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Abstract. We propose a verification method for parameterized sys-
tems with global conditions. The method is based on context-sensitive
constraints, a symbolic representation of infinite sets of configurations
defined on top of words over a finite alphabet. We first define context-
sensitive constraints for an exact symbolic backward analysis of para-
meterized systems with global conditions. Since the model is Turing
complete, such an analysis is not guaranteed to terminate. To turn the
method into a verification algorithm, we introduce context-sensitive con-
straints that over-approximate the set of backward reachable states and
show how to symbolically test entailment and compute predecessors. We
apply the resulting algorithm to automatically verify parameterized mod-
els for which the exact analysis and other existing verification methods
either diverge or return false positives.

1 Introduction

We consider verification of safety properties for parameterized systems with uni-
versal and existential global conditions. Typically, such a system consists of an
arbitrary number of processes organized in a linear array. Global conditions are
used as guards. An example of a universally quantified global condition is that
all processes to the left of a given process i should satisfy a property ϕ. Process
i can perform the transition only if all processes with indices j < i satisfy ϕ. In
an existential condition we require that some (rather than all) processes satisfy
ϕ. The task is to verify correctness regardless of the number of processes.

In [3] we have proposed a light-weight verification method for parameterized
systems based on monotonic abstraction with the aim of avoiding the use of
the full power of automata and regular languages (which require heavy manip-
ulations like the use of transducers [21,14,7,9]). The main idea of the method
in [3] is to consider a transition relation that is an over-approximation of the
one induced by the parameterized system. To do that, we modify the seman-
tics of universal quantifiers by eliminating the processes that violate the given
condition (downward closed semantics). The obtained approximate transition
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system is monotonic with respect to the subword relation (larger configurations
are able to simulate smaller ones). Since the approximate transition relation is
monotonic, it can be analyzed using a symbolic backward reachability algorithm
based on a generic method introduced in [2]. The algorithm operates on upward
closed sets of configurations (with respect to the subword relation) and uses sym-
bolic operations that are much simpler than transducers and regular languages.
The PFS tool [3] that implements this technique can thus be applied to verify
safety properties for configurations with any number of processes. Monotonic
abstraction has proven successful in verifying a wide range of parameterized,
distributed, and heap manipulating systems [3,5,4,6,1]. However, it may return
false positives due to a loss of precision in the representation of special witness
processes. We give an example of a system where such a situation occurs.

An example in which monotonic abstraction may return false positives is the
parameterized system where processes are represented in Fig. 1. Each process
has five local states q0, . . . , q4. All processes are initially in state q0. A process
in the critical section is at state q4. Note that the set of configurations violating
mutual exclusion contains exactly configurations with at least two occurrences
of symbol q4. Processes start crossing from q0 to q1, and then to state q2.

q0

q1 q2

q3q4

∀ {q0, q1, q4} ∀L {q0}
∃ {q2}

Fig. 1. State diagram of an individual
process

Once the first process has crossed to
state q2 it “closes the door” on the
processes which are still in q0. These
processes will no longer be able to leave
q0 until the door is opened again (when
no process is in state q2 or q3). Further-
more, a process is allowed to cross from
q3 to state q4 only if there is at least one
process still in state q2 (i.e., the door is
still closed on the processes in state q0).
This is to prevent a process first reaching
q4 and then a process to its left starting to move from q0 all the way to state
q4 (thus violating mutual exclusion). From the set of processes which have left
state q0 (and which are now in state q1 or q2) the leftmost process has the
highest priority. This is encoded by the global condition that a process may
move from q2 to q3 only subject to the global condition that all processes to
its left are in state q0 (this condition is encoded by the universal quantifier
∀L, where “L” stands for “Left”). A typical run of the system is of the form
q0q0q0q0 −→ q0q1q0q0 −→ q0q1q1q0 −→ q0q2q1q0 −→ q0q2q2q0 −→ q0q3q2q0 −→
q0q4q2q0 −→ q0q0q2q0. The protocol satisfies mutual exclusion. Consider now the
abstract transition system computed by applying monotonic abstraction. From
the next-to-last configuration, the left most process can move (in the abstract
system) to q1. More precisely, the run may continue as follows in the abstract
system. q0q4q2q0 −→ q1q4q0 −→ q2q4q0 −→ q3q4q0 −→ q4q4q0. Notice that
monotonic abstraction removes the guard (the process in state q2) since it does
not satisfy the global condition of the rule q0 → q1 : ∀ {q0, q1, q4}. With this
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abstraction the door is opened again. This allows processes in q0 to move again,
enabling one of them to reach q4. This gives a false positive.

This kind of false positives arise typically in systems where correctness de-
pends on the existence of a witness process. For this reason, it is relevant to
study new approximations that can be used for more precise analysis than that
provided by monotonic abstraction. The challenge here is to preserve the posi-
tive features of the latter approach such as the use of simple data structures and
of a generic verification algorithm based on well-quasi orderings.

New Contribution. We propose a new verification algorithm based on an ap-
proximated context sensitive analysis that improves the precision of monotonic
abstraction. The method is guaranteed to terminate, and is based on relatively
simple symbolic data structures. We build the verification method in two steps.

We first define a symbolic representation, namely context-sensitive constraints,
that are a natural generalization of the constraints used in the monotonic ab-
straction framework. In monotonic abstraction a word w of process states
(referred to as the basis) is used as a symbolic representation of its upward
closure computed with respect to word inclusion. This implies that any type
of processes is allowed in between two consecutive states of the basis w (these
allowed processes are referred to as context). Context-sensitive constraints gen-
eralize this idea by introducing constraints on the type of processes that are
allowed to occur in each context. For each pair of consecutive states in the ba-
sis, constraints are expressed by using a subset R of states: only processes with
states in R are allowed in this context. This kind of constraints can be used to
exactly represent (one-step) predecessor configurations of a parameterized sys-
tem with global conditions. An analysis based on this kind of constraints is not
guaranteed to terminate in general. Furthermore, when testing in practice, even
on simple examples the number of generated constraints often explodes after
a few steps. Therefore, approximations are necessary to ensure both theoreti-
cal (e.g. using wqo theory) and practical termination (e.g. using more compact
representations).

The approximated method we propose in this paper works on constraints of
a special form, called simple context-sensitive constraints. In a simple context-
sensitive constraint we use a single subset of states, called the padding set, to
over-approximate the constraints on processes in each context. For this new sym-
bolic representation, we have the following properties. The entailment ordering
turns out to be a well-quasi ordering. The computation of predecessors is guaran-
teed to terminate and to return a finite representation of an over-approximation
of the exact set of predecessor configurations. Our abstract predecessor operator
incorporates accelerations in the computation of predecessors for ordered system
that are similar in spirit to widening operators used in the unordered case (as
those used in relation analysis for counter systems e.g. in [12,27,28]). Finally, the
constraint operations are much simpler and more efficient than those used in the
exact context-sensitive analysis. Since simple context-sensitive constraints can
represent upward closed sets of configuration computed with respect to word in-
clusion, the resulting over-approximation is guaranteed to be at least as precise
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as monotonic abstraction. However, in several practical examples it gives more
precise results (eliminates false positives).

As a first set of experiments, we have considered benchmark examples of
parameterized systems taken from [15,7,3,8]. The performance of the new veri-
fication algorithm is comparable with that of the PFS tool based on monotonic
abstraction [3]. We remark that in these examples exact analysis often diverges
or suffers from the symbolic state explosion problem. Furthermore, we also con-
sider several new case-studies that include both ordered systems like formu-
lations of Szymanski’s algorithm with non-atomic updates (semi-automatically
verified in [18,22,23]), and unordered concurrent systems like synchronization
skeletons [12,27,28] and reference counting schemes for virtual memory [16]. For
these examples monotonic abstraction often returns spurious error traces due
to a loss of precision in the representation of special processes (as in Szyman-
ski) or in the representation of counters. Our new verification algorithm elimi-
nates all the false positives and verifies the new case studies for any number of
processes/unbounded value of counters. We are not aware of other tools that can
automatically verify the same class of ordered/unordered parameterized models.

Plan of the paper. We describe our model of parameterized systems in the
next Section. Then, we introduce context-sensitive constraints in Section 3, and
simple-context sensitive constraints in Section 4. In Section 5, we discuss exper-
imental results. Finally, in Section 6 we discuss related and future work.

2 Model

For a set A, we use A∗ to denote the set of finite words over A, and use w1w2 to
denote the concatenation of two words w1 and w2 in A∗. For a natural number
n, we use n to denote the set {1, . . . , n}.

Formally, a parameterized system is a pair P = (Q, T ), where Q is a finite
set of local states, and T is a finite set of transitions. A transition is either local
or global. A local transition is of the form q → q′, where a process changes
state from q to q′ independently of the states of the other processes. A global
transition is of the form q → q′ : QP , where Q ∈ {∃L, ∃R, ∃LR, ∀L, ∀R, ∀LR} and
P ⊆ Q. Here, the process checks the states of the other processes. For instance,
the condition ∀LP means “all processes to the left are in states belonging to P”;
the condition ∀LRP means “all other processes (whether to the left or to the
right) are in states belonging to P”; and so on.

A parameterized system P = (Q, T ) induces an infinite-state transition system
(C,−→) where C = Q∗ is the set of configurations and −→ is a transition
relation on C. For a configuration c = q1q2 · · · qn, we define c• := {q1, . . . , qn}.
For configurations c = c1qc2, c′ = c1q

′c2, and a transition t ∈ T , we write c t−→ c′

to denote that one of the following conditions is satisfied:

– t is a local transition of the form q → q′.
– t is a global transition of the form q → q′ : QP , and one of the following

conditions is satisfied:
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• either QP = ∃LP and c1
• ∩ P �= ∅, QP = ∃RP and c2

• ∩ P �= ∅,
or QP = ∃LRP and (c2

• ∪ c2
•) ∩ P �= ∅.

• either QP = ∀LP and c1
• ⊆ P , QP = ∀RP and c2

• ⊆ P ,
or QP = ∀LRP and (c1

• ∪ c2
•) ⊆ P .

We use ∗−→ to denote the reflexive transitive closure of −→.
We define an ordering � on configurations as follows. Let c = q1 · · · qm and

c′ = q′1 · · · q′n be configurations. Then, c � c′ if c is a subword of c′, i.e., there is a
strictly increasing injection h from m to n such that qi = qh(i) for all i : 1 ≤ i ≤ n.

Given a parameterized system, we assume that, prior to starting the execu-
tion of the system, each process is in an (identical) initial state qinit . We use
Init to denote the set of initial configurations, i.e., configurations of the form
qinit · · · qinit (all processes are in their initial states). The set Init is infinite.

A set of configurations U ⊆ C is upward closed with respect to � if c ∈ U
and c � c′ implies c′ ∈ U . For a configuration c, we use ĉ to denote the upward
closure of c, i.e., the set {c′| c � c′}. For sets of configurations D, D′ ⊆ C we
use D −→ D′ to denote that there are c ∈ D and c′ ∈ D′ with c −→ c′. The
coverability problem for parameterized systems is defined as follows:

PAR-COV
Instance
– A parameterized system P = (Q, T ).
– A finite set CF of configurations.

Question Init ∗−→ ̂CF ?

It can be shown, using standard techniques (see e.g. [26]), that checking safety
properties (expressed as regular languages) can be translated into instances of
the coverability problem. Typically, ̂CF is used to characterize sets of bad con-
figurations which we do not want to occur during the execution of the system.
The system is safe iff ̂CF is not reachable. Therefore, checking safety properties
amounts to solving PAR-COV (i.e., to the reachability of upward closed sets).
In Example 1 the set of bad configurations is q̂4q4.

3 Exact Context-Sensitive Symbolic Analysis

Assume a parameterized system P = (Q, T ), where Q is a finite set of states.
In order to finitely represent infinite sets of system configurations (e.g. config-
urations of arbitrary size) we use the context-sensitive constraints defined in
this section. For the sake of clarity, we first present a simplified version of our
constraints and then discuss extensions we use in our implementation. We work
with words in A∗, where A = Q ∪ P(Q) and P(Q) denotes the set of subsets of
Q. We use p, q, . . . to denote states in Q, and P, R, . . . to denote sets of states
in P(Q). Furthermore, for w ∈ A∗ we use w• to denote the union of all states
in Q occurring in w either as one of its letters or listed in one of its sets. As an
example, for R = {q1, q2} we have that (Rq3R)• = {q1, q2, q3}.
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Definition 1. A context-sensitive (CC-)constraint is a word in A∗ of the form
R0q1R1 . . . qnRn, where qi ∈ Q for i : 1 ≤ i ≤ n and Ri ⊆ Q for i : 0 ≤ i ≤ n.
The configuration q1 . . . qn is called the basis and each set Ri is called a context.
The denotation of a context-sensitive constraint φ, written [[φ]], is the set of
configurations of the form c0q1c1 . . . qncn where ci ∈ R∗

i for i : 0 ≤ i ≤ n.

As an example, assume Q = {q1, q2, q3}, R0 = R1 = {q2, q3} and R2 = {q1, q3}.
The constraint φ defined as R0q1R1q2R2 denotes all configurations of the form
c0q1c1q2c2 such that sub-configurations c0 and c1 cannot contain processes q1

and sub-configuration c2 cannot contain occurrences of processes q2. Therefore,
configurations q3q1q3q2q1 and q3q1q3q3q2q1 belong to [[φ]], whereas q1q1q2 and
q1q3q2q2 do not belong to [[φ]]. Notice that CC’s of the form Qq1Q . . . qnQ denote
upward closed sets of states with respect to word inclusion (there are no con-
straints on the contexts). For instance, the set of bad states in Example 1 can
be characterized by the CC Qq4Qq4Q where Q = {q0, q1, q2, q3, q4}.

We now define the symbolic operations we use in our analysis, namely the
entailment and the predecessors computation on context-sensitive constraints.
These respectively correspond to the application, without any loss of precision,
of the inclusion and the predecessor operations on the associated denotations.

Entailment. For constraints φ = R0q1 . . . qnRn and φ′ = R′
0q

′
1 . . . q′mR′

m, we
define φ 
 φ′ iff there exists a monotonic injection h : n → m such that qi = q′h(i)

for i : 1 ≤ i ≤ n and the following conditions hold:

– (R′
0q

′
1 . . . q′h(1)−1R

′
h(1)−1)

• ⊆ R•
0

– (R′
h(i)q

′
h(i)+1 . . . q′h(i+1)−1R

′
h(i+1)−1)

• ⊆ R•
i for i : 1 ≤ i ≤ n − 1;

– (R′
h(n)q

′
h(n)+1 . . . q′mR′

m)• ⊆ R•
n.

We have that φ1 
 φ2 if and only if [[φ2]] ⊆ [[φ1]] (φ1 is weaker than φ2).

Computing Predecessors. Given a set S of CC’s, it is possible to define a
symbolic predecessor operator Pre that effectively computes, when applied to S,
a set S′ = Pre(S) of CC’s such that [[S′]] is the set of configurations from which
one can reach configurations in [[S]] using ∗−→ (i.e. predecessors).

We first introduce the symbolic predecessor computation for a ∀L-rule, and
then describe the case of the other transitions. Consider a transition t of the
form q → q′ : ∀L P with P ⊆ Q. Then, Pret(φ) is the set {φ′ | φ �t φ′}
where �t is the minimal relation that satisfies one of the following conditions.
Let φ = R0q1 . . . qnRn:

1. if there exists i s.t. qi = q′ with qj ∈ P for each j : 1 ≤ j < i, then
φ �t (R0 ∩ P )q1 . . . qi−1(Ri−1 ∩ P )qRiqi+1 . . . qnRn

2. if there exists i s.t. q′ ∈ Ri with qj ∈ P for each j : 1 ≤ j ≤ i, then
φ �t (R0 ∩ P )q1 . . . qi(Ri ∩ P )qRiqi+1 . . . qnRn

Notice that: in (1) the length of the new basis and the number of contexts are
the same as in φ, whereas in the new constraint produced in (2) we add a new
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process as well as a new context. The case of ∀R-rules is similar to that for
∀L-rules. The remaining cases are given below.

Forall. Let φ = R0q1 . . . qnRn. Consider a transition t of the form q → q′ : ∀LRP
with P ⊆ Q. Then, �t is the minimal relation that satisfies one of the following
conditions.
1. if there exists i s.t. qi = q′ with qj ∈ P for each j : (1 ≤ j �= i ≤ n), then

φ �t (R0 ∩ P )q1 . . . qi−1(Ri−1 ∩ P )q(Ri ∩ P )qi+1 . . . qn(Rn ∩ P ).
2. if there exists i s.t. q′ ∈ Ri with qj ∈ P for each j : 1 ≤ j ≤ n, then

φ �t (R0 ∩ P )q1 . . . qi(Ri ∩ P )q(Ri ∩ P )qi+1 . . . qn(Rn ∩ P ).

Local. Let t be a local rule q → q′, �t is the minimal relation that satisfies one
of the following conditions:
1. if there exists E1, E2 ∈ A∗ s.t. φ = E1q

′E2, then φ �t E1qE2.
2. if there exists E1, E2 ∈ A∗ and R ⊆ Q s.t. φ = E1RE2, q′ ∈ R, and q �∈ R,

then φ �t E1RqRE2.

Exist. Let t be the rule q → q′ : ∃LP , �t is the minimal relation that satisfies
one of the following conditions:
1. if there exists E1, E2, E3 ∈ A∗ s.t. φ = E1pE2q

′E3, then φ �t E1pE2qE3.
2. if there exists E1, E2, E3 ∈ A∗, R ⊆ Q s.t. p ∈ R, and φ = E1RE2q

′E3, then
φ �t E1RpRE2qE3.

3. if there exists E1, E2, E3 ∈ A∗, R ⊆ Q s.t. p ∈ R, q′ ∈ R, q �∈ R and
φ = E1pE2RE3, then φ �t E1pE2RqRE3.

4. if there exists E1, E2, E3 ∈ A∗, R, S ⊆ Q s.t. p ∈ S, q′ ∈ R, q �∈ R and
φ = E1SE2RE3, then φ �t E1SpSE2RqRE3.

5. if there exists E1, E2 ∈ A∗, R ⊆ Q s.t. p, q′ ∈ R, q �∈ R and φ = E1RE2,
then φ �t E1RpRqRE3.

The rules for computing predecessors with respect to rules with ∃R, ∃LR can be
derived in a manner similar to the above described cases.

Symbolic Backward Reachability. Context expressions can be used for an
exact representation of predecessor configurations. Each application of Pre is ef-
fectively computable. Let Φ0 be a set of CC’s that represent an upward closed set
of configurations (unsafe states). Starting from Φ0, we compute the sequence of
sets of CC’s-constraints Φ0, . . . , Φi, . . . such that Φi+1 = Φi ∪

⋃

t∈T ,φ∈Φi
Pret(φ).

Each step of this sequence can be effectively computed. Furthermore, we can
apply the entailment 
 to discharge CC’s that do not add new information (i.e.
stronger than an already computed constraint). If we reach a fixpoint at step k,
then Φk gives us an exact representation of the predecessors of configurations
in [[Φ0]]. Thus, we can potentially use this fixpoint computation to solve PAR-
COV, i.e., to verify/falsify safety properties for configurations of arbitrary size.
However, since our model is Turing complete (e.g. we can encode two counter
machines using universally quantified conditions) the resulting CC’s-based sym-
bolic backward reachability analysis is not guaranteed to terminate. Therefore,
in order to obtain a terminating verification procedure, we need to introduce
some approximation. We discuss this point in the next section.
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4 Approximated Context-Sensitive Symbolic Algorithm

In this section, we present an approximated representation of context-sensitive
constraints that we use to turn the (possibly non-terminating) CC-based verifi-
cation procedure into an approximated verification algorithm. For this purpose,
we first define a special class of constraints.

Definition 2. A simple context-sensitive (SCC-)constraint is a word in A∗ of
the form Rq1R . . . qnR in which {q1, . . . , qn} ⊆ R ⊆ Q.

Since the same constraint is uniformly applied to each context in the basis, we
can simplify the notation and represent an SCC as a pair (c, R), where c ∈ Q∗

and c• ⊆ R ⊆ Q. We refer to R as the padding set. As we discuss later in this
section, the requirement that the basis c in included is the padding set has two
consequences: it allows us to apply the theory of well-quasi ordering to ensure
termination of the backward analysis (see Lemma 1); it gives us a natural way
to define accelerations to speed up the symbolic computation of predecessors
(see Section 4.1). Notice that an SCC need not represent an upward closed set of
configurations. Indeed, the environment R may be a strict subset of the set of all
states. For instance, if Q = {a, b, c} then the denotation of the SCC (aa, {a, b})
contains strings like aa, aba, abab, . . . but it does not include any strings with c
even if they contain aa as a substring (i.e. aca, abac, . . . are not in its denotation).

A CC φ = R0q0 . . . qnRn can naturally be approximated by the following SCC:

φ# = (q0 . . . qn, φ•)

Indeed, it is immediate to check that [[φ]] ⊆ [[φ#]]. Let us now reconsider the
symbolic operations (discussed in Section 3 for CC’s) needed for implementing
an SCC-based symbolic backward analysis.

Entailment. The entailment relation for SCC’s can now be simplified as follows.
For φ = (c, R) and φ′ = (c′, R′), we have that φ 
 φ′ iff c � c′ and R ⊇ R′. We
recall that φ 
 φ′ implies [[φ′]] ⊆ [[φ]].

Furthermore, we can prove that 
 is a Well Quasi-Ordering (WQO) for SCC’s,
i.e., for any infinite sequence φ0, φ1, φ2, . . ., of constraints, there are i < j such
that φi 
 φj . Indeed, let φi be of the form (ci, Ri). Since Q is finite and Ri ⊆ Q
for all i, it follows that there is an infinite subsequence φi0 , φi1 , φi2 , . . . such that
Rij = Rik

for all j, k. By Higman’s lemma [20] (which implies that � is a WQO
on Q∗), there are j < k such that cij � cik

, and hence φij 
 φik
. This gives the

following lemma which we use later to prove termination of our algorithm.

Lemma 1. 
 is a WQO on the set of SCC’s.

We extend the relation 
 to sets of SCC’s such that Φ1 
 Φ2 if for each φ2 ∈ Φ2

there is a φ1 ∈ Φ1 with φ1 
 φ2. Notice that Φ1 
 Φ2 implies that [[Φ2]] ⊆ [[Φ1]].
As an example, consider the SCC φ = (pq, {p, q, r}). Examples of configu-

rations in [[φ]] are prq and rprprqr. The set of bad states in Example 1 can
be characterized by the SCC’s (q4q4, {q0, q1, q2, q3, q4}). Also, for the SCC φ =
(pq, {p, q, r, s}) and φ′ = (qpprqp, {p, q, r}), we have φ 
 φ′.
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4.1 Computing Predecessors

The abstract predecessor operator Pre# is obtained as the composition of Pre
and of the abstraction #, i.e., Pre#(φ) = (Pre(φ))#. However, it would be
inefficient to implement it in this way. Indeed, in general Pre requires the analysis
and generation of several cases (as for ∃L-rules). As we discuss in Section 5, the
large number of generated constraints makes the exact analysis unfeasible even
on simple examples. For this reason, we show next how to directly define Pre#

as an operator working on SCC’s-constraints.
First, we introduce some notations. For a basis c and a state q, we write c⊗ q

to denote the set {c1qc2 | c = c1c2}. The operation adds the singleton q in an
arbitrary position inside c. We define Pre# by means of a set of relations t

�

defined as follows. For a transition t, we define t
� to be the smallest relation on

constraints containing the following elements:

Local. If t is a local transition of the form q → q′ then

– (c1q
′c2, R) t

� (c1qc2, R ∪ {q}).
– (c, R) t

� (c1, R ∪ {q}) if q′ ∈ R and c1 ∈ (c ⊗ q)

In the first case, a process in the basis of the constraint performs a local transition
from q to q′. We add q to the padding set as required by the well-formedness of
SCC’s-constraints. From an operational perspective, augmenting the padding set
with q has an effect similar to widening operators used in relational analysis for
unordered parameterized systems (e.g. based on polyhedra in [15]). To illustrate
this, consider the rule p → q and the constraint (r, R) where R = {q, r}. The
exact predecessor computation would compute an infinite sequence of the form
RpRrR, RrRpR (one occurrence of p), RrRpRpR, RpRrRpR, RpRpRrR (two
occurrences of p), . . . . Our approximated operator computes the limit of the
sequence, i.e., (rp, R ∪ {p}), (pr, R ∪ {p}) (at least one occurrence of p). Thus,
our abstraction plays here the role of a widening step for ordered configurations.

Exists. if t is a global transition of the form q → q′ : ∃LP then

– (c1q
′c2, R) t

� (c1qc2, R ∪ {q}) if P ∩ c1
• �= ∅.

– (c1q
′c2, R) t

� (c3qc2, R ∪ {q}) if p ∈ P ∩ R, p �∈ c1
•, c3 ∈ (c1 ⊗ p).

– (c1pc2, R) t
� (c1pc3, R ∪ {q}) if p ∈ P , q′ ∈ R, q �∈ R, and c3 ∈ (c2 ⊗ q).

– (c1c2, R) t
� (c1pc3, R ∪ {q}) if p ∈ P , p �∈ c1

•, q′ ∈ R, q �∈ R, and c3 ∈
(c2 ⊗ q).

In the first case, a process in the basis of the constraint performs an existential
global transition from q to q′. The transition is performed if there is a witness
which is to the left of the process and which is inside the basis of the constraint.
The second case is similar to the first case, except that the witness is in the
padding set (and not in the left part of the basis). Therefore, we add the witness
explicitly in an arbitrary position to the left of the process. In the third case,
a number of processes (at least one process) in the padding set perform the
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transition. There is a witness which enables the transition inside the basis. The
witness should be to the left of the process making the transition. In the fourth
case, both the witness and the process making the transition are in the padding
set. This case is similar to the third case, except that we need to add the process
making the transition explicitly in the basis. In a similar manner to the local
transition case, we add q to the padding to reflect the abstraction.

If t is a global transition of the form q → q′ : ∃RP or q → q′ : ∃LRP , then
analogous conditions to the previous case hold.

Forall. t is a global transition of the form q → q′ : ∀LRP , then

– (c1q
′c2, R) t

� (c1qc2, (R ∩ P ) ∪ {q}), if (c1c2)
• ⊆ P .

– (c1c2, R) t
� (c1qc2, (R ∩ P ) ∪ {q}), if q′ ∈ R, q �∈ R and (c1c2)

• ⊆ P .

In the first case, a process in the basis moves from q to q′. The remaining
processes in the basis must be in R. Furthermore, we restrict the padding set to
those processes within R. In the second case, a process of type q in the padding
set moves to q′. Notice that in both cases, the state q is added to the padding
to reflect the abstraction.

If t is a global transition of the form q → q′ : ∀LP , then

– (c1q
′c2, R) t

� (c1qc2, R ∪ {q}), if c1
• ⊆ P .

– (c1c2, R) t
� (c1qc2, R ∪ {q}), if q′ ∈ R and c1

• ⊆ P .

In the first case, a process in the basis moves from q to q′. The remaining
processes in the basis belong to R. In our constraints we use a single padding set
to define the constraints on processes to the left and to the right of the process
that makes the transition. Thus, to compute the precondition of the universal
condition on the padding set we have to apply an over-approximation and use R
as constraints on contexts (processes to the left should be restricted to R ∩ P ).
In the second case, a process q from the padding set moves to q′. Notice that in
both cases, the state q is added to the padding to reflect the abstraction. The
second case is similar to the first case, except that the process that performs the
transition is selected from the padding set.

If t is a global transition of the form q → q′ : ∀RP , then analogous conditions
to the previous case hold.

Now let �:=
⋃

t∈T
t

� and define for a constraint φ the set (φ �) := {φ′| φ � φ′}.
Lemma 2. For any constraint φ, we have Pre([[φ]]) ⊆ [[(φ �)]] = [[Pre#(φ)]].

Backward Reachability Algorithm. We use the relation � to define a
symbolic backward reachability algorithm for approximating solutions to PAR-
COV. We start with a finite set ΦF of SCC’s denoting ̂CF (notice that we
can always define SCC’s that describe an upward-closed set). We generate a se-
quence Φ0 � Φ1 � Φ2 � · · · of finite sets of constraints such that Φ0 = ΦF , and
Φj+1 = Φj ∪ (Φj �). Since [[Φ0]] ⊆ [[Φ1]] ⊆ [[Φ2]] ⊆ · · · , the procedure terminates
when we reach a point j where Φj 
 Φj+1. Thus, termination of the algorithm
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is guaranteed by Lemma 1. Notice that the termination condition implies that
[[Φj ]] = (

⋃

0≤i≤j [[Φi]]). By Lemmas 2, Φj denotes an over-approximation of the
set of all predecessors of [[ΦF ]]. This means that if (Init

⋂

[[Φj ]]) = ∅, then there
exists no c ∈ [[ΦF ]] with Init ∗−→ c. Thus, the algorithm can be used as a semi-test
for checking PAR-COV.

Extensions. We discuss here possible extensions of the symbolic representation
and of the model. The basic form of SCC’s can be enriched in order to provide
a more compact representation of sets of configurations. More specifically, as
in [3], let us assume that individual processes have a state in Q and a set of
local Boolean variables in V . Let B be the set of Boolean formulas with pred-
icates in Q ∪ V . We can work on CC-constraints of the form R0b0R1 . . . bnRn

((b0, . . . , bn, R) for SCC-constraints) where bi is a formula in B and Ri (R) is a
subset of formulas in B. Now the basis describes a finite set of configurations with
n processes and each set Ri gives constraints either on the state or on the local
variables for processes occurring in the context. Furthermore, we can extend the
exact/approximated symbolic computation of predecessors to rules with other
synchronization mechanisms like broadcast communication and read/write op-
erations on globally shared variables either with range in a finite domain or in
the natural numbers. Operations on the latter type of shared variables can be
obtained by using synchronization with special processes with state zero/one:
increment is modelled via synchronization with a zero process that moves to
one, decrement via synchronization with a one process that moves to zero, and
zero test is modelled via a global condition “there are no processes with state
one”. The current value of the shared variable is the number of occurrence of
processes in state one. Thus, this kind of variables may range over an unbounded
set of natural numbers.

5 Experimental Results

We have implemented the verification procedures based on CC and SCC
(see Table 1) and compared them to PFS (monotonic abstraction). To this pur-
pose, we used examples of cache coherence protocols, mutual exclusion algo-
rithms, and counter based synchronization problems. In the following, we briefly
discuss some of the case studies.

The examples consist of the Illinois and the DEC Firefly cache coherence pro-
tocols from [15]; the Bakery and Burns mutual exclusion algorithms used in [3];
a compact model of Szymanski algorithm with atomicity conditions from [8,25],
a refinement of Szymanski algorithm from [23] (see Fig. 2), and the Gribomont-
Zenner mutex from [18]. Several synchronization and reference counting exam-
ples using unbounded integer counters are also considered. These include an
abstract model of the reference counting example for page allocation in [16],
and solutions to the readers/writers problem from [27] with priorities to read-
ers or writers. We remark that in all examples global conditions are evaluated
atomically. The results are summarized in Table 2. For each example, we give
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Table 1. Methods and tools listed in order of precision in the analysis

Tool Method Approximation Precision Termination

CC backward reach. none exact not guaranteed

SCC backward reach. abstraction of CC’s over-approx always guaranteed

PFS backward reach. monotonic abst. over-approx always guaranteed

var flag : array[N ] of [0 − 4]
flag := (0, . . . , 0);
process p[i] =
1 non critical;
2 f [i] := 1;
3 await ∀j 	= i.f [j] < 3;
4 f [i] := 3;
5 if ∃j 	= i.f [j] = 1

then
6 f [i] := 2;
7 await ∃ j 	= i.f [j] = 4;
8 f [i] := 4;
9 else f [i] := 4;
10 await ∀j < i.f [j] < 2;
11 critical section;
12 await ∀j > i.f [j] < 2 ∨ f [j] > 3;
13 f [i] := 0;

States : Q = {s0, s1, . . . , s11}
Transitions :
instruction : transition

1 : s0 → s1
2 : s1 → s2
3 : s2 → s3 : ∀LR{s0, s1, s2, s3, s7, s8}
4 : s3 → s4

5 then : s4 → s6 : ∃LR{s2, s3}
6 : s6 → s7
7 : s7 → s8 : ∃LR{s9, s10, s11}
8 : s8 → s9

5 else : s4 → s5 : ∀LR¬{s2, s3}
9 : s5 → s9

10 : s9 → s10 : ∀L{s0, s1, s2, s3}
11 : s10 → s11 : ∀R¬{s4, s5, s6, s7, s8}
12 : s11 → s0

Initial state : s0
Bad states : φ = (s10s10, Q∗)

Fig. 2. Algorithm of Szymanski [23] (left), and its parameterized model (right)

the number of iterations performed by the reachability algorithm, the number
of constraints upon termination of the algorithm, and the time (in seconds or
minutes). We use in the appropriate fields to indicate that we had to stop the
analysis after several hours.

In the simplest examples like the Bakery algorithm, each of the three methods
(PFS,SCC,CC) automatically verifies mutual exclusion. However, exact analysis
may diverge even on simple examples. Such a case occurs when testing mutual
exclusion for the dirty cache line state in the DEC Firefly model of [15]. A similar
behavior was already observed with HyTech [19] (a tool manipulating polyhedra
that can be used for unordered models) in [15]. In more complicated examples
like the algorithms of Burns and Szymanski exact analysis does not terminate.

Monotonic abstraction proved to be precise for a wide range of parameterized
systems [3,5,4,6,1]. However, it returned false positives for some of the protocols
in Table 2. These are the fine grained formulations of Szymanski algorithm, the
reference counting model, and particular versions of readers/writers. The main
steps of the spurious error trace returned by PFS (monotonic abstraction) on
the algorithm of Fig. 2 are described below.

(s0, s0, s0) →∗ (s1, s1, s1) →∗ (s1, s1, s3) → (s2, s1, s3) → (s3, s1, s3) → (s3, s1, s4)
→∗ (s5, s2, s4) → (s9, s2, s4) →∗ (s9, s2, s7) −→0 (s3, s7) →∗ (s10, s10)
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Table 2. Experimental results

Model Method # iter # constr ex-time spurious trace verified
Bakery [3] PFS 2 2 0.01s

√

CC 4 3 0.01s
√

SCC 3 2 0.01s
√

Illinois [15] PFS 5 33 0.02s
√

CC 2 17 0.05s
√

SCC 7 53 0.18s
√

Burns [3] PFS 14 40 0.05s
√

CC
SCC 15 48 0.02s

√

DEC Firefly [15] PFS 3 11 0.01s
√

CC
SCC 5 10 0.03s

√

Compact Szymanski [8,25] PFS 10 17 0.1s
√

CC
SCC 24 162 3.35s

√

Refined Szymanski [23] PFS 24 658 1.5 s
√

CC
SCC 34 641 1m

√

Gribomont-Zenner [18] PFS 36 197 0.2 s
√

CC
SCC 56 863 5m

√

Ref. counting [16] PFS 7 15 0.02s
√

CC
SCC 7 8 0.01s

√

Readers/writers[27] PFS (10:5) (31:28) (0.05s:0.02s) ( :
√

) (
√

: )
(locks:no locks) CC

SCC (7:7) (12:8) (0.02s:0.01s) (
√

:
√

)
Readers/writers (locks:no locks) PFS (21:7) (125:67) (0.4s:0.6s) ( :

√
) (

√
: )

refined, priority to readers CC
SCC (25:12) (128:34) (1.7s:0.06s) (

√
:
√

)
Readers/writers (locks:no locks) PFS (22:9) (683:219) (9.4s:0.3s) ( :

√
) (

√
: )

refined, priority to writers CC
SCC (27:9) (646:19) (17.2s:0.03s) (

√
:
√

)
Light control [27] PFS 13 96 0.06s

√

CC
SCC 9 29 0.02s

√

The step indicated with −→0 corresponds to the deletion of a process violat-
ing the universal condition of the third instruction in Fig. 2(right). The spurious
error trace is due to the fact that the denotation of the constraints manipulated
by PFS contain every local state. When applied to this model, the approximated
SCC-based algorithm terminates without detecting error traces, i.e., mutual ex-
clusion is verified for the refined model for any number of processes. Notice that
the compact model studied in [8,25], can be verified using both PFS and SCC.

6 Conclusions and Related Work

We have presented a new algorithm for parameterized verification based on
special constraints, called SCC’s, that retain approximated context-sensitive in-
formation on the type of processes executing in parallel with a finite set of
completely specified individuals. We apply the new algorithm to several non-
trivial examples in which other types of analysis fail. Furthermore, the new al-
gorithm performs well on most of the examples that can be verified with existing
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parameterized verification techniques. In this paper, we consider protocols where
variable updates are non-atomic. On the other hand, we consider in [4] models
where global conditions are performed non-atomically. We plan to further inves-
tigate verification methods and efficient data structures for SCC’s-like context-
sensitive constraints that can help to lift the non-atomicity assumptions on both
variable updates and global conditions.

Related Work. The constraints used for the exact analysis are similar to the APC
regular expressions studied in [11]. The verification method proposed in [11] is
complementary to ours. Indeed, it is based on symbolic forward exploration with
accelerations and without guarantying termination; whereas we consider here an
over-approximation (based on simple context-sensitive constraints) that ensures
the termination of symbolic backward exploration.

Other parameterized verification methods based on reductions to finite-state
models have been applied to safety properties of mutual exclusion protocols
like Szymanski’s algorithm. Among these, we mention the invisible invariants
method [8,24] and the environment abstraction method [13,25]. In [25] envi-
ronment abstraction is applied to a formulation of Szymanski with the same
assumptions as the model in [8], called compact Szymanski in Table 2. This
model can be verified using monotonic abstraction as discussed in Section 5.
The refined model [23] we consider is different in that atomic instructions do not
contain both tests and assignments. This potentially introduces new race condi-
tions making verification a harder task. It is not clear whether the refined models
of Szymanski’s algorithm considered in the present paper can be automatically
verified using the methods suggested in [8,13].

The infinite-state reference counting example we consider in this paper is in-
spired by a finite-state abstraction studied in [16]: in contrast to the predicate-
abstraction approach used in [16], we model reference counting for a physical
page under observation via an unbounded integer shared variable, with incre-
ment, decrement, and zero-test.

Unordered models with counters can be modelled with systems working on
unbounded integer variables such as in ALV [27,28] (based on the Omega library)
and HyTech [19] (based on Halbwachs’s polyhedra library). In these approaches
extrapolation and widening operators are needed to enforce termination. This
is typical for polyhedra-based methods when applied to models like DEC firefly
and readers/writers. In contrast to methods like HyTech and ALV, the algorithm
presented in this paper incorporates accelerations that can be applied both to
ordered and unordered parameterized systems without losing termination.
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