF6/WkWXUf1u6Y1LJ84cgNceUDcEKCb8O3Ye1YFQkZabV//ec32p2ZJBPcYhD86Xi3bt+5e2/j/uaDh48eb3W3n5xZnRsGI6aFNhcJtSC4ghFyFHCRGaAyEXCeXL2p8+efwFiu1UcsMoglvVR8yhlFZ026z6NEi9QW0l1lGSH6puqHO/1iN9ipJt1eMAia8P8XYSt6pI3TyXbnZ5RqlktQyAS1dhwGGcYlNciZgGozyi1klF3RSxg7qagEG5dNG5X/0jmpP9XGHYV+4/5bUVJp6586UlKc2dVcba7LjXOcHsclV1mOoNjioWkufNR+PRM/5QYYisIJygx3f/XZjBrK0E1u6ZUkkUtNlO/Uh2Z2uxYlNYVJXVrBnGkpqUqj+YwjjMPYTRausemobLyq7IXVMpuIfBWtrTWkgXQFdM4argAh9HwFXZgt3Wz4IBzuHx26xR4MD8NXezeLvRFnw0G4Nxi+3++dvG53vUGekRekT0JyRE7IW3JKRoSRz+QH+UV+e6n3xfvqfVugXqeteUqWwvv+FxlM7p8=</latexit>

w(1)(x,1)
<latexit sha1_base64="3VaIh0RwWgVxWoM3AUvRzXfZejs=">AAAC4nicbZFLb9NAEMc3Lo9SXmk5wsEiQkqlKrLTF9wquHBBKoK0lWIrWq8nzar7sHbHpJblC0duiCsfgBMSfBu+DWvHqkjISKv96z+/0e7MJJngFoPgT8fbuHX7zt3Ne1v3Hzx89Li7vXNmdW4YjJgW2lwk1ILgCkbIUcBFZoDKRMB5cvWmzp9/AmO5Vh+xyCCW9FLxKWcUnTXpPosSLVJbSHeVZYToz6t+uNu/3gt3q0m3FwyCJvz/RdiKHmnjdLLd+RmlmuUSFDJBrR2HQYZxSQ1yJqDainILGWVX9BLGTioqwcZl00blv3BO6k+1cUeh37j/VpRU2vqnjpQUZ3Y1V5vrcuMcpy/jkqssR1Bs8dA0Fz5qv56Jn3IDDEXhBGWGu7/6bEYNZegmt/RKksilJsp36kMzuz2LkprCpC6tYM60lFSl0XzGEcZh7CYL19h0VDZeVfbCaplNRL6K1tYa0kC6AjpnDVeAEHq+gi7Mlm42fBgOD46P3GIPh0fhq/2bxd6Is+Eg3B8M3x/0Tl63u94kT8lz0ichOSYn5C05JSPCyGfyg/wiv73U++J99b4tUK/T1jwhS+F9/wslYe6k</latexit>

x← 1<latexit sha1_base64="vfg2n/HUmOXDJhK69tVBW8HLRf0=">AAAC4HicbZFLb9NAEMc35tWWVwo3uFhESBxQZKcvuFXlwgWpCNJWiq1ovR43q+7D2h2TWpYljr0hrnwAjoWvw7dh7VgVCRlptX/95zfanZkkF9xiEPzpebdu37l7b2Nz6/6Dh48e97efnFhdGAZjpoU2Zwm1ILiCMXIUcJYboDIRcJpcvGvyp1/AWK7VZyxziCU9VzzjjKKzpv1nUaJFakvpruoyEpAhNUbP/bCe9gfBMGjD/1+EnRiQLo6n273rKNWskKCQCWrtJAxyjCtqkDMB9VZUWMgpu6DnMHFSUQk2rtomav+lc1I/08YdhX7r/ltRUWmbfzpSUpzZ1VxjrstNCszexBVXeYGg2OKhrBA+ar+ZiJ9yAwxF6QRlhru/+mxGDWXo5rb0SpLIpSaqD+pTO7nXFiU1pUldWsGcaSmpSqP5jCNMwriKEC6x7ahqvboahPUym4hiFW2sNaSBdAV0zhquBCH0fAVdmB3dbngvHO0e7LvF7o32w7c7N4u9ESejYbgzHH3cHRwedbveIM/JC/KKhOSAHJL35JiMCSNfyU/yi/z2Eu/K++Z9X6Ber6t5SpbC+/EX+7LvEA==</latexit>

y ← �
<latexit sha1_base64="HAsg/WPPpp9SN2cowP6vXhBey2E=">AAAC53icbZFLb9NAEMc3Lo9SHk3hyMUQIXFAkZ2+4FaVCxekIkhbKbai9XrcrLoPa3dMsCyfe+wNceUDwBE+C9+GtWNVJGSk1f71n99od2aSXHCLQfCn523cun3n7ua9rfsPHj7a7u88PrW6MAzGTAttzhNqQXAFY+Qo4Dw3QGUi4Cy5fNvkzz6DsVyrT1jmEEt6oXjGGUVnTfvPokSL1JbSXVUZCciQGqPnEcgcSwtYT/uDYBi04f8vwk4MSBcn053ezyjVrJCgkAlq7SQMcowrapAzAfVWVFjIKbukFzBxUlEJNq7aXmr/hXNSP9PGHYV+6/5bUVFpm+86UlKc2dVcY67LTQrMXscVV3mBoNjioawQPmq/GYyfcgMMRekEZYa7v/psRg1l6Ma39EqSyKUmqvfqYzvAVxYlNaVJXVrBnGkpqUqj+YwjTMK4ihC+YNtR1Xp1NQjrZTYRxSraWGtIA+kK6Jw1XAlC6PkKujA7ut3wfjjaOzxwi90fHYRvdm8WeyNOR8Nwdzj6sDc4Ou52vUmekufkJQnJITki78gJGRNGrsgP8ov89rh37X31vi1Qr9fVPCFL4X3/C8GA8t0=</latexit>

0 4

x← 1<latexit sha1_base64="vfg2n/HUmOXDJhK69tVBW8HLRf0=">AAAC4HicbZFLb9NAEMc35tWWVwo3uFhESBxQZKcvuFXlwgWpCNJWiq1ovR43q+7D2h2TWpYljr0hrnwAjoWvw7dh7VgVCRlptX/95zfanZkkF9xiEPzpebdu37l7b2Nz6/6Dh48e97efnFhdGAZjpoU2Zwm1ILiCMXIUcJYboDIRcJpcvGvyp1/AWK7VZyxziCU9VzzjjKKzpv1nUaJFakvpruoyEpAhNUbP/bCe9gfBMGjD/1+EnRiQLo6n273rKNWskKCQCWrtJAxyjCtqkDMB9VZUWMgpu6DnMHFSUQk2rtomav+lc1I/08YdhX7r/ltRUWmbfzpSUpzZ1VxjrstNCszexBVXeYGg2OKhrBA+ar+ZiJ9yAwxF6QRlhru/+mxGDWXo5rb0SpLIpSaqD+pTO7nXFiU1pUldWsGcaSmpSqP5jCNMwriKEC6x7ahqvboahPUym4hiFW2sNaSBdAV0zhquBCH0fAVdmB3dbngvHO0e7LvF7o32w7c7N4u9ESejYbgzHH3cHRwedbveIM/JC/KKhOSAHJL35JiMCSNfyU/yi/z2Eu/K++Z9X6Ber6t5SpbC+/EX+7LvEA==</latexit>

y ← �
<latexit sha1_base64="HAsg/WPPpp9SN2cowP6vXhBey2E=">AAAC53icbZFLb9NAEMc3Lo9SHk3hyMUQIXFAkZ2+4FaVCxekIkhbKbai9XrcrLoPa3dMsCyfe+wNceUDwBE+C9+GtWNVJGSk1f71n99od2aSXHCLQfCn523cun3n7ua9rfsPHj7a7u88PrW6MAzGTAttzhNqQXAFY+Qo4Dw3QGUi4Cy5fNvkzz6DsVyrT1jmEEt6oXjGGUVnTfvPokSL1JbSXVUZCciQGqPnEcgcSwtYT/uDYBi04f8vwk4MSBcn053ezyjVrJCgkAlq7SQMcowrapAzAfVWVFjIKbukFzBxUlEJNq7aXmr/hXNSP9PGHYV+6/5bUVFpm+86UlKc2dVcY67LTQrMXscVV3mBoNjioawQPmq/GYyfcgMMRekEZYa7v/psRg1l6Ma39EqSyKUmqvfqYzvAVxYlNaVJXVrBnGkpqUqj+YwjTMK4ihC+YNtR1Xp1NQjrZTYRxSraWGtIA+kK6Jw1XAlC6PkKujA7ut3wfjjaOzxwi90fHYRvdm8WeyNOR8Nwdzj6sDc4Ou52vUmekufkJQnJITki78gJGRNGrsgP8ov89rh37X31vi1Qr9fVPCFL4X3/C8GA8t0=</latexit>

3 x← 0
<latexit sha1_base64="4i7clh16yplKNk1VTHr2AoXZhMY=">AAAC33icbZFLa9tAEMfX6itJX057Kr2ImkIPxUjOq72F9NJLIaV1ErCEWa1G8ZJ9iN1RHSFEj7mVXvsBek0+T79NV7IIteuBZf/85zfszkySC24xCP70vDt3791/sLG59fDR4ydP+9vPTqwuDIMx00Kbs4RaEFzBGDkKOMsNUJkIOE0uPjT5029gLNfqK5Y5xJKeK55xRtFZ0/6LKNEitaV0V3UZCciQGqPnQT3tD4Jh0Ib/vwg7MSBdHE+3e9dRqlkhQSET1NpJGOQYV9QgZwLqraiwkFN2Qc9h4qSiEmxctT3U/mvnpH6mjTsK/db9t6Ki0jbfdKSkOLOrucZcl5sUmL2LK67yAkGxxUNZIXzUfjMQP+UGGIrSCcoMd3/12YwaytCNbemVJJFLTVSf1Jd2cG8tSmpKk7q0gjnTUlKVRvMZR5iEcRUhXGLbUdV6dTUI62U2EcUq2lhrSAPpCuicNVwJQuj5CrowO7rd8F442j3Yd4vdG+2H73duF3srTkbDcGc4+rw7ODzqdr1BXpJX5A0JyQE5JB/JMRkTRr6T3+Sa3HjUu/J+eD8XqNfrap6TpfB+/QV9KO7l</latexit>

y ← 0
<latexit sha1_base64="4/sm9X6X8ysTvKbvAHw0Qp8FLYs=">AAAC33icbZFLb9NAEMc35lXKoymcEBeLCIkDiuz0BbeKXrggtSppK8VWtF6Pm1X3Ye2OCZZlceSGeuUDcC2fh2/D2rEqEjLSav/6z2+0OzNJLrjFIPjT8+7cvXf/wcbDzUePnzzd6m8/O7O6MAzGTAttLhJqQXAFY+Qo4CI3QGUi4Dy5Omry51/AWK7VZyxziCW9VDzjjKKzpv0XUaJFakvprqqMBGRIjdHzoJ72B8EwaMP/X4SdGJAujqfbvZso1ayQoJAJau0kDHKMK2qQMwH1ZlRYyCm7opcwcVJRCTau2h5q/7VzUj/Txh2Ffuv+W1FRaZtvOlJSnNnVXGOuy00KzN7FFVd5gaDY4qGsED5qvxmIn3IDDEXpBGWGu7/6bEYNZejGtvRKksilJqpP6rQd3FuLkprSpC6tYM60lFSl0XzGESZhXEUIX7HtqGq9uhqE9TKbiGIVbaw1pIF0BXTOGq4EIfR8BV2YHd1ueC8c7R7su8XujfbD9zu3i70VZ6NhuDMcnewODj90u94gL8kr8oaE5IAcko/kmIwJI9/IL3JDfnvU++798K4XqNfrap6TpfB+/gV/le7m</latexit>

4

r(3)(y,2)
<latexit sha1_base64="ruQ2KVAqlpD7oibTBzK7PnStUVo=">AAAC4nicbZFLb9NAEMc35lXKoykc4WARIaVSFcVOH3Cr4MIFqQjSVoqtaL2eNKvuw9odEyzLF47cEFc+ACck+DZ8G9aOVZGQkVb7139+o92ZSTLBLQ6HfzrejZu3bt/Zurt97/6Dhzvd3UdnVueGwZhpoc1FQi0IrmCMHAVcZAaoTAScJ1ev6/z5RzCWa/UBiwxiSS8Vn3FG0VnT7tMo0SK1hXRXWUaIvqn6o71+sR/uVdNubzgYNuH/L4JW9Egbp9Pdzs8o1SyXoJAJau0kGGYYl9QgZwKq7Si3kFF2RS9h4qSiEmxcNm1U/nPnpP5MG3cU+o37b0VJpa1/6khJcW7Xc7W5KTfJcfYiLrnKcgTFlg/NcuGj9uuZ+Ck3wFAUTlBmuPurz+bUUIZuciuvJIlcaaJ8q943s9u3KKkpTOrSChZMS0lVGi3mHGESxG6y8AmbjsrGq8peUK2yicjX0draQBpI10DnbOAKEEIv1tCl2dLNhg+D8OD4yC32MDwKXo6uF3stzsJBMBqE7w56J6/aXW+RJ+QZ6ZOAHJMT8oackjFh5DP5QX6R317qffG+et+WqNdpax6TlfC+/wUi4u6j</latexit>

y ← 0
<latexit sha1_base64="4/sm9X6X8ysTvKbvAHw0Qp8FLYs=">AAAC33icbZFLb9NAEMc35lXKoymcEBeLCIkDiuz0BbeKXrggtSppK8VWtF6Pm1X3Ye2OCZZlceSGeuUDcC2fh2/D2rEqEjLSav/6z2+0OzNJLrjFIPjT8+7cvXf/wcbDzUePnzzd6m8/O7O6MAzGTAttLhJqQXAFY+Qo4CI3QGUi4Dy5Omry51/AWK7VZyxziCW9VDzjjKKzpv0XUaJFakvprqqMBGRIjdHzoJ72B8EwaMP/X4SdGJAujqfbvZso1ayQoJAJau0kDHKMK2qQMwH1ZlRYyCm7opcwcVJRCTau2h5q/7VzUj/Txh2Ffuv+W1FRaZtvOlJSnNnVXGOuy00KzN7FFVd5gaDY4qGsED5qvxmIn3IDDEXpBGWGu7/6bEYNZejGtvRKksilJqpP6rQd3FuLkprSpC6tYM60lFSl0XzGESZhXEUIX7HtqGq9uhqE9TKbiGIVbaw1pIF0BXTOGq4EIfR8BV2YHd1ueC8c7R7su8XujfbD9zu3i70VZ6NhuDMcnewODj90u94gL8kr8oaE5IAcko/kmIwJI9/IL3JDfnvU++798K4XqNfrap6TpfB+/gV/le7m</latexit>

x← 1<latexit sha1_base64="vfg2n/HUmOXDJhK69tVBW8HLRf0=">AAAC4HicbZFLb9NAEMc35tWWVwo3uFhESBxQZKcvuFXlwgWpCNJWiq1ovR43q+7D2h2TWpYljr0hrnwAjoWvw7dh7VgVCRlptX/95zfanZkkF9xiEPzpebdu37l7b2Nz6/6Dh48e97efnFhdGAZjpoU2Zwm1ILiCMXIUcJYboDIRcJpcvGvyp1/AWK7VZyxziCU9VzzjjKKzpv1nUaJFakvpruoyEpAhNUbP/bCe9gfBMGjD/1+EnRiQLo6n273rKNWskKCQCWrtJAxyjCtqkDMB9VZUWMgpu6DnMHFSUQk2rtomav+lc1I/08YdhX7r/ltRUWmbfzpSUpzZ1VxjrstNCszexBVXeYGg2OKhrBA+ar+ZiJ9yAwxF6QRlhru/+mxGDWXo5rb0SpLIpSaqD+pTO7nXFiU1pUldWsGcaSmpSqP5jCNMwriKEC6x7ahqvboahPUym4hiFW2sNaSBdAV0zhquBCH0fAVdmB3dbngvHO0e7LvF7o32w7c7N4u9ESejYbgzHH3cHRwedbveIM/JC/KKhOSAHJL35JiMCSNfyU/yi/z2Eu/K++Z9X6Ber6t5SpbC+/EX+7LvEA==</latexit>

x← 1<latexit sha1_base64="vfg2n/HUmOXDJhK69tVBW8HLRf0=">AAAC4HicbZFLb9NAEMc35tWWVwo3uFhESBxQZKcvuFXlwgWpCNJWiq1ovR43q+7D2h2TWpYljr0hrnwAjoWvw7dh7VgVCRlptX/95zfanZkkF9xiEPzpebdu37l7b2Nz6/6Dh48e97efnFhdGAZjpoU2Zwm1ILiCMXIUcJYboDIRcJpcvGvyp1/AWK7VZyxziCU9VzzjjKKzpv1nUaJFakvpruoyEpAhNUbP/bCe9gfBMGjD/1+EnRiQLo6n273rKNWskKCQCWrtJAxyjCtqkDMB9VZUWMgpu6DnMHFSUQk2rtomav+lc1I/08YdhX7r/ltRUWmbfzpSUpzZ1VxjrstNCszexBVXeYGg2OKhrBA+ar+ZiJ9yAwxF6QRlhru/+mxGDWXo5rb0SpLIpSaqD+pTO7nXFiU1pUldWsGcaSmpSqP5jCNMwriKEC6x7ahqvboahPUym4hiFW2sNaSBdAV0zhquBCH0fAVdmB3dbngvHO0e7LvF7o32w7c7N4u9ESejYbgzHH3cHRwedbveIM/JC/KKhOSAHJL35JiMCSNfyU/yi/z2Eu/K++Z9X6Ber6t5SpbC+/EX+7LvEA==</latexit>

y ← �
<latexit sha1_base64="HAsg/WPPpp9SN2cowP6vXhBey2E=">AAAC53icbZFLb9NAEMc3Lo9SHk3hyMUQIXFAkZ2+4FaVCxekIkhbKbai9XrcrLoPa3dMsCyfe+wNceUDwBE+C9+GtWNVJGSk1f71n99od2aSXHCLQfCn523cun3n7ua9rfsPHj7a7u88PrW6MAzGTAttzhNqQXAFY+Qo4Dw3QGUi4Cy5fNvkzz6DsVyrT1jmEEt6oXjGGUVnTfvPokSL1JbSXVUZCciQGqPnEcgcSwtYT/uDYBi04f8vwk4MSBcn053ezyjVrJCgkAlq7SQMcowrapAzAfVWVFjIKbukFzBxUlEJNq7aXmr/hXNSP9PGHYV+6/5bUVFpm+86UlKc2dVcY67LTQrMXscVV3mBoNjioawQPmq/GYyfcgMMRekEZYa7v/psRg1l6Ma39EqSyKUmqvfqYzvAVxYlNaVJXVrBnGkpqUqj+YwjTMK4ihC+YNtR1Xp1NQjrZTYRxSraWGtIA+kK6Jw1XAlC6PkKujA7ut3wfjjaOzxwi90fHYRvdm8WeyNOR8Nwdzj6sDc4Ou52vUmekufkJQnJITki78gJGRNGrsgP8ov89rh37X31vi1Qr9fVPCFL4X3/C8GA8t0=</latexit>

3 x← 0
<latexit sha1_base64="4i7clh16yplKNk1VTHr2AoXZhMY=">AAAC33icbZFLa9tAEMfX6itJX057Kr2ImkIPxUjOq72F9NJLIaV1ErCEWa1G8ZJ9iN1RHSFEj7mVXvsBek0+T79NV7IIteuBZf/85zfszkySC24xCP70vDt3791/sLG59fDR4ydP+9vPTqwuDIMx00Kbs4RaEFzBGDkKOMsNUJkIOE0uPjT5029gLNfqK5Y5xJKeK55xRtFZ0/6LKNEitaV0V3UZCciQGqPnQT3tD4Jh0Ib/vwg7MSBdHE+3e9dRqlkhQSET1NpJGOQYV9QgZwLqraiwkFN2Qc9h4qSiEmxctT3U/mvnpH6mjTsK/db9t6Ki0jbfdKSkOLOrucZcl5sUmL2LK67yAkGxxUNZIXzUfjMQP+UGGIrSCcoMd3/12YwaytCNbemVJJFLTVSf1Jd2cG8tSmpKk7q0gjnTUlKVRvMZR5iEcRUhXGLbUdV6dTUI62U2EcUq2lhrSAPpCuicNVwJQuj5CrowO7rd8F442j3Yd4vdG+2H73duF3srTkbDcGc4+rw7ODzqdr1BXpJX5A0JyQE5JB/JMRkTRr6T3+Sa3HjUu/J+eD8XqNfrap6TpfB+/QV9KO7l</latexit>

y ← 0
<latexit sha1_base64="4/sm9X6X8ysTvKbvAHw0Qp8FLYs=">AAAC33icbZFLb9NAEMc35lXKoymcEBeLCIkDiuz0BbeKXrggtSppK8VWtF6Pm1X3Ye2OCZZlceSGeuUDcC2fh2/D2rEqEjLSav/6z2+0OzNJLrjFIPjT8+7cvXf/wcbDzUePnzzd6m8/O7O6MAzGTAttLhJqQXAFY+Qo4CI3QGUi4Dy5Omry51/AWK7VZyxziCW9VDzjjKKzpv0XUaJFakvprqqMBGRIjdHzoJ72B8EwaMP/X4SdGJAujqfbvZso1ayQoJAJau0kDHKMK2qQMwH1ZlRYyCm7opcwcVJRCTau2h5q/7VzUj/Txh2Ffuv+W1FRaZtvOlJSnNnVXGOuy00KzN7FFVd5gaDY4qGsED5qvxmIn3IDDEXpBGWGu7/6bEYNZejGtvRKksilJqpP6rQd3FuLkprSpC6tYM60lFSl0XzGESZhXEUIX7HtqGq9uhqE9TKbiGIVbaw1pIF0BXTOGq4EIfR8BV2YHd1ueC8c7R7su8XujfbD9zu3i70VZ6NhuDMcnewODj90u94gL8kr8oaE5IAcko/kmIwJI9/IL3JDfnvU++798K4XqNfrap6TpfB+/gV/le7m</latexit>

4

r(3)(y,1)
<latexit sha1_base64="aGMxGSnEZRvcFzdVgFKoDdD+1XU=">AAAC4nicbZFLb9NAEMc35lXKoykc4WARIaVSFdlJH3Cr4MIFqQjSVoqtaL2eNKvuw9odEyzLF47cEFc+ACck+DZ8G9aOVZGQkVb7139+o92ZSTLBLQbBn4534+at23e27m7fu//g4U5399GZ1blhMGZaaHORUAuCKxgjRwEXmQEqEwHnydXrOn/+EYzlWn3AIoNY0kvFZ5xRdNa0+zRKtEhtId1VlhGib6r+aK9f7Id71bTbCwZBE/7/ImxFj7RxOt3t/IxSzXIJCpmg1k7CIMO4pAY5E1BtR7mFjLIregkTJxWVYOOyaaPynzsn9WfauKPQb9x/K0oqbf1TR0qKc7ueq81NuUmOsxdxyVWWIyi2fGiWCx+1X8/ET7kBhqJwgjLD3V99NqeGMnSTW3klSeRKE+Vb9b6Z3b5FSU1hUpdWsGBaSqrSaDHnCJMwdpOFT9h0VDZeVfbCapVNRL6O1tYG0kC6BjpnA1eAEHqxhi7Nlm42fBgOD46P3GIPh0fhy9H1Yq/F2XAQjgbDdwe9k1ftrrfIE/KM9ElIjskJeUNOyZgw8pn8IL/Iby/1vnhfvW9L1Ou0NY/JSnjf/wIgf+6i</latexit>

(b)

v1

v2

v3

v4

v5

v6

v7

v8 v9

v10

v11

v0

v12

Fig. 3. (a) A concrete run ρ preformed by three processes, with indicesp1,p2, andp3 respectively. The sequence
of events is depicted from top to bottom. (b) The corresponding run ρ ′ in the pivot semantics.

4.6 Example
We illustrate the main concepts in the definition of the pivot semantics informally using the example
of Fig. 3. We consider a concrete run ρ in Fig. 3(a), performed by three processes with indices p1,
p2, and p3 respectively. The run consists of 15 events. To simplify the notation in this sub-section,
we represent each event by its operation. The events of one process are aligned vertically, and the
events of all the processes are ordered from top to bottom (numbered 1 to 15). For instance, the
first event of ρ is r(y, 0), performed by p1, and the second event is r(x, 0), performed by p2, etc. The
update pivot points are 5, 9, and 10 with ranks 1, 2, and 3 respectively. In particular, this means
that the rank of ρ is 3. The ranks are depicted as circles beside the corresponding events. Notice
that the event 14 is not a pivot. The assignments ⟨x, 1⟩, ⟨y, 1⟩, and ⟨y, 2⟩ have ranks 1, 2, and 3
respectively, and the pivot assignment sequence is ⟨x, 1⟩ ⟨y, 1⟩ ⟨y, 2⟩. The write pivot points are 4,
6, 8, and 16 with ranks 1, 2, 3, and 4 respectively. The ranks of p1, p2, and p3 are given by the sets
{1, 4}, {2, 3, 4}, and {4} respectively.
Fig. 3 (b) depicts the run ρ ′ that simulates ρ in the pivot semantics. It contains thirteen

views v0, . . . ,v12. The differentiated words of all these views are the same, namely the word
⟨x, 1⟩ ⟨y, 1⟩ ⟨y, 2⟩. To simplify the presentation, we leave out the local states and the differentiated
words from the representations of the views. We represent the other components, namely L, ϕE ,

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 26. Publication date: January 2020.

Parameterized Verification under TSO is PSPACE-Complete 26:15

ϕL , and ϕP by four consecutive blocks. For instance, in the view v7, we have (v7 · LWrite)(x) = ⊘,
(v7 · LWrite)(y) = 1, v7 · eptr = 1, (v7 · lptr)(x) = 0, (v7 · lptr)(y) = 2, and v7 · pptr = 3. The run
has four epochs, namely epoch 1 given by v0v1, epoch 2 given by v2v3, epoch 3 given by v4v5v6v7,
and epoch 4 given by v8v9v10v11v12. Notice that the values of the progress pointers are equal for
all the views within the same epoch, and that they increase by one from one epoch to the next.

The epochs 1 and 2 consists of one phase each. The epoch 3 consists of two phases, namely ⟨3, 0⟩
given by v4v5v6, and ⟨3, 1⟩ which is the single view v7. The epoch 4 consists of two phases, namely
⟨4, 0⟩ given by v8v9v10, and ⟨4, 3⟩ given by v11v12.

5 CORRECTNESS
We prove the correctness of the pivot semantics in the sense that the reachability problem under
the concrete semantics is reducible to the reachability problem under the pivot semantics. This is
achieved by Theorem 5.1, stated below. In the section, we fix a process definition ⟨Q,qinit,∆⟩.

Theorem 5.1. Γinit ∗ c q iffVinit
∗

p q, for any q ∈ Q .

We devote the rest of the section to give the main ideas in the proof of Theorem 5.1.
We carry out the proof in two steps. In Section 5.1 (Lemma 5.3) we show that the pivot semantics

can simulate the concrete semantics. In Section 5.2 (Lemma 5.8) we show that the concrete semantics
can simulate the pivot semantics.

5.1 From the Concrete Semantics to the Pivot Semantics
We show that each run in the concrete semantics can be simulated by a run in the pivot semantics.
We do that in several steps. First, we extend the notions of external and internal pointers, that we
introduced for the pivot semantics, to the concrete semantics. The extended definitions correspond
to concrete interpretations of the pointers at different points of the concrete run. Next, we define a
simulation relation that will allow us to formally capture the manner in which the pivot semantics
simulates the concrete semantics. Finally, we give the proof of Lemma 5.3, based on the simulation
relation. In the rest of this sub-section, we assume an initialized run in the concrete semantics:

ρ = γ0
λ1

c γ1
λ2

c γ2 · · ·
λn

c γn ∈ R
c
, where γi = ⟨I,Qi ,Bi ,Mi ⟩.

Pointers. We define the external pointer at a given point i along ρ to be the rank of the prefix of
the run up to that point (equivalently, the highest rank of an assignment appearing in the prefix).

ψE (ρ)(i) := rank (ρ[1 · · i])

For a process with index ι ∈ I, we define the internal pointer of ι wrt. to variable x ∈ X to be the
highest rank of all the assignments that are in the buffer of ι and that have been issued before the
latest assignment on x . We do that in two steps. For a wordw ∈ A∗ over the set of assignments,
we define:

ψL (w) (x) := max {rank (ρ) (a) | ∃w1,w2,d . (w = w1 • ⟨x,d⟩ •w2) ∧ (a ∈ ⟨x,d⟩ •w2)}

and

ψL (ρ) (ι) (i) (x) := ψL (Bi (ι)) (x)

We defineψmax
L (w) := max {ψL (w) (x) | x ∈ X}, andψmax

L (ρ)(ι)(i) := ψmax
L (Bi (ι)), i.e., it is the local

pointer with the highest value.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 26. Publication date: January 2020.

26:16 Parosh Aziz Abdulla, Mohamed Faouzi Atig, and Rojin Rezvan

Simulation Relation. Roughly speaking, the simulation relation describes how a given view
v = ⟨q,L,ω,ϕE ,ϕL,ϕP ⟩ captures the information about the current configuration of the system,
from the perspective of a concrete process (with index ι ∈ I) at a given point i : 1 ≤ i ≤ n of the
run ρ. Formally, we write ρ |=ιi v to denote that the following conditions are satisfied for each
variable x ∈ X:

(1) q = Qi (ι). The state of the process should be consistent with the state of the view.
(2) If LVal (Bi (ι)) (x) = d ∈ D then L (x) = d . If the latest value written by the process on a

variable x is d and the corresponding write message is still in the buffer of the process, then
the same value should be available in the view.

(3) If LVal (Bi (ι)) (x) = ⊘ and Clean (ρ) (i) (x) = true then L (x) = ⊘ and x < ω[1 · · ϕE]. This
case is for handling the initial value of x . If the process has not issued a write operation on x
and the value of x is clean in the memory then, according to the view, the process has not
issued a write operation on x , and furthermore no assignment on x has been observed by the
process.

(4) max(ϕE ,ϕL (x)) ≤ max(ψE (ρ) (i) ,ψL (ρ) (i) (ι) (x)). The pointers of the view lag their coun-
terparts in the concrete run. As seen in the inference rules of Fig. 2, the pointers of a view are
advanced lazily (on demand). This ensures that the view can access at least the same values
of the variables as the ones that are available at the current point of the concrete run. The
reason is that at least the same set of initial values are available due to the pointer lag, and
furthermore the possibility of advancing the pointers makes the reading of the rest of the
values possible.

The following lemma shows that the pivot semantics can simulate the run ρ.

Lemma 5.2. For each ι ∈ I, there is a v such that vinit (PASeq (ρ)) (1)
∗

p v and ρ |=ιn v .

This gives the main lemma of the sub-section.

Lemma 5.3. For any q ∈ Q , if Γinit ∗ c q thenVinit
∗

p q.

Proof. Assume that Γinit ∗
c q. This means that γ ρ

c q for some γ ∈ Γinit and ρ ∈ R
c

where end (ρ) is of the form ⟨I,Q,B,M⟩ where Q (ι) = q for some ι ∈ I. Let ω = PASeq (ρ). By
Lemma 5.2 it follows that there is a v such that vinit (ω) (0)

∗
p v and ρ |=ιn v where n = #ρ. This

means thatVinit
∗

p v . Since ρ |=ιn v it follows that v · state = q. □

5.2 From the Pivot Semantics to the Concrete Semantics
We show that each run in the pivot semantics can be simulated by a run in the concrete semantics.
We do that in two steps. First, we introduce an “intermediate” semantics, which we call the group
semantics in the form of a transition system that collects (groups) all the local states of the processes
along a given run and puts them in one set. The configurations in the group semantics store two
types of information, namely (i) the set of (concrete) local states of the processes, i.e., the set of
process states together with the buffer states that have been seen so far in the execution of the
program, and (ii) the current (concrete) memory state. The main difference between this transition
system, and the concrete transition system is that the system is monotone. More precisely, the set
of process states never shrinks through the application of an inference rule.

We will show that, for any program: (i) the group semantics simulates the pivot semantics, and
(ii) the concrete semantics simulates the the group semantics. Properties (i) and (ii) immediately
imply the main lemma of this sub-section (Lemma 5.8).

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 26. Publication date: January 2020.

Parameterized Verification under TSO is PSPACE-Complete 26:17

hq, skip, q0i 2 � , hq, wi 2 S

hS,Mi
skip

g hS [{hq0, wi} ,Mi
skip

hq, w (x, d) , q0i 2 � , hq, wi 2 S

hS,Mi
w (x, d)

g hS [{hq0, hx, di • wi} ,Mi
write

hq, r (x, d) , q0i 2 � , hq, wi 2 S , LVal (w) (x) = d

hS,Mi
row (x, d)

g hS [{hq0, wi} ,Mi
read-own-write

hq, r (x, d) , q0i 2 � , hq, wi 2 S , LVal (w) (x) = ↵ , M (x) = d

hS,Mi
rfm (x, d)

g hS [{hq0, wi} ,Mi
read-from-memory

hq, wi 2 S , w = w0 • hx, di

hS,Mi
u (x, d)

g hS [{hq, w0i} ,M[x d]i
memory-update

hq, mf, q0i 2 � , hq, ✏i 2 S

hS,Mi mf
g hS [{hq0, ✏i} ,Mi

fence

Fig. 4. The group transition relation.

5.2.1 The Group Semantics. We start by introducing the group transition system. A local state σ is
a pair ⟨q,w⟩ where q ∈ Q is a process state, andw ∈ A∗ represents the content of the buffer. We
define σ · state := q, and σ · buffer := w . A group configuration β is a pair ⟨S,M⟩ where S is a set
of local states, andM : X

•
→ D is a memory state. We define the group operational semantics by

defining a transition relation
op

д on the set of group configurations, as described by the inference
rules in Fig. 4. The rules follow a similar pattern as the ones for the concrete semantics (Fig. 1).
The main difference is in the monotonicity property, i.e., when a process performs a transition
then its old state is not removed from the set of local states in the group configuration. Instead, we
simply add the new state to the set. Therefore, the set of local states never shrinks through the
application of the inference rules. Also here, we do not have process indices, and hence an event is
simply given by the corresponding operation. An operation is of the same form as in the concrete
semantics. We define the function Clean in the same manner as for the concrete semantics, i.e., it
tells us whether there has been an update on a given variable along the run. We use C д to denote
the set of group configurations.

The initial group configuration, denoted βinit , is of the form ⟨Sinit,Minit⟩ where Sinit = {⟨qinit, ϵ⟩},
andMinit is as defined in Section 3, i.e.,Minit (x) = init (x), for all variables x ∈ X.
We use R д to be the set of initialized runs in the group semantics.

5.2.2 From the Pivot Semantics to the Group Semantics. A run ρ2 in the group semantics simulates a
run ρ1 in the pivot semantics by following the moves of the k-providers, all at the same time. At any
point of time, the run ρ2 is in some phase ℓ where it is simulating the ℓ-phases of all the k-providers
in ρ1. During phase ℓ, each step of ρ2 corresponds to performing one more step belonging to phase
ℓ of a k-provider. When all the steps of phase ℓ of all the k-providers have been performed, the run
ρ2 will initiate the next phase, namely ℓ + 1. Below, we will formalize these ideas by introducing a
simulation relation.
To define our simulation relation, let us consider an initialized run ρ1 ∈ R

p in the pivot
semantics. We will derive an initialized run ρ2 ∈ R д in the group semantics that simulates ρ1. We
will build the run ρ2 incrementally, by observing the views that are generated in the steps of ρ1,
while all the time ensuring that the simulation holds. Since ρ2 ∈ R д , the set of local states along
ρ2 is non-decreasing, and hence the latest set of local states contains all the local states that have
been generated up to now. Therefore, the simulation only needs to consider the latest set of local
states along ρ2 together with the latest memory state. The run ρ2 will then store more and more
local states corresponding to the views that are generated along ρ1. The simulation relation reflects
the local states that should be added, based on the next view v that is observed along ρ1.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 26. Publication date: January 2020.

26:18 Parosh Aziz Abdulla, Mohamed Faouzi Atig, and Rojin Rezvan

Formally, consider k : 1 ≤ k ≤ rank (ρ1) + 1, ℓ ∈ phases (ρ1) (k), and 0 ≤ i ≤
maxstage (ρ1) (k) (ℓ). Let stage (ρ1) (k) (ℓ) (i) = v = ⟨q,L,ω,ϕE ,ϕL,ϕP ⟩ (Recall that ℓ = ϕE .)
Let end (ρ2) := ⟨S,M⟩, and let σ = ⟨q,w⟩ ∈ S . We use ρ1 |=k ,ℓ,iσ ρ2, denote that the following
conditions are satisfied for each variable x ∈ X and each assignment a ∈ A:
(1) If L (x) = d ∈ D then either (i) LVal (w) (x) = d , or (ii) LVal (w) (x) = ⊘ and there is a θ ∈ S

such that last (θ · buffer) = ⟨x,d⟩. If the latest write on x according to v is d , then either
the latest write message on x carries the value d , or there is no write message on x in the
buffer, but there is another process which has the assignment ⟨x,d⟩ last in its buffer. In the
latter case, the second process can provide the assignment ⟨x,d⟩ through a single update
operation in which no other variables but x will be overwritten in the memory.

(2) If x < ω[1 · · ϕE] and L (x) = ⊘ then LVal (w) (x) = ⊘ and Clean (ρ2) (x) = true. If v states
that no write operations have been observed on x and the process itself has not issued any
such write operations, then the buffer in σ does not contain any assignments on x , and
furthermore x is clean in the memory. In both cases, the property implies that the process
can read the initial value of x .

(3) ψL (w) (x) ≤ ϕL (x). The local pointers of the σ lag their counterparts in v .
(4) If Pos (a) (ω) ≤ ϕE then there is a θ ∈ S such that last (θ · buffer) = a. If an assignment a

has been noticed in v then there is a process that provides the same assignment as the last
message in its buffer.

We use ρ1 |=k ,ℓ,i ρ2 to denote that ρ1 |=k ,ℓ,iσ ρ2, for some σ ∈ S . For k : 1 ≤ k ≤ rank (ρ1) + 1, and
ℓ : 0 ≤ ℓ < k , we write ρ1 |=k ,ℓ ρ2 to denote that either (i) ℓ < phases (ρ1) (k), or (ii) ρ1 |=k ,ℓ,i ρ2
where i = maxstage (ρ1) (k) (ℓ).

The following lemma shows that the group semantics can simulate the pivot semantics.

Lemma 5.4. For ρ1 ∈ R p and ℓ ∈ rank (ρ1) + 1, there is a ρ2 ∈ R д such that ρ1 |=rank(ρ1)+1,ℓ ρ2.

This leads to the following lemma.

Lemma 5.5. For any q ∈ Q , ifVinit
∗

p q then βinit ∗ c q.

Proof. Assume that Vinit
∗

c q, i.e., vinit (ω) (0)
∗

p q for some ω ∈ ADiff, i.e.,

vinit (ω) (0)
ρ1

p q for some ρ1 ∈ R p . From Lemma 5.4 it follows that there is a run ρ2 ∈ R д

such that ρ1 |=rank(ρ)+1,ℓ ρ2 where ℓ is the largest number such that ℓ ∈ rank (ρ1) + 1. Recall
that end (ρ1) = maxstage (ρ1) (rank (ρ1) + 1) (ℓ). It follows that maxstage (ρ1) (rank (ρ) + 1,) (ℓ)
is of the form ⟨q,L,ω,ϕE ,ϕL,ϕP ⟩. Let end (ρ2) = ⟨S,M⟩. Since ρ1 |=rank(ρ)+1,ℓ ρ2 it follows that
ρ1 |=

rank(ρ)+1,ℓ
σ ρ2 for some σ ∈ S of the form ⟨q,w⟩. The result follows immediately. □

5.2.3 From the Group Semantics to the Concrete Semantics. A run ρ2 in the concrete semantics
simulates a run ρ1 in the group semantics by allowing an arbitrary number of processes follow the
moves of any process in ρ1 all at the same time. This is again captured by a simulation relation, as
described below.

Consider a group configuration β = ⟨S,M⟩ and a concrete configuration γ = ⟨I,Q,B,M⟩. For
a natural number n ∈ N, we write β |=n γ to denote that for each σ = ⟨q,w⟩ ∈ S there is an I ′ ⊆ I
such that the following conditions are satisfied:
• |I ′ | ≥ n • Q (ι) = q for each ι ∈ I ′ • B (ι) = w for each ι ∈ I ′.

In other words, γ agrees with β on the memory state, and contains at least n copies of each process
in β . The following lemma follows immediately from the unbounded-supply property explained in
Section 4.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 26. Publication date: January 2020.

Parameterized Verification under TSO is PSPACE-Complete 26:19

Lemma 5.6. For each n ∈ N and β ∈ C д , if βinit
∗

д β , then there is a γ ∈ C c such that β |=n γ
and Γinit

∗
c γ .

This gives the following lemma.

Lemma 5.7. For any q ∈ Q , if βinit
∗

д q then Γinit
∗

c q,

5.2.4 From the Pivot Semantics to the Concrete Semantics. Combining Lemma 5.5 and Lemma 5.7,
we get the following lemma.

Lemma 5.8. For any q ∈ Q , ifVinit
∗

p q then Γinit
∗

c q.

6 PSPACE-COMPLETENESS
In this section we prove the following theorem.

Theorem 6.1. The parameterized reachability problem for TSO is PSpace-complete.

The proof of Theorem 6.1 follows from Lemma 6.4 which shows membership in PSpace, and
Lemma 6.5 which shows PSpace-hardness. Both proofs are achieved through reductions from/to
the reachability problem for 1-safe Petri nets.

6.1 1-Safe Petri Nets
We recall the standard model of Petri nets. A Petri Net N is a tuple ⟨P,T , F ⟩ where P and T are
finite sets of places and transitions respectively, and F ⊆ (P ×T) ∪ (T × P) is the flow relation. For
a transition t ∈ T , we define Input (t) to be the multiset M ∈ P⃝⋆ over places such that M (p) = 1
if ⟨p, t⟩ ∈ F and M (p) = 0 otherwise. Sometimes, we view Input (t) as a set of places, which we
call the set of input places of t , where the set contains a place p iff Input (t) (p) = 1. We define
Output (t) analogously.

We define a transition system induced by N . A configuration of N , traditionally called amarking,
is a multisetM ∈ P⃝⋆ over the set P . Sometimes, whenM (p) = k , we say that the markingM puts k
tokens in the place p. We define a transition relation −→PN on the set of markings such that, for a
transition t ∈ T , we have M1

t
−→PN M2 if Input (t) ≤ M1 and M2 = M1 − Input (t) + Output (t). We

write M1 −→PN M2 to denote that M
t
−→PN M2 for some transition t ∈ T . A marking M is said to be

1-safe ifM (p) ≤ 1 for all places p ∈ P . We say that N is 1-safe from a markingM if every reachable
marking fromM is 1-safe. The reachability problem for 1-safe Petri nets consists of a Petri net N
and a markingMinit such that N is 1-safe fromMinit , together with a place ptarget ∈ P . The question
is whether there is a markingM such thatM is reachable fromMinit , andM

(
ptarget

)
= 1. In other

words, we ask whether we can start from the initial marking and succeed in putting a token in
ptarget . The reachability problem for 1-safe Petri nets is PSpace-complete [Cheng et al. 1995].

6.2 Membership
In this sub-section, we prove that the parameterized reachability problem for TSO is in PSpace. We
achieve that by reducing the reachability problem under the pivot semantics to the reachability
problem for 1-safe Petri nets. We do that in two steps. First we show that the result holds in case
when we only consider runs that consist of a single epoch. Then, we extend the result to general
(initialized) runs.

6.2.1 Single-Epoch Case. Consider a (not necessarily initialized) run ρ in the pivot semantics, a
differentiated word ω ∈ ADiff of assignments, and k : 1 ≤ k ≤ |ω | + 1. We say that ρ is a ⟨ω,k⟩-
epoch if (i)v ·stamp = ω for allv ∈ ρ, (ii)v ·pptr = k for allv ∈ ρ, and (iii) start (ρ) = vinit (ω) (k).

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 26. Publication date: January 2020.

26:20 Parosh Aziz Abdulla, Mohamed Faouzi Atig, and Rojin Rezvan

Intuitively ρ is the k-epoch of some initialized run. We use Epochs (ω) (k) to denote the set of all
⟨ω,k⟩-epochs.
An instance of the epoch reachability problem is given by a process definition P = ⟨Q,qinit,∆⟩,

a word ω ∈ ADiff, a k : 1 ≤ k ≤ |ω | + 1, and a state qtarget ∈ Q . The question is whether

vinit (ω) (k)
ρ

p qtarget for some ρ ∈ Epochs (ω) (k).
Assume that we are given an instance of the epoch reachability problem as defined above. We

derive an instance of the reachability problem for 1-safe Petri nets as follows. We construct a
Petri net

�
P,ω,k,qtarget

�
N := ⟨P,∆, F ⟩. Each marking of

�
P,ω,k,qtarget

�
N will represent a view

v = ⟨q,L,ω,ϕE ,ϕL,k⟩ along the given epoch, while the transitions will mimic the transitions of
the pivot semantics that are executed along the epoch.

The set of places P := P1 ∪ · · · ∪ P5 is defined as the union of five disjoint sets, described below.
• P1 contains a place St (q) for each state q ∈ Q . A token in St (q) means that the state of the
current view is q. The transitions of N will preserve the invariant that

∑
q∈Q M (St (q)) = 1,

which means that there is exactly one token in the places belonging to P1.
• P2 contains a place L (x, d), for each ⟨x,d⟩ ∈ X × (D ∪ ⊘). A token in L (x, d) means that
L (x) = d . The invariant

∑
d ∈D∪{⊘})M (L (x, d)) = 1 is preserved for each x ∈ X.

• P3 contains a place EP (i) for each i : 0 ≤ i ≤ |ω |. A token in EP (i) means that the current
value of ϕE is equal to i . The invariant

∑
0≤i≤ |ω |M (EP (i)) = 1 is preserved.

• P4 contains a place LP (x) (i) for each variable x ∈ X and i : 0 ≤ i ≤ |ω |. A token in LP (x) (i)
means that the current value of ϕL (x) is equal to i . The invariant

∑
0≤i≤ |ω |M (LP (x) (i)) = 1

is preserved for each variable x ∈ X.
• P5 contains a place MAXLP (i) for each i : 0 ≤ i ≤ |ω |. A token in MAXLP (i) means that the
current value of ϕmax

L is equal to i . The invariant
∑

0≤i≤ |ω |M (MAXLP (i)) = 1 is preserved.
The set of transitions T := T1 ∪ · · · ∪T6 is defined as the union of six disjoint sets, defined as

follows.
• For each ⟨q, skip, q′⟩ ∈ ∆, the set T1 contains a transition t with Input (t) = {St (q)} and
Output (t) = {St (q′)}. The transition mimics the rule skip in Fig. 2, changing the process
state from q to q′ while not changing the pointers.
• The setT2 contains transitions each mimicking the application of the inference rule write(1)
in Fig. 2. The set is itself defined as the union of two disjoint subsetsT2 := T21∪T22. These two
subsets reflect the manner in which the new position of the internal x-pointer is calculated,
depending on the relative current values of (i) the maximal local pointer, and (ii) the position
in ω of the assignment on which the write operation is performed. The value of external
pointer should be updated to the larger of the these two values. For each ⟨q, w (x,d) ,q′⟩ ∈ ∆,
⟨x,d⟩ ∈ ω, ℓ = Pos (ω) (x,d) < k , i : 0 ≤ i < k , and j : 0 ≤ j < k , the set ∆2 contains the
following transitions:
– If j ≤ ℓ then the setT21 contains a transition t with Input (t) = {St (q) , LP (x) (i) , MAXLP (j)}
and Output (t) = {St (q′) , LP (x) (ℓ) , MAXLP (ℓ)}. This is the case when the position of ⟨x,d⟩
in ω is higher than the current value of the maximal local pointer.

– If ℓ < j then the setT22 contains a transition t with Input (t) = {St (q) , LP (x) (i) , MAXLP (j)}
and Output (t) = {St (q′) , LP (x) (j) , MAXLP (j)}. This is the case when the value of the
maximal local pointer is higher than the position of ⟨x,d⟩ in ω.

• For each ⟨q, r (x,d) ,q′⟩ ∈ ∆, the setT3 contains a transition t with Input (t) = {St (q) , L (x, d)}
and Output (t) = {St (q′) , L (x, d)}. The transition mimics the rule read(1) in Fig. 2.
• For each ⟨q, r (x,d) ,q′⟩ ∈ ∆ with d = init (x), i : 0 ≤ i < k with x < ω[1 · · i], the
set T4 contains a transition t with Input (t) = {St (q) , L (x, ⊘) , EP (i)} and Output (t) =
{St (q′) , L (x, ⊘) , EP (i)}. The transition mimics the rule read(2) in Fig. 2.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 26. Publication date: January 2020.

Parameterized Verification under TSO is PSPACE-Complete 26:21

• The set T5 contains a set of transitions each mimicking the application of the inference rule
read(3) in Fig. 2. In a similar manner to the set T2, the set is defined as the union of three
disjoint subsets T5 := T51 ∪ T52 ∪ T53 reflecting the relative current values of the external
pointer, the local pointer of variable x , and the position in ω of assignment on which the
write operation is performed. For each ⟨q, r (x,d) ,q′⟩ ∈ ∆, ⟨x,d⟩ ∈ ω, ℓ = Pos (ω) (x,d) < k ,
i : 0 ≤ i < k , and j : 0 ≤ j < k , the set ∆5 contains the following transitions:
– If i ≤ ℓ and j ≤ ℓ then the set T51 contains a transition t with Input (t) =
{St (q) , EP (i) , LP (x) (j)} and Output (t) = {St (q′) , EP (ℓ) , LP (x) (j)}.

– If i ≤ j and ℓ < j then the set T52 contains a transition t with Input (t) =
{St (q) , EP (i) , LP (x) (j)} and Output (t) = {St (q′) , EP (j) , LP (x) (j)}.

– If j < i and ℓ < i then the set T53 contains a transition t with Input (t) =
{St (q) , EP (i) , LP (x) (j)} and Output (t) = {St (q′) , EP (i) , LP (x) (j)}.

• The set T6 contains a set of transitions each mimicking the application of the inference rule
fence in Fig. 2. The set is defined as the union of two disjoint subsetsT6 := T61∪T62. reflecting
the relative current values of the external pointer and the maximal local pointer. For each
⟨q, mf, q′⟩ ∈ ∆, i : 0 ≤ i < k , j : 0 ≤ j < k , the set ∆6 contains the following transitions:
– If i ≤ j then the set T61 contains a transition t with Input (t) = {St (q) , EP (i) , MAXLP (j)}
and Output (t) = {St (q′) , EP (j) , MAXLP (j)}.

– If j < i then the set T62 contains a transition t with Input (t) = {St (q) , EP (i) , MAXLP (j)}
and Output (t) = {St (q′) , EP (i) , MAXLP (j)}.

We define the initial marking:
Minit := {St (qinit) , EP (0) , MAXLP (0)} ∪ {L (x, ⊘) | x ∈ X} ∪ {LP (x) (0) | x ∈ X}

This reflects the fact that we start the epoch from the initial process state, and with the external
and all internal the pointers being equal to 0. We define the target place ptarget := St

(
qtarget

)
.

Let us consider the size of the Petri net
�
P,ω,k,qtarget

�
N . We observe that |ω | ∈ O (|X| · |D|),

and hence |P1 | ∈ O (|Q |), |P2 | ∈ O (|X| · |D|), |P3 | ∈ O (|X| · |D|), |P4 | ∈ O
(
(|X|)2 · |D|

)
, and

|P5 | ∈ O (|X| · |D|). Also, |T1 | ∈ O (|∆|), |T2 | ∈ O
(
|∆| · (|X|)3 · (|D|)3

)
, |T3 | ∈ O (|∆|), |T4 | ∈ O (|∆|),

|T5 | ∈ O
(
|∆| · (|X|)3 · (|D|)3

)
, and |T5 | ∈ O

(
|∆| · (|X|)3 · (|D|)3

)
. This gives the following lemma.

Lemma 6.2. The epoch reachability problem is polynomial-time reducible to the reachability problem
for 1-safe Petri nets.

From Lemma 6.2 and PSpace-membership of the reachability problem for 1-safe Petri nets [Cheng
et al. 1995] we get the following lemma.

Lemma 6.3. The epoch reachability problem is in PSpace.

6.2.2 General Case. We show how we can extend the PSpace-membership from the pivot reacha-
bility problem to the general reachability problem under the pivot semantics (where we consider
general runs rather than epochs). Recall from Section 4 that any initialized run ρ ∈ R p can be writ-
ten as ρ = [ρ1] op1 [ρ2] op2 [ρ2] · · · [ρm] opm [ρm+1] where ρk = epoch (ρ) (k), and opk = w (2) (ak)
for some ak . Indeed, each ρk is an ⟨ω,k⟩-epoch where ω = a1a2 · · ·am .
Algorithm 1 uses this pattern of pivot runs, and solves the pivot reachability problem non-

deterministically. First, it guesses the sequence ω (line 1). The for-loop at line 2 checks that ω
can indeed be generated. To that end, the algorithm checks, for each k : 1 ≤ k ≤ |ω |, that the
⟨ω,k⟩-epoch can generate ω[k]. Finally, the if-statement of line 10 checks whether the target state
can be generated in the last epoch, i.e., the ⟨ω, |ω | + 1⟩-epoch.
Algorithm 1 executes line 5 O (|X| · |D| · |∆|) times, and executes line 10 once. According to

Lemma 6.3 each execution of these two lines can be carried out in polynomial space. This means

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 26. Publication date: January 2020.

26:22 Parosh Aziz Abdulla, Mohamed Faouzi Atig, and Rojin Rezvan

Algorithm 1: A non-deterministic algorithm for solving the pivot reachability problem.
Input: P = ⟨Q,qinit,∆⟩: process definition, qtarget ∈ Q : process state.
Output: Vinit

∗
p qtarget?

1 Guess some ω ∈ (X × D)Diff;
2 for each k : 1 ≤ k ≤ |ω | do
3 flag := false;
4 for each q,q′ ∈ Q do
5 if ⟨q, w (ω[k]) ,q′⟩ ∈ ∆ then

6 if ∃ρ ∈ Epochs (ω) (k) . vinit (ω) (k)
ρ

p q then
7 flag := true;
8 if flag = false then
9 Return (false);

10 if ∃ρ ∈ Epochs (ω) (|ω | + 1) . vinit (ω) (|ω | + 1)
ρ

p qtarget then
11 Return (true)
12 else
13 Return (false)

that Algorithm 1 operates in non-deterministic polynomial space. Applying Savitch’s theorem
[Savitch 1970], we get the following lemma:

Lemma 6.4. The parameterized reachability problem for TSO is in PSpace.

6.3 Hardness
In this section, we prove that the parameterized reachability problem for TSO is PSpace-hard.

The proof is achieved through a reduction from the reachability problem for 1-safe Petri nets.

6.3.1 Reduction. Suppose that we are given an instance of the 1-safe reachability problem, con-
sisting of a Petri net N = ⟨P,T , F ⟩ together with two markings Minit and Mtarget . We will derive
an equivalent instance of the parameterized reachability problem for TSO, consisting of a process
definition ⟨Q,qinit,∆⟩ together with a state qtarget ∈ Q . The processes participating in a run of the
concurrent program may non-deterministically choose to play one of three different roles. The
main role is that of a simulator, where the process (i) simulates the Petri net N and (ii) verifies
that the target marking has been reached. The second role is that of a trigger, where the process
signals (triggers) the end of the simulation process. The third role is that of a sanity checker, where
the process verifies that no memory updates have been performed by a simulator. In fact, due to
parameterization, an arbitrary number of processes may play the three different roles at the same
time. However, this will not be important for the simulation. In particular, each simulator is made
to work “in isolation” in the sense that it is not allowed to read from or update the memory (until
the end of the simulation). This means that the simulators will not interfere with each other. This
also implies that, at any point, a simulator may only read the latest value that it has written to
a given variable, and not read from write operations performed by the other processes. For each
place p ∈ P , the set Q contains a variable xp , ranging over the set {0, 1, 2} with an initial value 2.
Intuitively, the value of xp is 1 if there is one token in p, while the value of xp is 0 if p is empty
(recall that p will contain at most one token since N is 1-safe form Minit .) Thus a marking M is
encoded by assigning 1 to each variable xp where M (p) = 1, and assigning 0 to xp if M (p) = 0.
We will also use an extra variable a that will be used to ensure that each variable xp will not be

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 26. Publication date: January 2020.

Parameterized Verification under TSO is PSPACE-Complete 26:23

updated in the memory. This variable also takes one of the values {0, 1, 2} and its initial value is 0.
In the main phase of the operation of the system, called the simulation phase, a simulator selects
a transition in t ∈ T non-deterministically, and simulates it by checking that all its input places
contain tokens (the corresponding variables have the value 1) and by putting tokens in its output
places (assigning the value 1 to the corresponding variables). Furthermore, we have an initialization
phase, where we generate the encoding of the markingMinit , and a final phase, where we check:
(i) that we have obtained the encoding of the markingMtarget , and (ii) that there has not been any
memory updates of the variables xp in the memory during the simulation phase.

The Initialization Phase. The initialization phase is performed by the simulators, and its purpose
is to generate the encoding ofMinit . Let {p1, . . . ,pm} be the set of places such thatMinit (pi) = 0 for
i : 1 ≤ i ≤ m; and let {q1, . . . ,qn} be the set of places such thatMinit (qi) = 1 for i : 1 ≤ i ≤ n. Notice
that P = {p1, . . . ,pm} ∪ {q1, . . . ,qn}. The set Q contains two sets of states {init0, . . . , initm}
and

{
init′0, . . . , init

′
n
}
. From the initial state qinit , a process may non-deterministically decide

to become a simulator, and start the initialization phase. To that end, it performs a sequence of
transitions initializing the values of the variables. More precisely, for each place pi , the set ∆
contains a transition

〈
initi−1, w(xpi , 0), initi

〉
which indicates that pi is empty inMinit . Also, for

each place qi , the set ∆ contains a transition
〈
init′i−1, w(xqi , 1), init

′
i

〉
which indicates that qi

contains one token inMinit . After the last transition in the sequence, the process enters the state
origin from which the simulation of the transitions in T starts.

The Simulation Phase. The set Q contains the state origin from which the simulations of the
transitions in T are started and ended. Consider a transition t ∈ T with Input (t) = {p1, . . . ,pm}
and Output (t) = {q1, . . . ,qn}. The set ∆ contains three sets of states

{
t10 , . . . , t

1
m
}
,
{
t20 , . . . , t

2
m
}
, and{

t30 , . . . , t
3
n
}
. Starting from origin, the process may non-deterministically choose to execute the

sequence of transitions corresponding to t . For each input place pi , the sequence contains one
transition of the form

〈
ti−1, r

(
xpi , 1

)
, ti

〉
that checks that it is indeed the case thatpi contains a token

in the current marking. Also, the sequence contains one transition of the form
〈
ti−1, w

(
xpi , 0

)
, ti

〉
that simulates removing a token from pi . Finally, for each output place qi , the sequence contains one
transition of the form

〈
ti−1, w

(
xqi , 1

)
, ti

〉
that simulates putting a token in qi . When the processes

has executed the entire sequence, it goes back to the state origin.

The Final Phase. The final phase is initiated non-deterministically from the state origin. The goal
of this phase is twofold. First, it checks that the markingMtarget has been reached. Let {p1, . . . ,pm}
be the set of places such that Mtarget (pi) = 0 for i : 1 ≤ i ≤ m; and let {q1, . . . ,qn} be the
set of places such that Mtarget (qi) = 1 for i : 1 ≤ i ≤ n. The set Q contains the sets of states
{target0, . . . , targetm} and

{
target′0, . . . , target

′
n
}
. For each place pi , the set ∆ contains a

transition
〈
targeti−1, r(xpi , 0), targeti

〉
which indicates that pi is empty inMtarget . Analogously,

for each place qi , the set ∆ contains a transition
〈
target′i−1, r(xpi , 1), target

′
i

〉
which indicates

that pi contains a token inMtarget . After the last transition in the sequence, the process performs
two additional transitions that are not part of the simulation of the Petri net N , namely it checks
that the value of the special variable a is still equal to its initial value 0 in the memory, and that
this value has later been updated to 2. If these two tests are satisfied, the simulator moves to the
given target state qtarget .

Also, in the final phase, we check that for any variable xp , corresponding to a place p, the value
of xp in the memory has not been updated during the simulation by the simulator (the variable
xp is clean.) This will be carried out by the trigger and sanity checker processes. A process may
non-deterministically decide to become a trigger from its initial state. A trigger performs only one
operation, namely to assign the value 1 to the variable a. Also, a process may non-deterministically

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 26. Publication date: January 2020.

26:24 Parosh Aziz Abdulla, Mohamed Faouzi Atig, and Rojin Rezvan

initialization

qinit

init0

init1

init2

initm�1

initm init00

init01

init02

init0n�1

init0n

origin

skip

w (xp1 , 0)

w (xp2 , 0)

w (xpm , 0)

skip

w (xq1 , 1)

w (xq2 , 1)

w (xqn , 1)

skip

target marking
verification

origin

target0

target1

target2

targetm�1

targetm target00

target01

target02

target0n�1

target0n

target

qtarget

skip

r (xp1 , 0)

r (xp2 , 0)

r (xpm , 0)
skip

r (xq1 , 1)

r (xq2 , 1)

r (xqn , 1)

r (a, 0)

r (a, 2)

simulation

t10

t11

t11

t1m�1

t1m t20

t21

t22

t2m�1

t2m t30

t31

t31

t3m�1

t3m

origin

ski
p

s
k
i
p

r (xp1 , 1)

r (xp2 , 1)

r (xpm , 1)

skip

w (xp1 , 0)

w (xp2 , 0)

w (xpm , 0)

skip

w (xq1 , 1)

w (xq2 , 1)

w (xqn , 1)

triggering
qinit

trigger

trigger0

skip

w (a, 1)

memory cleanness
verification

qinit

clean

clean0

clean1

clean2

cleann�1

cleann

clean0

skip

r (a, 1)

r (x1, 2)

r (x2, 2)

r (xn, 2)

w (a, 2)

Fig. 5. Simulating a 1-safe Petri net.

decide to become a sanity checker, and perform the following transitions. Let X = {x1, . . . , xn}
be the set of variables. The set Q contains the set of states {clean, clean0, . . . , cleann}. It first
checks that the special variable a has been updated to 1. This means that the subsequent transitions
by the sanity checker are performed after the simulator has read the value 0 in a, i.e., after it has
finished the simulation of N . After that, the process checks that all the other variables still carry
their initial values, i.e, the value 2, in the memory. In its final step, it writes the value 2 to a thus
signalling the end of the sanity checking and allowing the simulator to reach qtarget .

From the reduction we immediately get the following lemma.

Lemma 6.5. The parameterized reachability problem for TSO is PSpace-hard.

Notice that we do not need the fences to show PSPACE-hardness. This obviously implies that
PSPACE-hardness holds in the presence of fences. Since we show PSPACE-membership in the
presence of fences, the full problem is PSPACE-complete.

Also, observe that the reduction uses a domain containing three values, 0, 1, and 2. However, the
result goes through even for Boolean programs. More precisely, we can use one extra variable that
keeps track of whether the memory has been updated or not.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 26. Publication date: January 2020.

Parameterized Verification under TSO is PSPACE-Complete 26:25

hq, skip, q0i 2 � , q 2 v

v u v [{q0}
skip

hq, w(x, d), q0i 2 � , q 2 v

v u v [{q0, hx, di}
write

hq, r(x, d), q0i 2 � , q 2 v , hx, di 2 v

v u v [{q0}
read

hq, mf, q0i 2 � , q 2 v

v u v [{q0}
fence

Fig. 6. The abstract semantics of TSO under the assumption of no initial values.

7 UNINITIALIZED MEMORY
In this section, we consider the case where the memory in uninitialized, i.e., the processes are not
allowed to read from the initial values of the variables in the memory.
Consider a process definition ⟨Q,qinit,∆⟩. We assume that whenever Minit (x) = d1 and
⟨q, r (x,d2) ,q

′⟩ ∈ ∆ then d1 , d2. This means that no process will read the initial value of a
variable in the memory. We define an abstract semantics for programs running under TSO under
this condition. In a similar manner to Section 4 we define a set of abstract configurations and a
transition relation on them. Here, the abstraction captures the fact that a process can always choose
to read from a write operation performed by another process. Therefore, it is sufficient for the
abstract configurations to store the states of the processes that have been observed, and the write
operations that have been observed up to the current point of the execution of the program. A view
v then is a set of process states and write operations i.e., v ∈ Q ∪ (X × D). We useV to denote the
set of views.
We define an abstract operational semantics by re-defining the transition relation on the set of

views to obtain u (the u stands for uninitialized) as described by the inference rules in Fig. 6. The
rule skip reflects the situation where there is a transition taking a process from a state q to a state
q′ through the skip-instruction. The write rule means that if a write transition ⟨q, w(x,d),q′⟩ is
available, then any process in state q may perform the transition making both q′ and the operation
⟨x,d⟩ available. We need only one rule for read transitions. More precisely, the rule read reflects
the fact that if a process needs to perform a read transition ⟨q, r(x,d),q′⟩, then the transition may
be performed provided that another process has already performed the write operation ⟨x,d⟩.
As a result the state q′ will become available in the new view. Notice that no new values of the
variables will become available in this rule. Finally, the fence rule corresponds to the fact that a
fence operation is always enabled since a process has always the possibility to flush its buffer and
then perform the transition.
We observe that |V| = |Q | + |X| · |D|. Therefore, the reachability problem amounts to perform

searching in a graph of polynomial size, thus giving a polynomial time complexity.

8 CONCLUSION, DISCUSSION AND FUTUREWORK
Bugs are found repeatedly in memory models, and in programs running on them. This makes the
need for verification tools quite urgent. A crucial step in algorithm design and tool building is to
understand the complexity of the given memory model and the corresponding verification problems.
In this paper, we have taken the first step to study the complexity of parameterized verification
under weak memory models. Concretely, we have presented decidability and complexity results for
parameterized concurrent programs running on the classical TSO memory model. More precisely,
we have shown that the reachability problem is Pspace-complete when the system consists of an

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 26. Publication date: January 2020.

26:26 Parosh Aziz Abdulla, Mohamed Faouzi Atig, and Rojin Rezvan

arbitrary number of identical processes. The complexity reduces to polynomial time when the
processes are not allowed to read the initial values of the variables in the memory.
It is interesting to re-consider the problem under the assumption of having one or more distin-

guished processes (so called leader processes). In fact, the parameterized reachability problem when
allowing two leaders has non-primitive recursive time complexity. This is a consequence of the fact
that the reachability problem has a non-primitive time complexity in the non-parameterized case
when we have two or more processes [Atig et al. 2010]. We can let the two leaders simulate the two
processes, and make the rest of the processes (the slave processes) passive, by letting them have
an empty set of transitions. The case with a single leader is less clear. For the class of finite-state
processes, interacting through rendez-vous communication, under the SC semantics, the complexity
of parameterized verification jumps from polynomial time to Expspace when adding a single leader
[German and Sistla 1992]. We believe that pivot abstraction can be extended to the case of a single
leader. The question then is whether we will stay within polynomial space, or exponential space is
required to solve the problem. In fact, forbidding the processes from reading the initial values of
the variables will not reduce the complexity to polynomial time in the presence of leaders, since a
leader may run a preliminary phase where it initializes the values of the variables.
Also, the complexity of the reachability problem jumps to being non-primitive recursive when

allowing atomic read-modify-write (RMW) operations. The reason is that two processes can
initially use the RMW operation to declare themselves as leaders by modifying the shared variables
atomically (e.g., by setting the values of two special flags), while blocking the other processes, thus
reducing the problem to the case of having two leaders.

The complexity of checking correctness of parameterized system under TSO, assuming that the
system is correct under the SC model, is still PSPACE-complete since our lower-bound reduction
will still go through under this assumption.

It would be interesting to consider the decidability of the model checking problem wrt. logics
such as LTL or CTL, or to allow additional program features such as dynamic creation and deletion
of processes. Also, it is relevant to consider other memory models than TSO. This includes memory
models such as PSO that are “similar” to TSO, and memory models such as POWER, ARM, and
(fragments of) C11 that have entirely different behaviors. In particular, we would like to see
whether parameterization allows to get decidability for models for which the reachability problem
is undecidable in the non-parameterized case such as POWER [Derevenetc 2015] and the Released-
Acquire fragment of C11 [Abdulla et al. 2019a].

A difficult challenge is to consider parameterized verification for infinite-state processes. In the
context of SC, it took almost two decades before the step from finite-state to infinite-state processes
finally became possible (e.g., [Abdulla et al. 2020, 2004, 2013, 2016b]. We believe this time span will
be shorter in the case of weak memory models, given our knowledge of parameterized verification
in the case of SC, and given that we already know how to extend the non-parameterized case from
the SC context to the weak context.
To obtain practically efficient algorithms, it will be interesting to consider over-approximation

techniques such as monotonic and simulation-based abstraction [Abdulla et al. 2008a,b, 2011], and
under-approximation techniques such as stateless model checking [Abdulla et al. 2015, 2017, 2019b,
2016a, 2018c].
Finally, we plan to study the decidability of probabilistic extensions of the parameterized TSO

model using available frameworks for infinite-state Markov chains, e.g., [Abdulla et al. 2000,
2005a,b,c, 2007; Abdulla and Rabinovich 2003].

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 26. Publication date: January 2020.

Parameterized Verification under TSO is PSPACE-Complete 26:27

REFERENCES
P.A. Abdulla, S. Aronis, M. Faouzi Atig, B. Jonsson, C. Leonardsson, and K. Sagonas. 2015. Stateless Model Checking for

TSO and PSO. In TACAS (LNCS), Vol. 9035. Springer, 353–367.
Parosh Aziz Abdulla. 2012. Regular model checking. STTT 14, 2 (2012), 109–118. https://doi.org/10.1007/s10009-011-0216-8
Parosh Aziz Abdulla, Stavros Aronis, Mohamed Faouzi Atig, Bengt Jonsson, Carl Leonardsson, and Konstantinos Sagonas.

2017. Stateless model checking for TSO and PSO. Acta Inf. 54, 8 (2017), 789–818.
Parosh Aziz Abdulla, Jatin Arora, Mohamed Faouzi Atig, and Shankara Narayanan Krishna. 2019a. Verification of programs

under the release-acquire semantics. In Proceedings of the 40th ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI 2019, Phoenix, AZ, USA, June 22-26, 2019., Kathryn S. McKinley and Kathleen Fisher
(Eds.). ACM, 1117–1132. https://doi.org/10.1145/3314221.3314649

Parosh Aziz Abdulla, Mohamed Faouzi Atig, Ahmed Bouajjani, and Tuan Phong Ngo. 2018a. A Load-Buffer Semantics for
Total Store Ordering. Logical Methods in Computer Science 14, 1 (2018). https://doi.org/10.23638/LMCS-14(1:9)2018

Parosh Aziz Abdulla, Mohamed Faouzi Atig, Radu Ciobanu, Richard Mayr, and Patrick Totzke. 2018b. Universal Safety for
Timed Petri Nets is PSPACE-complete. In 29th International Conference on Concurrency Theory, CONCUR 2018, September
4-7, 2018, Beijing, China (LIPIcs), Sven Schewe and Lijun Zhang (Eds.), Vol. 118. Schloss Dagstuhl - Leibniz-Zentrum fuer
Informatik, 6:1–6:15. https://doi.org/10.4230/LIPIcs.CONCUR.2018.6

Parosh Aziz Abdulla, Mohamed Faouzi Atig, Bengt Jonsson, Magnus Lång, Tuan Phong Ngo, and Konstantinos Sagonas.
2019b. Optimal stateless model checking for reads-from equivalence under sequential consistency. PACMPL 3, OOPSLA
(2019).

Parosh Aziz Abdulla, Mohamed Faouzi Atig, Bengt Jonsson, and Carl Leonardsson. 2016a. Stateless Model Checking for
POWER. In CAV (LNCS), Vol. 9780. 134–156.

Parosh Aziz Abdulla, Mohamed Faouzi Atig, Bengt Jonsson, and Tuan Phong Ngo. 2018c. Optimal stateless model checking
under the release-acquire semantics. PACMPL 2, OOPSLA (2018), 135:1–135:29. https://doi.org/10.1145/3276505

Parosh Aziz Abdulla, Mohamed Faouzi Atig, and Rojin Rezvan. 2020. Parameterized verification under TSO is PSPACE-
complete. PACMPL 4, POPL (2020).

Parosh Aziz Abdulla, Christel Baier, S. Purushothaman Iyer, and Bengt Jonsson. 2000. Reasoning about Probabilistic Lossy
Channel Systems. In CONCUR 2000 - Concurrency Theory, 11th International Conference, University Park, PA, USA, August
22-25, 2000, Proceedings (Lecture Notes in Computer Science), Catuscia Palamidessi (Ed.), Vol. 1877. Springer, 320–333.
https://doi.org/10.1007/3-540-44618-4_24

Parosh Aziz Abdulla, Christel Baier, S. Purushothaman Iyer, and Bengt Jonsson. 2005a. Simulating perfect channels with
probabilistic lossy channels. Inf. Comput. 197, 1-2 (2005), 22–40. https://doi.org/10.1016/j.ic.2004.12.001

Parosh Aziz Abdulla, Nathalie Bertrand, Alexander Moshe Rabinovich, and Philippe Schnoebelen. 2005b. Verification of
probabilistic systems with faulty communication. Inf. Comput. 202, 2 (2005), 141–165. https://doi.org/10.1016/j.ic.2005.
05.008

Parosh Aziz Abdulla, Ahmed Bouajjani, Jonathan Cederberg, Frédéric Haziza, and Ahmed Rezine. 2008a. Monotonic
Abstraction for Programs with Dynamic Memory Heaps. In Computer Aided Verification, 20th International Conference,
CAV 2008, Princeton, NJ, USA, July 7-14, 2008, Proceedings (Lecture Notes in Computer Science), Aarti Gupta and Sharad
Malik (Eds.), Vol. 5123. Springer, 341–354. https://doi.org/10.1007/978-3-540-70545-1_33

Parosh Aziz Abdulla, Ahmed Bouajjani, Lukás Holík, Lisa Kaati, and Tomás Vojnar. 2008b. Computing Simulations over Tree
Automata. In Tools and Algorithms for the Construction and Analysis of Systems, 14th International Conference, TACAS 2008,
Held as Part of the Joint European Conferences on Theory and Practice of Software, ETAPS 2008, Budapest, Hungary, March
29-April 6, 2008. Proceedings (Lecture Notes in Computer Science), C. R. Ramakrishnan and Jakob Rehof (Eds.), Vol. 4963.
Springer, 93–108. https://doi.org/10.1007/978-3-540-78800-3_8

Parosh Aziz Abdulla, Yu-Fang Chen, Lorenzo Clemente, Lukás Holík, Chih-Duo Hong, Richard Mayr, and Tomás Vojnar. 2011.
Advanced Ramsey-Based Büchi Automata Inclusion Testing. In CONCUR 2011 - Concurrency Theory - 22nd International
Conference, CONCUR 2011, Aachen, Germany, September 6-9, 2011. Proceedings (Lecture Notes in Computer Science),
Joost-Pieter Katoen and Barbara König (Eds.), Vol. 6901. Springer, 187–202. https://doi.org/10.1007/978-3-642-23217-6_13

Parosh Aziz Abdulla, Yu-Fang Chen, Giorgio Delzanno, Frédéric Haziza, Chih-Duo Hong, and Ahmed Rezine. 2010. Con-
strained Monotonic Abstraction: A CEGAR for Parameterized Verification, See [Gastin and Laroussinie 2010], 86–101.
https://doi.org/10.1007/978-3-642-15375-4_7

Parosh Aziz Abdulla and Giorgio Delzanno. 2016. Parameterized verification. STTT 18, 5 (2016), 469–473. https:
//doi.org/10.1007/s10009-016-0424-3

Parosh Aziz Abdulla, Johann Deneux, and Pritha Mahata. 2004. Multi-Clock Timed Networks. In 19th IEEE Symposium
on Logic in Computer Science (LICS 2004), 14-17 July 2004, Turku, Finland, Proceedings. IEEE Computer Society, 345–354.
https://doi.org/10.1109/LICS.2004.1319629

Parosh Aziz Abdulla, Frédéric Haziza, and Lukás Holík. 2013. All for the Price of Few. In Verification, Model Checking, and
Abstract Interpretation, 14th International Conference, VMCAI 2013, Rome, Italy, January 20-22, 2013. Proceedings (Lecture

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 26. Publication date: January 2020.

https://doi.org/10.1007/s10009-011-0216-8
https://doi.org/10.1145/3314221.3314649
https://doi.org/10.23638/LMCS-14(1:9)2018
https://doi.org/10.4230/LIPIcs.CONCUR.2018.6
https://doi.org/10.1145/3276505
https://doi.org/10.1007/3-540-44618-4_24
https://doi.org/10.1016/j.ic.2004.12.001
https://doi.org/10.1016/j.ic.2005.05.008
https://doi.org/10.1016/j.ic.2005.05.008
https://doi.org/10.1007/978-3-540-70545-1_33
https://doi.org/10.1007/978-3-540-78800-3_8
https://doi.org/10.1007/978-3-642-23217-6_13
https://doi.org/10.1007/978-3-642-15375-4_7
https://doi.org/10.1007/s10009-016-0424-3
https://doi.org/10.1007/s10009-016-0424-3
https://doi.org/10.1109/LICS.2004.1319629

26:28 Parosh Aziz Abdulla, Mohamed Faouzi Atig, and Rojin Rezvan

Notes in Computer Science), Roberto Giacobazzi, Josh Berdine, and Isabella Mastroeni (Eds.), Vol. 7737. Springer, 476–495.
https://doi.org/10.1007/978-3-642-35873-9_28

Parosh Aziz Abdulla, Frédéric Haziza, and Lukás Holík. 2016b. Parameterized verification through view abstraction. STTT
18, 5 (2016), 495–516. https://doi.org/10.1007/s10009-015-0406-x

Parosh Aziz Abdulla, Noomene Ben Henda, and Richard Mayr. 2005c. Verifying Infinite Markov Chains with a Finite
Attractor or the Global Coarseness Property. In 20th IEEE Symposium on Logic in Computer Science (LICS 2005), 26-29
June 2005, Chicago, IL, USA, Proceedings. IEEE Computer Society, 127–136. https://doi.org/10.1109/LICS.2005.54

Parosh Aziz Abdulla, Noomene Ben Henda, and Richard Mayr. 2007. Decisive Markov Chains. CoRR abs/0706.2585 (2007).
arXiv:0706.2585 http://arxiv.org/abs/0706.2585

Parosh Aziz Abdulla and Bengt Jonsson. 2003. Model checking of systems with many identical timed processes. Theor.
Comput. Sci. 290, 1 (2003), 241–264. https://doi.org/10.1016/S0304-3975(01)00330-9

Parosh Aziz Abdulla and Alexander Moshe Rabinovich. 2003. Verification of Probabilistic Systems with Faulty Com-
munication. In Foundations of Software Science and Computational Structures, 6th International Conference, FOSSACS
2003 Held as Part of the Joint European Conference on Theory and Practice of Software, ETAPS 2003, Warsaw, Poland,
April 7-11, 2003, Proceedings (Lecture Notes in Computer Science), Andrew D. Gordon (Ed.), Vol. 2620. Springer, 39–53.
https://doi.org/10.1007/3-540-36576-1_3

Parosh Aziz Abdulla, A. Prasad Sistla, and Muralidhar Talupur. 2018d. Model Checking Parameterized Systems. In Handbook
of Model Checking., Edmund M. Clarke, Thomas A. Henzinger, Helmut Veith, and Roderick Bloem (Eds.). Springer,
685–725. https://doi.org/10.1007/978-3-319-10575-8_21

Krzysztof R. Apt and Dexter Kozen. 1986. Limits for Automatic Verification of Finite-State Concurrent Systems. Inf. Process.
Lett. 22, 6 (1986), 307–309. https://doi.org/10.1016/0020-0190(86)90071-2

Mohamed Faouzi Atig, Ahmed Bouajjani, Sebastian Burckhardt, and Madanlal Musuvathi. 2010. On the verification problem
for weak memory models. In Proceedings of the 37th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL 2010, Madrid, Spain, January 17-23, 2010, Manuel V. Hermenegildo and Jens Palsberg (Eds.). ACM, 7–18.
https://doi.org/10.1145/1706299.1706303

Roderick Bloem, Swen Jacobs, Ayrat Khalimov, Igor Konnov, Sasha Rubin, Helmut Veith, and Josef Widder. 2016. Decidability
in Parameterized Verification. SIGACT News 47, 2 (2016), 53–64. https://doi.org/10.1145/2951860.2951873

Bernard Boigelot, Axel Legay, and Pierre Wolper. 2003. Iterating Transducers in the Large (Extended Abstract). In Computer
Aided Verification, 15th International Conference, CAV 2003, Boulder, CO, USA, July 8-12, 2003, Proceedings (Lecture Notes in
Computer Science), Warren A. Hunt Jr. and Fabio Somenzi (Eds.), Vol. 2725. Springer, 223–235. https://doi.org/10.1007/978-
3-540-45069-6_24

Ahmed Bouajjani, Egor Derevenetc, and Roland Meyer. 2013. Checking and Enforcing Robustness against TSO. In
Programming Languages and Systems - 22nd European Symposium on Programming, ESOP 2013, Held as Part of the
European Joint Conferences on Theory and Practice of Software, ETAPS 2013, Rome, Italy, March 16-24, 2013. Proceed-
ings (Lecture Notes in Computer Science), Matthias Felleisen and Philippa Gardner (Eds.), Vol. 7792. Springer, 533–553.
https://doi.org/10.1007/978-3-642-37036-6_29

Ahmed Bouajjani, Peter Habermehl, Adam Rogalewicz, and Tomás Vojnar. 2012. Abstract regular (tree) model checking.
STTT 14, 2 (2012), 167–191. https://doi.org/10.1007/s10009-011-0205-y

Sebastian Burckhardt. 2014. Principles of Eventual Consistency. Foundations and Trends in Programming Languages 1, 1-2
(2014), 1–150.

Allan Cheng, Javier Esparza, and Jens Palsberg. 1995. Complexity Results for 1-Safe Nets. Theor. Comput. Sci. 147, 1&2
(1995), 117–136. https://doi.org/10.1016/0304-3975(94)00231-7

Giorgio Delzanno, Arnaud Sangnier, and Gianluigi Zavattaro. 2010. Parameterized Verification of Ad Hoc Networks, See
[Gastin and Laroussinie 2010], 313–327. https://doi.org/10.1007/978-3-642-15375-4_22

Egor Derevenetc. 2015. Robustness against Relaxed Memory Models. Ph.D. Dissertation. University of Kaiserslautern.
http://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4074

Marco Elver and Vijay Nagarajan. 2014. TSO-CC: Consistency directed cache coherence for TSO. In HPCA 2014. IEEE,
165–176.

E. Allen Emerson, John Havlicek, and Richard J. Trefler. 2000. Virtual Symmetry Reduction. In 15th Annual IEEE Symposium
on Logic in Computer Science, Santa Barbara, California, USA, June 26-29, 2000. IEEE Computer Society, 121–131. https:
//doi.org/10.1109/LICS.2000.855761

E. Allen Emerson and Vineet Kahlon. 2003. Exact and Efficient Verification of Parameterized Cache Coherence Protocols. In
Correct Hardware Design and Verification Methods, 12th IFIP WG 10.5 Advanced Research Working Conference, CHARME
2003, L’Aquila, Italy, October 21-24, 2003, Proceedings (Lecture Notes in Computer Science), Daniel Geist and Enrico Tronci
(Eds.), Vol. 2860. Springer, 247–262. https://doi.org/10.1007/978-3-540-39724-3_22

E. Allen Emerson and Vineet Kahlon. 2004. Parameterized Model Checking of Ring-Based Message Passing Systems. In
Computer Science Logic, 18th International Workshop, CSL 2004, 13th Annual Conference of the EACSL, Karpacz, Poland,

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 26. Publication date: January 2020.

https://doi.org/10.1007/978-3-642-35873-9_28
https://doi.org/10.1007/s10009-015-0406-x
https://doi.org/10.1109/LICS.2005.54
http://arxiv.org/abs/0706.2585
http://arxiv.org/abs/0706.2585
https://doi.org/10.1016/S0304-3975(01)00330-9
https://doi.org/10.1007/3-540-36576-1_3
https://doi.org/10.1007/978-3-319-10575-8_21
https://doi.org/10.1016/0020-0190(86)90071-2
https://doi.org/10.1145/1706299.1706303
https://doi.org/10.1145/2951860.2951873
https://doi.org/10.1007/978-3-540-45069-6_24
https://doi.org/10.1007/978-3-540-45069-6_24
https://doi.org/10.1007/978-3-642-37036-6_29
https://doi.org/10.1007/s10009-011-0205-y
https://doi.org/10.1016/0304-3975(94)00231-7
https://doi.org/10.1007/978-3-642-15375-4_22
http://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4074
https://doi.org/10.1109/LICS.2000.855761
https://doi.org/10.1109/LICS.2000.855761
https://doi.org/10.1007/978-3-540-39724-3_22

Parameterized Verification under TSO is PSPACE-Complete 26:29

September 20-24, 2004, Proceedings (Lecture Notes in Computer Science), Jerzy Marcinkowski and Andrzej Tarlecki (Eds.),
Vol. 3210. Springer, 325–339. https://doi.org/10.1007/978-3-540-30124-0_26

Javier Esparza, Alain Finkel, and Richard Mayr. 1999. On the Verification of Broadcast Protocols. In 14th Annual IEEE
Symposium on Logic in Computer Science, Trento, Italy, July 2-5, 1999. IEEE Computer Society, 352–359. https://doi.org/
10.1109/LICS.1999.782630

Javier Esparza, Pierre Ganty, and Rupak Majumdar. 2016. Parameterized Verification of Asynchronous Shared-Memory
Systems. J. ACM 63, 1 (2016), 10:1–10:48. https://doi.org/10.1145/2842603

Marie Fortin, Anca Muscholl, and Igor Walukiewicz. 2017. Model-Checking Linear-Time Properties of Parametrized
Asynchronous Shared-Memory Pushdown Systems. In Computer Aided Verification - 29th International Conference, CAV
2017, Heidelberg, Germany, July 24-28, 2017, Proceedings, Part II (Lecture Notes in Computer Science), Rupak Majumdar and
Viktor Kuncak (Eds.), Vol. 10427. Springer, 155–175. https://doi.org/10.1007/978-3-319-63390-9_9

Pierre Ganty and Rupak Majumdar. 2012. Algorithmic verification of asynchronous programs. ACM Trans. Program. Lang.
Syst. 34, 1 (2012), 6:1–6:48. https://doi.org/10.1145/2160910.2160915

Paul Gastin and François Laroussinie (Eds.). 2010. CONCUR 2010 - Concurrency Theory, 21th International Conference,
CONCUR 2010, Paris, France, August 31-September 3, 2010. Proceedings. Lecture Notes in Computer Science, Vol. 6269.
Springer. https://doi.org/10.1007/978-3-642-15375-4

Steven M. German and A. Prasad Sistla. 1992. Reasoning about Systems with Many Processes. J. ACM 39, 3 (1992), 675–735.
https://doi.org/10.1145/146637.146681

Matthew Hague. 2011. Parameterised Pushdown Systems with Non-Atomic Writes. In IARCS Annual Conference on
Foundations of Software Technology and Theoretical Computer Science, FSTTCS 2011, December 12-14, 2011, Mumbai, India
(LIPIcs), Supratik Chakraborty and Amit Kumar (Eds.), Vol. 13. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik,
457–468. https://doi.org/10.4230/LIPIcs.FSTTCS.2011.457

Vineet Kahlon. 2008. Parameterization as Abstraction: A Tractable Approach to the Dataflow Analysis of Concurrent
Programs. In Proceedings of the Twenty-Third Annual IEEE Symposium on Logic in Computer Science, LICS 2008, 24-27 June
2008, Pittsburgh, PA, USA. IEEE Computer Society, 181–192. https://doi.org/10.1109/LICS.2008.37

Alexander Kaiser, Daniel Kroening, and Thomas Wahl. 2010. Dynamic Cutoff Detection in Parameterized Concurrent
Programs. In Computer Aided Verification, 22nd International Conference, CAV 2010, Edinburgh, UK, July 15-19, 2010.
Proceedings (Lecture Notes in Computer Science), Tayssir Touili, Byron Cook, and Paul B. Jackson (Eds.), Vol. 6174. Springer,
645–659. https://doi.org/10.1007/978-3-642-14295-6_55

Yonit Kesten, Oded Maler, Monica Marcus, Amir Pnueli, and Elad Shahar. 2001. Symbolic model checking with rich
assertional languages. Theor. Comput. Sci. 256, 1-2 (2001), 93–112. https://doi.org/10.1016/S0304-3975(00)00103-1

Salvatore La Torre, Anca Muscholl, and Igor Walukiewicz. 2015. Safety of Parametrized Asynchronous Shared-Memory
Systems is Almost Always Decidable. In 26th International Conference on Concurrency Theory, CONCUR 2015, Madrid, Spain,
September 1.4, 2015 (LIPIcs), Luca Aceto and David de Frutos-Escrig (Eds.), Vol. 42. Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik, 72–84. https://doi.org/10.4230/LIPIcs.CONCUR.2015.72

Ori Lahav, Nick Giannarakis, and Viktor Vafeiadis. 2016. Taming release-acquire consistency. In Proceedings of the 43rd
Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2016, St. Petersburg, FL, USA,
January 20 - 22, 2016, Rastislav Bodík and Rupak Majumdar (Eds.). ACM, 649–662.

Anca Muscholl, Helmut Seidl, and Igor Walukiewicz. 2017. Reachability for Dynamic Parametric Processes. In Verification,
Model Checking, and Abstract Interpretation - 18th International Conference, VMCAI 2017, Paris, France, January 15-17,
2017, Proceedings (Lecture Notes in Computer Science), Ahmed Bouajjani and David Monniaux (Eds.), Vol. 10145. Springer,
424–441. https://doi.org/10.1007/978-3-319-52234-0_23

Kedar S. Namjoshi and Richard J. Trefler. 2016. Parameterized Compositional Model Checking. In Tools and Algorithms
for the Construction and Analysis of Systems - 22nd International Conference, TACAS 2016, Held as Part of the European
Joint Conferences on Theory and Practice of Software, ETAPS 2016, Eindhoven, The Netherlands, April 2-8, 2016, Proceedings
(Lecture Notes in Computer Science), Marsha Chechik and Jean-François Raskin (Eds.), Vol. 9636. Springer, 589–606.
https://doi.org/10.1007/978-3-662-49674-9_39

Scott Owens, Susmit Sarkar, and Peter Sewell. 2009. A Better x86 Memory Model: x86-TSO. In Theorem Proving in Higher
Order Logics, 22nd International Conference, TPHOLs 2009, Munich, Germany, August 17-20, 2009. Proceedings (Lecture
Notes in Computer Science), Stefan Berghofer, Tobias Nipkow, Christian Urban, and Makarius Wenzel (Eds.), Vol. 5674.
Springer, 391–407.

Alberto Ros and Stefanos Kaxiras. 2016. Racer: TSO consistency via race detection. In 49th Annual IEEE/ACM International
Symposium on Microarchitecture, MICRO 2016, Taipei, Taiwan, October 15-19, 2016. IEEE Computer Society, 33:1–33:13.

Susmit Sarkar, Peter Sewell, Jade Alglave, Luc Maranget, and Derek Williams. 2011. Understanding POWER multiprocessors.
In Proceedings of the 32nd ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI 2011,
San Jose, CA, USA, June 4-8, 2011, Mary W. Hall and David A. Padua (Eds.). ACM, 175–186.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 26. Publication date: January 2020.

https://doi.org/10.1007/978-3-540-30124-0_26
https://doi.org/10.1109/LICS.1999.782630
https://doi.org/10.1109/LICS.1999.782630
https://doi.org/10.1145/2842603
https://doi.org/10.1007/978-3-319-63390-9_9
https://doi.org/10.1145/2160910.2160915
https://doi.org/10.1007/978-3-642-15375-4
https://doi.org/10.1145/146637.146681
https://doi.org/10.4230/LIPIcs.FSTTCS.2011.457
https://doi.org/10.1109/LICS.2008.37
https://doi.org/10.1007/978-3-642-14295-6_55
https://doi.org/10.1016/S0304-3975(00)00103-1
https://doi.org/10.4230/LIPIcs.CONCUR.2015.72
https://doi.org/10.1007/978-3-319-52234-0_23
https://doi.org/10.1007/978-3-662-49674-9_39

26:30 Parosh Aziz Abdulla, Mohamed Faouzi Atig, and Rojin Rezvan

Walter J. Savitch. 1970. Relationships Between Nondeterministic and Deterministic Tape Complexities. J. Comput. Syst. Sci.
4, 2 (1970), 177–192.

Peter Sewell, Susmit Sarkar, Scott Owens, Francesco Zappa Nardelli, and Magnus O. Myreen. 2010. x86-TSO: a rigorous and
usable programmer’s model for x86 multiprocessors. Commun. ACM 53, 7 (2010), 89–97.

D. Weaver and T. Germond (Eds.). 1994. The SPARC Architecture Manual Version 9. PTR Prentice Hall.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 26. Publication date: January 2020.

	Abstract
	1 Introduction
	2 Preliminaries
	3 Total Store Ordering (TSO)
	3.1 Syntax
	3.2 Semantics
	3.3 The Reachability Problem

	4 Pivot Abstraction
	4.1 Concepts
	4.2 Informal Description
	4.3 The Pivot Transition System
	4.4 The Reachability Problem under the Pivot Semantics
	4.5 Epochs, Phases, and Stages
	4.6 Example

	5 Correctness
	5.1 From the Concrete Semantics to the Pivot Semantics
	5.2 From the Pivot Semantics to the Concrete Semantics

	6 PSPACE-Completeness
	6.1 1-Safe Petri Nets
	6.2 Membership
	6.3 Hardness

	7 Uninitialized Memory
	8 Conclusion, Discussion and Future Work
	References

