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Abstract
We describe a uniform and efficient framework for check-
ing the satisfiability of a large class of string constraints.
The framework is based on the observation that both sat-
isfiability and unsatisfiability of common constraints can
be demonstrated through witnesses with simple patterns.
These patterns are captured using flat automata each of
which consists of a sequence of simple loops. We build
a Counter-Example Guided Abstraction Refinement (CE-
GAR) framework which contains both an under- and an
over-approximation module. The flow of information be-
tween the modules allows to increase the precision in an au-
tomatic manner. We have implemented the framework as a
tool and performed extensive experimentation that demon-
strates both the generality and efficiency of our method.

1. Introduction
Background. There has been a substantial amount of re-
search in recent years on the development of solvers for
string constraints [3, 25, 38, 43, 50]. This has been moti-
vated by numerous application areas such as security, web
programming, and model checking. For instance, cross-site

[Copyright notice will appear here once ’preprint’ option is removed.]

scripting (XSS), one of the most common types of web vul-
nerabilities, may be used by attackers to bypass access con-
trols and is typically caused by improper handling of strings
by web applications [27]. Verification techniques such as
regular model checking [1], use string constraints as sym-
bolic encodings of infinite sets of program states.

A major difficulty in the analysis of string manipulating
programs is that any reasonably comprehensive theory over
strings is either undecidable or difficult to the degree that the
decidability problem has been open for many years [8, 17,
18, 31]. Therefore, existing string solver tools handle only
fragments of the theory of strings and regular languages,
sometimes with strong restrictions on the expressiveness
and the input language. Another source of difficulty is the
diversity of the application areas which means that string
constraints come in very different forms.

It is not trivial to combine solutions for different types of
constraints in a single framework. In fact, many classes of
constraints, such as membership in context-free grammars
and transducers are not supported by current tools. This rep-
resents an important limitation for several applications. In-
deed, to mention a few examples, the ability to reason about
context-free grammars and transducers is crucial for pre-
cisely detecting SQL and command injections in web ap-
plications [41, 47], for comparing grammars or reasoning
about the ambiguities or correctness of parsers [29], or for
enabling deeper symbolic testing [22]. For instance, SQL in-
jections occur when valid SQL queries (i.e. words belonging
to a specific context-free grammar) are built from subwords
with a meaning that is different from the one intended by
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the programmer (which could also be expressed in terms of
a context-free membership constraint [41]). In addition, pre-
cisely tracking all possible queries requires the ability to cap-
ture the effect of string-manipulating operations using trans-
ducers, word equations, and length constraints.

Framework. We propose a novel technique, called flatten-
ing, to solve the satisfiability problem for string constraints.
A flat automaton is defined by an abstraction parameter con-
sisting of a pair α = ⟨p,q⟩ of natural numbers. A run of a flat
automaton iterates a sequence of q loops each corresponding
to a fixed word of length at most p (see Fig. 2). Flattening of
a constraint means that we perform an under-approximation
in which we restrict the search for solutions to only those
strings that are generated by a flat automaton.

We build our framework using a classical concept from
language theory, namely that of Parikh images [33]. The
Parikh image of a word over a given alphabet counts the
number of occurrences of each symbol in the word with-
out regard to their order. The Parikh image of a language is
the set of Parikh images of the words in the language. We
say that a language is Parikh-definable, if its Parikh image
is computable as a quantifier-free Presburger formula (linear
arithmetic). If a language is Parikh-definable, then we can
use an SMT-solver to check its emptiness. More precisely,
we first compute its Parikh image as a quantifier-free Pres-
burger formula. Since SMT-solvers can check the satisfia-
bility of such formulas, we can feed the generated formula
to the SMT-solver. The language is empty if and only if the
SMT-solver concludes that the formula is unsatisfiable.

The framework is applicable to any class of constraints
satisfying a sufficient condition which states that the flat-
tening of any constraint is Parikh-definable. We show that
this condition is satisfied by a wide class of constraints. For
instance, for a constraint φ that requires membership in a
context-free grammar G, we show that we can derive a new
grammar G′ that captures the flattening of φ (i.e., the set of
strings that are accepted by G and by the flat automaton).
Then our sufficient condition follows since context-free lan-
guages are Parikh-definable in general, and hence in partic-
ular (the language of) G′ is Parikh-definable. Furthermore,
we show that the flattening of a word equation can be cap-
tured using a finite-state automaton. This implies our suffi-
cient condition by Parikh-definability of regular languages.
In fact, using a similar pattern, we can cover all kinds of
string constraints known to us from applications, including
word equations, length constraints, membership in context-
free grammars, and transducer relations. We show that the
flattening operation can be performed in polynomial time.
It is well-known that computing the Parikh image of con-
straints in the above form can be performed in polynomial
time. Thus, our scheme translates in a uniform way and in
polynomial time the satisfiability of a flat constraint to the
satisfiability of a quantifier-free Presburger formula. This al-
lows the leveraging of available powerful SMT-solvers for

linear arithmetic such as Z3 [11], CVC4 [6], Princess [7],
MathSat [9], or Yices [12].

Flat automata enjoy two properties that make them attrac-
tive for the analysis of string constraints. First, the simplicity
of the structure of flat automata allows efficient computa-
tion of their products with string constraints. Second, as we
demonstrate through our experiments, although solutions to
string constraints may have large sizes, they usually follow
simple patterns that can easily be captured by flat automata
that are small in size, thus making the analysis extremely
efficient compared to existing tools.

Based on flat automata, we have developed a Counter-
Example Guided Refinement (CEGAR) framework in which
two procedures are run in an alternating manner: one that
considers an under-approximation of the input constraints,
based on satisfiability checking; and one that considers an
over-approximation, based on unsatisfiability checking. The
approximations are refined on demand by letting informa-
tion flow between the two modules. More precisely, if the
under-approximation fails to find a solution for a given set of
abstraction parameters, then this information is used for ex-
cluding an infinite set of solutions when performing the next
over-approximation. Furthermore, if the over-approximation
produces a counter-example then it can be used to adjust the
abstraction parameters so that the counter-example is not re-
generated during subsequent iterations of the procedure.

We have implemented our framework in an open source
solver, called TRAU1, using Z3 [11] as an SMT solver. We
are not aware of other solvers that can handle the same set
of string constraints without restricting the lengths of the so-
lutions. Therefore, we have evaluated TRAU using two sepa-
rate sets of benchmarks. First, we compare TRAU against ex-
isting state-of-the-art solvers for string equations with length
and regular constraints using the Kaluza benchmarks [38].
Then, we use a set of string constraints with CFG queries in
order to verify the absence of SQL injections. The experi-
ments demonstrate both the generality and efficiency of our
method.

Summary of Contributions.

• A fundamentally new method for checking satisfiability
of string constraints based on the concept of flattening.
The method is general and allows the handling of all
classes of constraints known to us from applications.

• An algorithm that translates the satisfiability of flat con-
straints to the satisfiability of quantifier-free Presburger
formulas, thus allowing the use of powerful SMT solvers.

• A CEGAR framework that allows the flow of information
between an under- and over-approximation module, lead-
ing to more and more precise approximations.

1 TRAU, pronounced /chow/, is a buffalo - a mascot in Vietnamese culture.
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• Implementation of an open source tool with experimental
results that demonstrate the efficiency and generality of
our approach on both existing and original benchmarks.

2. Related Work
Already in 1946, Quine [36] showed that the first order the-
ory of string equations is undecidable. An important line
of work has been to identify subclasses for which decid-
ability can be achieved. The pioneering work by Makanin
[30] proposed a decision procedure for quantifier-free word
equations, i.e., Boolean combinations of equalities and dis-
equalities, where the variables may denote words of arbi-
trary lengths. The decidability and complexity of differ-
ent subclasses have been considered by several works, e.g.
[17, 18, 31, 34, 35, 37, 40].

Generalizations of the work of Makanin by adding new
types of constraints have been difficult to achieve. For in-
stance, the satisfiability of word equations combined with
length constraints of the form ∣x∣ = ∣y∣ is open [8]. The prob-
lem of checking satisfiability for the class of constraints we
consider in this paper is undecidable due to having context-
free grammars and transducers.

Over the last years, several SMT solvers for strings and
related logics have been introduced, applying a variety of
calculi and algorithms. A number of tools handle string
constraints, including context-free grammars, by means of
length-based under-approximation and translation to bit-
vectors [24, 38, 39], assuming a fixed upper bound on the
length of the possible solutions. Our under-approximation of
string constraints using flat automata is more powerful since
we can find solutions of unbounded length; in addition, in
our work also over-approximations are used to show unsat-
isfiability.

More recently, also DPLL(T)-based string solvers lift
the restriction to strings of bounded length; this genera-
tion of solvers includes Z3-str2 [50], CVC4 [25], S3 [43],
and Norn [3]. DPLL(T)-based solvers handle a variety of
string constraints, including word equations, regular expres-
sion membership, length constraints, and (more rarely) reg-
ular/rational relations; the solvers are not complete for the
full combination of those constraints though, and often only
decide a (more or less well-defined) fragment of the indi-
vidual constraints. Equality constraints are normally handled
by means of splitting into simpler sub-cases, in combination
with powerful techniques for Boolean reasoning to curb the
resulting exponential search space. A recent paper [27] also
proposes a splitting-based method to solve relational con-
straints defined by transducers. In comparison, our frame-
work handles a larger set of constraints, including context-
free grammars and transducers, and proposes a novel ap-
proximation scheme that avoids splitting of equations alto-
gether. Splitting of equations can cause an explosion in the
number of cases to be investigated by solvers.

A further direction is automata-based solvers for ana-
lyzing string-manipulated programs. Stranger [48] soundly
over-approximates string constraints using regular lan-
guages, and outperforms DPLL(T)-based solvers when
checking single execution traces, according to some eval-
uations [23]. It has recently also been observed [46] that
automata-based algorithms can be combined with model
checking algorithms, in particular IC3/PDR, for more ef-
ficient checking of the emptiness for automata. However,
many kinds of constraints, including length constraints,
word equations, and context-free grammars, cannot be han-
dled by automata-based solvers in a complete manner. Our
framework uses flat automata to define both over- and under-
approximations of constraints, but not to represent string
constraints in their entirety. Thus we remove some of the
main limitations of previous automata-based approaches: a
larger range of constraints can be handled, and satisfying as-
signments can be computed.

Flat automata (or equivalently bounded languages [20,
21]) have been also used in the context of verification of con-
current recursive programs (e.g., [5, 13, 15, 16, 19, 28]). In
particular the work [28] uses a similar CEGAR approach for
the verification of safety properties for concurrent recursive
programs. However, the application of the CEGAR approach
to the case of string constraints raises several new challenges
since it requires (1) new methods for checking satisfiability
of string constraints based on the concept of flattening and
(2) new over-approximation techniques. To the best of our
knowledge, such CEGAR frameworks have not been applied
for string solving.

3. Overview
We give an overview of the framework and illustrate the
main ingredients using a simple example.

Framework. Our procedure for solving string constraints
is depicted in Fig. 1. The procedure inputs a set ψ of string
constraints. If it terminates then it either returns the value �
which means that ψ is unsatisfiable, or it returns a solution v
to ψ. In general, termination is not guaranteed. This is to be
expected since the problem of solving string constraints, in
the general class considered in this paper, is undecidable.

The procedure consists of a sequence of under- and over-
approximation phases, one followed by the other. We main-
tain a set Waiting of abstraction parameters, to be consid-
ered by the under-approximation module in the coming it-
erations. Each iteration of the under-approximation module
selects and removes one such a parameter α from the set.
The parameter α is moved to the set Covered that contains
all the abstraction parameters that have already been con-
sidered by the under-approximation. The procedure flattens
the input set ψ wrt. α, and computes its Parikh image as a
quantifier-free Presburger formula ρ which is given to the
SMT solver. If ρ is satisfiable, then the SMT solver will out-
put a satisfying assignment that is translated to a satisfying
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Figure 1: Overview of Framework

assignment v of ψ. The assignment v is output to the user
and the procedure terminates. On the other hand, if the SMT
solver concludes that there is no satisfying assignment then
the under-approximation module fetches the next parameter
from the set Waiting and repeats the loop. This continues un-
til either a satisfying assignment is found or the set Waiting
becomes empty. In the latter case, we have run out of param-
eters. This ends the current under-approximation phase, and
triggers an over-approximation phase.

The over-approximation procedure uses the set Covered
to prune the search space of solutions. More precisely, at this
stage, we know that the under-approximation has checked
satisfiability for all the current elements of Covered. There-
fore, we know that ψ is not satisfiable for any one of them.
Consequently, the over-approximation needs only to search
for solutions outside the languages of the corresponding flat
automata. If the over-approximation does not find a solution,
then we know that ψ is unsatisfiable, and the procedure can
terminate. However, if the over-approximation finds a solu-
tion v, then we need to check whether v is a spurious or
genuine solution of ψ. This can be done by simply running
the under-approximation on v. However, in order to increase
efficiency, we use v to accelerate the under-approximation.
To that end, we generate the minimal elements of the set
of all abstraction parameters whose corresponding automata
accept v, and put them in the set Waiting. Our experiments
indicate that these minimal elements have often small values
even for long strings. Now, the over-approximation phase
terminates and the next under-approximation phase starts.

Notice that parameters that have been added to the set
Waiting ensure the potential solution v will be considered by
the under-approximation. In fact, if v is a genuine solution
then this will be detected by the under-approximation in the
next phase. If the under-approximation fails to find a solution
even during the next phase, then since we move all the new

parameters to the set Covered, v will not be re-generated in
the subsequent phases by the over-approximation.

Observe that the flow of information between the two
modules is carried out using the sets Waiting and Covered.
The parameters considered by the under-approximation are
used to prune an infinite set from the state space searched
by the over-approximation. Also, spurious counter-examples
provided by the over-approximation generate new sets of
parameters on which the under-approximation can be per-
formed.

The framework is not dependent on the particular over-
approximation scheme used. In fact, any algorithm which re-
turns a potential solution to ψ is sufficient for our purposes.
In this paper, we considered a simple over-approximation
scheme which consists in: (1) Replacing a membership con-
straint in a context-free grammar G by a membership con-
straint in a regular language . The regular language may be
the upward closure of the language of G [4, 45], the down-
ward closure [10, 44], or some other over-approximation,
e.g., the one in [32]. (2) Replacing a transducer constraint
by a conjunction of membership constraints in regular lan-
guages where each regular language captures the projection
of the transducer language on one of its tapes, and (3) En-
suring that there are no cyclic dependencies among variables
that appear in the set of (dis-)equality constraints [2]. This is
done by replacing any occurrence of a variable x by a fresh
copy that satisfies the same membership and length con-
straints as x. The resulting set of string constraints ψ falls
in the decidable fragment of the theory of strings with reg-
ular and length constraints on which a similar technique to
that of Norn [2, 3] can be applied.

Example. Consider the grammar G ∶ S → a S b ∣ S b ∣ ε
containing the start symbol S and two terminals a and b.
Consider the set of constraints φ1 ∶ x ∈ G, φ2 ∶ y ∈ G,
φ3 ∶ x = a ● y ● z, and φ4 ∶ x = y ● t, i.e., we have two
grammar constraints and two word equations. We apply our
CEGAR framework on the example as follows:

Step 1: Over-approximation. We over-approximate the
grammar constraints φ1 and φ2 and the equality constraints
φ3 and φ4. In the current example, we use the particular over-
approximation scheme for grammars that is described in
[32]. As mentioned above, other over-approximations such
as taking downward or upward closures are also possible
to use. Applying the method of [32] transforms G to the
regular expression a∗b∗. Furthermore, the constraints φ3 and
φ4 build a cyclic dependency in the sense of [2], since they
imply a ● y ● z = y ● t in which the variable y appears in
both sides of the equality. Such a cycle causes existing string
solvers such as Norn [3], Z3-str [49], or S3P [42] to run
forever. Therefore, we rewrite the equalities using four fresh
copies x1, x2, y1 and y2 of the variables x and y. Thus, we
obtain a new set of constraints φ′1,1 ∶ x1 ∈ a∗b∗, φ′1,2 ∶ x2 ∈
a∗b∗ φ′2,1 ∶ y1 ∈ a∗b∗, φ′2,2 ∶ y2 ∈ a∗b∗, φ′3 ∶ x1 = a ● y1 ● z,
and φ′4 ∶ x2 = y2 ● t. We check the satisfiability of these
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constraints using one of above mentioned external solvers,
and obtain the satisfying assignment v1 where v1(x1) = aa,
v1(x2) = aa, v1(y1) = a, v1(y2) = aa, v1(z) = ε, and
v1(t) = ε. The strings aa, a, and ε can all be generated
by flat automata each with one loop whose length is one.
Therefore, from v1 we compute the minimal abstraction
parameter α1 = ⟨p1,q1⟩ = ⟨1,1⟩. We add α1 to the set
Waiting.

Step 2: Under-approximation. Currently, the set Waiting
contains one element namely α1. We fetch α1 from Waiting

and add it to the set Covered. We under-approximate the
constraints with ⟨1,1⟩. First, we flatten G with ⟨1,1⟩ obtain-
ing x ∈ b∗ and y ∈ b∗. The under-approximation is unsat-
isfiable since, in the flattening of φ3, the string assigned to
x must start with a. This will be detected by the procedure
since the Parikh image of b∗ captures the fact that we can
have any number of b:s and no a:s, while the Parikh image
of the flattening of φ3 requires at least one occurrence of a.

Step 3: Over-approximation. We run the over-
approximation again, but now we refine it by adding
the complement of x, y ∈ b∗, z, t ∈ a∗ + b∗. We run a
solver again and obtain a new satisfying assignment v2

where v2(x1) = aaab, v2(x2) = aaab, v2(y1) = aab,
v2(y2) = aaab, v1(z) = ε, and v1(t) = ε. From
v2, we compute the minimal abstraction parameters
α2 = ⟨p2,q2⟩ = ⟨1,2⟩ and α′2 = ⟨p′2,q′2⟩ = ⟨4,1⟩, and add
them to the set Waiting.

Step 4: Under-approximation. The set Waiting now con-
tains two elements, namely α2 and α′2. We select one of
them, say α2, and move it from the set Waiting to the set
Covered. We under-approximate the constraints with ⟨1,2⟩.
When we flatten G with ⟨1,2⟩ we obtain x ∈ b∗ + ab+ and
y ∈ b∗ + ab+. The under-approximation gives the satisfying
assignment v3 where v3(x) = ab, v3(y) = ε, v3(z) = b, and
v3(t) = ab. Thus, the procedure terminates after two itera-
tions.

4. Preliminaries
Sets and Strings. We use N and Z to denote the sets of
natural numbers and integers respectively. For a set A, we
use ∣A∣ to denote the size of A. Let Σ be a finite alphabet.
We use Σ∗ to denote the set of finite strings over Σ, and
use ε to denote the empty string. We define Σε ∶= Σ ∪ {ε}.
For a string w ∈ Σ∗, we use length (w) to denote the
length of w. A language L over Σ is a set L ⊆ Σ∗. For
strings w and w′, we write w ⪯ w′ to denote that w is a
(not necessarily contiguous) substring of w′. For a string
w = a1a2⋯an ∈ Σ∗ and Σ′ ⊆ Σ, we define [w]Σ′ to be the
largest (not necessarily contiguous) substring ai1ai2⋯aim of
w such that aij ∈ Σ′, i.e., we remove from w the elements
that are not members of Σ′.

For a set X, an X-indexed string over Σ is a mapping
v ∶ X ↦ Σ∗, i.e., it assigns to each x ∈ X, a string v(x)
over Σ. An X-indexed language K over Σ is a set of X-

indexed strings over Σ. For X-indexed languages K1,K2,
we use K1 ∩K2 to denote their intersection.

For alphabets Σ1,Σ2, a renaming from Σ1 to Σ2 is a
mapping R ∶ Σ1 ↦ Σ2. For a string w ∈ Σ∗

1 , we define
R (w) to be the string over Σ2 we obtain by replacing each
symbol a inw byR (a). For an X-indexed string v ∶ X↦ Σ∗

1 ,
we define R (v) ∶= v′ where v′ (x) = R (v (x)) for all
x ∈ X. For a language L over Σ1, we define R (L) ∶=
{R (w) ∣ w ∈ L}. For an X-indexed languageK over Σ1, we
defineR (K) ∶= {R (v) ∣ v ∈K}.

Automata and Grammars. A Finite-State Automaton
(FSA) is a tupleA = ⟨Q,Σ,∆, qinit , qacc⟩, whereQ is a finite
set of states, Σ is a finite alphabet, ∆ ⊆ Q×Σε ×Q is a finite
set of transitions, qinit ∈ Q is the initial state, and qacc ∈ Q
is the accepting state. A Regular Expression (RE) R over Σ
is built inductively by including the empty expression ∅, the
members of Σε, and closing under union +, concatenation
●, and the Kleene star operator ∗. A Context-Free Grammar
(CFG) is a quadruple G = ⟨N,T,P,S⟩, where N is a finite
set of non-terminals, T is a finite set of terminals, P is a
finite set of productions, and S ∈ N is the start symbol. A
production p ∈ P is of the form A → α, where A ∈ N , and
α ∈ (N ∪ T )∗. We call α the rhs of p. The languages JAK,
JRK, JGK of A,R, G are defined in the standard manner.

A transducer T is of the same form as an FSA, the only
difference being that now ∆ ⊆ Q ×Σε ×Σε ×Q. For strings
w1,w2 ∈ Σ∗, we write w2 ∈ T (w1) to denote that there
is a sequence q0 ⟨a1, b1⟩ q1 ⟨a2, b2⟩⋯ ⟨an, bn⟩ qn such that
q0 = qinit , qn = qacc , ⟨qi, ⟨ai+1, bi+1⟩ , qi+1⟩ ∈ ∆ for all
i ∶ 0 ≤ i < n, w1 = a1a2⋯an, and w2 = b1b2⋯bn.

Presburger Formulas. Presburger arithmetic is the first-
order theory of the natural numbers with addition. Here, we
introduce a subset of its formulas as follows. A linear con-
straint is of the form ∑1≤i≤n ki ⋅ xi ∼ k where ki ∈ Z for
i ∶ 1 ≤ i ≤ n, and k ∈ Z. We define FV (%) ∶= {x1, . . . , xn},
i.e., it is the set of (free) variables that occur in %. A
quantifier-free Presburger formula is a Boolean combina-
tion of a set {%1, . . . , %n} of linear constraints. We define
FV (%) ∶= ∪1≤i≤nFV (%i). For a valuation θ ∶ FV (%) ↦ N, we
write θ ⊧ ρ to denote that % evaluates to true when the linear
constraints are evaluated under θ, and the results are com-
bined using the Boolean combinators in ρ. An existentially
quantified Presburger formula ρ is of the form ∃y1y2⋯ym.%
where % is a quantifier-free Presburger formula. For a val-
uation θ ∶ FV (%) − {y1, y2, . . . , ym} ↦ N, we write θ ⊧ %
to denote that there are a1, a2 . . . , am ∈ N such that θ′ ⊧ %′
where θ′ (x) = θ (x) if x ∈ FV (%) − {y1, y2, . . . , ym}, and
θ′ (x) = aj if x = yj for some j ∶ 1 ≤ j ≤ m. We de-
fine JρK ∶= {θ ∣ θ ⊧ ρ}. Sometimes we use a set notation
for the existential quantifiers, and write ρ as ∃A.% where
A = {y1, y2, . . . , ym}. We assume a function SMT which,
given a conjunction ρ = ρ1 ∧ ⋯ ∧ ρn of existentially quan-
tified Presburger formulas, either SMT (ρ) = θ for some
θ ∈ Jρ1K ∩⋯ ∩ JρnK, or SMT (ρ) = � if Jρ1K ∩⋯ ∩ JρnK = ∅.

5 2017/4/1



1

23

loop 4

56

loop

a

ε

b

ε

b

a

a

Figure 2: A ⟨3,2⟩-flat automaton of (ab)∗ ● (baa)∗.

Parikh Images. Consider an alphabet Σ. For a string w ∈
Σ∗, we define #w ∶ Σ ↦ N to be a function such that, for
each symbol a ∈ Σ, #w (a) gives the number of occurrences
a in w. The Parikh image of a language L ⊆ Σ∗ is defined by
#L ∶= {#w ∣ w ∈ L}. We will characterize the Parikh image
of some languages using Presburger formulas. To do that,
we define the set Σ● ∶= {a● ∣ a ∈ Σ}, where a● is a numerical
variable that will be used in the Presburger formula to encode
the number of occurrences of a. We say that L is Parikh-
definable if there is a quantifier-free Presburger formula over
Σ●, denoted CompP (L) (for Compute Parikh image), that
characterizes the Parikh image of L. More precisely, for any
θ ∶ Σ● ↦ N, we have θ ⊧ CompP (L) iff there is a stringw ∈ L
such that θ (a●) = #w (a) for all symbols a ∈ Σ. It is well-
known that any context-free (and therefore also any regu-
lar) language is Parikh-definable. In fact, given a context-
free grammar G, we can compute CompP (JGK) in polyno-
mial time [14, 33]. Notice that this implies that we can also
compute CompP (JRK) for a regular expressionR in polyno-
mial time. For simplicity, we sometime write CompP (G) and
CompP (R) instead of CompP (JGK) and CompP (JRK) .

We extend the notion of Parikh images to indexed lan-
guages as follows. For an indexed string v ∶ X ↦ Σ∗, we
define the mapping #v ∶ X↦ Σ↦ N such that, for each vari-
able x ∈ X and symbol a ∈ Σ, #v(x)(a) gives the number of
occurrences of a in v (x). The Parikh image of an X-indexed
language K over Σ is defined by #K ∶= {#v ∣ v ∈K}. We
consider the set (X ×Σ)● ∶= {⟨x, a⟩● ∣ (x ∈ X) ∧ (a ∈ Σ)},
and say that K is Parikh-definable if there is a quantifier-
free Presburger formula over (X ×Σ)● such that, for any
θ ∶ (X ×Σ)● ↦ N, we have θ ⊧ CompP (K) iff there is an
X-indexed string w ∈ K such that θ (⟨x, a⟩●) = #v(x)(a)
for all variables x ∈ X and symbols a ∈ Σ.

5. String Constraints
Fix a finite alphabet Σ and a finite set of variables X rang-
ing over Σ∗. Below we define a set of string constraints
over Σ and X. Each constraint φ characterizes an X-indexed
language JφK over Σ. The set of terms Terms (Σ,X) over
Σ and X is the smallest set such that (i) (Σ ∪X ∪ {ε}) ⊆
Terms (Σ,X), and (ii) if t1, t2 ∈ Terms (Σ,X) then t1 ● t2 ∈
Terms (Σ,X). Given an X-indexed string v ∶ X ↦ Σ∗ over
Σ, we extend it to terms by defining v ∶ Terms (Σ,X) ↦ Σ∗

with v (a) ∶= a if a ∈ Σ, and v (t1 ● t2) ∶= v (t1) ● v (t2).

1

23

a(
1)

b(1
)

ε(1
)

a(2)
b(2)
ε(2)

ε(3)
b(3)

a(3)

4

56

a(
4)

b(4
)

ε(4
)

a(5)
b(5)
ε(5)

ε(6)
b(6)

a(6)

ε

Figure 3: The generic ⟨3,2⟩-flat automaton.

An equality constraint (also called a word equation) φ is
of the form t1 = t2 where t1, t2 ∈ Terms (Σ,X). We define
JφK ∶= {v ∣ v (t1) = v (t2)}. A disequality constraint is of the
form t1 ≠ t2 and is interpreted analogously.

A transducer constraint φ is of the form y ∈ T (x)
where x, y ∈ X and T is a transducer. We define JφK ∶=
{v ∣ v (y) ∈ T (v (x))}.

A grammar constraint φ is of the form x ∈ G, where x ∈ X
and G = ⟨N,T,P,S⟩ is a CFG with T = Σ. We define JφK ∶=
{v ∣ v (x) ∈ JGK}. The special case of regular constraints, of
the form x ∈ R where R is a regular expression over Σ is
interpreted in a similar manner.

A length constraint φ is of the form ∑1≤i≤n ki ⋅
length (xi)∼k, where ∼ ∈ {<,≤,>,≥,=}, xi ∈X, and ki, k ∈
Z. We define JφK ∶= {v ∣ ∑1≤i≤n ki ⋅ length (v (xi)) ∼ k}.

A string constraint is of one of the above forms. A set ψ
of constraints is interpreted as JψK ∶= ∩φ∈ψ JφK.

6. Flat Languages
In this section, we define flat languages and flat FSAs. The
languages will be defined over an alphabet Σ, and their
forms will be decided by two parameters p,q ∈ N. For the
rest of the section, we fix Σ, p, and q. We define α ∶= ⟨p,q⟩,
and call α the abstraction parameter. We introduce generic
automata that recognize whole classes of flat languages.

6.1 Flat Languages
A language L over Σ is said to be α-flat if there are strings
w1,w2, . . . ,wq ∈ Σ∗ such that length (wi) ≤ p, for each
i ∶ 1 ≤ i ≤ q, and L = (w1)∗ ● (w2)∗ ● ⋯ ● (wq)∗. We call
w1,w2, . . . ,wn the loops of L. We can recognize an α-flat
language over Σ using a special class of automata, which
we call α-flat automata. A ⟨3,2⟩-flat automaton is shown
in Fig. 2. The automaton recognizes the ⟨3,2⟩-flat language
(ab)∗ ● (baa)∗. The automaton contains two loops (cycles),
each with three states. Below, we define formally the no-
tion of an α-flat automaton. We define S (α) ∶= p ⋅ q, to
give the number of states in the automaton (q loops each
with p states), and define S (α) ∶= {i ∣ 1 ≤ i ≤ S (α)}, i.e.,
we enumerate the states from 1 to S (α). We define the set
Entries (α) ∶= {i ∣ (i ∈ S (α)) ∧ (i mod p = 1)} which
gives the states that are entries of loops in the automaton;
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LastEntry (α) ∶= S (α) − (p − 1), which gives the entry
of the last loop in the automaton. We introduce functions
that give different types of successors of a state i. Con-
sider i ∈ S (α). We define LoopSucc (α) (i) ∶= {i + 1}
if i mod p ≠ 0, and LoopSucc (α) (i) ∶= {i − p + 1} if
i mod p = 0, i.e., the function gives the (single) succes-
sor of the state that lies within the same loop. We de-
fine EntrySucc (α) (i) ∶= {i + p} if i ∈ Entries (α) −
{LastEntry (α)}, and EntrySucc (α) (i) ∶= ∅ other-
wise, i.e., for a loop entry, the function gives the next
loop entry. We define succ (α) (i) ∶= LoopSucc (α) (i) ∪
EntrySucc (α) (i). Notice that, if i is the entry of a
loop (except the last one) then it has two successors, oth-
erwise it has a single successor. We use succ∗ (α) (⋅)
to denote the reflexive transitive closure of succ (α) (⋅).
For example, we have S (3,2) = 6, Entries (3,2) =
{1,4}, LastEntry (3,2) = 4, LoopSucc (3,2) (1) = {2},
EntrySucc (3,2) (1) = {4}, succ (3,2) (1) = {2,4},
succ (3,2) (2) = {3}, and succ∗ (3,2) (4) = {4,5,6}. For-
mally, an α-flat automatonA is a tuple ⟨Q,Σ,∆, qinit , qacc⟩,
where (i) Q = S (α). (ii) ∆ = ∆′ ∪∆′′. The set ∆′ contains
for each i, j with j ∈ LoopSucc (α) (i), one (and only one)
transition of the form ⟨i, a, j⟩ where a ∈ Σε. The set ∆′′

contains for each i, j with j ∈ EntrySucc (α) (i), one (and
only one) transition of the form ⟨i, ε, j⟩, i.e., transitions be-
tween two consecutive loop entries are always labeled with
ε. (iii) qinit = 1, and (iv) qacc = LastEntry (α), i.e., the ac-
cepting state is the entry of the last loop. Notice that, for a
given parameter α, all α-flat automata have the same struc-
ture, i.e., they are of the same form except that they may
differ on the labels of the transitions inside the loops. Also,
notice that, since we allow ε-transitions, we essentially al-
low loops of sizes up to p (rather than equal to p), and al-
low up to q loops (rather than exactly q loops). Given p and
q, there are ∣Σε∣p⋅q different α-flat automata over Σ (since
each such an automaton contains p ⋅ q transitions inside its
loops, each of which may be labeled by some element in
Σε). We define the complete α-flat language over Σ, by
F (α) ∶= ⋃{L ∣ L is an α-flat language over Σ}, i.e., it is the
union of all α-flat languages over Σ. For a set X of variables,
we define the complete X-indexed α-flat language over Σ by
FX (α) ∶= {v ∶ X↦ Σ∗ ∣ ∀x ∈ X.v(x) ∈ F (α)}, i.e., it is the
set of X-indexed strings over Σ such that each variable is
mapped to a string in F (α).

6.2 Generic Flat Automata
Given the identical structure of all α-flat automata (for a
given value of α), we will define a generic automaton that
collects the behaviors of all such automata in one.

We will consider the alphabet Σ (α) ∶=
{a(i) ∣ (a ∈ Σε) ∧ (i ∈ S (α))} ∪ {ε}. We define the generic
α-flat automaton over Σ, B (α) ∶= ⟨Q,Σ (α) ,∆, qinit , qacc⟩
(Fig. 3), where Q, qinit , and qacc are of the same
form as for α-flat automata, and ∆ = ∆′ ∪ ∆′′ with

∆′ = {⟨i, a(i), j⟩ ∣ (a ∈ Σε) ∧ (j ∈ LoopSucc (α) (i))}, and
∆′′ = {⟨i, ε, j⟩ ∣ j ∈ EntrySucc (α) (i)}. In other words,
for each state i inside a loop and each symbol a ∈ Σ, we
add a transition, labeled with a(i) to the next state in the
loop. In addition, we put back the ε-transitions between the
consecutive loop entries. We define the α-generic language
G (α) ∶= JB (α)K, i.e., it is the language of B (α). A string
w over Σ (α) is said to be α-generic (or simply generic)
if w ∈ G (α). The generic α-flat automaton encodes the
behaviors of all α-flat automata. More precisely, given an
α-flat automaton A, then traversing a transition labeled
with (say) a between the two states i and j in a loop, can
be simulated by taking the transition labeled with a(i) in
the generic automaton. However, the generic automaton
also contains additional behaviors that are not exhibited by
any individual flat automaton. The reason is that transitions
labeled by different symbols may be chosen between the
same pair of states inside a loop during a single run of
the generic automaton. We define the X-indexed language
GX (α) ∶= {v ∶ X↦ (Σ (α))∗ ∣ ∀x ∈ X. v (x) ∈ G (α)}. An
X-indexed string v is (α-)generic if v ∈ GX (α).

To avoid the problem of choosing different symbols be-
tween identical pairs of states, we will intersect the language
of a generic automaton with a language whose words encode
a purity condition, in the sense they guarantee that at most
one outgoing transition of each state is chosen during the it-
erations of the loops in the automaton. Formally, for a string
w ∈ (Σ (α))∗ we say thatw is pure if for all i ∈ S (α) and all
a, b ∈ Σ with a ≠ b, it is the case that #w(a(i)) > 0 implies
#w(b(i)) = 0. An indexed string v ∶ X↦ (Σ (α))∗ is said to
be pure if v (x) is pure for all x ∈ X. We define the language
PX (α) ∶= {v ∶ X↦ (Σ (α))∗ ∣ v is pure}. A X-indexed lan-
guageK over Σ (α) is said to be (α-)generic ifK ⊆ GX (α),
and it is called pure if K ⊆ PX (α).

LEMMA 1. For X-indexed strings v1, v2 ∈ (GX (α) ∩
PX (α)), if (#v1) = (#v2) then v1 = v2.

Lemma 1 follows from the fact that if (#v1) = (#v2)
then v1 and v2 correspond to identical runs of the generic
automaton on each variable, i.e., the loops are iterated an
identical number of times, and, for each state, the same
outgoing transition is chosen inside the relevant loop.

Lemma 1 allows us to define a partial function GetS

such that for any θ ∶ (X ×Σ (α))● ↦ N, the value of
GetS (θ) is the unique X-string v ∈ GX (α) ∩ PX (α) with
θ (⟨x, a(i)⟩●) = #v(x)(a(i)) for all variables x ∈ X, sym-
bols a ∈ Σ, and i ∶ 1 ≤ i ≤ S (α). Notice that GetS (θ) may
not exist. However, if it exists then, by Lemma 1, it is unique.
We get the following Corollary.

COROLLARY 1. For an X-indexed language K ⊆ (GX (α)∩
PX (α)), if θ ∈ #K then GetS (θ) ∈K.

Also, Lemma 1 implies the following lemma.
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LEMMA 2. For X-indexed languages K1,K2 ⊆ (GX (α) ∩
PX (α)), it is the case that (#K1)∩(#K2) = #(K1 ∩K2).

Informally, for two pure and generic languages, the Parikh
images of their intersection can be computed by computing
the Parikh images individually and taking the intersection.

7. Flattening
Fix a set of variables X, an alphabet Σ, parameters p,q ∈ N,
and α = ⟨p,q⟩. We will describe how to construct the flat-
tening of a string constraint φ. The constraint φ may be in of
the forms described in Section 5. The flattening of φ corre-
sponds to taking the intersection of JφK with the generic α-
flat automaton. We will take the flattening of φ and intersect
it with the set of pure languages thus obtaining a particular
X-indexed language ⟪φ⟫α that satisfies two important prop-
erties. First, ⟪φ⟫α characterizes the intersection of φ and flat
languages in the sense that any indexed string in ⟪φ⟫α can
be renamed to an indexed string that is in the intersection
of JφK and flat languages. (ii) ⟪φ⟫α is Parikh definable (see
Section 8.)

7.1 Flattening Grammar Constraints
Consider a grammar constraint φ of the form x ∈ G with
G = ⟨N,T,P,S⟩, T = Σ, and a parameter α = ⟨p,q⟩. We
will define a new grammar Flatten (α) (φ) which encodes
running G “in parallel” with the α-generic automaton. We
define Flatten (α) (φ) ∶= ⟨N ′, T ′, P ′, S′⟩, where T ′ ∶=
Σ (α), and define the set N ′ ∶= N ′

1 ∪N ′

2 ∪N ′

3 as the union
of three sets of nonterminals:

• For each nonterminal A ∈ N and i, j ∈ S (α)
with j ∈ succ∗ (α) (i), the set N ′

1 contains
a corresponding nonterminal A⊕(i, j), i.e.,
N ′

1 ∶= {A⊕(i, j) ∣ (A ∈ N) ∧ (j ∈ succ∗ (α) (i))}.
Intuitively, the next segment of the input string expected
by G corresponds to A, while the automaton is currently
in state i. We use A⊕ to allow the automaton to perform
a number of transitions to consume the same part of the
input string, after which the automaton reaches state j.

• For each a ∈ T and i, j ∈ S (α) with
j ∈ succ∗ (α) (i), the set N ′

2 contains a cor-
responding nonterminal a⊕(i, j), i.e., N ′

2 ∶=
{a⊕(i, j) ∣ (a ∈ T ) ∧ (j ∈ succ∗ (α) (i))}. Intuitively,
the next terminal expected by G is a. The automaton is
currently in the state i, and may perform an arbitrary
number of ε-transitions both before and after performing
a transition labeled with a, ending up in the state j.

• For each i, j ∈ S (α) with j ∈ succ∗ (α) (i), the set N ′

3

contains a corresponding nonterminal ε⊕(i, j), i.e.,N ′

3 ∶=
{ε⊕(i, j) ∣ j ∈ succ∗ (α) (i)}. This allows the automaton
to perform an arbitrary number of ε-transitions.

We define the start symbol S′ ∶= S(1,LastEntry (α)), and
define the set P ′ ∶= P ′

1 ∪ P ′

2 ∪ P ′

3 ∪ P ′

4 as follows:

• For each production p ∈ P of the formA→X1 ⋅X2⋯Xn,
and i, j ∈ S (α) with j ∈ succ∗ (α) (i), the set P ′

1 con-
tains all productions of the form A⊕(i, j)→X⊕

1 (i0, i1) ⋅
X⊕

2 (i1, i2)⋯X⊕

n (in−1, in), where i0 = i, in = j, ik ∈
succ∗ (α) (ik−1), for k ∶ 1 ≤ k ≤ n. The next segment of
the input string can be consumed by G and (in parallel)
by the automaton. This is done by dividing the segment
into sub-segments according to the rhs of p, by letting G
and the automaton run in parallel on each sub-segment.

• For each terminal a ∈ T and i, j ∈ S (α) with j ∈
succ∗ (α) (i), the set P ′

2 contains all productions of the
form a⊕(i, j)→ ε⊕(i0, i1)⋅a(i1)⋅ε⊕(i2, i3), where i0 = i,
i3 = j, i1 ∈ succ∗ (α) (i0), i2 ∈ LoopSucc (α) (i1),
and i3 ∈ succ∗ (α) (i2). The automaton is allowed to
perform an arbitrary number of ε-transitions, before and
after a transition labeled by a. The latter is part of a loop.

• The set P ′

3 contains the following sets of productions
(that allow the automaton to perform an arbitrary number
of ε-transitions)

All productions that are of the form ε⊕(i, j) → ε(i) ⋅
ε⊕(k, j), where i, j, k ∈ S (α), k ∈ LoopSucc (α) (i),
and j ∈ succ∗ (α) (k), i.e., the automaton performs
one ε-transition from the state i and then takes some
number of ε-transitions to the state j.

All productions that are of the form ε⊕(i, i) → ε,
where i ∈ S (α), i.e., stop generating ε-transitions.

• For all i, j ∈ S (α) with j ∈ EntrySucc (α) (i), the set
P ′

4 contains the production A(i, j) → ε. The automaton
is allowed to cross from one loop entry to the next.

We define ⟪φ⟫α to be the X-indexed language over
Σ (α) such that v ∈ ⟪φ⟫α iff (i) v is pure, (ii) v (x) ∈
JFlatten (α) (φ)K, and (iii) v (y) ∈ G (α) for all y ∈ X −
{x}. Intuitively, the variable x is mapped to a pure string
in the language of G, while any other variable is mapped to
any pure α- generic string. Notice that ⟪φ⟫α is pure and α-
generic.

7.2 Flattening Equality Constraints
We consider an equality constraint φ of the form
x1x2⋯xm = xm+1xm+2⋯xn, and a parameter α = ⟨p,q⟩.
A constant c in an equality constraint can be replaced by a
fresh variable x with a regular constraint x ∈ JcK. There-
fore, we assume, without loss of generality, that equality
constraints do not contain any constants. We will define an
FSA Flatten (α) (φ) that will run the concatenation of the
generic flat automata for the variables x1, x2, . . . , xm, in
parallel with the concatenation of the generic flat automata
for xm+1, xm+2, . . . , xn. Essentially, it traverses the prod-
uct of the two concatenations, and enforces synchroniza-
tion on common alphabet symbols. We define the alphabet
Σ (n,α) ∶= {a(k, i) ∣ (a ∈ Σε) ∧ (1 ≤ k ≤ n) ∧ (i ∈ S (α))}.
We define Flatten (α) (φ) ∶= ⟨Q,Σ (n,α) ,∆, qinit , qacc⟩
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as follows. We define the set Q ∶= Q1 ∪Q2 as the union of
two sets of states:

• For each k ∶ 1 ≤ k ≤ m, ` ∶ m + 1 ≤ ` ≤ n, and
i1, i2 ∈ S (α), the set Q1 contains the state ⟨k, i1, `, i2⟩.
Each state in Q1 encodes (i) an index k showing which
automaton, among the ones of x1, x2, . . . xm, we are cur-
rently simulating, (ii) the current state i1 of that automa-
ton, (iii) an index ` showing which automaton, among the
ones of xm+1, xm+2, . . . xn, we are currently simulating,
and (iv) the current state i2 of that automaton.

• For each k ∶ 1 ≤ k ≤ m, ` ∶ m + 1 ≤ ` ≤ n, i1, i2 ∈ S (α),
and a ∈ Σ, the set Q2 contains the state ⟨k, i1, `, i2, a⟩.
This state encodes that the automaton of xk has just
performed a transition labeled by a. The automaton of
x` will follow by performing a transition labeled by a.

We define the set ∆ ∶= ∆1∪∆2∪∆3∪∆4∪∆5∪∆6∪∆7∪∆8

as the union of eight sets of transitions:

• For each a ∈ Σ, and k, i1, `, i2, j with 1 ≤ k ≤
m, m + 1 ≤ ` ≤ n, i1, i2, j ∈ S (α), and j ∈
LoopSucc (α) (i1), the set ∆1 contains the transition
⟨⟨k, i1, `, i2⟩ , a(k, i1), ⟨k, j, `, i2, a⟩⟩. This corresponds
to the case where the automaton of xk performs a tran-
sition labeled with a.

• For each a ∈ Σ, and k, i1, `, i2, j with 1 ≤ k ≤
m, m + 1 ≤ ` ≤ n, i1, i2, j ∈ S (α), and j ∈
LoopSucc (α) (i2), the set ∆2 contains the transition
⟨⟨k, i1, `, i2, a⟩ , a(`, i2), ⟨k, i1, `, j⟩⟩. This corresponds
to the case where the automaton of x` performs a transi-
tion labeled with a (answering the previous move of the
automaton of xk).

• For each k, i1, `, i2, j with 1 ≤ k ≤ m, m +
1 ≤ ` ≤ n, i1, i2, j ∈ S (α), and j ∈
LoopSucc (α) (i1), the set ∆3 contains the transition
⟨⟨k, i1, `, i2⟩ , ε(k, i1), ⟨k, j, `, i2⟩⟩. This corresponds to
the case where the automaton of xk makes an ε-transition,
while the automaton of x` does not move.

• For each k, i1, `, i2, j with 1 ≤ k ≤ m, m +
1 ≤ ` ≤ n, i1, i2, j ∈ S (α), and j ∈
LoopSucc (α) (i2), the set ∆4 contains the transition
⟨⟨k, i1, `, i2⟩ , ε(`, i2), ⟨k, i1, `, j⟩⟩. This case is symmet-
ric to the previous one.

• For each k, i1, `, i2, j with 1 ≤ k ≤ m, m + 1 ≤ ` ≤ n,
i1, i2, j ∈ S (α), and j ∈ EntrySucc (α) (i1), the set
∆5 contains the transition ⟨⟨k, i1, `, i2⟩ , ε, ⟨k, j, `, i2⟩⟩.
This corresponds to the case where the automaton of xk
crosses from one loop entry to the next.

• For each k, i1, `, i2, j with 1 ≤ k ≤ m, m + 1 ≤ ` ≤ n,
i1, i2, j ∈ S (α), and j ∈ EntrySucc (α) (i2), the set ∆6

contains the transition ⟨⟨k, i1, `, i2⟩ , ε, ⟨k, i1, `, j⟩⟩. This
case is symmetric to the previous one.

• For each k, i1, `, i2, j with 1 ≤ k < m, m + 1 ≤
` ≤ n, i1, i2, j ∈ S (α), i1 = LastEntry (α),
and j = 1, the set ∆7 contains the transition
⟨⟨k, i1, `, i2⟩ , ε, ⟨k + 1, j, `, i2⟩⟩. The automaton of xk is
in its accepting state; the simulation continues from the
initial state of the automaton of xk+1. The automaton of
x` does not move.

• For each k, i1, `, i2, j with 1 ≤ k ≤ m, m + 1 ≤ ` < n,
i1, i2, j ∈ S (α), and i2 = LastEntry (α), the set ∆8

contains the transition ⟨⟨k, i1, `, i2⟩ , ε, ⟨k, i1, ` + 1, j⟩⟩.
This case is symmetric to the previous one.

We define the initial state as qinit ∶= ⟨1,1,1,1⟩, i.e., we start
from the initial state of the automaton of x1, and the initial
state of the automaton of xm+1. We define the accepting state
as qacc ∶= ⟨m,LastEntry (α) , n,LastEntry (α)⟩, i.e., we
are in the accepting states (i.e., last loop entries) of the
automata of xm and xn respectively.

To derive the indexed language ⟪φ⟫α we need to give
some definitions. First we formulate some conditions on
the strings generated by Flatten (α) (φ). A string w ∈
(Σ (n,α))∗ is said to be rational if #a(k, i) = #a(`, i)
whenever xk = x`. In other words, different occurrences
of the same variable will run the corresponding generic au-
tomaton in the same manner (it picks the same outgoing
transition from each state and runs the same loop an iden-
tical number of times.) We say that w is pure if a ≠ b
and #w(a(k, i)) > 0 implies #w(b(k, i)) = 0. We will
use the purity of strings in Flatten (α) (φ) to guarantee
the purity of ⟪φ⟫α. Next, we take the strings generated by
Flatten (α) (φ) and project them on the variables that oc-
cur in φ. For a k ∶ 1 ≤ k ≤ n, we define the alphabet
Σk ∶= {a(k, i) ∣ (a ∈ Σ) ∧ (1 ≤ i ≤ S (α))}, i.e., it is the sub-
set of Σ(n,α) containing only the elements in the alphabet
of the generic flat automaton of xk. We define the renaming
R ∶ Σ (n,α)↦ Σ (α) such thatR (a(k, i)) = a(i).

The language ⟪φ⟫α contains all X-indexed strings v ∶
X ↦ Σ (α) such that there is a string w ∈ Flatten (α) (φ)
satisfying the following properties: (i)w is rational and pure.
(ii) v (x) = R ([w]Σk

) if x = xk for some k ∶ 1 ≤ k ≤ n.
In other words, we extract the substring of w corresponding
to xk and rename it according to R so that we obtain a
string over Σ (α). Notice that by the rationality condition,
the particular choice of k is not important (we can choose
any k provided that xk = x.) Also, observe thatR ([w]Σk

) is
α-generic. (iii) v (x) ∈ G (α)∩P (α) if x ∈ X−{x1, . . . , xn}.
Such a variable is not restricted by φ and hence it may be
assigned any pure string in the generic α-flat automaton.
Notice that ⟪φ⟫α is pure and α-generic.

7.3 Other Constraints
The flattening of a transducer constraint y ∈ T (x) is done
by constructing a FSA that runs T in parallel with the flat
automata of x and y. The construction is similar to the
case of equality constraints. A disequality constraint can be
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done in a similar way as in the case of equality constraints.
In contrast, here we make that eventually one side cannot
follow the other. Finally, flattening is not needed for the case
of length constraints.

7.4 Properties
Lemma 3 and Lemma 4 below follow from the flattening
construction. They explain the relation between ⟪φ⟫α and
the intersection of φwith flat languages. Define the renaming
Rα ∶ Σ (α) ↦ Σ where Rα (a(i)) = a for all a ∈ Σ and
i ∶ 1 ≤ i ≤ S (α).

LEMMA 3. Rα (⟪φ⟫α) ⊆ JφK ∩ FX (α).

LEMMA 4. v ∈ JφK ∩ FX (α) implies that v′ ∈ ⟪φ⟫α for all
v′ withRα (v′) = v.

For a set ψ of constraints, we define ⟪ψ⟫α ∶= ⋂φ∈ψ⟪φ⟫α.
From Lemma 3 and Lemma 4, we get the following theorem.

THEOREM 1. ⟪ψ⟫α = ∅ iff JψK ∩ FX (α) = ∅.

From Corollary 1 and Lemma 3 we get the following.

THEOREM 2. If θ∈#⟪ψ⟫α thenRα(GetS (θ))∈JψK∩FX (α).

8. Under-Approximation
In this section, we describe the under-approximation mod-
ule. Fix a finite alphabet Σ, and a finite set of variables X
ranging over Σ∗. Suppose that we are given a set ψ of string
constraints over X and Σ, together with an abstraction pa-
rameter α = ⟨p,q⟩. We introduce an algorithm UAprx which
checks the emptiness of the set JψK ∩ FX (α), and returns
a member of the set in case the set is non-empty. We de-
fine UAprx in several steps. By Theorem 1 we know that to
check the emptiness of JψK∩FX (α), it is sufficient to check
the emptiness of ⟪ψ⟫α. Notice that the emptiness of the lat-
ter is equivalent to the emptiness of its Parikh image. Since
⟪ψ⟫α is by construction pure and α-generic for each φ ∈ ψ,
it follows by Lemma 2 that the Parikh image of ⟪ψ⟫α is
equal to the intersection of the Parikh images of ⟪φ⟫α for all
φ ∈ ψ. First, we describe how to compute the Parikh image
of ⟪φ⟫α. Then, we collect the Parikh images for all φ ∈ ψ,
and feed them into an SMT solver. If the SMT solver an-
swers that the Parikh image is empty then UAprx answers
that JψK ∩ FX (α) is empty. On the other hand, if the SMT
solver returns a satisfying assignment θ then we know by
Theorem 2 that Rα (GetS (θ)) ∈ JψK ∩ FX (α). Therefore,
we will also present a method for computingRα (GetS (θ)).

8.1 Computing Parikh Images
We give an algorithm for computing the Parikh image of
⟪φ⟫α for a string constraint φ. The form of the algorithm
depends on the type of φ. In each case, the Parikh image
will be defined as a conjunction of existentially quantified
Presburger formulas over the alphabet (X ×Σ (α))●. The
algorithms are defined based on the construction of ⟪φ⟫α,

described in Section 7. We present the method for the cases
of grammars and equalities. The other cases are similar.

Grammars. Algorithm 1 shows the case where φ is a
grammar constraint (of the form x ∈ G). We compute the

Algorithm 1: Computing the Parikh Image of a Gram-
mar Constraint.

Input: φ: grammar constraint of the form x ∈ G,
α = ⟨p,q⟩ ∈ N2: abstraction parameter

Output: CompP (⟪φ⟫α)
1 G′ ← Flatten (α) (φ);
2 ρ1 ← CompP (G′);
3 ρ2 ← ⋀

i∈S(α)
⋀

a∈Σ
⟨x, a(i)⟩● = (a(i))●;

4 ρ3 ← ⋀

i∈S(α)
⋀

a≠b∈Σ
(⟨x, a(i)⟩● > 0) Ô⇒ (⟨x, b(i)⟩● = 0);

5 ρ4 ← ∃(Σ (α))●. ρ1 ∧ ρ2 ∧ ρ3;
6 return (ρ4)

flattening G′ of the grammar G wrt. the abstraction parameter
α according to the construction of Section 7. We compute the
Parikh image of G′ (this is possible since G′ is a CFG), and
store the result in ρ1. Notice that ρ1 is defined over the set
(Σ (α))●. We define the formula ρ2 that renames each vari-
able (a(i))● to the corresponding variable ⟨x, a(i)⟩●. This
is done by equating each pair of variables of the above form,
and putting all the equalities in ρ2. The formula ρ3 encodes
the purity condition. The returned formula ρ4 is the conjunc-
tion of the previous three formulas. Furthermore, we quan-
tify away all the variables in (Σ (α))● thus ensuring that ρ3

is defined over the alphabet (X ×Σ (α))●. Notice that ρ4 is
an existentially quantified Presburger formula.

Equalities. Algorithm 2 shows the case where φ
is an equality constraint (of the form x1x2⋯xm =
xm+1xm+2⋯xn). In a similar manner to the case of gram-

Algorithm 2: Computing the Parikh Image of an Equal-
ity Constraint.

Input: φ: equality constraint of the form
x1x2⋯xm = xm+1xm+2⋯xn,
α = ⟨p,q⟩ ∈ N2: abstraction parameter

Output: CompP (⟪φ⟫α)
1 A← Flatten (α) (φ);
2 ρ1 ← CompP (A);
3 ρ2 ← ⋀

1≤k≤n
⋀

i∈S(α)
⋀

a∈Σ
⟨xk, a(i)⟩

●
= (a(k, i))●;

4 ρ3 ← ⋀

i∈S(α)
⋀

a≠b∈Σ
(⟨x, a(i)⟩● > 0) Ô⇒ (⟨x, b(i)⟩● = 0);

5 ρ4 ← ∃(Σ (n,α))●. ρ1 ∧ ρ2 ∧ ρ3;
6 return (ρ4)

mar constraints, we compute the flattening A of the equality
wrt. the abstraction parameter α, and then compute the
Parikh image of the automaton A, and store the result in ρ1.
Here, ρ2 serves two purposes. First, it renames the variables
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as in the case of a grammar constraint. More precisely, the
formula ρ1 is defined over the set (Σ (n,α))●. Therefore,
we rename each variable (a(k, i))● to the corresponding
variable ⟨xk, a(i)⟩● by equating them. The second purpose
is to ensure the rationality condition. The reason is that,
for any two variables of the forms a(k, i) and a(`, i), the
formula ρ2 will contain both ⟨xk, a(i)⟩● = (a(k, i))● and
⟨x`, a(i)⟩● = (a(`, i))●. This implies that if xk = x` then
⟨xk, a(i)⟩● = ⟨x`, a(i)⟩●. Finally, we add the purity condi-
tion and abstract away the variables of the set (Σ (n,α))●
in a similar manner to the case of grammar constraints.

8.2 SMT Solving
In Algorithm 3, we are given a set ψ of constraints together
with an abstraction parameter α. We construct, for each
φ ∈ ψ, the Parikh image of ⟪φ⟫α as described in Section 8.1.
We collect the conjunction of the Parikh images in ρ. We
check the satisfiability of ρ using the available SMT solver.

Algorithm 3: Parikh Image Analysis.
Input: ψ: set of string constraints,

α = ⟨p,q⟩ ∈ N2: abstraction parameter
Output: Solution for CompP (⟪ψ⟫α).

1 ρ← ⋀
φ∈ψ

CompP (⟪φ⟫α);

2 Result← SMT (ρ);
3 return (Result)

8.3 Constructing a Solution
Algorithm 4 constructs the X-indexed string v =
Rα (GetS (θ)). More precisely, the algorithm goes through

Algorithm 4: Translating to a Solution.
Input: θ ∶ (X ×Σ (α))● ↦ N,

α = ⟨p,q⟩ ∈ N2: abstraction parameter
Output:Rα (GetS (θ))

1 for all x ∈ X do
2 for k from 1 to q do
3 nk ← 0;
4 wk ← ε;
5 for i from (k ⋅ p − p + 1) to (k ⋅ p) do
6 for all a ∈ Σε do
7 if θ (⟨x, a(i)⟩●) > 0 then
8 nk ← θ (⟨x, a(i)⟩●);
9 wk ← wk ● a;

10 v (x)← wn1
1 ●wn2

1 ● ⋯ ●w
nq
q ;

11 return (v)

the variables one by one. For each variable x ∈ X it consid-
ers the generic automaton of x and finds out (i) for each loop
k ∶ 1 ≤ k ≤ q, the number nk of times the loop is iterated, and
(ii) for each state i ∶ k ⋅ p − p + 1 ≤ i ≤ k ⋅ p inside the loop,

the label of the outgoing transition that is chosen. In fact, the
algorithm builds the stringwk which corresponds to one iter-
ation of the loop. This is done by recording, for each a ∈ Σ,
the number of times the symbol a(i) is encountered. Recall
that either this number is equal to 0 for all a ∈ Σ or positive
for exactly one a ∈ Σ. In the former case, the loop has not
been iterated, and in the latter case, the loop has been iter-
ated the same number of times as the number of occurrences
of a(i). We build the string wk successively, by concatenat-
ing the symbol a(i) in position i − k ⋅ p + p if a(i) occurs
a positive number of times. Finally, for a variable x ∈ X, we
define the string v (x) by concatenating the strings wnk

k for
all the loops k ∶ 1 ≤ k ≤ q.

9. Over-Approximation
In this section, we describe the over-approximation mod-
ule. Fix a finite alphabet Σ and a finite set of variables
X ranging over Σ∗. Suppose that we are given a set
ψ = {φ1, φ2, . . . , φk} of constraints together with a set
Covered ⊆ N2 of parameter values that have already been
considered by the under-approximation module. In the fol-
lowing, we will construct a set ψ′ of constraints such that
(JψK − ⋃α∈Covered FX (α)) ⊆ JψK′. To construct ψ′ from ψ,
we proceed as follows: (1) we replace any membership con-
straint in a context-free grammar G by a membership con-
straint in a regular language (the regular language may be
the upward closure of the language of G [4, 45], the down-
ward closure [10, 44], or some other over-approximation,
e.g., the one in [32]), (2) we replace a transducer constraint
by a conjunction of membership constraints in regular lan-
guages where each regular language captures the projection
of the transducer language on one of its tapes, and (3) we
replace any occurrence of a variable x by a fresh copy of x
that satisfies the same membership and length constraints as
x. The resulting set of string constraints ψ′ falls in the decid-
able fragment of the theory of strings with regular member-
ship constraints and length constraints [2, 3]. Therefore, we
can apply a similar technique as the one used in Norn [2, 3]
to check the satisfiability of ψ′.

The rest of this section is organised as follows: First, we
define the function Over that takes as input a constraint φ in
ψ and transforms it into a set of constraints Over(φ) in ψ′.
The form of Over(φ) will depend on the type of the con-
straint φ. Then, we formally define the set of constraints ψ′

and show how to address its satisfiability problem. Finally,
we show how to generate a new set of abstraction parameters
that will be used by the under-approximation module in case
that the set of constraints ψ′ is satisfiable.

Transforming (dis-)equality constraints. Let us consider
a constraint φi, with i ∶ 1 ≤ i ≤ k, appearing in
ψ. Let us assume that φi is an (dis-)equality constraint
of the form x1x2⋯xm ∼ xm+1xm+2⋯xn with ∼∈ {=
,≠}. Then Over(φi) will only contain the (dis-)equality
constraint (x1, i,1)(x2, i,2)⋯(xm, i,m) ∼ (xm+1, i,m +
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1)(xm+2, i,m + 2)⋯(xn, i, n) where we replace any occur-
rence of a variable x by a fresh copy of the form (x, i, j).

Let Fresh be a function that maps each variable x in X
to its set of fresh copies. Formally, the set Fresh(x) is the
smallest set containing any variable of the form (x, i, j) such
that φi is a (dis-)equality constraint of the form x1x2⋯xm ∼
xm+1xm+2⋯xn, with ∼∈ {≠,=}, and xj = x.

Transforming grammar constraints. In the following, we
will show how to transform a grammar constraint φ in ψ into
a set of regular constraints Over(φ) in ψ′ using the function
Over. This transformation is based on replacing the context-
free language appearing in φ by a regular language that
accepts its upward closure [4, 45], its downward closure [10,
44], or some other over-approximation, e.g., the one in [32]).
To do that, we define a function Abst that associates for each
context-free grammar G, a regular expression R such that
R recognizes the upward/downward closure (or any other
regular over-approximation) of the language generated by
the context-free grammar G.

Then, let us consider a grammar constraint φi of the
form x ∈ G. The set Over(φi) is then defined to be the
smallest set containing all the regular constraints of the form
(x, `, j) ∈ Abst(G) where (x, `, j) ∈ Fresh(x).

Transforming Regular Constraints. Let us consider a reg-
ular constraint φi of the form x ∈ R. Then Over(φi) is de-
fined as the smallest set containing all the regular constraints
of the form (x, `, j) ∈R where (x, `, j) ∈ Fresh(x).

Transforming transducer constraints. In the following,
we show how to replace a transducer constraint in ψ by a
set of membership constraints in regular languages that cap-
ture an over-approximation of the transducer language. Each
regular language captures the projection of the transducer
language on one of its input tapes.

To compute these regular languages, we define a func-
tion Split that takes as input a transducer T and out-
puts a pair of regular expressions R1 and R2 such that
{(w1,w2) ∣w2 ∈ T (w1)} ⊆ (JR1K × JR2K). Let us assume
a transducer T of the form ⟨Q,Σ,∆, qinit , qacc⟩. We can de-
fine then the automaton A1 = ⟨Q,Σ,∆1, qinit , qacc⟩ (resp.
A2 = ⟨Q,Σ,∆2, qinit , qacc⟩) such that ∆1 (resp. ∆2) is the
smallest transition relation containing ⟨q, a, q′⟩ ∈ ∆1 (resp.
⟨q, b, q′⟩ ∈ ∆2) if there is a transducer transition of the form
⟨q, ⟨a, b⟩ , q′⟩ ∈ ∆. Let R1 (resp. R2) be the regular expres-
sion recognizing the same language as A1 (resp. A2). We
then define Split(T ) = (R1,R2).

Let us consider a transducer constraint φi of the form
y ∈ T (x). The set Over(φi) is defined to be the smallest set
containing all the regular constraints of the form (x, `, j) ∈
R1 where (x, `, j) ∈ Fresh(x) and (y, `′, j′) ∈ R2 where
(y, `′, j′) ∈ Fresh(y).

Transforming length constraints. Let us consider a gram-
mar constraint φi of the form ∑1≤i≤n ki ⋅ length (xi) ∼ `,
where xi ∈ X, ki ∈ Z for i ∶ 1 ≤ i ≤ n, ` ∈ Z, and

∼∈ {<,≤,>,≥,=}. Then, we define Over(φi) to be the small-
est set of containing all constraints of the form ∑1≤i≤n ki ⋅
length ((xi, `i, ji)) ∼ ` where (xi, `i, ji) ∈ Fresh(xi).

Constructing the approximate set of constraints ψ′. In
order to construct the set of constraints ψ′, we need first
to construct regular constraints that discard from the set of
solutions any string that is accepted by any α-flat automa-
ton with α ∈ Covered. Let RCovered be the regular expres-
sion that accepts the complement of the regular language
⋃α∈Covered FX (α). We use φCovered to denote the smallest
set of constraints of the form (x, `, j) ∈ RCovered where
(x, `, j) ∈ Fresh(x) for all variable x ∈ X. We define ψ′ as
φCovered∪Over(φ1)∪Over(φ2)∪Over(φ3)∪⋯∪Over(φk).

Satisfiability problem of the approximate set of constraints
ψ′. The set of constraints ψ′ satisfies the acyclicity condi-
tion defined in [2, 3]. Intuitively, the acyclicity condition is
a syntactic condition on the occurrence of variables in the
set of constraints and ensures that no variables appears more
than once in (dis)-equalities during the analysis technique
developed in [2, 3]. Thus, we can use the technique presented
in [2, 3] to decide the satisfiability of the set of constraints
ψ′. Then, let OAprx (Covered) be the algorithm that checks
the satisfiability of ψ′ and returns a satisfying assignment v
for ψ′ if ψ′ is satisfiable, and unsat otherwise.

Generating new set of abstraction parameters. In the fol-
lowing, we describe how to generate new set of abstraction
parameters from an assignment v for ψ′. To do that, we will
first show how to define the abstraction parameters for a
string and then for an indexed string.

Let w ∈ Σ∗ be a string. We define GenPar (w) to be the
set of minimal pairs α = ⟨p,q⟩ ∈ N2 such that there are
words w1,w2, . . . ,wq where length (wi) ≤ p for i ∶ 1 ≤
i ≤ q and w ∈ w∗

1 ● w∗

2 ● ⋯ ● w∗

q . Let X′ be the set of
variables appearing in ψ′. For an X′-indexed string v over
Σ, we define GenPar (v) to be the maximal pairs in the set
{α ∣ (x ∈ X′) ∧ (α ∈ GenPar (v (x)))}.

10. CEGAR
In this section we present our CEGAR procedure. Observe
that, due to the undecidability of the considered problem,
our procedure is not guaranteed to terminate.

The procedure inputs a set ψ of string constraints. If the
procedure terminates then it either returns an indexed string
that satisfies ψ, or it concludes that ψ is not satisfiable.

The algorithm maintains a set Covered of parameter val-
ues that have already been considered, and a set Waiting
of parameter values to be considered in the coming itera-
tions. Both sets are initially empty. The procedure performs
alternatively a sequence of over- and under-approximation
phases.

The over-approximation phase is parameterized by the
set Covered. There are two possible outcomes. If the over-
approximation is unsatisfiable then we conclude that ψ is
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Algorithm 5: CEGAR Procedure.
Input: ψ: set of word constraints
Output: ψ satisfiable?

1 Covered← ∅;
2 Waiting← ∅;
3 repeat
4 OAprxResult← OAprx (Covered);
5 if OAprxResult = unsat then
6 return (unsat);

7 else if OAprxResult = v then
8 Waiting← GenPar (v)

9 while Waiting ≠ ∅ do
10 Select and Remove α ∈ Waiting;
11 Covered← Covered ∪ {α};
12 UAprxResult← UAprx (α,ψ);
13 if UAprxResult = v then
14 return (v);

unsatisfiable and we terminate. Otherwise, we get a satisfy-
ing assignment θ. In such a case we use θ to generate a new
set of parameters that we add to the set Waiting. This will
ensure that we at least eliminate θ in the next iteration, pos-
sibly together with an infinite set of other valuations.

In the under-approximation phase, we check the elements
of Waiting one by one, using the while-loop of line 9. Each
time we select and remove a parameter α from Waiting

and move to Covered. We check the under-approximation
ofψ wrt. α. If the under-approximation produces a satisfying
assignment then the procedure terminates.

11. Experimental Results
We have implemented our framework in an open source
solver (called TRAU) using Z3 [11] as an SMT solver. We
are not aware of other solvers that can handle the same
set of string constraints without restricting the lengths of
the solutions. Therefore, we have evaluated TRAU using
two separate sets of benchmarks. First, we used the Kaluza
benchmarks [38] in order to compare TRAU against existing
state-of-the-art solvers for string equations with length and
regular constraints but excluding context-free membership
queries (CFG queries for short). Then, we used a set of string
constraints with CFG queries in order to verify the absence
of SQL injections. All experiments were performed on an
Intel Core i7 2.7Ghz with 8GB RAM.

CFG-Free Benchmarks. The Kaluza suite [38] is an es-
tablished set of benchmarks for string solvers. It was gen-
erated by a JavaScript symbolic execution engine. We use
the SMT-format version provided by the CVC4 [26] team.
The suite consists of approximately 50,000 queries, includ-
ing length, regular and (dis)-equality constraints.

Figure 4a shows the performance of TRAU in comparison
with three other state-of-the-art solvers: Z3-str2 [51], CVC4

[25, 26], and S3P [42]. The row “(un)sat” indicates the num-
ber of benchmarks for which the solvers decided sat/unsat.
The row “0-1s (5s, 10s, 20s)” indicates the number of bench-
marks for which the solvers are able to decide the outcome
within the time limit of 1 (5, 10, 20) second(s). The row
“timeout” indicates the number of benchmarks for which the
solvers were unable to decide within the time limit of 20
seconds. Additionally, Z3-str2 detected “overlapping vari-
ables” on 525 examples and stopped running without giv-
ing a result. These cases are not shown in the figure. Due
to the non-deterministic behavior of some of the other tools,
they may exhibit slightly variable performances. We there-
fore carry out each experiment three times and consider the
average result. As depicted in Figure 4a, TRAU can answer
more queries than any of the three other tools. More impor-
tantly, it can handle hundreds of queries on which the other
solvers timed out. These queries were typically the largest
ones in terms of the number of string variables and the length
of the discovered string solutions.

TRAU needs 5 iterations of CEGAR loop on average to
handle a test in the test suite. The largest needed values
of the abstraction parameter α is ⟨7,8⟩. Furthermore, when
increasing the timeout limit to 100 seconds, TRAU is able to
solve all the cases, including the ones for which a timeout is
reported in the table.

An important hinder for the other solvers on these ex-
amples is their use of the arrangement method for solving
word equations. For a string variable on a left-hand side of
an equality, the arrangement method enumerates all possi-
bilities of what sub-string of the right-hand side the vari-
able could correspond to. Hence, the search space explored
by the arrangement method is exponential in both the num-
ber of variables and the length of satisfying strings. Conse-
quently, the running time grows quickly when the number of
variables in the left-hand side and the length of the string in
the right-hand side increase. Since the running time of our
method is much less dependent on lengths of strings, it can
handle these problematic cases much faster.

Benchmarks with CFG Queries. To our knowledge, all
existing string solvers that allow CFG queries put a bound on
the possible lengths of the string solutions. The HAMPI [24]
solver can handle CFG queries but requires a priori bounding
the length of the candidate string solutions. We have there-
fore generated our own set of benchmarks. The benchmarks
use CFG queries in order to symbolically check for the pos-
sibility of SQL injections in a home made application.

Several web applications allow users to enter and save
nested search queries. For instance, Bugzilla allows users
to build Boolean combinations of simple facts about stored
bug reports. Individual and group permissions are then
typically used to control access to the entries on which the
nested search queries are to be applied. SQL queries, such as
query = "SELECT * FROM records WHERE group=" +

groupID + " AND " + userConjunction; can then be
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CVC4 Z3-str2 S3P TRAU

sat 33191 34459 34829 35202
unsat 11625 11747 12033 12019

0-1s 44562 32765 31321 38710
0-5s 44638 45922 44581 46502
0-10s 44703 46131 45846 47136
0-20s 44816 46249 46862 47221
timeout 2468 553 422 63

(a)

TRAU HAMPI

Input Var Length Bounded Length Unbouned Length Bounded Length
Result Time(s) Result Times(s) Result Times(s)

cfg01 6 20 sat 1.14 sat 1.24 sat 0.52
cfg02 6 20 unsat 1.02 unsat 1.11 unsat 0.20
cfg03 8 50 sat 1.01 sat 1.45 sat 9.34
cfg04 8 50 unsat 1.56 unsat 1.54 unsat 9.33
cfg05 10 70 sat 1.55 sat 2.00 - timeout
cfg06 10 70 unsat 2.01 unsat 1.12 - timeout
cfg07 14 50 sat 2.13 sat 3.36 - timeout
cfg08 14 50 unsat 1.56 unsat 2.58 unsat 8.85
cfg09 20 70 sat 1.78 sat 2.27 - timeout
cfg10 20 70 unsat 2.46 unsat 1.89 - timeout

(b)

Figure 4: (a) Performance of TRAU in comparison to CVC4, Z3-str2, and S3P on the Kaluza suite. (b) Performance of TRAU in comparison
to HAMPI on the CFG suite.

used to return the entries that match the user supplied con-
junction and her groupID. Without special care, an attacker
can formulate nested conditions that allow her to bypass
restrictions that apply to her groupID, for example by
entering (1 = 1) OR (1 = 1) instead of a conjunction.
Thus, sanitizers are used to parse and modify user inputs.

We have built such a sanitizer for nested SQL conditions.
We use it to ensure that the entered conditions are conjunc-
tions of (arbitrarily nested) SQL conditions. We then build
SQL queries to submit to the underlying database. Follow-
ing [41], we detect an SQL injection when the obtained
query is a valid SQL query although the untrusted input
(here the nested condition) is not derived from a single SQL-
grammar-node (here a node for an arbitrary conjunction). In-
tuitively, in our case, an SQL injection occurs when the en-
tered nested condition entered is not a conjunction (of arbi-
trarily nested conditions) yet yielding an overall valid query.

We have generated benchmarks for our solver by col-
lecting the symbolic path conditions corresponding to walks
through the sanitizer and requiring the obtained walks can-
not be derived as and-conditions (the intended meaning of
the input) when the whole query is a valid SQL condition.
We have introduced “bugs” in our sanitizer in-order to allow
for SQL injections, hence leading to satisfiable benchmarks.
More specifically, we truncated some string terms without
care for the succession of ’ symbols.

The results for some of the benchmarks are described in
Figure 4b. The column Var gives the number of variables in
the test. The column Length gives the bound on the length
of string variables. Such a bound must be provided when
running HAMPI. The column Result gives the answer of the
solver: “(un)sat” means it is (im)possible to find values of
the variables that satisfy the constraints. “-” denotes that the
solver cannot finish the test. The column Time gives running
time of the solver if it returns a result. Note that we supply
two columns for TRAU: one where we fix an upper bound
on the length of the possible solutions, and one where we do
not. TRAU is the only solver we are aware of that can handle

word equations with length constraints and CFG queries. We
compare the performance of TRAU to HAMPI which has
to bound the length of the solutions. Again, observe that
TRAU is much less affected by the number of variables or
by the length of the solutions. On the contrary, HAMPI is
not efficient when the bounded length is larger than 50.

12. Concluding Remarks
We have presented a constraint solver for a rich language
of constraints over unbounded strings, including word equa-
tions, context-free grammar membership, transducer con-
straints, and length constraints. The solver combines an
under- and over-approximation scheme in a CEGAR loop,
and is based on the observation that both satisfiability and
unsatisfiability of common constraints can be demonstrated
through witnesses with simple patterns. These patterns are
captured using flat automata that consist of sequences of
simple loops.
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polating sequent calculus for quantifier-free Presburger arith-
metic. Journal of Automated Reasoning, 47:341–367, 2011.
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