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Abstract. We compare the expressive power of a class of well-structured
transition systems that includes relational automata, Petri nets, lossy
channel systems, and constrained multiset rewriting systems. For each
one of these models we study the class of languages generated by labelled
transition systems describing their semantics. We consider here two types
of accepting conditions: coverability and reachability of a given configu-
ration. In both cases we obtain a strict hierarchy in which constrained
multiset rewriting systems is the the most expressive model.
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1 Introduction

The theory of well-structured transition systems [1,13] is a powerful tool for
studying the decidability of verification problems of infinite-state systems. A
system is well-structured when its transition relation is monotonic with respect
to a well-quasi ordering defined over configurations. A well-known example of
well-structured system is that of Petri nets [19] equipped with marking inclusion
[1,13]. For a well-structured transition system, the coverability problem can be
decided by the symbolic backward reachability algorithm scheme proposed in
[1]. Since checking safety properties can be translated into instances of the cov-
erability problem, an algorithm for coverability like that proposed in [1] can be
used for automatic verification of an infinite-state system. This connection has
been exploited in order to develop automatic verification procedures for Petri
nets and their extensions [10,11], for abstract models of imperative programs
called relational automata [9], for abstract models of unreliable communication
systems called lossy (FIFO) channel systems [5,8], and for constrained multiset
rewriting systems [2]. The latter model is an extension of Petri nets in which to-
kens are colored with natural numbers and in which transitions have numerical
conditions defined over variables representing colors. The resulting model can
� Research fellow supported by the FNRS.
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be applied to model parameterized systems in which individual processes have
local data that range over an infinite domain.

Although several efforts have been spent in studying the expressive power of
variations of Petri nets (see e.g. [10,12,14]), a comparison of the relative expres-
siveness of the class of well-structured transition systems is still missing. Such a
comparison is a challenging research problem with a possible practical impact.
Indeed, it can be useful to extend the applicability of a verification method (e.g.
a particular instance of the scheme of [1]) to an entire class of models.

In this paper we apply tools of language theory to formally compare the
expressive power of a large class of well-structured infinite-state systems that
includes constrained multiset rewriting systems, lossy channel systems, (exten-
sions of) Petri nets, and relational automata. To achieve this goal, for each one
of these models we study the class of languages generated by labeled transition
systems describing their semantics. We consider here two types of accepting con-
ditions: coverability (with respect to a fixed ordering) and reachability of a given
configuration. Two models are considered to be equivalent if they generate the
same class of languages.

For coverability accepting conditions, we obtain the following classification.
We first prove that lossy channel systems are equivalent to a syntactic fragment
of constrained multiset rewriting, we named Γ0. The fragment Γ0 is obtained by
restricting conditions of a rule in such a way that equalities cannot be used as
guards. Furthermore, we prove that lossy channel systems are strictly less ex-
pressive than the full model of constrained multiset rewriting systems. We then
show that Petri nets are equivalent to a syntactic fragment of constrained multi-
set rewriting systems, we named Γ1, obtained by considering nullary predicates
only. We also prove that Petri nets are strictly less expressive than lossy channel
systems. We then prove that relational automata are equivalent to a syntactic
fragment of constrained multiset rewriting, we named Γ2, obtained by imposing
an upper bound on the size (number of predicates) of reachable configurations.
Finally, we prove that Γ2 generates the class of regular languages. This implies
that relational automata are strictly less expressive than Petri nets. In the paper
we also extend the comparison to extensions of Petri nets like transfer/reset nets
and broadcast protocols [10,11] and to lossy vector addition systems [18]. Specifi-
cally, we prove that all these models are strictly less expressive than constrained
multiset rewriting systems.

For reachability accepting conditions, we obtain a slightly different classifi-
cation. First, we prove that Γ0 is equivalent to constrained multiset rewriting
systems and two counter machines. Thus, with reachability acceptance, Γ0 and
constrained multiset rewriting systems turn out to be strictly more expressive
than lossy channel systems. On the contrary, Γ1 is still equivalent to Petri nets
and strictly less expressive than Γ0 and Γ2 is still equivalent to relational au-
tomata and to finite automata. Finally, we show that lossy channel systems and
Petri nets define incomparable classes of languages.

Concerning related work, the relative expressiveness of well-structured sys-
tems has been investigated for a limited number of extensions of Petri nets with
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reset, transfer, and non-blocking arcs in [12,14]. Classical results on finite and
infinite languages generated by Petri nets can be found, e.g., in [15]. A classifi-
cation of infinite-state systems in terms of structural properties and decidable
verification problems is presented in [16]. The classification is extended to well-
structured systems in [7]. A classification of the complexity of the decision pro-
cedures for coverability is studied in [17]. In contrast with the aforementioned
work, we provide here a strict classification of the expressive power of several
well-structured transition systems built with the help of tools of language theory.
An extended version of the present paper is available as technical report [3].

Outline. In Section 2, we give some preliminary notions on well-structured tran-
sition systems. In Section 3, we give some first results on the class of languages
accepted by constrained multiset rewriting systems. In Section 4, 5, and 6,
we compare the class of languages recognized by constrained multiset rewrit-
ing systems and, respectively, lossy channel systems, Petri nets, and relational
automata. Finally, in Section 7 we discuss some final remarks.

2 Preliminaries on Well-Structured Transition Systems

In this section we recall some definitions taken from [1]. A transition system is
a tuple T = (S, R) where S is a (possibly infinite) set of configurations, R is
a finite set of transitions where each σ−→∈ R is a binary relation over S, i.e.

σ−→⊆ S × S. We use γ
σ−→ γ′ to denote (γ, γ′) ∈ σ−→, and γ

ρ1...ρk−→ γ′ to denote
that there exist γ1, . . . , γk−1 such that γ

ρ1−→ γ1 . . .
ρk−1−→ γk−1

ρk−→ γ′. A quasi-
ordering (S, �) is a well-quasi ordering if for any infinite sequence s1s2 . . . si . . .
there exist indexes i < j such that si � sj . A transition system T = (S, R) is
well-structured with respect to a quasi-order � on S iff: (i) � is a well-quasi
ordering; (ii) for any σ−→∈ R and γ1, γ

′
1, γ2 s.t. γ1 � γ′

1 and γ1
σ−→ γ2, there

exists γ′
2 s.t. γ′

1
σ−→ γ′

2 and γ2 � γ′
2, i.e., T is monotonic. We use T = (S, R, �)

to indicate a well-structured transition system (wsts for short).
To formalize the comparison between models, a wsts T = (S, R, �) can be

viewed as a language acceptor. For this purpose, we assume a finite alphabet
Σ and a labelling function λ : R �→ Σ that associates to each transition of R
a symbol of Σ ∪ {ε}, where ε denotes the empty sequence (w · ε = ε · w = w

for any w ∈ Σ∗). In the following, we use γ1
w−→ γ2 with w ∈ Σ∗ to denote

that γ1
ρ1···ρk−→ γ2 and λ(

ρ1−→) · · · λ(
ρk−→) = w. Furthermore, we associate to T an

initial configuration γinit ∈ S and a final configuration γacc ∈ S and assume
an accepting relation ��: S × S. For a fixed accepting relation ��, we define the
language accepted (generated) by T = (S, R, �, γinit , γacc) as:

L(T ) = {w ∈ Σ∗ | γinit
w−→ γ and γacc �� γ}

In this paper we consider two types of accepting relations:
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– Coverability: the accepting relation �� is defined as γacc � γ.
– Reachability: the accepting relation �� is defined as γacc = γ.

Let M be a wsts model (e.g. Petri nets) and let T be one of its instances (i.e.
a particular net). We define Lc(T ), resp Lr(T ), as the language accepted by
T with accepting relation ��c, resp. ��r. We say that L is a c-language, resp.
r-language, of M if there is an instance T of M such that L = Lc(T ), resp.
L = Lr(T ). We use Lc(M), resp. Lr(M), to denote the class of c-languages,
resp. r-languages, of M. Finally, we use L1 �∼ L2 to denote that L1 and L2 are
incomparable classes of languages.

3 Constrained Multiset Rewriting Systems

In this section we recall the main definitions and prove the first results for
constrained multiset rewriting systems [2]. Let us first give some preliminary
definitions. We use N to denote the set of natural numbers and n to denote the
interval [0, . . . , n] for any n ∈ N. We assume a set V of variables which range
over N, and a set P of unary predicate symbols. For a set A, we use A∗ and A⊗

to denote the sets of (finite) words and (finite) multisets over A respectively.
Sometimes, we write multisets as lists, so [1, 5, 5, 1, 1] represents a multiset with
three occurrences of 1 and two occurrences of 5; [ ] represents the empty multiset.
We use the usual relations and operations such as ≤ (inclusion), + (union), and
− (difference) on multisets. For a set V ⊆ V, a valuation Val of V is a mapping
from V to N. A condition is a finite conjunction of gap order formulas of the
forms: x <c y, x ≤ y, x = y, x < c, x > c, x = c, where x, y ∈ V and c ∈ N. Here
x <c y stands for x+c < y. We often use x < y instead of x <0 y. Sometimes, we
treat a condition ψ as a set, and write e.g. (x <c y) ∈ ψ to indicate that x <c y
is one of the conjuncts in ψ. We use true to indicate an empty set of conditions.
A term is of the form p(x) where p ∈ P and x ∈ V. A ground term is of the
form p(c) where p ∈ P and c ∈ N. We sometimes say that a predicate symbol is
nullary to mean that its parameter is not relevant (hence may be omitted).

A constrained multiset rewriting system (CMRS) S consists of a finite set of
rules each of the form L � R : ψ, where L and R are multisets of terms, and
ψ is a condition. We assume that ψ is consistent (otherwise, the rule is never
enabled). For a valuation Val , we use Val(ψ) to denote the result of substituting
each variable x in ψ by Val(x). We use Val |= ψ to denote that Val(ψ) evaluates
to true. For a multiset T of terms we define Val(T ) as the multiset of ground
terms obtained from T by replacing each variable x by Val(x). A configuration
is a multiset of ground terms. Each rule ρ = L � R : ψ ∈ S defines a relation
between configurations. More precisely, γ

ρ−→ γ′ if and only if there is a valuation
Val s.t. the following conditions are satisfied: (i) Val |= ψ, (ii) γ ≥ Val(L), and
(iii) γ′ = γ−Val(L)+Val(R). As an example, consider the rule:

ρ = [p(x) , q(y)] � [q(z) , r(x) , r(w)] : {x <2 y , x <4 z , z <0 w}

A valuation which satisfies the condition is Val(x) = 1, Val(y) = 4, Val(z) = 8,
Val(w) = 10, Therefore, we have that [p(1), p(3), q(4)]

ρ−→ [p(3), q(8), r(1), r(10)].
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A run σ is a sequence of transitions γ0
ρ1−→ γ1

ρ2−→ . . .
ρn−→ γn; where λ(ρ1) ·

. . . λ(ρn) is the word associated to σ for some labelling function λ.
Let us fix a CMRS S operating on a set of predicate symbols P. Let cmax

be the maximal constant which appears in the rules of S; cmax is equal to 0
if there are no constant in S. We now define an ordering �c on configurations
extracted from the ordering defined in [2] to solve the coverability problem.

Definition 1. Given a configuration γ, we define the index of γ, index (γ), to
be a word of the form D0 · · · Dcmax d0 B0 d1 B1 d2 · · · dn Bn where

– D0, . . . , Dcmax , B0, . . . , Bn ∈ P
⊗ and d0, d1, . . . , dn ∈ N \ {0};

– Bi must not be empty for 0 ≤ i ≤ n;
– for each p ∈ P, Di contains k occurrences of predicate p iff p(i) occurs k

times in γ for 0 ≤ i ≤ cmax;
– given v0 = cmax+d0, for each p ∈ P, B0 contains k occurrences of predicate

p iff p(v0) occurs k times in γ;
– given vi+1 = vi + di+1, for each p ∈ P, Bi+1 contains k occurrences of

predicate p iff p(vi+1) occurs k times in γ for all 0 ≤ i < n;
– for all p(v) ∈ γ with v > cmax, there exists i : 0 ≤ i ≤ n such that

v = cmax + d0 + d1 + . . . + di.

The ordering �c is defined as follows.

Definition 2. Let D0 D1 · · · Dcmax d0 B0 d1 B1 d2 · · · dn Bn be the index
of a configuration γ1 and D′

0 D′
1 · · · D′

cmax d′0 B′
0 d′1 B′

1 d′2 · · · d′m B′
m be

the index of a configuration γ2. Then, γ1 �c γ2 iff Di ≤ D′
i for 0 ≤ i ≤ cmax

and there exists a strictly monotone injection h : n �→ m such that B0 ≤ B′
h(0),

Bi ≤ B′
h(i), d0 ≤

∑h(0)
k=0 d′k, and di ≤

∑h(i)
k=h(i−1)+1 d′k for 1 ≤ i ≤ n.

In the rest of the paper we assume that the values appearing in the initial
configuration γinit and in the accepting configuration γacc are smaller or equal
than cmax. The ordering �c is obtained by composing string embedding and
multiset inclusion. From standard properties of orderings, it follows that �c

is a well-quasi ordering. Furthermore, a CMRS is monotonic with respect to
corresponding ordering �c. The following property then holds.

Proposition 1. A CMRS S equipped with �c is well-structured.

We now define a restriction � of the relation �c in which we require that the
distribution of predicates in two configurations has the same structure but larger
gaps. Formally, under the assumptions of Def. 2, γ1 � γ2 iff n = m, Di = D′

i

for 0 ≤ i ≤ cmax, Bj = B′
j for 0 ≤ j ≤ n, and dk ≤ d′k for 0 ≤ k ≤ n. A CMRS

S satisfies then the following property (the proof is given in [3]).

Proposition 2. Let γ0
ρ0−→ γ1

ρ1−→ . . .
ρk−1−→ γk

ρk−→ γ be a run of S. For any
γ′ s.t. γ � γ′ there exist γ′

1, . . . , γ
′
k such that γi � γ′

i for i : 1 ≤ i ≤ k and
γ0

ρ1−→ γ′
1

ρ1−→ . . .
ρk−1−→ γ′

k

ρk−→ γ′ is still a run of S.
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In other words, with coverability accepting conditions a CMRS S can recognize
a word w passing through configurations where gaps between parameters strictly
greater than cmax can be arbitrarily large. As discussed in the rest of the paper
this property is very important to compare c-languages accepted by (fragments
of) CMRS with those accepted by other wsts.

We are ready now to give a first characterization for the expressive power of
CMRS. In [14, Prop. 4], the authors show that there exists a recursively enu-
merable (RE) language that cannot be recognized by any wsts with coverability
acceptance. Hence, the following proposition holds.

Theorem 1. Lc(CMRS) ⊂ RE.

With reachability as accepting condition, CMRS recognize instead the class of
recursively enumerable languages (RE).

Theorem 2. Lr(CMRS) = RE.

Proof. We prove that CMRS can weakly simulate 2-counter machines. A 2-
counter machine (CM) operates on two counters and on a finite set Q of control
states. A transition updates the control state and executes either an increment,
a decrement, or a zero-test of one of the two counters. Operations and tests
on counters have their usual semantics, assuming that the values of counters
are natural values. In the initial configuration the counters are set to zero. A 2-
counter machine accepts an execution if it ends into the control state qf . Assume
a CM M. The CMRS S that weakly simulates M operates in a sequence of
phases indexed by natural numbers. Counters are represented as a multiset of
terms of the form cnt1(c) and cnt2(c) where c denotes the current phase. During
each phase, S simulates increment and decrement transitions of M. As soon
as M performs a zero-test of a counter, S enters an intermediate stage. After
conclusion of the intermediate stage, a new phase is started and the index phase
is increased. Transitions from q1 to q2 that update the current value of a counter
are encoded by Γ0 rules of the following form (they have the same labels as the
corresponding CM transitions):

(q1, cnt i :=cnt i+1, q2) ⇒ [q1, phase(x)] � [q2, phase(x), cnt i(x)] : true
(q1, cnt i :=cnt i−1, q2) ⇒ [q1, phase(x), cnt i(x)] � [q2, phase(x)] : true

In these rules we update the value of the i-th counter by adding or deleting one
occurrence of the term cnt i(c). Notice that the parameter c must be equal to the
current phase index. A transition (q1, cnt1 = 0?, q2) labeled with a is encoded
by the following Γ0 rules (the two first labeled with ε, the last one with a):

[q1, phase(x), phase ′(x)] � [q′2, phase(y), phase ′(x)] : {x < y}
[q′2, cnt2(x), phase(y), phase ′(x)] � [q′2, cnt2(y), phase(y), phase ′(x)] : true

[q′2, phase(y), phase ′(x)] � [q2, phase(y), phase ′(y)] : true

(The Γ0 rules encoding the test on cnt2 are obtained from the previous ones by
replacing predicate cnt2 with cnt1.) In the first rule we store the current index
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using phase ′, and generate a new index which is strictly larger than the current
one. This resets counter cnt1 since all ground terms in its encoding will now
have too small arguments for other rules in S to modify them. With the second
rule, we change the arguments of (some of) the ground terms encoding cnt2 to
the new index. The third rule terminates the simulation of the zero-test.

Finally, we add to S the following rules (all labeled by ε) for i ∈ {1, 2}:

[qfin ] � [q′′fin ] : true
[q′′fin , phase(x) , cnt i(x)] � [q′′fin , phase(x)] : true

[q′′fin , phase(x) , phase ′(y)] � [q′′fin ] : true

By means of these additional rules, when we reach state qfin we can move to q′′fin
and erase the ground terms corresponding to the counters. The key observation
here is that ground terms with parameters strictly less than the current phase
are not removed during the simulation procedure described above. This implies
that there exists an execution where S recognizes a word w that reaches [qf ]
iff there exists an execution where CM recognizes the word w that reaches qf .
Finally, the class of languages accepted by 2-counter machines with reachability
accepting condition is RE. ��

4 Lossy FIFO Channel Systems

In this section we study the relationship between a fragment of CMRS, we named
Γ0, and lossy (FIFO) channel systems (LCS) [5].

In the fragment Γ0 of CMRS every rule L � R : ψ satisfies the follow-
ing conditions: every variable x occurs at most once in L and at most once in
R, and ψ does not contain equality constraints. As an example, [p(x), r(y)] �

[q(x), r(z)] : x < y, y < z is a rule in Γ0, whereas [p(x), q(x)] � [q(y)] : true and
[p(x)] � [q(y), r(y)] : true are not in Γ0.

A Lossy FIFO Channel System (LCS) consists of an asynchronous parallel
composition of finite-state machines that communicate through sending and re-
ceiving messages via a finite set of unbounded lossy FIFO channels (in the sense
that they can non-deterministically lose messages). Formally, an LCS F is a
tuple (Q, C, N, δ) where Q is a finite set of control states (the Cartesian prod-
uct of those of each finite-state machine), C is a finite set of channels, M is a
finite set of messages, δ is a finite set of transitions, each of which is of the form
(q1, Op, q2) where q1, q2 ∈ Q, and Op is a mapping from channels to channel
operations. For any c ∈ C and a ∈ M , an operation Op(c) is either a send op-
eration !a, a receive operation ?a, the empty test ε?, or the null operation nop.
A configuration γ is a pair (q, w) where q ∈ Q, and w is a mapping from C
to M∗ giving the content of each channel. The initial configuration γinit of F
is the pair (q0, ε) where q0 ∈ Q, and ε denotes the mapping that assigns the
empty sequence ε to each channel. The (strong) transition relation (that defines
the semantics of machines with perfect FIFO channels) is defined as follows:
(q1, w1)

σ−→ (q2, w2) if and only if σ = (q1, Op, q2) ∈ δ such that if Op(c) =!a,
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then w2(c) = w1(c) · a; if Op(c) =?a, then w1(c) = a · w2(c); if Op(c) = ε?
then w1(c) = ε and w2(c) = ε; if Op(c) = nop, then w2(c) = w1(c). Now let �l

be the quasi ordering on LCS configurations such that (q1, w1) �l (q2, w2) iff
q1 = q2 and ∀c ∈ C : w1(c) �w w2(c) where �w indicates the subword relation.
By Higman’s theorem, we know that �l is a well-quasi ordering. We introduce
then the weak transition relation σ=⇒ that defines the semantics of LCS: we have
γ1

σ=⇒ γ2 iff there exists γ′
1 and γ′

2 s.t. γ′
1 �l γ1, γ′

1
σ−→ γ′

2, and γ2 �l γ′
2. Thus,

γ1
σ=⇒ γ2 means that γ2 is reachable from γ1 by first losing messages from the

channels and reaching γ′
1, then performing a transition, and, thereafter losing

again messages from channels. As shown in [5], an LCS is well-structured with
respect to �l. Furthermore, as shown in [6], in presence of transitions labeled
with ε, we can restrict our attention to systems with only one channel. As a
last remark, notice that for any model with lossy semantics like LCS, e.g. lossy
vector addition systems [18], the class of c-languages coincide with the class of
r-languages, i.e., Lr(LCS) = Lc(LCS).

Our first result is that Γ0 and LCS define the same class of c-languages.

Theorem 3. Lc(Γ0) = Lc(LCS).

Proof. The proof is based on encodings of LCS into Γ0 and of Γ0 into LCS. We
next sketch the main ideas behind the two encodings (the complete proof is in
[3]). In the encoding of an LCS in Γ0, we represent the content a1 . . . an of a
channel c as a multiset Mc = [hc(x), a1(x1), . . . , an(xn), tc(y)] where x < x1 <
. . . < xn < y. The predicates hc (head) and tc (tail) are used as sentinels to
mark the two ends of the queue. The operation !a on channel c is implemented
by adding a new ground term with predicate a to Mc and by moving the tail
to the right. The operation ?a on channel c is implemented by consuming an
element with predicate a chosen non-deterministically from the multiset Mc and
moving the head to the right. This operation simulates a lossy channel in the
sense that when we update hc we forget all elements to the left of the deleted
element. Finally, the empty test is simulated by a reset of the channel. Formally,
we encode LCS transitions operating on channel c into the following Γ0 rules
with the same labels:

(q1, !a, q2) ⇒ [q1, tc(x)] � [q2, a(x), tc(y)] : {x < y}
(q1, ?a, q2) ⇒ [q1, hc(x), a(y)] � [q2, hc(y)] : {x < y}
(q1, ε?, q2) ⇒ [q1, hc(x), tailc(y)] � [q2, hc(x′), tail(y′)] : {y < x′, x′ < y′}

It is easy to verify that the resulting Γ0 model accepts the same language as the
original LCS.

The encoding of Γ0 into LCS is more complicate and exploits special proper-
ties of Γ0. We first exploits Prop. 2 to observe that for any CMRS S with initial
and accepting configuration γinit and γacc if we replace each gap order formula
x <c y in S by x < y we obtain a CMRS S′ such that Lc(S) = Lc(S′). Hence,
we assume w.l.o.g. that there is no gap order formula x <c y with c > 0 in S.
Secondly, when considering c-languages of a Γ0 model, we can always restrict
our attention to configurations in which ground terms (with parameter greater
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than cmax) are totally ordered with respect to <, i.e. in which there cannot be
two ground terms (with parameter greater than cmax) with the same parame-
ter. The proof of this property requires some attention. A Γ0-rule may produce
indeed a configuration containing two or more ground terms with the same pa-
rameter (e.g. when the right-hand side contains unconstrained variables as in
[ ] � [p(x), p(y)] : true). We notice however that Γ0-rules cannot use equality
as guard in a condition. Thus, we can always choose a different evaluation for
the variables in a condition such that ground terms assume distinct values and
such that the word accepted by the corresponding execution remains the same.
As a consequence, a Γ0 configuration can be represented as a word of predicate
symbols (We recall that CMRS configurations are words of multisets of predi-
cate symbols as shown by the definition of index (·)). Thus, a Γ0-rule operates on
configurations as a transformation of words. With these properties in mind, it
comes natural to build an LCS that uses a lossy channel to encode a configura-
tion and operations on (auxiliary) channels to simulate the transformations on
words defined by a Γ0-rule with lossy semantics. The thesis follows by noticing
that, as for any other wsts, a version of Γ0 with lossy semantics recognizes the
same c-languages as those accepted by Γ0. �

We show next that CMRS are strictly more expressive than LCS and Γ0.

Theorem 4. Lc(LCS) ⊂ Lc(CMRS).

Proof. We define a language Lent which is accepted by a CMRS and that cannot
be accepted by any LCS. Assume a finite alphabet Σ such that {$, #} �⊆ Σ.
For each w = a1 · · · ak ∈ Σ∗, we interpret w in the following as the multiset
[a1, . . . , ak]. Hence, we do not distinguish words in Σ∗ from the multiset they
represent, and vice versa. In particular, we will use the notation a1 · · · ak ≤
a′
1 · · · a′

l to denote that [a1, . . . , ak] ≤ [a′
1, . . . , a

′
l]. Define V to be the set of words

of the form w1#w2# · · · #wn where wi ∈ Σ∗ for each i : 1 ≤ i ≤ n. Consider
v = w1#w2# · · · #wm ∈ V and v′ = w′

1#w′
2# · · · #w′

n ∈ V . We write v � v′ to
denote that there is an injection h :{1, . . ., m} �→{1, . . ., n} such that

1. 1 ≤ i < j ≤ m implies h(i) < h(j) (h is monotonic) and
2. wi ≤ w′

h(i) (≤ is multiset inclusion) for each i : 1 ≤ i ≤ m.

We now define the language Lent = {v$v′ | v′ � v} ⊆ (Σ ∪ {#, $})∗. As an
example, given Σ = {a, b}, we have that [a, b, b]#[a, b, b]#[a, a]$[b, a]#[a, a] is in
Lent, whereas [a, b, b]#[b, a, b]#[a, a]$[a, a]#[a, b] is not in Lent.

We now exhibit a CMRS S with Lc(S) = Lent. The set of predicate symbols
which appear in S consists of (i) a predicate symbol a for each a ∈ Σ, and (ii)
the symbols guess , check , sep# and ok . The initial configuration γinit is defined
as [guess(0)]. Furthermore, we have the following rules:
(1) For each a ∈ Σ, we have a rule labelled with a and which is of the form

[guess(x)] � [guess(x) , a(x)] : true
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Rules of this form are used to guess the letters in wi in the first part of a word
in Lent. We keep track of the symbols inside wi through their argument. These
arguments are all the same by definition of the rule.
(2) A rule labelled with # of the form:

[guess(x)] � [sep#(x) , guess(y)] : {x < y}

This rule is used to switch from the guessing of the part wi to the guessing of
the next part wi+1. sep#(x) remembers the parameter on which the switch has
been executed.
(3) A rule labelled with $ of the form:

[guess(x) ] � [check (y) , sep#(x)] : {y = 0}

This rule is used to switch from the guessing of the part w1# . . . #wn to the
selection of the second part of the word. The parameter of check is equal to the
initial value of guess , i.e. to 0. This way, we can scan the word stored in the
first phase from left-to-right, i.e., working on the argument order we define a
monotonic injective mapping h.
(4) For each a ∈ Σ, we have a rule labelled with a which is of the form

[check(y) , a(y)] � [check(y)] : true

This rule is used to read a word (multiset) ui contained in wh(i).
(5) A rule labelled with # of the form:

[check (x) , sep#(x) , sep#(y) ] � [check (y) , sep#(y)] : {x < y}

This rule is used to pass from ui to ui+1 for i ≥ 1.
(6) A rule labelled with ε of the form:

[check (x) ] � [ok (y)] : {y = 0}

This rule is used to non-deterministically terminate the checking phase. The
accepting configuration γacc is defined as [ok (0)].

Assuming that Σ = {a, b}, we now show that Lent is not an LCS language.
Suppose that Lc(F) = Lent for some LCS F = (Q, {c}, M, δ). We show that this
leads to a contradiction. Let γinit be the initial global state in F and γacc be the
accepting global state. We use a binary encoding enc : Q ∪ M �→ Σ∗ such that
enc(m) �≤ enc(m′) if m �= m′. We will also use a special word vinit ∈ Σ∗ such
that vinit �≤ enc(m) for each m ∈ Q ∪ M . It is clear that such enc function and
vinit exist. As an example, if |Q∪M | = n then we define enc as an injective map
from Q ∪ M to multisets of n + 1 elements with i + 1 occurrences of a and n − i
occurrences of b for 0 ≤ i ≤ n, and we use the multiset with n + 1 occurrences
of b for vinit . For instance, for n = 2 we use [a, a, a], [a, a, b], [a, b, b] for control
states and messages and [b, b, b] for vinit . We extend enc to global states such
that if γ = (q, m1m2 · · · mn) then

enc(γ) = enc(q)#enc(m1)#enc(m2)# · · · #enc(mn)
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Observe that (i) enc(γ) ∈ V ; (ii) for global states γ1 and γ2, it is the case that
γ1 �l γ2 iff enc(γ1) � enc(γ2); and (iii) vinit �� enc(γ) for each global state γ.

Since Lent = Lc(F) and v$v ∈ Lent for each v ∈ V , it follows that for each

v ∈ V , there is a global state γ such that γinit
v−→ γ

$v−→ γ′ with γacc �l γ′.
We use reach(v) to denote γ. We define two sequences γ0, γ1, γ2, . . . of global
states, and v0, v1, v2, . . . of words in V such that v0 = vinit , γi = reach(vi), and
vi+1 = enc(γi) for each i ≥ 0. By Higman’s theorem we know that there is a j
such that γi �l γj for some i < j. Let j be the smallest natural number satisfying
this property. First, we show that vi �� vj . There are two cases: if i = 0 then
vi �� vj by (iii); if i > 0 then we know that γi−1 ��l γj−1 and hence, following
(ii), vi = enc(γi−1) �� enc(γj−1) = vj . Since γj = reach(vj), we know that

γinit
vj−→ γj . By monotonicity, γi

$vi−→ γ′
i, γacc �l γ′

i, γi �l γj implies γj
$vi−→ γ′

j

with γacc �l γ′
i �l γ′

j . We conclude that γinit
vj−→ γj

$vi−→ γ′
j with γacc �l γ′

j .
Hence, vj$vi ∈ Lc(F) = Lent which is a contradiction since vi �� vj . ��

Let us now consider r-languages. As mentioned at the beginning of the section,
the expressive power of LCS remains the same as for coverability accepting
conditions, However, this property does not hold anymore for Γ0.

Proposition 3. Lc(Γ0) ⊂ Lr(Γ0) = Lr(CMRS) = RE.

Proof. It is well known that perfect FIFO channel systems with reachability ac-
cepting condition recognize the class RE. We prove that perfect channel systems
accept the same languages as Γ0 with reachability accepting condition. Given an
LCS F , let S be the Γ0 used to encode an LCS in the proof of Theorem 3. In
each step of a run σ in S the head and tail delimiters are moved to the right of
their current positions. Thus, a “lost” ground term to left of the head delimiter,
i.e. with parameter smaller than that of hc, can never be removed in succes-
sive steps of σ. This implies that an accepting configuration in which all ground
terms have parameters strictly greater than the parameter of the head delimiter
characterize reachable configurations of a perfect FIFO channel system. ��

Hence, we have the following property.

Corollary 1. Lr(LCS) ⊂ Lr(CMRS).

5 Petri Nets and Their Extensions

Petri nets (PN), a well-known model of concurrent computation [19], can natu-
rally be reformulated in a multiset rewriting system operating on nullary pred-
icates only (i.e. predicates with no parameters). Let us call Γ1 this fragment of
CMRS. It is easy to see that, if we associate a predicate symbol to each place of
a net, configurations and rules of a Γ1 model are just alternative representations
of markings and transitions of a Petri net. As an immediate consequence of this
connection, we have that Lc(Γ1) = Lc(PN) and Lr(Γ1) = Lr(PN). To formally
compare Γ1 with the other models, we use some known results on languages
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accepted by extensions of Petri nets. A lossy Petri net with inhibitor arcs (LN)
is a Petri net in which it is possible to test if a place has no tokens and in which
tokens may get lost before and after executing a transition. A transfer net [10]
(TN) is a Petri net extended with transfer arcs. A transfer arc specifies an atomic
transfer of all tokens in a given set of source places to a given target place. Fi-
nally, a reset net [10] is a Petri net in which it is possible to atomically remove
all tokens from a given place. LN, TN, and RN are well-structured with respect
to the inclusion ordering of markings (see, e.g., [10,11]). For these models, it is
simple to verify that Lc(LN) = Lc(RN) = Lc(TN), Lc(LN) ⊆ Lc(LCS), and,
as for LCS, Lr(LN) = Lc(LN) (see for [3] for formal proofs). Furthermore, in
[14] the authors proved that Lc(PN) ⊂ Lc(TN). From all these properties, we
obtain the following result.

Theorem 5. Lc(Γ1) ⊂ Lc(Γ0).

For r-languages, the classification changes as follows.

Theorem 6. Lr(Γ1) �∼ Lr(LCS), Lr(Γ1) �∼ Lr(LN), and Lr(Γ1) ⊂ Lr(Γ0).

Proof. We first prove that Lr(Γ1) = Lr(PN) �⊆ Lc(LCS) = Lr(LCS), hence
Lr(Γ1) �⊆ Lc(LN) = Lr(LN) since Lc(LN) ⊆ Lc(LCS) = Lr(LCS). Consider
the language L = {anbn | n ≥ 0}. It is easy to verify that there exists a Petri
net N such that Lr(N ) = L. We now prove that L �∈ Lr(LCS). Per absurdum,
suppose there exists an LCS F such that Lc(F) = L. For any k ≥ 1, let γk

and γ′
k be two global states s.t. γinit leads to γk by accepting the word ak, γk

leads to γ′
k by accepting the word bk, and γacc �l γ′

k. Since �l is a well-quasi
ordering, there exists i < j such that γi �l γj . By monotonicity of F , we have
γj leads to γ′′ by accepting the word bi and γacc �l γ′

i �l γ′′. We conclude that
ajbi ∈ Lc(F) with i < j, which gives us a contradiction.

We now prove that Lc(LN) �⊆ Lr(Γ1), hence Lc(LCS) �⊆ Lr(Γ1). Let Σ =
{a, b} and let Lpar be the language over the alphabet Σ ∪ {#} that contains all
the words w1# . . .#wn with n ≥ 0 such that wi ∈ Σ∗ and there is no prefix
of wi that contains more occurrences of symbol b than those of symbol a, for
i : 1 ≤ i ≤ n. Notice that the number of occurrences of symbols a and b in
wi may be different. The language can be accepted by a LN defined as follows.
When we accept the symbol a we add one token in a special place pa. To accept
the symbol b, we remove one token from pa. To pass from wi to wi+1, we accept
symbol # whenever pa is empty (in LN the empty test is just a reset).

We now show that Lpar cannot be recognized by a Petri net. Suppose that
there exists a Petri net N such that Lr(N ) = Lpar. Starting from N , we build
a net N1 by adding a new place d that keeps track of the difference between
the number of occurrences of symbols a and b in the prefix of the word that is
being processed in N . Furthermore, we add the condition that d is empty to
the accepting marking of N . It is easy to verify that N1 accepts the language
Lbal consisting of words of the form w = w1# · · · #wn where wi belongs the the
language of balanced parentheses on the alphabet Σ for i : 1 ≤ i ≤ n. We exploit
now [15, Lemma 9.8] that states that Lbal cannot be recognized by a Petri net
with reachability accepting condition, which gives us a contradiction.
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Finally, the property Lr(Γ1) = Lr(PN) ⊂ Lr(Γ0) follows from [15, Lemma
9.8] and Prop. 3, Indeed, we have that Lbal ∈ Lr(Γ0) = RE and Lbal �∈ Lr(Γ1).

��

Finally, we observe that we can use an argument similar to that used in the
proof of Theorem 6 to show that Lr(PN) �∼ Lc(CMRS).

6 (Integral) Relational Automata

In this section we compare the class of languages accepted by a fragment of
CMRS, called Γ2, with those accepted by relational automata [9].

The fragment Γ2 is defined as follows. Let us first use |B| to denote the
cardinality of a multiset B. Γ2 is the fragment of CMRS in which a rule L �

R : ψ satisfies the condition |R| ≤ |L|. In other words, in Γ2 the cardinality
of a reachable configuration is always bounded by the cardinality of the initial
configuration.

An (integral) relational automaton (RA) operates on a finite set X of positive
integer variables, and is of the form (Q, δ) where Q and δ are finite sets of con-
trol states and transitions respectively. A transition is a triple (q1, op, q2) where
q1, q2 ∈ Q and op is of one of the following three operations: (i) reading: read(x)
reads a new value of variable x (i.e. assigns a non-deterministically chosen value
to x), (ii) assignment: x := y assigns the value of variable y to x; (ii) testing:
x < y, x = y, x < c, x = c, and x > c are guards which compare the values
of variables x, y and the natural constant c. Assume a RA A = (Q, δ). A valu-
ation v is a mapping form X to N. A configuration is of the form (q, v), where
q ∈ Q and v is a valuation. We define γinit to be (qinit , vinit ) where qinit ∈ Q
and vinit (x) = 0 for all x ∈ X . For a transition ρ ∈ δ of the form (q1, op, q2), we
let γ1

ρ−→ γ2 if and only if γ1 = (q1, v1), γ2 = (q2, v2), and one of the following
holds: op = read(x) and v2(y) = v1(y) for each y ∈ X − {x}; op = (y := x),
v2(z) = v1(z) for each z ∈ X − {y}, and v2(y) = v1(x); op = (x < y), v2 = v1,
and v1(x) < v1(y). Other testing operations are defined in a similar manner. In
[9] Cerans has shown that RA equipped with the sparser-than order of tuples
of natural numbers are well-structured. In the case of RA with that order, the
coverability accepting condition is equivalent to the control state acceptance,
i.e., a word is accepted if it is recognized by an execution ending in a particular
control state qacc ∈ Q.

As stated in the following propositions, RA and Γ2 define the same class of
c- and r-languages.

Proposition 4. Lc(Γ2) = Lc(RA).

Proof. Given an RA A = (Q, δ) over the set of variables X , we can build the Γ2
S defined below. The set of predicate symbols in S consists of the following: (i)
for each q ∈ Q, there is a predicate symbol q in S; and (ii) for each variable x



112 P.A. Abdulla, G. Delzanno, and L. Van Begin

in X , there is a predicate symbol qx in S. Transitions in δ are encoded via the
following CMRS rules (with the same labels)

(q1, read(x), q2) ⇒ [q1, px(z)] � [q2, px(w)] : true
(q1, x := y, q2) ⇒ [q1, px(z), py(w)] � [q2, px(w), py(w)] : true
(q1, x < y, q2) ⇒ [q1, px(z), py(w)] � [q2, px(z), py(w)] : {z < w}

For X = {x1, . . . , xn}, the initial configuration is γinit = [q0, px1(0), . . . , pxn(0)].
The accepting configuration γacc is the multiset [qacc].

For the other inclusion, by using Prop. 2, we assume w.l.o.g. that there is no
gap order formula x <c y with c > 0 in S and that γacc = [ok]. To justify the
second assumption, notice that we can always introduce new predicate symbols
ko and ok and a new rule that can be executed only on a configuration γ with
γacc �c γ and that replace ko with ok. All other rules are modified to be enabled
only at configurations containing ko. Finally, we also observe that we can assume
that all configurations of S have the same size (the size of the initial configuration
of the Γ2 model). Thus, we associate a variable of X to each ground term of
the initial CMRS configuration and compose the predicate symbols in a CMRS
configuration to form a single control state. CRMS rules can then be simulated
in several steps by operations on variables and updates of control states. To each
control state containing ok, we add a transition labeled with ε to the accepting
control state qacc. ��

Theorem 7. Lc(Γ2) = Regular Languages.

To prove this claim, we define a finite state automaton where states are abstrac-
tions of configurations in which we only keep the order on parameters and not
their exact values (when parameters are greater than cmax). The relation tran-
sition of the symbolic graph mimics the transition relation of S. Then, we show
(by using Prop. 2) that the symbolic graph contains exactly the information
we need to characterize the language recognized by S. Finiteness of the graph
allows us to conclude that Γ2 corresponds to the class of regular languages. The
complete construction is given in [3].

We are ready now to compare Γ2 (hence RA) with the other models studied in
this paper. For this purpose, we first observe that Petri nets can accept regular
languages (finite automata can be encoded as Petri nets). Furthermore, it is
straightforward to build a Petri net that accepts a non-regular language like
L = {an#bm | n ≥ m}. As a consequence of this observation and of Theorem 7,
we have the following result.

Corollary 2. Lc(Γ2) ⊂ Lc(Γ1).

Let us now consider the reachability accepting condition. We first notice that
Lc(Γ2) = Lr(Γ2) = Lc(RA) = Lr(RA). Indeed, in both cases of Γ2 and RA
we can encode the reachability acceptance into the coverability acceptance by
adding transitions (labelled with ε) that can be fired only from the accepting
configuration and leads to a configuration with control state qacc in the case of
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RA and a configuration containing a special accepting predicate symbol in the
case of Γ2. Thus, we have the following property.

Theorem 8. Lr(Γ2) ⊂ Lr(Γ1).

7 Conclusions

In this paper we have compared the class of languages recognized with cover-
ability and reachability as accepting conditions by relational automata (RA),
Petri nets (PN), lossy channel systems (LCS), and constrained multiset rewrit-
ing systems (CMRS). With both accepting conditions, CMRS turns out to be
the most expressive model among the different well-structured systems consid-
ered in the paper. Indeed, with coverability as accepting condition we have that
FA = RA < PN < LCS < CMRS < CM , whereas with reachability we have
that FA = RA < PN, LCS < CMRS = CM and PN and LCS are incom-
parable models. Here FA and CM denote resp. finite automata (they recognize
regular languages) and counter automata (they recognize recursively enumer-
able languages), and < means “strictly less expressive than”. We also prove that
transfer nets, reset nets, broadcast protocols and lossy vector addition systems
are strictly less expressive than CMRS. CMRS can thus be viewed as a unified
model for analysis and verification of a large class of infinite-state models.
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