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Abstract
Lossy channel systems are a classical model with applications ranging from the modeling of
communication protocols to programs running on weak memory models. All existing work assume
that messages traveling inside the channels are picked from a finite alphabet. In this paper, we
extend the model by assuming that each message is equipped with a clock representing the age
of the message, thus obtaining the model of Timed Lossy Channel Systems (TLCS). The main
contribution of the paper is to show that the control state reachability problem is decidable for
TLCS.
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1 Introduction

During the last two decades there has been a large amount of work devoted to the verification
of discrete program models that have infinite state spaces such as Petri nets, pushdown
systems, counter automata, and channel machines. In particular lossy channel systems have
been studied extensively as a model of communication protocols. Such protocols are designed
to work correctly even in the case where the underlying medium is unreliable in the sense that
it can lose messages [6]. Recently, lossy channel systems have been proposed as a fundamental
tool for describing programs running on weak memories [9, 2] since they are able to capture
the behaviors of classical models such as tso and pso. In parallel, timed automata [8, 15, 13]
are the most widely used model for the analysis of systems with timed behaviors. Several
works have augmented discrete infinite-state models with timed behaviors. For instance,
many different formalisms have been proposed for extending Petri nets with clocks and timed
constraints, leading to various definitions of Timed Petri Nets (e.g., [11, 7]). Also, several
works [4, 12, 10, 17, 18, 19, 22] consider timed pushdown automata. In this paper, we consider
(Dense-)Timed Lossy Channel Systems (or TLCS for short). A TLCS combines the classical
models of lossy channel systems and timed automata. More precisely, a TLCS consists of
finite number of processes. The processes operate on finite set of real-valued clocks, together
with a finite number of lossy channels each of which behaves as an unbounded FIFO buffer.
Each message traveling inside a channel is equipped with a real-valued clock representing its
“age”. Processes can send messages to the channels in which case the message is appended
to the end of the channel. A receive operation may only take place if the message at the
head of the channel is of the correct type and only if its age lies in a pre-defined interval
associated with the transition. In a similar manner to timed automata, a transition may be
conditioned by the values of the clocks. In a timed transition, the clock values and the ages
of all the messages inside the channels are increased uniformly (by the same real number).
Finally, any message inside a channel may non-deterministically be lost (deleted from the
channel). The TPDA model thus subsumes both the models of lossy channel systems and
timed automata. More precisely, we obtain the former if we prevent the TPDA from using
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the timed information (all the timing constraints are trivially valid); and obtain the latter if
we prevent the TPDA from using the channels (no symbols are sent or received from the
channels). Notice that a TLCS induces a system that is infinite in two dimensions, namely
it has channels containing unbounded numbers of messages, and each message is equipped
with a real-valued clock.

In this paper, we show decidability of the control state reachability problem for TLCS.
We show the decidability result through a novel reduction formulated in two steps. First,
we introduce a new model called Dynamic Lossy Channel Systems (DLCS) which is a
generalization of (untimed) LCS. More precisely, a DLCS contains, in addition to a (fixed)
finite set of lossy channels, a dynamic part that contains an a priori unbounded number of
channels. The dynamic part behaves as a second-order lossy channel, i.e., a “lossy channel of
lossy channels”. We show that each DLCS induces a transition system that is well quasi-
ordered in the sense of [5, 1], and thus the control state reachability problem is decidable
for DLCS. In the second step, we reduce the control state reachability problem for TLCS to
the the control state reachability problem for DLCS and thus prove the decidability of the
former.

The complexity of the reachability problem for TLCS is not primitive recursive as it is
not primitive recursive already for untimed LCS [16].

2 Preliminaries

Notation

We use N and R≥0 to denote the sets of natural numbers resp. non-negative reals. For a
real number r ∈ R≥0, we define Int(r) as the greatest n ∈ N such that n ≤ r, and Frac(r) as
r − Int(r). We call Int(r) the integer part and Frac(r) the fractional part of r respectively.
An open interval is written as (i, j) where i ∈ N and j ∈ N ∪ {∞}. Intervals can also be
closed in one or both directions, e.g. [i, j] is closed in both directions and [i, j) is closed to
the left and open to the right. For n ∈ N, we define the set [n]0 := {0, 1, . . . , n}, and define
[n]1 := {1, 2, . . . , n}. For sets A and B, we use h : A→ B to denote that h is a total function
from A to B, and use h[a 7→ b] to denote the function h′ where h′(a) = b and h′(a′) = h(a′)
if a′ 6= a. We use (A→ B) to denote the set of total functions from A to B. We say that
a function f : N→ N is strictly increasing if whenever i < j we also have f(i) < f(j). We
use A∗ to denote the set of finite words over A. For words w1, w2 ∈ A∗, we use w1 · w2 to
denote the concatenation of w1 and w2. We use ε to denote the empty word. For a word
w = a1 · · · an, we use w[i] to denote the ith symbol ai in w, and we will write a ∈ w if
a = w[i] for some i : 1 ≤ i ≤ n. We will use a similar notation for tuples. We recall the
classical subword ordering v on the set A∗ of words, where a1 . . . am v a′1 · · · a′n if there is a
strictly increasing injection g : [m]1 → [n]1 such that ai = a′g(i). To simplify the notation, we
write ω ∈ (A∗)∗ as 〈w1〉 · · · 〈wn〉 where w1, · · · , wn are words in A∗. We extend the ordering
v to (A∗)∗ in such a way that ω = 〈w1〉 · · · 〈wn〉 v 〈w′1〉 · · · 〈w′n〉 = ω′ if there is a strictly
increasing injection h : [m]1 → [n]1 where wi v w′h(i).

Transition Systems

A transition system is a pair S = 〈Γ,−→〉 where Γ is the set of configurations, and −→⊆ S×S
is a binary relation on the set of states. As usual, we write γ1 −→ γ2 instead of 〈γ1, γ2〉 ∈−→.
We use ∗−→ to denote the reflexive transitive closure of −→. For a set Γ′ ⊆ Γ of configuration,
we define the set Pre (Γ′) := {γ| ∃γ′ ∈ Γ′. γ −→ γ′}. Sometimes, we equip the set Γ with an
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ordering E and write the transition system as a triple 〈Γ,∆,E〉. We say that S is monotone
(wrt. E) if whenever γ1 −→ γ2 and γ1 E γ3 then γ2

∗−→ γ4 for some γ4 with γ3 E γ4. We
say that E is a well quasi-ordering (wqo for short), if, for all sequences γ0, γ1, γ2, . . ., there
are i < j with γi E γj . A set U ⊆ Γ is upward closed if whenever γ1 ∈ U and γ1 E γ2 then
γ2 ∈ U . The upward closure of a set Γ′ ⊆ Γ is defined by Γ′↑:= {γ ∈ Γ| ∃d ∈ Γ′. dE γ}.
For sets Γ′1 ⊆ Γ′2 ⊆ Γ, we say that Γ′1 is a minor of Γ′2 if (i) for each γ2 ∈ Γ′2 there is a
γ1 ∈ Γ′1 such that γ1 E γ2, and (ii) γ1 E γ2 implies γ1 = γ2 for all γ1, γ2 ∈ Γ′1. If E is a
wqo, then each minor is finite. However, in general, a set may have several different minors.
In the applications of this paper, each set Γ′ has a unique minor, denoted min(Γ′). An
instance of the coverability problem consists of two configurations γ1 and γ2. The task is
to check whether γ1

∗−→ γ2↑. A transition system 〈Γ,∆,E〉 is said to be well quasi-ordered
if the following conditions are satisfied: (i) E is computable, i.e., for given configurations
γ, γ′, we can check whether γ1 E γ′, (ii) E is a wqo, (iii) −→ is monotone wrt. E, (iv) for
a configuration γ, we can compute the (finite) set min (Pre ({γ}↑)). Notice that, since the
transition relation is monotone with respect to E, it follows that the set Pre ({γ}↑) upward
closed. The classical framework of well quasi-ordered transition systems [5, 1] provides the
following sufficient conditions for decidability of the coverability problem.

I Theorem 1. The coverability problem is decidable for well quasi-ordered transition systems.

3 Timed Lossy Channel Systems

In this section, we introduce TLCS, define their operational semantics, and present the
reachability problem. Furthermore, we show that it is sufficient to consider a class of
“normalized” TLCS where initial ages of messages and new values assigned to clocks are
always 0.

A TLCS has three parts, a control part, a finite set of clocks, and a finite set of channels.
The control part is a finite-state labeled transition systems, where the labels are either clock
or channel operations. The control part can be used to model the total behavior of a number
of processes that communicate through the channels. The clocks assume real values, while
the channels are unbounded lossy FIFO buffers.

Model

A Timed Lossy Channel System (TLCS for short) is a tuple T = 〈S, sinit , C,M,X,∆〉, where
S is a finite set of (control) states, sinit ∈ S is the initial control state, C is a finite set of
channels, M is a finite set of messages, X is a finite set of clocks, and ∆ is a finite set of
transitions. A transition t ∈ ∆ is a triple 〈s1, op, s2〉 where s1, s2 ∈ S are states and op is an
operation of one of the following forms:

1. nop is an empty operation that does not check or update the clock values or the channel
contents.

2. c!(m ∈ I) appends a new message m ∈M to the end of the channel c ∈ C. The initial
age of the new message is selected non-deterministically from I ∈ I.

3. c?(m ∈ I) removes (receives) the message at the head of the channel c ∈ C provided that
this message is m ∈M and that its age lies in I ∈ I.

4. x ∈ I checks whether the value of x ∈ X belongs to the interval I ∈ I.
5. x← I assigns non-deterministically a value to x ∈ X from I ∈ I.
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Configurations

A configuration γ of T is a triple 〈s, X, ν〉, where s ∈ S is a control state, X ∈
(
X → R≥0)

defines the clock values (assigns a real number to each clock), and ν ∈
(
C → (M × R≥0)∗

)
defines the content of each channel (the content of a channel is represented by a word, where
each message is represented by a pair containing its name and its age).

Transition Relation

We define a transition relation on configurations −→T := D−→T ∪
T−→T ∪

L−→T as the union
of a discrete transition relation D−→T , a timed transition relation T−→T , and a lossy transition
relation L−→T .

We define the discrete transition relation as the union D−→T :=
⋃
t∈∆

t−→T of the transition
relations induced by all transitions in ∆. For configurations γ1 = 〈s1, X1, ν1〉, γ2 = 〈s2, X2, ν2〉,
and a transition t = 〈s1, op, s2〉 ∈ ∆, we have γ1

t−→ γ2 if one of the following conditions
holds:

1. op = nop, X2 = X1, and ν2 = ν1. The empty operation does not affect the clock values or
the channel contents.

2. op = c!(m ∈ I), X2 = X1, ν2 = ν1[c 7→ (m, δ) · ν1(c)], and δ ∈ I. The transition appends a
new message to the end of the channel c with name m, and with an age that belongs to
the interval I.

3. op = c?(m ∈ I), X2 = X1, ν1 = ν2[c 7→ ν2(c) · (m, δ)], and δ ∈ I. The transition removes
the message at the head of the channel c provided that its name is m, and that its age is
in the interval I.

4. op = x ∈ I, X1(x) ∈ I, X2 = X1, and ν2 = ν1. The transition is enabled only if the value
of x belongs to I. The clock values and the channel contents are not affected.

5. op = x ← I, X2 = X1[x 7→ δ], δ ∈ I, and ν2 = ν1. The transition assigns a new value
(belonging to I) to the clock x.

Notice that in all five cases the control state changes from s1 to s2.
The timed transition relation models the passage of time, in the sense that the values of all

clocks and the ages of all messages inside the channels are uniformly increased by (the same)
real number. For configurations γ1 = 〈s, X1, ν1〉, γ2 = 〈s, X2, ν2〉, and a real number δ ∈ R≥0,
the relation γ1

δ−→T γ2 holds if the following two conditions hold: (i) X2(x) = X1(x) + δ for
all x ∈ X, and (ii) for every c ∈ C, if ν1(c) is of the form (m1, δ1) · · · (mn, δn) then ν2 is of
the form (m1, δ1 + δ) · · · (mn, δn + δ). We write γ1

T−→T γ2 to denote that γ1
δ−→T γ2 for

some δ ∈ R≥0.
Finally the lossy transition relation allows messages to be lost from the channels at

any time. Formally, if γ1 = 〈s, X, ν1〉 and γ2 = 〈s, X, ν2〉, the relation γ1
L−→T γ2 holds if

ν2(c) v ν1(c) for all c ∈ C.

Reachability

The initial configuration of a TLCS T is defined by γinit := 〈sinit , Xinit , νinit〉 where Xinit(x) =
0 for all x ∈ X, and νinit(c) = ε for all c ∈ C. In other words, T is initiated from a
configuration where it is in its initial control state, where all the clocks have a value equal
to 0, and where all the channels are empty. A control state s ∈ S is said to be reachable if
γinit

∗−→T 〈s, X, ν〉 for some X and ν. An instance of the reachability problem consists of an
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TLCS T = 〈S, sinit , C,M,X,∆〉 and a control state s ∈ S. The task is to check whether s is
reachable.

Normalization

A TLCS T = 〈S, sinit , C,M,X,∆〉 is said to bemessage-normalized if whenever 〈s1, c!(m ∈ I), s2〉 ∈
∆ then I = [0, 0]. We say that T is clock-normalized if whenever 〈s1, x← I, s2〉 ∈ ∆ then
I = [0, 0]. Finally, T is normalized if it is both clock- and message-normalized. The following
two lemmas show that the reachability problem for general TLCS can be reduced to that
for normalized TLCS. Therefore, in the rest of the paper, we assume that all TLCS are
normalized.

I Lemma 2. The reachability problem for TLCS can be reduced to that for message-normalized
TLCS.

I Lemma 3. The reachability problem for TLCS can be reduced to that for clock-normalized
TLCS.

4 Dynamic Lossy Channel Systems

In this section, we introduce the model of Dynamic Lossy Channel Systems (DLCS for short).
The model is a generalization of lossy channel systems [6] in the sense that it contains a
second-order channel (a “channel of channels”). A DLCS consists of three parts: a control
part, a static part, and a dynamic part. The control part is a finite-state labeled transition
system. The static part consists of a finite set of (static) channels, each of which contains
a sequence of messages from a finite alphabet. The dynamic part contains a (possibly
unbounded) sequence of (dynamic) channels over the same alphabet. Each transition of
the control part may be labeled by an operation on the static or dynamic channels. In the
former case, the operation may remove a message from the head of a static channel or insert
a message at its end (as in the case of lossy channels). In the latter case, the operation
may copy the content of a static channel and append it (as a new channel) to the end of
the sequence of dynamic channels (thus creating a new channel at the leftmost position of
the dynamic part), or copy the content of the rightmost dynamic channel (the one at the
head of the sequence of channels) to a static channel and then delete this dynamic channel.
Furthermore, messages inside any channel can be lost (deleted) non-deterministically, and
also any (whole) dynamic channel may be lost non-deterministically. The static channels
are static (they can cannot be created, deleted, or lost). Notice that all the channels in the
system are unbounded and that there is no bound on the number of dynamic channels that
may be created during a run of the system.

Model

A DLCS is a tuple D = 〈S, sinit , C,Σ,∆〉 where S is a finite set of (control) states, sinit ∈ S
is the initial control state, C is a finite set of channels names, Σ is the channel alphabet, and
∆ is a finite set of transitions. A transition t ∈ ∆ is a triple 〈s1, op, s2〉 where s1, s2 ∈ S are
states and op is an operation of one of the following forms:

1. nop is an empty operation that does not check or update the channels,
2. c!m appends the message m ∈ Σ to the end of the static channel c ∈ C,
3. c?m removes the message m ∈ Σ from the head of the static channel C ∈ C,
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4. send_channel(c) makes a copy of the content of the static channel c to a new dynamic
channel, and appends the new channel to the end of the sequence of dynamic channels.

5. receive_channel(c) copies the content of the rightmost dynamic channel to the static
channel c ∈ C and then removes this dynamic channel from the sequence of channels.

Configurations

A configuration d of D is a triple 〈s, ν, ω〉, where s ∈ S is a control state, ν ∈ (C → Σ∗) is a
function that represents the content of the set of static channels C, and ω ∈ (Σ∗)∗ is the
content of the sequence of dynamic channels, also called the dynamic part of D.

For configurations d1 = 〈s1, ν1, ω1〉, d2 = 〈s2, ν2, ω2〉, we say that d1 v d2 if s1 = s2,
ν1(c) v ν2(c) for all c ∈ C, and ω1 v ω2 (recall the definition of v from Section 2). Intuitively,
we derive d1 from d2 by deleting messages from the channels (both static and dynamic) and
by removing dynamic channels.

Transition Relation

We define the transition relation as the set −→D:=
(⋃

t∈∆
t−→D

)
∪ L−→D where

⋃
t∈∆

t−→D

is the union of transition relations induced by all transitions in ∆, and d1
L−→D d2 whenever

d2 v d1. The relation L−→D models the loss of messages and dynamic channels. For
configurations d1 = 〈s1, ν1, ω1〉, d2 = 〈s2, ν2, ω2〉, and a transition t = 〈s1, op, s2〉 ∈ ∆, we
have d1

t−→D d2 if one of the following conditions holds:

1. op = nop, ν1 = ν2, and ω1 = ω2.
2. c!m, ν2 = ν1[c 7→ m · ν1(c)], and ω2 = ω1. The message m is appended to the end of the

channel c.
3. c?m, ν1 = ν2[c 7→ ν2(c) ·m], and ω2 = ω1. The message m is received (deleted) from the

head of the channel c.
4. send_channel(c), ν1 = ν2, and ω2 = 〈ν1(c)〉 · ω1. A copy of the content of the static

channel c is appended (as a new channel) to the end of the dynamic part of D.
5. receive_channel(c), ν2 = ν1[c 7→ w], and ω1 = ω2 · 〈w〉. The content of the right-most

dynamic channel is copied to the static channel c ∈ C. The right-most dynamic channel
is then removed.

Reachability

The initial configuration of an DLCS D is defined by dinit := 〈sinit , νinit, ωinit〉 where
νinit(c) = ε for all c ∈ C, and ωinit = ε. In other words, D is initiated from a configuration
where it is in its initial control state, all the static channels are empty, and the sequence of
dynamic channels is empty (no channel has yet been appended). We define the control state
reachability problem (or simply the reachability problem in the sequel) in a similar manner
to the case of TLCS (cf. Section 3). Notice that the checking the reachability of a control
state s can translated to the coverability problem dinit

∗−→D 〈s, νinit, ωinit〉↑.

I Lemma 4. Any transition system 〈Γ,−→,v〉 induced by a DLCS is well quasi-ordered.

Proof. We prove the lemma by showing that each of the four conditions in the definition of
well quasi-ordered transition systems given in Section 2 holds.
1. The ordering defined is clearly computable.
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2. Since any finite set is well quasi-ordered and also tuples and words over well quasi-ordered
sets are well quasi-ordered [21], the ordering v as defined on configurations is a well
quasi-ordering.

3. Assume d1 −→ d2 and d1 v d3. From the definition of −→, we get that d3
L−→ d1, and

by transitivity we immediately get d3
∗−→ d2. Thus, −→ is monotone wrt. v.

4. Assume a configuration d = 〈s, ν, ω〉. We define min (Pre ({d}↑)) :=
min

(⋃
t∈∆ min (Pre (t) ({d}↑)) ∪ {d}

)
, where Pre (t) ({d}↑) = {d1 | ∃d2 ∈ {d}↑ . d1

t−→D
d2} is the predecessor relations wrt. the transition t ∈ ∆. Consider a transition t =
〈s1, op, s2〉 ∈ ∆. We define min (Pre (t) ({d}↑)) as a set A with the following properties.
If s 6= s2 then A := ∅. Otherwise, we have:

If op = nop then A = {〈s1, ν, ω〉}.
If op = c!m and ν(c) is of the form m · w then A := {〈s1, ν[c 7→ w], ω〉}.
If op = c!m, ν(c) is of the form m′ · w, and m′ 6= m, then A := {〈s1, ν, ω〉}.
If op = c?m then A := {〈s1, ν[c 7→ w ·m], ω〉}.
If op = send_channel(c) and ω is of the form 〈w〉 · ω′ then
A := min ({〈s1, ν[c 7→ w′], ω〉| (ν(c) v w′) ∧ (w v w′)} ∪ {〈s1, ν, ω〉})
If op = send_channel(c) and ω = ε then A := {〈s1, ν, ω〉}.
If op = receive_channel(c) then A := {〈s1, ν[c 7→ ε], ω · 〈ν(c)〉〉}.

J

From this and Theorem 1 we get the following theorem.

I Theorem 5. The reachability problem is decidable for DLCS.

5 From TLCS to DLCS

In this section, we show how we can encode a TLCS by a DLCS such that we preserve control
state reachability. This enables us to extend decidability of the reachability problem from
DLCS to TLCS.

I Theorem 6. The reachability is decidable for TLCS.

Given an instance of the reachability problem, defined by a TLCS T = 〈S, sinit , C,M,X,∆〉
and a control state s ∈ S, we construct an equivalent instance of the reachability problem,
defined by a DLCS D =

〈
SD, sDinit , C

D,ΣD,∆D
〉
(that we derive from T ) and the (same)

control state s (as we shall see, all control states in S belong also to SD). The idea of the
proof is inspired in parts by the region construction for timed automata [8]. A major difficulty
in our case is the fact that we have unboundedly many ages to keep track of, and the fact
that we also have to keep track of the ordering of an unbounded number of messages inside
the channels. We will describe the ingredients of the encoding (the derivation of D from T )
step by step. First, we will introduce the set CD of channels and the alphabet ΣD for such
channels, then we will define the encoding into a configuration of D of a configuration of
T . We will then define a set of meta-transitions, to aid us in the final task of this section,
namely presenting how to simulate a run of T using our encoding D.

Below, let kmax be the largest integer that occurs in the definition of any interval in ∆.

ΣD and CD

As in the case of timed automata, we conclude that it is not meaningful to keep track of
exact values of clocks and exact ages of messages beyond kmax. Each message in m with
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age r traveling inside a channel c in T will be encoded by a pair 〈〈c,m〉 , j〉 in D where
j = Int(r) if r ≤ kmax and j = ∞ if r > kmax. The message m thus belongs to the set
Σm := (C ×M) ×

(
[kmax]0 ∪ {∞}

)
. We will use three types of channels in D to store

messages. First, we use a static channel c0 to store messages whose ages are ≤ kmax and
whose fractional parts are zero. Second, we use the dynamic part to store messages whose
values are ≤ kmax and whose fractional parts are strictly positive. Messages stored in the
same dynamic channels encode messages in T that have identical fractional parts. The
fractional parts of messages inside different dynamic channels have increasing fractional parts
as we move from left to right. Finally, we use a static channel c∞ to store messages whose
ages are > kmax

We will also encode the clocks of T as messages in the channels of D. To that end we
define Σx := X ×

(
[kmax]0 ∪ {∞}

)
. A clock x will then be represented by a pair 〈x, j〉 that

will be interpreted in a similar manner as above. Throughout the simulation, we will satisfy
the invariant that at most one copy of each clock x will be present inside the channels of D.
For messages from the set Σm ∪ Σx, we refer to the second component of the tuple as the
age of the message.

Finally, for technical reasons, we will use a special sentinel message # and a temporary
channel ctmp. In summary we define ΣD := Σm ∪Σx ∪ {#}, and define CD := {c0, c∞, ctmp}.

Encoding of Configurations

We show how to abstract (encode) configurations of T by configurations of D. For each
configuration in T we will define a set α(γ) of configurations in D. In our simulation, all these
configurations will have equivalent behaviors and any one of them may be chosen to represent
γ. The abstraction relies crucially on a property satisfied by all configurations that arise in a
run of T . More precisely, since T is normalized (cf. Section 3), the ages of messages inside
any channel are sorted (if 〈m1, r1〉 is in on the left of 〈m2, r2〉 then r1 ≤ r2). Furthermore,
the ordering in which the messages occur inside the channel reflects the ordering in which
they were sent to the channel (in particular, this holds even if r1 = r2).

We present the encoding in several steps. First, we define some operations on words
w ∈

(
((C ×M) ∪X)× R≥0)∗. Let r ∈ [0, 1) and u = 〈σ′1, a′1〉 · · · 〈σ′n, a′n〉 be the longest

subword of w such that Frac(a′i) = r for all i. We define the fractional projection of w with
respect to r, written w|r, as the word 〈σ′1, Int(a′1)〉 · · · 〈σ′n, Int(a′n)〉. In other words, w|r is
obtained by (i) constructing the subword of w that consists of only pairs where the fractional
part of the age is equal to r, and (ii) removing r from the age of each message in the sequence.

Consider a configuration γ = 〈s, ν, ω〉. We will partition the messages and the clocks
depending on whether their ages exceed kmax or not. For a channel c ∈ C such that ν(c) =
(m1, a1)(m2, a2) · · · (mn, an), let k be the greatest i such that ai ≤ kmax. We define the two
words c≤kmax := 〈〈c,m1〉 , a1〉 · · · 〈〈c,mk〉 , ak〉 and c>kmax := 〈〈c,mk+1〉 ,∞〉 · · · 〈〈c,mn〉 ,∞〉
that we call the young and the old messages in c respectively. Next, we give a similar
construction for the clocks. More specifically, we let x≤kmax = 〈x1, X(x1)〉 · · · 〈xk, X(xk)〉 where
x1 · · ·xk is an arbitrary enumeration of all x ∈ X such that X(x) ≤ kmax. We call the elements
in x≤kmax the young clocks. Similarly we define x>kmax as a word 〈xk+1,∞〉 · · · 〈xn,∞〉 where
xk+1 · · ·xn is an arbitrary enumeration of all x ∈ X such that X(x) > kmax. Let c1, c2, . . . , cl
be an enumeration of C. We define u := (c≤kmax

1 · c≤kmax

2 · · · c≤kmax

l · x≤kmax), i.e., u is
the concatenation of young parts of all the channels, and the young clocks. Finally, let
r1 < r2 . . . < rj be all strictly positive fractional parts occurring in some c≤kmax

i or in x≤kmax .
Now we can define the abstraction of γ, written α(γ), as the set of all d = 〈q, ν, ω〉 where
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q = s

ν is the function such that ν(ctmp) = ε, ν(c0) = (u)|0 and ν(c∞) = c>kmax
1 ·c>kmax

2 · · · c>kmax

l ·
x>kmax .
ω =

〈
(u|)r1

〉
· · ·
〈
(u)|rj

〉
.

In other words: (i) the abstraction preserves the control state, (ii) all messages and clocks
that are ≤ kmax and have zero fractional parts, are put in c0, where the relative order of
elements in the same channel is preserved, (iii) all messages and clocks that are > kmax
are put in c∞, again with relative order preserved, and (iv) the dynamic channel vector is
constructed by building a word for each positive fractional part, and order them by these
fractional parts.

Intuitively, the abstraction preserves the following invariants:
Any message or clock with an age not greater than kmax is translated into a message
consisting of the same message or clock, and and its original age with the fractional part
stripped.
Any two messages, a message and a clock, or two clocks, with age less than or equal to
kmax will end up in the same channel in the abstracted system if and only if they have
the same fractional part of their age in T . For pairs of messages from the same channel
in T , their relative order in the channel in D will be the same as their relative order in T .
For any two messages, a message and a clock, or two clocks, with age less than or equal
to kmax, the one with the greater fractional part will end up to the right of one with the
smaller fractional part.
Any two messages with an age greater than kmax will end up in the c∞, with their relative
order preserved.

Meta-Transitions

We start by defining some meta-transitions (see Figure 1 in the appendix for more details)
for the DLCS, allowing us to compactly describe the simulation. Each meta-transition
consists of a finite set of ordinary DLCS transitions, possibly containing loops and passing
through a number of temporary states. Note that even though the meta transitions might
cause an execution of our system to block because of picking the wrong branch in some
nondeterministic choice, this is not a problem since we are only interested in the study of
safety properties. The meta-transition are defined as follows:

empty(c): empties the channel c, by receiving all possible messages.
copy(c1, c2): copies the content of channel c1 into channel c2, overwriting any previous
content, while c1 remains unchanged.
filter(c,Σ): filters the channel c, such that only elements from Σ remain.
map(c, f), acts on the channel c by replacing each message σ with f(σ).
HasElementsFrom(c,Σ): enforces that there is at least one element in the channel c from
the set Σ. If this is not the case, the simulation blocks. HasElementsFrom(ω,Σ) performs
the same operation on the set of dynamic channels rather than on a static channel c.
HasNoElementsFrom(c,Σ), enforces that there no element in the channel c from the set
Σ. If this is not the case, the simulation blocks. HasNoElementsFrom(ω,Σ) is defined
analogously.
ReceiveFromSet(c,m,Σ) receives (deletes) the message m from c but only if the following
condition holds. Search for the first (rightmost) occurrence of a message m′ ∈ Σ in c. If
m′ = m then it is deleted. If m′ 6= m or c does not contain any messages from Σ, the
simulation blocks. ReceiveFromSet(ω,m,Σ) is defined analogously for the dynamic part,
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namely the search is carried out through all the channels from right to left. For a given
channel, we search from right to left.

Simulation of Discrete Transitions

Each transition t = 〈s1, op, s2〉 ∈ ∆ is simulated using a set of transitions in ∆D as follows:
If t = nop, we let 〈s1, nop, s2〉 ∈ ∆D.
If t = c!m, we let 〈s1, c0!〈〈c,m〉 , 0〉, s2〉 ∈ ∆D. In other words, we send the message m,
tagged with the identity of the channel, to c0. This reflects the fact that initial ages of
messages are set to 0 (since T is normalized).
If t = c?m ∈ I. This is the most complicated case. We need to search the dynamic
channels and also the static channels c0 and c∞ in D in order to find the message
corresponding to the rightmost message in c. If this message is m then we delete it,
otherwise we block the simulation. This is carried out in two steps, namely (i) guessing:
we non-deterministically “guess” the age of the message, and (ii) checking: for the given
guess, we check that there is no other messages in channel c that are older than the current
one. Concretely, in the guessing step we assume that the message has an age which is
either (i) k ∈ [kmax]0 for some integer k ∈ I, or (ii) in the interval (k, k + 1) for some
k ∈ [kmax − 1]0 where (k, k + 1) ⊆ I, or (ii) in the interval (kmax,∞) if (kmax,∞) ⊆ I.
The guessing part of the receive transition is depicted in Figure 2 in the Appendix. The
checking step is carried out depending on the guessed age of the message as follows:

Guess k ∈ [kmax]0. We use (i) HasNoElementsFrom(c∞,Σ1) where Σ1 = (({c} ×M)× {∞}),
(ii) HasNoElementsFrom(ω,Σ2) where Σ2 = (({c} ×M)× {` | k ≤ ` ≤ kmax}), and (iii)
HasNoElementsFrom(c0,Σ3) where Σ3 = (({c} ×M)× {` | k < ` ≤ kmax}), to ensure
that c does not contain any message older thanm. Then, use ReceiveFromSet(c0,m,Σ4)
where Σ4 = (({c} ×M)× {k}) to try to receive m. This is shown in Figure 3 the
Appendix.
Guess (k, k + 1) for some k ∈ [kmax − 1]0. We use (i) HasNoElementsFrom(c∞,Σ1),
(ii) HasNoElementsFrom(ω,Σ3), and (iii) HasNoElementsFrom(c0,Σ3) to ensure that c
does not contain any message older than m. Then, use ReceiveFromSet(ω,m,Σ4) to
try to receive m. This type of checking can be seen in Figure 4 in the Appendix.
Guess (kmax,∞). Use ReceiveFromSet(c∞,m,Σ1) to try to receive m. This last type
of checking can be seen in Figure 5 in the Appendix.

If t = x ∈ I then we guess the value of x according to one of the three forms described in the
previous case. Since we satisfy the invariant that there is at most one message representing
x in the channels of D, the simulation is simpler in this case. More precisely, if we guess
the age of x to be k for some k ∈ [kmax]0 then we use HasElementsFrom(c0, {〈x, k〉}). If
we guess (k, k + 1) for some k ∈ [kmax − 1]0 then we use HasElementsFrom(ω, {〈x, k〉}).
Finally, if we guess (kmax,∞) then we use HasElementsFrom(c∞, {〈x,∞〉}).
If t = x ← 0, we simply remove the message representing x from the channels of
D, and then send it again with age 0 to c0. Concretely, we non-deterministically use
ReceiveFromSet(c0, 〈x, i〉 , ({x} × [kmax]0)), ReceiveFromSet(ω, (x, i), ({x} × [kmax]0)), or
ReceiveFromSet(c∞, 〈x,∞〉 , {〈x,∞〉}) where i ∈ [kmax]0. After that, we know that we
have no message representing x in the channels of D anymore, so we add an operation
c0!〈x, 0〉 to send 〈x, 0〉 to c0. the clock has been reset.
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Simulating Timed Transitions

We show how to simulate timed transitions of the form 〈s, X, ν〉 δ−→T 〈s, X′, ν′〉 for some
δ > 0. We distinguish between two cases, namely (i) there is at least one message or clock
with value (≤ kmax) and a zero fractional part (i.e., c0 6= ε), and (ii) that no such message or
clock exists (i.e., c0 = ε):

In the first case, we can let time pass by a sufficiently small real number, such that
no clock with a positive fractional part before the transition reaches the next integer
value after the transition. The contents of c0 will be divided between messages that
will be transferred to c∞ (representing message ages and clocks values equal to kmax);
and messages that will placed in a new channel at the leftmost position in the dynamic
part (representing message ages and clock values < kmax). Concretely, we perform the
following steps: (i) we use copy(c0, ctmp) to copy the contents of c0 to the temporary
channel ctmp. (ii) we use filter(ctmp,Σ1) where Σ1 = (X × {kmax})∪ ((C ×M)× {kmax})
to only keep messages with ages equal to kmax in ctmp. (iii) We send the messages of ctmp
one after one to c∞, changing the second component from kmax to ∞ for each message.
(iv) We use filter(c0,Σ2) where Σ2 =

(
X × [kmax − 1]0

)
∪
(

(C ×M)× [kmax − 1]0
)
to

only keep messages with ages < kmax in c0. (v) We send the content of c0 to the dynamic
part using send_channel(c0). (vi) We use empty(c0) to empty c0.
In the second case, we let time pass by exactly the amount needed to make the clock
values and the message ages in the rightmost dynamic channel equal to the next integer.
Let f ∈ ((Σm ∪ Σx)→ (Σm ∪ Σx)) be a function that maps 〈〈c,m〉 , i〉 to 〈〈c,m〉 , i+ 1〉
and 〈x, i〉 to 〈x, i+ 1〉 for any c ∈ C, m ∈ M , x ∈ X, and i ∈ [kmax − 1]0. We use
receive_channel(c0) to move the contents of the rightmost dynamic channel to c0. Then,
we use map(c0, f) to increase the integer parts of clock values and message ages by one.

Simulating Lossy Transitions

Since we have lossiness in D, the simulation is immediate.

6 Conclusions, Discussion, and Future Work

We have shown the decidability of the reachability problem for TLCS, a model that extends
both lossy channel systems and timed automata. To this end, we have introduced a new
model, namely TLCS that operates on second-order lossy channels. We believe that TLCS
are interesting in their own. In fact, we can define higher-order LCS that contain “nested
stacks of stacks” of arbitrary depth, in a similar manner to higher-order pushdown automata
[20]. It is straightforward to extend the method we present in this paper to show that
transition systems induced by higher-order LCS are also well quasi-ordered and hence their
reachability problem is decidable. To simplify the presentation (and since it suffices for
our purposes) we have chosen to present the proof only for the case where the hierarchy is
restricted to two levels (i.e., DLCS).

The proof techniques we provide in this paper are entirely different from the ones earlier
presented for other timed models. For instance, decidability of the reachability (coverability)
problem for timed Petri nets [7] is achieved by directly proving that the induced transition
system is well quasi-ordered. In particular, in contrast to our method, the proof does not
rely on a translation to an untimed model. On the other hand, the proof for timed pushdown
systems [3] reduces the problem to the underlying untimed model, i.e., (untimed) pushdown
automata. Although, we here provide a reduction to an untimed model, the target model
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is more powerful than the original one (DLCS vs. plain LCS). Indeed, we believe that a
translation from TLCS to plain LCS that preserves reachability properties is not possible.

As future work, we will consider probabilistic and game extensions of the current model.
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A Proof of Lemma 2

Lemma 2. The reachability problem for TLCS can be reduced to that for message-normalized
TLCS.

Proof. Consider a TLCS T = 〈S, sinit , C,M,X,∆〉. We construct a message-normalized
TLCS T ′ = 〈S, sinit , C,M

′, X,∆′〉 such that a state s ∈ S is reachable in T if and only if s is
reachable in T ′. We show how to encode the interval from which the initial age of a message
is selected into the message itself. We also have to change the receive operation to take this
encoding into account. The encoding postpones the selection of an initial age for a message
until the point when it will be received. Since messages cannot be inspected mid-channel,
there is no way for a message to affect the run except for when it is to be received. Let IT be
the (finite) set of intervals occurring in t ∈ ∆ and let M ′ = M × IT . Let ∆′ be the smallest
set that fulfills the following conditions

If 〈s1, op, s2〉 ∈ ∆ and op ∈ {nop, x ∈ I, x← I}, then 〈s1, op, s2〉 ∈ ∆′.
If 〈s1, c!(m ∈ I), s2〉 ∈ ∆, then 〈s1, c!((m, I) ∈ [0, 0]), s2〉 ∈ ∆′. Here we send the interval
as part of the message, and set the initial age to 0.
If 〈s1, c?(m ∈ [k1, k2]), s2〉 ∈ ∆, then 〈s1, c?((m, [k3, k4]) ∈ [max(0, k1 − k4), k2 − k3]), s2〉 ∈
∆′ for all [k3, k4] ∈ I, unless k2− k3 < 0. Here we add a transition to receive the message,
taking into account all possible intervals that could have been used to pick the initial age
in T , and shift the original interval that constrains the age of the message to accommodate
any possible initial age. If the interval would become empty (i.e. k2 − k3 < 0), we simply
ignore the transition, as there is no way for such messages to be received within this
time constraint. For messages and receive operations with open or half-open intervals,
the construction is analogous. Note that this translation might give rise to multiple
transitions in ∆′ for a single transition in ∆.

Then, it is easy to see that the state s ∈ S is reachable by T iff s is reachable by T ′. J

B Proof of Lemma 3

Lemma 3. The reachability problem for TLCS can be reduced to that for clock-normalized
TLCS.

Proof. Consider a TLCS T = 〈S, sinit , C,M,X,∆〉. We construct a clock-normalized TLCS
T ′ = 〈S′, s′init , C,M,X ′,∆′〉 such that the state reachability problem for T can be reduced
to the its corresponding one for T ′. We will encode the interval from which the initial value
of a clock is selected in the control state of the TLCS. A proof of the current lemma for the
class of timed automata (i.e., TLCS with an empty set of channels) can be found in [14] for
more general kinds of reset (or update) operations. We provide here a simple proof for TLCS.

Let kmax ∈ N be the greatest integer occurring in any interval in ∆. We assume w.l.o.g.
that any interval occurring in the transitions of the TLCS T is of one of the following forms:
(1) [i, i] with 0 ≤ i ≤ kmax, (2) (j, j + 1) with 0 ≤ j < kmax, and (3) (kmax,∞).

To simplify the presentation, we use the meta transition 〈q1, op1, op2, . . . , opm, q2〉 ∈ ∆′
to denote the sequence of consecutive transitions 〈q1, z ← 0, p1〉, 〈p1, op1, p2〉, 〈p2, op2, p3〉,
. . . , 〈pm, opm, pm+1〉, 〈pm, z ∈ [0, 0] , q2〉 in ∆′ where z resp. p1, p2, . . . , pm+1 are extra (inter-
mediate) clock resp. states of T ′ that are not used anywhere else (and may be omitted from
the definition of the set of clocks and states of T ′). Observe that z is only used to ensure
that the sequence of operations op1, op2, . . . , opm is performed by T ′ in zero time unit.
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Let IT be the (finite) set of intervals of the form: (1) [i, i] with 0 ≤ i ≤ kmax, (2) (j, j+ 1)
with 0 ≤ j < kmax, and (3) (kmax,∞). We construct the TLCS T ′ as follows (while omitting
the intermediate states and clocks). For each state s ∈ S, we associate the set of states of T ′
of the form (s, µ) where µ ∈ (X → IT ). Intuitively, a state of the form (s, µ) means that the
state of T is s, and the interval in which the clock x ∈ X was reset for the last time is µ(x).
This represents all the (non-intermediate) states of T . The initial state of T ′ is defined by
the pair (sinit , µinit) where µinit(x) = [0, 0]. The set of (non-intermediary) clocks of T ′ is
defined by the set X ∪ {x′ |x ∈ X}. The clock x′ /∈ X is a fresh copy of the clock x ∈ X
used in the simulation.

Let us explain the intuition behind the reduction. Let us assume that T performs a
transition that sets the clock x in an interval I, then T ′ sets the clock x to zero while keeping
track of the interval I in its control state (by updating µ(x) to I). In the case that I is of
the form (i, i+ 1) with 0 ≤ i < kmax, T has assigned non-deterministically a value to x from
(i, i+ 1) while T ′ has set x to zero. Then, the TLCS T ′ guesses the moment at which the
clock x of T gets the value (i+ 1) by non-deterministically checking if its clock x is in (0, 1)
(the needed time for the clock to reach i+ 1), then sets its clock x to zero and update its
mapping µ(x) to [i+ 1, i+ 1].

Let us assume that T performs a transition that checks if the value of the clock x ∈ X is
in some interval I ′. Then, there are three cases to consider depending on the form of the
interval I in which the clock x was reset by T for the last time (and which is stored by T ′ in
its control state). Let us consider that I is of the form [i, i] with 0 ≤ i ≤ kmax. Then, it is
sufficient for T ′ to verify that the value of the clock x augmented with i is in I ′. If I ′ is of
the form (j, k) (resp. [j, j]) then T ′ checks if x is in (j − k, k − i) (resp. [j − i, j − i]). In the
case where I is of the form (kmax,∞), T ′ checks if I = I ′. The most complicated case is
where I is of the form (i, i+ 1) with 0 ≤ i < kmax. In this case T ′ checks that I ′ = I and
that clock x in (0, 1). (Observe that if I ′ 6= I then this case is reduced to the case where
I = [i+ 1, i+ 1] as shown in the previous paragraph). Moreover, T ′ sets the fresh copy x′
of x to zero. This is done to ensure that some time elapses between the moment that this
transition is performed and the moment that T ′ simulates a reset operation of x to i + 1.
Thus, when T ′ guesses the moment at which the clock x of T gets the value (i+ 1) it checks
that the value of clock x′ is strictly positive.

Formally, the set of transitions of T ′ is defined as the smallest set satisfying the following
conditions:

For every transition 〈s1, op, s2〉 ∈ ∆ with op ∈ {nop, c!(m ∈ I), c?(m ∈ I)}, we have
〈(s1, µ), op, (s2, µ)〉 ∈ ∆′ for all µ ∈ (X → IT ).

For every transition 〈s1, x← I, s2〉 ∈ ∆, we have 〈(s1, µ), x← [0, 0], (s2, µ
′)〉 ∈ ∆′ for all

µ, µ′ ∈ (X → IT ) such that µ′ = µ[x 7→ I].

For every state s ∈ S, clock x ∈ X, and mapping µ ∈ (X → IT ) such that µ(x) = (i, i+1)
with 0 ≤ i < kmax, we have 〈(s, µ), x ∈ (0, 1), x′ ∈ (0,∞), x← [0, 0], (s2, µ[x 7→ [i+ 1, i+ 1]])〉 ∈
∆′. This means that the clock x was reset, for the last time, by T in the open interval
(i, i+ 1). Assignment of a non-deterministic value of x in (i, i+ 1) is simulated in T ′ by
waiting that some amount time elapses between (0, 1) by checking that the value of the
clock x ∈ (0, 1). Then, T ′ simulates a fictive reset transition of T that sets x to i + 1.
This done by storing the interval [i+ 1, i+ 1] in the control state of T ′.

For every i, j ∈ [kmax]0, transition 〈s1, x ∈ [i, i], s2〉 ∈ ∆, and mapping µ ∈ (X → IT )
such that µ(x) = [j, j], we have 〈(s1, µ), x ∈ [i− j, i− j], (s2, µ)〉 ∈ ∆′.
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For every j ∈ [kmax]0, i ∈ [kmax − 1]0, transition 〈s1, x ∈ (i, i+ 1), s2〉 ∈ ∆, and mapping
µ ∈ (X → IT ) such that µ(x) = [j, j], we have 〈(s1, µ), x ∈ (i− j, i− j), (s2, µ)〉 ∈ ∆′.
For every j ∈ [kmax]0, transition 〈s1, x ∈ (kmax,∞), s2〉 ∈ ∆, and mapping µ ∈ (X → IT )
such that µ(x) = [j, j], we have 〈(s1, µ), x ∈ (kmax − i,∞), (s2, µ)〉 ∈ ∆′.
For every transition 〈s1, x ∈ (i, i+ 1), s2〉 ∈ ∆, and mapping µ ∈ (X → IT ) such that
µ(x) = (i, i+ 1) with 0 ≤ i < kmax, we have 〈(s1, µ), x ∈ [0, 1), x′ ← [0, 0], (s2, µ)〉 ∈ ∆′.
For every transition 〈s1, x ∈ (kmax,∞), s2〉 ∈ ∆, we have 〈(s1, µ), x ∈ (0,∞), (s2, µ)〉 for
all µ ∈ (X → IT ) such that µ(x) = (kmax,∞).

Then, it is easy to see that a s ∈ S is reachable in T if and only if a state of the form
(s, µ) is reachable in T ′. J

C Detailed Description of Transitions

Meta-Transitions in Detail

In Figure 1, the details on how to construct each meta-transition used in the simulation
in Section 5 is presented. The transitions have the following meaning. A transition of the

form q q’
op(σ) : σ ∈ Σ

represents potentially several different transitions. Its intended
meaning is that there is one transistion from q to q′ of the type op(σ) for each symbol σ ∈ Σ.

A transition of the form q q’
op1, . . . , opn

is taken to mean that there are auxiliary states
q1, . . . , qn−1 and n transitions q −→ q1 −→ . . . −→ qn−1 −→ q′ such that the ith transition
is of the form opi. We assume that any auxiliary states are to not also be included in
another transition sequence. Combining the two notations, leading to a transition of the

form q q’
op1(σ), . . . , opn(σ) : σ ∈ Σ

should be interpreted as there being one transition

of the form q q’
op1 . . . opn

for each σ ∈ Σ. Note that this means that each sequence
induced by a different σ is disjoint except for the starting and ending state.

Simulating The Receive Operation

As described in Section C translation of the TLCS transition 〈s1, c?m ∈ I, s2〉 is done in
the following way. For each integer k ≤ kmax in the interval I, an intermediate state q[k,k]
is used. For each open interval of the form (k, k + 1) ⊆ I, an intermediate state q(k,k+1)
is used. If (k,∞) ∈ I, then an intermediate state q[k,∞] is used. With these intermediate
states, transitions like in Figure 2 are constructed. Note that Figure 2 is constructed from
an interval that is closed to the left and open to the right. We may have any interval, and
the transitions need to be modified accordingly.

For each intermediate state q, we add transitions like in Figure 3, 4 or 5.
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s1 q0 s2
c!#

c?σ : σ ∈ Σm ∪ Σx

c?#
empty(c) :

s1 q0 q1 s2
empty(c2) c1!#

c1?σ, c1!σ, c2!σ : σ ∈ Σm ∪ Σx

c1?#
copy(c1, c2) :

s1 q0 s2
c!#

c?σ, c!σ : σ ∈ Σ

c!σ : σ ∈ (Σm ∪ Σx) \ Σ

c?#
filter(c,Σ) :

s1 q0 s2
c!#

c?σ, c!f(σ) : σ ∈ Σm ∪ Σx

c?#
map(c, f) :

s1 q0 s2
c!#

c?σ, c!σ : σ ∈ (Σm ∪ Σx) \ Σ

c?#
HasNoElementsFrom(c,Σ) :

s1 q0 q2 s2
c!#

c?σ, c!σ : σ ∈ (Σm ∪ Σx) \ Σ

c?σ, c!σ : σ ∈ Σ
c?σ, c!σ : σ ∈ Σm ∪ Σx

c?#
HasElementsFrom(c,Σ) :

s1 q0 q2 s2
c!#

c?σ, c!σ : σ ∈ (Σm ∪ Σx) \ Σ

c?m

c?σ, c!σ : σ ∈ Σm ∪ Σx

c?#
ReceiveFromSet(c,m,Σ) :

Figure 1 The definition of the meta-transitions. The definitions of HasElementsFrom(ω,Σ),
HasNoElementsFrom(ω,Σ), and ReceiveFromSet(ω, σ,Σ) are analogous to the last three, but we also
use ctmp to cycle through all the channels in ω instead of just cycle through a specific channel.
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s1

q(i+1,i+2)q[i+1,i+1]q(i,i+1)q[i,i] · · · q(j−1,j)

nop nop nop nop nop

Figure 2 Transitions that simulates the guessing of the interval containing k

q[k,k]

s2

HasNoElementsFrom(c∞, (({c} ×M)× {∞}))

HasNoElementsFrom(ω, (({c} ×M)× {k, . . . , kmax}))

HasNoElementsFrom(c0, (({c} ×M)× {k + 1, . . . , kmax}))

ReceiveFromSet(c0, ((c,m), k), (({c} ×M)× {k}))

Figure 3 Transitions that simulate checking if the guess of [k, k] is correct.
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q(k,k+1)

s2

HasNoElementsFrom(c∞, (({c} ×M)× {∞}))

HasNoElementsFrom(ω, (({c} ×M)× {k + 1, . . . , kmax}))

HasNoElementsFrom(c0, (({c} ×M)× {k + 1, . . . , kmax}))

ReceiveFromSet(ω, ((c,m), k), (({c} ×M)× {k}))

Figure 4 Transitions that simulate checking if the guess of (k, k + 1) is correct.

q(kmax,∞)

s2

ReceiveFromSet(c∞, ((c,m),∞), (({c} ×M)× {∞}))

Figure 5 Transitions that simulate checking if the guess of (k,∞) is correct.
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(m1,1, a1,1) (m2,1, a2,1) . . . (mi1,1, ai1,1)

(m1,2, a1,2) (m2,2, a2,2) . . . (mi2,2, ai2,2)

...

(m1,k, a1,k) (mk,2, ak,2) . . . (mik,k, aik,k)

k channels

x1 : t1 x2 : t2 . . . xn : tn

n clocks

Figure 6 A TLCS configuration with n clocks, clock xi having value ti, and k channels, where
channel j contains ij messages.

(x2, 0)

((c1,m1), 0)

((c2,m2), 2)

(x1, 1)

((c1,m2), 4)

((c1,m2), 1)

((c1,m1), 5)
(x4, 3)

((c2,m2),∞)

(x3,∞)

c0 .3 .4 .6 c∞

x1 : 1.3 x2 : 0 x2 : 7 x4 : 3.6

(m1, 0) (m2, 1.4) (m2, 4.3) (m1, 5.4)

(m2, 2) (m2, 8.1)

c1:

c2:

Figure 7 Show the translation of a TLCS with 4 clocks and 6 messages in its channels, into a
DLCS. Note that since there is a message in ω with integer part 5 and x3 is in c∞, we can conclude
that kmax = 6.
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