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Abstract. In this paper, we give a step by step introduction to the theory of well

quasi-ordered transition systems. The framework combines two concepts, namely (i)

transition systems which are monotonic wrt. a well-quasi ordering; and (ii) a scheme

for symbolic backward reachability analysis. We describe several models with infinite-

state spaces, which can be analyzed within the framework, e.g., Petri nets, lossy channel

systems, timed automata, timed Petri nets, and multiset rewriting systems. We will also

present better quasi-ordered transition systems which allow the design of efficient symbolic

representations of infinite sets of states.

§1. Introduction.
1.1. Background. Current capabilities in computer technology allow enor-

mously complicated implementations of such systems, making the task of pro-
ducing error-free products more and more difficult. Consequently, it is of great
practical and economical importance to develop methods which make the design
process less error-prone. In other words, there is a real need of techniques for
rigorous verification of software in order to complement testing and guarantee
a higher degree of reliability. It is now widely accepted that validation meth-
ods should be automatic; this would allow engineers to perform verification (like
they perform compilation) on programs without needing to be familiar with the
complex constructions and algorithms behind the tools.

1.2. Finite-State Systems. Some of the most notable advances in the area
of automated (algorithmic) verification during the last 20 years have been achieved
in the area of finite-state systems. This success has largely been due to the in-
vention of model checking [19, 36]. In model checking, the system is modelled
as a finite graph where the nodes represent the states (sometimes referred to
as configurations) of the program, and the edges encode a transition relation
−→ between configurations. The size and complexity of applications which can
be handled have increased rapidly through integration with symbolic techniques
such as BDDs [16, 17, 32], and (more recently) through the use of SAT-solvers
[14]. Existing tools can now routinely handle systems with millions of states.
These methods are designed to work on finite (but large) state spaces, and have
been successfully used in industrial-sized projects, especially in the area of hard-
ware verification.

While the finite-state framework is well suited for reasoning about hardware
circuits, it fails to deal with several essential aspects of behaviours for software
systems. The reason is that these behaviors involve features which give rise to
infinite state spaces. Examples of such features include variables ranging over
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infinite domains, unbounded communication media, timing constraints, dynamic
process creation, parameterization (systems with unbounded numbers of compo-
nents), multi-threading, and dynamically allocated data structures. Therefore,
a large amount of work has been devoted to extending the applicability of model
checking to infinite-state systems.

1.3. Essentially Finite-State Systems. One of the first breakthroughs in
infinite-state model checking was achieved by Alur, Courcoubetis, and Dill in
their classical paper on timed automata [11]. The idea is based on finite par-
titioning. Given a system with infinitely many configurations, we define an
equivalence relation ≡ on the set of configurations such that the following two
conditions are satisfied:

• ≡ has a finite index (a finite number of equivalence classes).
• ≡ forms a congruence, i.e., equivalent configurations make transitions to

equivalent configurations. More precisely, if c1 ≡ c2 and c1 −→ c3 (i.e., c1
can make a transition to c3) then c2 −→ c4 for some c4 ≡ c2. This condition
is equivalent to saying that ≡ is a bisimulation wrt. the transition relation
−→.

This means that we can build an abstract finite-state system, where each con-
figuration is the representative of one equivalence class, and where there is a
transition from one configuration to another (in the abstract system) if there
is a transition between the two corresponding equivalence classes. Models such
as timed automata, which allow finite partitioning, are said to be essentially
finite-state since they allow the extraction of an equivalent finite-state system.

1.4. Well Quasi-Ordered Systems. In this paper, we introduce the basic
ingredients of a framework which is widely adopted for infinite-state verification.
Compared to finite partitioning, we consider a weaker condition namely that of
having a pre-order � rather than an equivalence relation ≡. This gives a more
general framework in the following sense:

• Having an equivalence relation is a special case of having a pre-order in the
sense that ≡ is also assumed to be symmetric.

• We require that the transition relation is monotonic wrt. �: if c1 � c2 and
c1 −→ c3 then c2 −→ c4 for some c4 with c2 � c4. This is equivalent to
saying that � is a simulation wrt. the transition relation. Notice that in
the special case where � is an equivalence relation, the requirement that �
is a simulation amounts to the requirement that � is a bisimulation.

• Instead of working with equivalence classes (each represented by one of
its configurations), we work with sets of configurations that are upward
closed wrt. �. Such an upward closed set is represented by one of its
minimal elements. Again, we observe that, in the special case where �
is an equivalence relation, each upward closed set is an equivalence class
and each (minimal) element can be taken to be the representative of the
equivalence class.

• We require that � is a Well Quasi-Ordering (WQO for short). This means
that, for any infinite sequence c0, c1, c2, . . . there are i, j with i < j and
ci � cj . If � is an equivalence relation then the condition of � being a
WQO amounts to the equivalence relation having a finite index.
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Concretely, our framework is based on combining two concepts, namely

1. transition systems which are monotonic wrt. a well-quasi ordering ; and
2. a scheme for symbolic backward reachability analysis.

Given a class of models, we define a preorder � on the set of configurations
such that (1) � is a simulation relation on the considered models, and (2) �
is a WQO. If such a preorder can be defined, then it can be proved that the
reachability of an upward-closed set of configurations (wrt. �) can be checked
algorithmically (automatically). Indeed, (1) monotonicity implies that for any
upward-closed set, the set of its predecessors is an upward-closed set, and (2) the
fact that � is a WQO implies that every upward-closed set can be characterized
by its finite set of minimal elements. Therefore, starting from an upward-closed
set of configurations U , the iterative computation of the backward reachable
configurations from U necessarily terminates since only a finite number of steps
are needed to capture all minimal elements of the set of predecessors of U . Ob-
viously, this requires that upward-closed sets can be effectively represented and
manipulated (i.e., there are procedures, e.g., for computing immediate predeces-
sors and for checking entailment). This general scheme can be applied for the
verification of safety properties since the problem can be reduced to checking the
reachability of a set of bad configurations which is typically an upward-closed
set wrt. �. (For instance, mutual exclusion is violated as soon as there are (at
least) two processes in the critical section.)

1.5. A Historical Perspective. The first paper that suggests combining
WQOs with symbolic backward reachability analysis appeared in 1993 [4]. The
paper defines the method in the context of lossy channel systems. The work in
[2], which was published in 1996, extended the method of [4], and presented for
the first time the general framework as a tool for model checking of infinite-state
systems. The paper (and its journal version [3]) also shows how to apply the
algorithms for lossy channel systems, Petri nets, timed automata, and relational
automata. In 1998, we applied the framework to derive one of the first positive
results for systems which are infinite in two dimensions [6]. More precisely,
we presented an algorithm for checking safety properties in systems consisting
of arbitrary numbers of processes each with a real-valued clock. In 2000, we
modified the framework by using the theory of Better Quasi-Orderings (BQOs)
which is a non-trivial refinement of the theory of WQOs [9]. The BQO approach
allows to work with much more efficient symbolic representations than WQOs.

Five years after the publication of [2], the papers [7] and [25] presented in 2001
tutorials and surveys of existing results together with a set of simple extensions
of the framework.

In [24] Finkel presented the model of completely specified protocols which is
very similar to lossy channel systems. However, the paper presents only algo-
rithms for checking termination using forward reachability analysis. In particu-
lar, the algorithms cannot be used to check safety properties.

Despite its simplicity, the framework of well quasi-ordered transition systems
has shown to be quite powerful, and has been applied to derive verification al-
gorithms for numerous models such as broadcast protocols [23], lossy channel
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systems [4, 5], timed Petri nets [10], cache coherence protocols [21], timed net-
works [8], multiset rewriting systems [1], and data nets [30].
Remark. The class of systems we consider in this tutorial is often referred as well-
structured systems in the literature. However, we avoid this name here to avoid
confusion. The term well-structured systems has been used to define different
types of models. For instance, it is used in [26] to describe systems which are
strictly monotonic. This is a much stronger condition than monotonicity. Among
the models we consider in this paper, only Petri nets satisfy strict monotonicity.

1.6. Outline. In the next Section we introduce several notions which we will
use throughout the paper. We will illustrate the main concepts of our method-
ology in Section 3 through the classical model of Petri nets. In Section 4 we
give the formal definition of well quasi-ordered transition systems, and present
the first version of the algorithm for symbolic backward reachability analysis.
In Section 5 we propose a refined version of the algorithm which is more appro-
priate for implementation. We illustrate how to use the reachability algorithm
in order to check safety properties in Section 6. We apply the framework to
lossy channel systems and timed automata in Sections 7 resp. 8. In Section 9
we introduce the notion of constraint systems which we use to give a symbolic
version of the reachability algorithm. In Section 10, we describe a methodology
for building more and more complicated well quasi-ordered constraint systems
based on Hangman’s theorem; and then apply the methodology to build a con-
straint system for timed Petri nets in Section 11. In Section 12, we explain the
role of better quasi-orderings in the design of efficient constraint systems, and
then apply them for the verification of timed Petri nets and constraint multiset
rewriting systems in Sections 13 resp. 14.

§2. Preliminaries. We give preliminary notions and concepts which we will
use in the rest of the paper.

2.1. Multisets and Words. We use N, Z, and R≥0 to represent the set of
natural numbers, integers, and non-negative reals respectively. For a set A, we
use A~ to denote the set of finite multisets over A. We view a multiset over A
as a mapping from A to N. Sometimes, we write multisets as lists, so if a, b ∈ A
then [a, b, b, a, a] represents a multiset M over A where M(a) = 3, M(b) = 2
and M(x) = 0 for x 6= a, b. We may also write M as

[
a3, b2

]
. For multisets

M1 and M2 over N, we write M1 ≤ M2 if M1(a) ≤ M2(a) for all a ∈ A. We
define the addition M1 + M2 of multisets M1,M2 to be the multiset M where
M(a) = M1(a) + M2(a), and (assuming M1 ≤ M2) we define the subtraction
M2 −M1 to be the multiset M where M(a) = M2(a) −M1(a), for each a ∈ A.
For natural numbers n1 and n2, we define n2	n1 to be 0 if n1 ≥ n2 and n2−n1

otherwise. We extend the operation 	 to multisets in an analogous manner to
addition and subtraction. We write a ∈M to denote that M(a) > 0. Sometimes,
we interpret a set B ⊆ A as a multiset where B(a) = 1 if a ∈ B and B(a) = 0 if
a 6∈ B. We use ∅ to denote the empty multiset, i.e., ∅(a) = 0 for all a ∈ A; and
use |M | to denote the size of M ,i.e., |M | =

∑
a∈AM(a).

We use A∗ to denote the set of finite words over A, and use w1 ·w2 to denote the
concatenation of the words w1 and w2. Sometimes, we omit the concatenation
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operator and simply write w1w2. We use ε to denote the empty string. If
w = a1a2 · · · an 6= ε, we define last (w) := an.

For a natural number n ∈ N, we use n• to denote the set {1, 2, . . . , n}.
2.2. Well Quasi-Orderings. A pre-order (A,�) consists of a set A and a

reflexive and transitive relation � on A. If A is known from the context, then we
simply represent the pre-order by the relation �. We say that � is an equivalence
relation if it is also symmetric. We say that � is decidable if, given a, b ∈ A, we
can algorithmically check whether a � b. We write a ≺ b to denote that a � b
and b 6� a. A set U ⊆ A of configurations is said to be upward closed (wrt. �), if
whenever c ∈ U and c � c′ then c′ ∈ U . For a ∈ A, we define â := {b| a � b}, i.e.,
â is the upward closure of a wrt. �. For a set B ⊆ A, we define B̂ :=

⋃
a∈B â.

For sets B1, B2 ⊆ A, we use B1 �∀∃ B2 to denote that for all b2 ∈ B2 there is a
b1 ∈ B1 with b1 � b2. Observe that B1 �∀∃ B2 iff B̂2 ⊆ B̂1.

An infinite sequence a0, a1, a2, . . . of elements in A is said to be good if there
are i and j such that i < j and ci � cj . The sequence is called bad otherwise.
The pre-order � is said to be a Well Quasi-Ordering (WQO for short) if all
infinite sequences over A are good.

For an upward closed set U , we define a generator of U to be a set B such
that:
• B̂ = U , i.e., U can be generated from B by taking the upward closure of B

wrt. �.
• a � b implies a = b for all a, b ∈ B. In other words, the set B is canonical

in the sense that all its elements are incomparable wrt. �.
We observe that the set B contains only minimal elements (we cannot have a ≺ b
where b ∈ B and a 6∈ B). On the other hand, if � is not anti-symmetric, then
the set B need not be unique (given two elements a � b � a, then any one of
a and b may belong to B). We use gen (U) to denote a function which returns
a unique generator of U . In other words, if there are are several generators of
U , then gen (U) gives an arbitrary (but fixed) such generator. If � is a partial
order (i.e., it is also anti-symmetric), then there is indeed a unique generator of
U .

Assume that � is a WQO. It follows by canonicity that gen (U) is finite;
otherwise we would have an infinite set of incomparable elements from which
we can build a bad sequence. This means that each upward closed set U can
be characterized by a finite set of configurations, namely its generator gen (U).
The set gen (U) = {a1, . . . , an} is a finite characterization of U in the sense that
U = â1 ∪ · · · ∪ ân.

§3. Petri Nets. We illustrate the main ideas of our methodology, using the
model of Petri Nets. After recalling the standard definitions of Petri nets, we
describe the transition system induced by a Petri net. We describe how checking
safety properties can be translated to the reachability of sets of configurations
which are upward closed wrt. a natural ordering on the set of configurations1.
Finally, we give a sketch of an algorithm to solve the reachability problem.

1Reachability of upward closed sets of configurations is referred to as the coverability problem
in the Petri net literature.



6 PAROSH AZIZ ABDULLA
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Figure 1. (a) A simple Petri net. (b) The result of firing t1.

3.1. Model. A Petri net N is a tuple (P, T, F ), where P is a finite set of
places, T is a finite set of transitions, and F ⊆ (P × T ) ∪ (T × P ) is the flow
relation. If (p, t) ∈ F then p is said to be an input place of t; and if (t, p) ∈ F
then p is said to be an output place of t. We use In (t) := {p| (p, t) ∈ F} and
Out (t) := {p| (t, p) ∈ F} to denote the sets of input places and output places of
t respectively.

Figure 1 shows an example of a Petri net with three places (drawn as circles),
namely L, W, and C; and two transitions (drawn as rectangles), namely t1 and t2.
The flow relation is represented by edges from places to transitions, and from
transitions to places. For instance, the flow relation in the example includes the
pairs (L, t1) and (t2, W), i.e., L is an input place of t1, and W is an output place of
t2.

The transition system induced by a Petri net is defined by the set configura-
tions together with the transition relation defined on them. A configuration c
of a Petri net 2 is a multiset over P . The configuration c defines the number of
tokens in each place. Figure 1 (a) shows a configuration where there is one token
in place L, three tokens in place W, and no token in place C. The configuration
corresponds to the multiset

[
L, W3

]
.

The operational semantics of a Petri net is defined through the notion of firing
transitions. This gives a transition relation on the set of configurations. More
precisely, when a transition t is fired, then a token is removed form each input
place, and a token is added to each output place of t. The transition is fired only
if each input place has at least one token. Formally, we write c1 −→ c2 to denote
that there is a transition t ∈ T such that c1 ≥ In (t) and c2 = c1−In (t)+Out (t).
For sets C1, C2 of configurations, we write C1 −→ C2 to denote that c1 −→ c2

2A configuration in a Petri net is often called a marking in the literature.
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for some c1 ∈ C1 and c2 ∈ C2. We define ∗−→ to the reflexive transitive closure
of −→.

The Petri net of Figure 1 can be seen as a model of a simple mutual exclusion
protocol, where access to the critical section is controlled by a global lock. A
process is either waiting or is in its critical section. Initially, all the processes are
in their waiting states. When a process wants to access the critical section, it
must first acquire the lock. This can be done only if no other process has already
acquired the lock. From the critical section, the process eventually releases the
lock and moves back to the waiting state. The numbers of tokens in places W and
C represent the number of processes in their waiting states and critical sections
respectively. Absence of tokens in L means that the lock is currently taken by
some process.

The set Cinit of initial configurations are those of the form [L, Wn] where n ≥ 0.
In other words, all the processes are initially in their waiting states, and the lock
is free. The transition t1 models a process moving to its critical section, while
the transition t2 models a process going back to its waiting state.

As an example, if we start from the configuration
[
L, W4

]
, we can fire the tran-

sition t1 to obtain the configuration
[
C, W3

]
from which we can fire the transition

t2 to obtain the configuration
[
L, W4

]
, and so on.

A set C of configurations is said to be reachable if Cinit
∗−→ C.

3.2. Safety Properties. We are interested in checking a safety property for
the Petri net in Figure 1. In a safety property, we want to show that “nothing
bad happens” during the execution of the system. Typically, we define a set
Bad of configurations, i.e., configurations which we do not want to occur during
the execution of the system. In this particular example, we are interested in
proving mutual exclusion. The set Bad contains those configurations that violate
mutual exclusion, i.e., configurations in which at least two processes are in their
critical sections. These configurations are of the form

[
Lk, Wm, Cn

]
where n ≥ 2.

Checking the safety property can be carried out by checking whether we can
fire a sequence of transitions taking us from an initial configuration to a bad
configuration, i.e., we check whether the set Bad is reachable.

We will work with sets of configurations which are upward closed with respect
to ≤. Such sets are interesting in our setting since all sets of bad configurations
which occur in our examples are upward closed. For instance, in our example,
whenever a configuration contains two processes in their critical sections then
any larger configuration will also contain (at least) two processes in their critical
sections, so the set Bad is upward closed. In this manner, checking the safety
property amounts to deciding reachability of an upward closed set. Below, we
give a sketch of backward reachability algorithm for checking safety properties.
In fact, since the ordering ≤ is anti-symmetric, it follows that each upward closed
set has a unique generator.

3.3. Algorithm. As mentioned above, we are interested in checking whether
it is the case that Bad reachable. The safety property is violated iff the question
has a positive answer. The algorithm, illustrated in Figure 2, starts from the set
of bad configurations, and tries to find a path backwards through the transition
relation to the set of initial configurations. The algorithm operates on upward
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[
C2
][L, W, C]

[
C3
]

[
L2, W2

]
[
C2
]

[
L3, W3

]
[L, W, C]

Figure 2. Running the backward reachability algorithm on the
example Petri net. Each ellipse contains the configurations gen-
erated during one iteration. The subsumed configurations are
crossed over.

closed sets of configurations. An upward closed set is symbolically represented by
a finite set of configurations, namely the members of its generator. In the above
example, the set gen (Bad) is the singleton

{[
C2
]}

. Therefore, the algorithm
starts from the configuration c0 =

[
C2
]
. From the configuration c0, we go back-

wards and derive the generator of the set of configurations from which we can
fire a transition and reach a configuration in Bad = ĉ0. Transition t1 gives the
configuration c1 = [L, W, C], since ĉ1 contains exactly those configurations from
which we can fire t1 and reach a configuration in ĉ0. Analogously, transition t2
gives the configuration c2 =

[
C3
]
, since ĉ2 contains exactly those configurations

from which we can fire t2 and reach a configuration in ĉ0. Since c0 ≤ c2, it follows
that ĉ2 ⊆ ĉ0. In such a case, we say that c2 is subsumed by c0. Since ĉ2 ⊆ ĉ0,
we can discard c2 safely from the analysis without the loss of any information.
Now, we repeat the procedure on c1, and obtain the configurations c3 =

[
L2, W2

]
(via t1), and c4 =

[
C2
]

(via t2), where c4 is subsumed by c0. Finally, from c3
we obtain the configurations c5 =

[
L3, W3

]
(via t1), and c6 = [L, W, C] (via t2).

The configurations c5 and c6 are subsumed by c3 and c1 respectively. The iter-
ation terminates at this point since all the newly generated configurations were
subsumed by existing ones, and hence there are no more new configurations to
consider. In fact, the set B =

{[
C2
]
, [L, W, C] ,

[
L2, W2

]}
is the generator of the

set of configurations from which we can reach a bad configurations. The three
members in B are those configurations which are not discarded in the analysis
(they were not subsumed by other configurations). To check whether Bad is
reachable, we check the intersection B̂ ∩ Cinit . Since the intersection is empty,
we conclude that Bad is not reachable, and hence the safety property is satisfied
by the system.

§4. Well Quasi-Ordered Transition Systems. In this section, we intro-
duce well quasi-ordered transition systems. Their main characteristic is that they
are monotonic wrt. a WQO on the set configurations. We present a scheme for
checking reachability of sets configurations which are upward closed wrt. the or-
dering. From the scheme we extract sufficient conditions which will enable us to
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transform the scheme into an algorithm. The sufficient conditions are used to
give a formal definition of the notion of a well quasi-ordered transition system.

4.1. Transition Systems. A transition system T is a tuple (C,−→,�, Cinit),
where C is a set of configurations, −→⊆ C × C is a transition relation on C, �
is a decidable pre-order on C, and Cinit ⊆ C is the set of initial configurations.
We write c1 −→ c2 to denote that (c1, c2) ∈−→. For sets C1 and C2 of config-
urations, we use C1 −→ C2 to denote that there are c1 ∈ C1 and c2 ∈ C2 such
that c1 −→ c2. We use ∗−→ to denote the reflexive transitive closure of −→. A
set C of configurations is said to be reachable if Cinit

∗−→ C.
4.2. Scheme. We will check safety properties using Scheme 1 for backward

reachability analysis.

Scheme 1 Backward Reachability

Input: • T = (C,−→,�, Cinit): transition system.
• Bad : upward closed set of configurations.

Output: Is Bad reachable?
1: i← 0
2: U0 := Bad
3: repeat
4: Ui+1 ← Ui ∪ Pre(Ui)
5: i← i+ 1
6: until Ui = Ui−1

7: if Cinit ∩ Ui 6= ∅ then
8: return true
9: else

10: return false
11: end if

The scheme inputs a transition system T = (C,−→,�, Cinit), together with
an upward closed set Bad of configurations, and checks whether Bad is reach-
able. The basic step in the scheme consists of computing predecessors. For a
set C of configurations, we define its set of predecessors to be the set Pre(C) :=
{c| ∃c′ ∈ C · c −→ c′}. In other words, the set Pre(C) contains exactly all con-
figurations from which we can reach a configuration in C through performing
one transition.

In Scheme 1, we start with the set Bad of configurations, and apply the func-
tion Pre repeatedly, generating a sequence U0, U1, U2, . . . of sets of configura-
tions, where U0 := Bad , and Ui+1 := Ui∪Pre(Ui) for i ≥ 0. We observe that the
set Ui characterizes the set of configurations from which the set Bad is reach-
able within i steps. The iteration stops if/when we reach a point i > 0 where
Ui = Ui−1. In such a case, the set Ui contains exactly the configurations from
which we can reach a bad configuration. The validity of the safety property is
then equivalent to the emptiness of the intersection of the sets Cinit and Ui.

4.3. Algorithm. We extract an algorithm (Algorithm 2) from Scheme 1 by
imposing a number of conditions on the transition system T . We collect these
conditions in order to define well quasi-ordered transition systems below. First,
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c2

�

c1

∃c4

�

c3

Pre(U) U

Figure 3. Monotonicity, Pre, and upward closedness.

we require that T is monotonic wrt. the ordering � in the following sense: for all
configurations c1, c2, c3, whenever c1 � c2 and c1 −→ c3 then c2 −→ c4 for some
c4 � c3. This is equivalent to saying that � is a simulation wrt. the relation −→
on configurations.

There is an important relationship between upward closedness, monotonicity,
and predecessor sets (illustrated in Figure 4.3. More precisely, monotonicity
implies that upward closedness is preserved by the application of Pre. Consider
an upward closed set U . Let c1 be a member of Pre(U) and let c2 � c1. We will
show that c2 is also a member of Pre(U). Since c1 ∈ Pre(U) (by definition), we
know by definition that there is a c3 ∈ U such that c1 −→ c3. By monotonicity
it follows that there is a c4 such that c3 � c4 and c2 −→ c4. From c3 ∈ U and
c3 � c4 it follows that c4 ∈ U . This means that we have found a configuration
c4 ∈ U such that c2 −→ c4, which implies that c2 ∈ Pre(U). Since U0 is upward
closed, and the relation −→ is monotonic, it follows that all the sets Ui which
arise in Scheme 1 are upward closed.

The second condition we require is that the pre-order � should be a WQO.
From the discussion in Section 2, together with WQO of � and the fact that
each Ui is upward closed, it follows that each Ui can be characterized by a finite
set of configurations, namely any generator of Ui.

To take advantage of monotonicity and WQO of �, we define a binary relation
; on the set of configurations. Intuitively, c1 ; c2 iff c2 ∈ gen (Pre (ĉ1)). For
a configuration c, we define (c ;) to be the set {c′| c ; c′}. For a (finite) set
C of configurations, we define (C ;) :=

⋃
c∈C(c ;). Notice that (C ;) is a

generator of the (upward closed) set of configurations from which we can reach
the upward closure of C. In particular, if C = gen (U), for some upward closed
set U , then (C ;) is a generator of the set of configurations from which we can
reach U .

The idea of Algorithm 2 is to make use of the fact that all the sets Ui are
upward closed, and employ configurations (with are members of generators) as
symbolic representations of these sets. We input a finite set Cfin of final configu-
rations that is supposed a generator of Bad , i.e., Cfin = gen (Bad). Furthermore,
we replace the operation Pre on upward closed sets, by the operation ; on finite
sets of configurations. Since we take a generator of the set Ci∪Pre(Ci) it follows
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Algorithm 2 Backward Reachability

Input: • T = (C,−→,�, Cinit): transition system.
• Cfin : finite set of configurations.

Output: Is Ĉfin reachable?
1: i← 0
2: C0 := Cfin

3: repeat
4: Ci+1 ← gen (Ci ∪ (Ci ;))
5: i← i+ 1
6: until Ci �∀∃ Ci−1

7: if ∃c1 ∈ Ci · ∃c2 ∈ Cinit · c1 � c2 then
8: return true
9: else

10: return false
11: end if

that each Ci in Algorithm 2 is a generator of Ui in Scheme 1. Also, by definition
we have that Ci−1 �∀∃ Ci. Therefore, the termination condition of Algorithm 2
is equivalent to Ĉi = Ĉi−1, which is identical to the termination condition of
Scheme 1. This means that, upon termination, it is the case that Ĉi is the set
of configurations from which we can reach Bad = Ĉfin Finally, we observe that
the conditions of line 7 in both algorithms are equivalent.

Now, we show that the algorithm is guaranteed to terminate. Suppose that the
algorithm does not terminate. Since the algorithm does not terminate, for each
i > 0 there a configuration ci such that ci ∈ Ui and c 6� ci for all c ∈ Ui−1. This
means that the sequence c0, c1, c2, . . . is bad, which contradicts the assumption
that � is a WQO.

4.4. Well Quasi-Ordered Transition Systems. We collect the conditions
which need to be satisfied by the transition system in order to transform Scheme 1
into Algorithm 2. A Well Quasi-Ordered Transition Systems (or WTS for short)
(C,−→,�, Cinit) satisfies the following five conditions:

1. T is monotonic. This implies that the predecessor set of an upward closed
set of configurations is upward closed.

2. � is a WQO. We need this property for two reasons: to represent upward
closed sets by a finite set of configurations (a generator of the set); and to
guarantee termination of the algorithm.

3. For each c, we can compute the (finite) set (c ;). This is needed in line 4
of the algorithm.

4. � is decidable. This is needed in line 4 and line 6 of the algorithm. More
precisely, we know that both Ci and (Ci ;) are finite. Therefore, we can
compute Ci+1 by discarding the irrelevant configurations (configurations
which are subsumed by smaller ones in the set). We can also check the
termination condition by making pairwise comparison of configurations in
the sets Ci and Ci−1.
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5. For each c, we can check whether there is a c′ ∈ Cinit such that c � c′.
We need this property to be able to check the condition of line 7 in the
algorithm.

This defines a methodology for verification of safety properties for a wide class
of computation models. Given a model, we first define the induced transition
system by specifying the (infinite) set of configurations, the transition relation,
the ordering, and the set of initial configurations. Then, we show that such a
transition system is a WTS. Now, we can apply Algorithm 2 to check safety
properties.

We take the example of Petri nets. Consider a Petri net N = (P, T, F ).
The set of configurations and the transition relation were defined in Section 3.
The ordering is the multiset ordering ≤ on configurations. The definition of
the set of initial configurations depends on the application in question. Our
methodology allows us to choose quite powerful theories for specifying sets of
initial configurations. For instance, we can use Presburger formulas, where in
a Petri net with places p1, . . . , pn, the formula φInit(x1, . . . , xn) characterizes
the set of configurations where the numbers of tokens x1, . . . , xn in the places
p1, . . . , pn satisfy the formula. For instance, in the case of mutual exclusion
protocol of Section 3, this set contains all configurations of the form [L, Wn] where
n ≥ 0. This set is characterized by the formula (x1 = 1) ∧ (x2 ≥ 0) ∧ (x3 =
0), where x1, x2, x3 represent the numbers of tokens in the places L, W, and C
respectively. The transition system induced by a Petri net is a WTS as follows:

1. The transition relation is monotonic. For configurations c1, c2, c3, if c1 � c2
and c1 −→ c3 then c2 −→ c3 + c2 − c1. We observe that c3 ≤ c3 + c2 − c1.
In the example of Figure 1, we have c1 =

[
L, W4

]
−→

[
C, W3

]
= c2. If we

take c3 =
[
L2, W4, C

]
� c1 then c3 −→

[
L, W3, C2

]
= c4 � c2.

2. The pre-order ≤ on configurations (multisets of natural numbers) is a WQO
by Dickson’s lemma [22].

3. We define (c ;) := {c′| ∃t ∈ T · c′ = c	Out (t) + In (t)}. For instance, in
the example of Figure 1, we have

[
L2, W2, C2

]
;
[
L3, W3, C

]
,
[
L2, W2, C

]
;[

L3, W3
]
,
[
L2, W2

]
;
[
L3, W3

]
, etc.

4. The ordering ≤ on configurations is decidable: Given two configurations c1
and c2, we check that c1(p) ≤ c2(p) for all p ∈ P .

5. Suppose that Cinit is characterized by a Presburger formula. For each con-
figuration c, we can check whether there is a c′ ∈ Cinit such that c � c′

as follows. Let the set P of places be {p1, . . . , pn}. Suppose that Cinit

is characterized by the formula φInit(x1, . . . , xn), where xi corresponds to
the number of tokens in place pi for i : 1 ≤ i ≤ n. Let c(pi) = ki for
i : 1 ≤ i ≤ n. Then, there is a c′ ∈ Cinit such that c′ � c iff the formula
φInit(x1, . . . , xn) ∧ (x1 ≥ k1) ∧ · · · ∧ (xn ≥ kn) is satisfiable. The latter is
again a Presburger formula, and hence its satisfiability can be checked. In
the example of Figure 1, we can use three variables x1, x2, x3 to denote the
number of tokens in the places L, W, C respectively. Then, checking the ter-
mination condition of the algorithm amounts to checking the satisfiability



WELL (AND BETTER) QUASI-ORDERED TRANSITION SYSTEMS 13

c1

�
c3

c2

�

∃c4

;

;

c1

�

∃c3

c2; c1

�

∃c4

c3

�

c2;

Figure 4. From left to right: the relations in Lemma 5.1,
Lemma 5.2, and Lemma 5.3 respectively.

of the three formulas
(x1 = 1) ∧ (x2 ≥ 0) ∧ (x3 = 0) ∧ (x3 ≥ 2)
(x1 = 1) ∧ (x2 ≥ 0) ∧ (x3 = 0) ∧ (x1 ≥ 1) ∧ (x2 ≥ 1) ∧ (x3 ≥ 1)
(x1 = 1) ∧ (x2 ≥ 0) ∧ (x3 = 0) ∧ (x1 ≥ 2) ∧ (x2 ≥ 2)

None of these formulas is satisfiable, and hence the safety property is sat-
isfied.

§5. Refined Algorithm. We present Algorithm 3, a refined version of Al-
gorithm 2 which is more suitable for implementation. In Algorithm 2, all the
predecessors of the members of Ci are computed together during the same iter-
ation. Algorithm 3 on the other hand stores the members of the generators in a
variable ToExplore. The correctness of the algorithm is not dependent on the
order in which the configurations are considered. The user may therefore use
different strategies to implement ToExplore: a queue (which gives a breadth-
first search), a stack (which gives a depth-first search), or the configurations may
be considered according to certain measures such their sizes, forms, etc. These
search strategies give different degrees of efficiency in different applications.

Algorithm 3 Refined Backward Reachability

Input: • T = (C,−→,�, Cinit): transition system.
• Cfin : finite set of configurations.

Output: Is Ĉfin reachable?
1: ToExplore← Cfin

2: Explored := ∅
3: while ToExplore 6= ∅ do
4: remove some c from ToExplore
5: if ∃c′ ∈ Cinit · c � c′ then
6: return true
7: else if ∃c′ ∈ Explored · c′ � c then
8: discard c
9: else

10: ToExplore := ToExplore
⋃
{c′| c ; c′}

11: Explored := {c}
⋃
{c′| c′ ∈ Explored ∧ (c 6� c′)}

12: end if
13: end while
14: return false
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To understand the correctness of the refined algorithm, we refer to the follow-
ing three lemmata (illustrated in Figure 5) which describe a number of properties
of the relations −→, ;, and �. In the lemmata, let c1, c2, c3 be configurations.

Lemma 5.1. If c1 ; c2 and c3 � c1 then there is a c4 such that c3 ; c4 and
c4 � c2.

Proof. Suppose that c1 ; c2 and c3 � c1. Since c1 ; c2 it follows by
definition that c2 ∈ gen (Pre (ĉ1)) and hence c2 −→ c5 for some c5 � c1. From
c3 � c1 and c1 � c5 we know that c3 � c5. From c2 −→ c5 and c3 � c5 it follows
that c2 −→ ĉ3, i.e., c2 ∈ Pre (ĉ3). By definition there is a c4 ∈ gen (Pre (ĉ3))
with c4 � c2. Since c4 ∈ gen (Pre (ĉ3)) we know by definition that c3 ; c4. a

The following lemma follows immediately from the definition of ;.

Lemma 5.2. If c1 ; c2 then c2 −→ c3 for some c3 � c1.

Lemma 5.3. If c1 −→ c3 and c2 � c3 then there is a c4 such that c2 ; c4 and
c4 � c1.

Proof. Suppose that c1 −→ c3 and c2 � c3. This means that c1 ∈ Pre (ĉ2).
By definition there is a c4 ∈ gen (Pre (ĉ2)) with c4 � c1. Since c4 ∈ gen (Pre (ĉ2))
we know by definition that c2 ; c4. a
For a configuration c, we define Rank(c) to be the smallest n such that there is
a sequence c0 ; c1 ; · · ·; cn where c0 = c and there is a c′ ∈ Cinit such that
cn � c′.

Now, we are ready to explain Algorithm 3. The algorithm maintains two sets
of configurations: a set ToExplore, initialized to Cfin , of configurations that
have not yet been analyzed; and a set Explored, initialized to the empty set,
of configurations that contains information about the configurations that have
already been analyzed. The algorithm preserves the following two invariants:

1. Cinit
∗−→ ̂(ToExplore

⋃
Explored) implies Cinit

∗−→ Ĉfin ; and
2. If Cinit

∗−→ Ĉfin , then there is c ∈ ToExplore such that both Rank(c) <∞
and ∀c′ ∈ Explored. Rank(c) < Rank(c′).

Initially, the first invariant holds since (ToExplore
⋃

Explored) = Cfin . The
second invariant also holds initially as follows: Suppose that Cinit

∗−→ Ĉfin , i.e.,
there is a c ∈ Cfin such that c ∗−→ ĉ. Then, the property Rank(c) <∞ holds by
Lemma 5.3 and the definition of the relation −→.

Due to the invariants, the following two conditions can be checked during each
step of the algorithm:
• From the second invariant, if ToExplore becomes empty then the algorithm

terminates with a negative answer; and
• From the first invariant and the definition of −→, if a configuration c is

detected such that c � c′, for some c′ ∈ Cinit , then the algorithm terminates
with a positive answer.

If neither of the two conditions is satisfied, the algorithm proceeds by picking and
removing a configuration c from ToExplore. Two possibilities arise depending
on the value of c:
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• If there exists a configuration c′ ∈ Explored with c′ � c, then we discard
c. The first invariant is preserved since this operation will not change
the value of ̂(ToExplore

⋃
Explored). If Cinit

∗−→ Cfin , then the second
invariant and Lemma 5.1 imply that there is still some c1 ∈ ToExplore such
that Rank(c1) < Rank(c′) ≤ Rank(c) ≤ ∞. This means that the second
invariant will also be preserved by this step.

• Otherwise, we generate the successors of c with respect to ; put them in
ToExplore, and move c to Explored. Let Exploredold and Explorednew

be the values of the set Explored before resp. after performing the op-
eration. Define ToExploreold and ToExplorenew analogously. The op-
eration preserves the first invariant as follows: Suppose that Cinit

∗−→
̂(ToExplorenew
⋃

Explorednew ), i.e., there are configurations c1, c2, c3 such
that such that c1 ∈ Cinit , c2 ∈ (ToExplorenew

⋃
Explorednew ) c2 � c3,

and c1
∗−→ c3. If c2 ∈

(
ToExploreold

⋃
Exploredold

)
then the result fol-

lows from the induction hypothesis. Otherwise, it must be the case that
c ; c2 (since the only new members of ToExplore

⋃
Explored are the ;-

successors of c). By Lemma 5.2 there is a c4 such that c � c4 and c2 −→ c4.
Since c2 � c3 it follows by monotonicity that c3 −→ c5 for some c5 � c4.
From c � c4 and c4 � c5 we have c � c5. This means that Cinit

∗−→
̂(

ToExploreold
⋃

Exploredold
)
, and hence by the induction hypothesis we

have Cinit
∗−→ Ĉfin . The operation also preserves the second invariant as

follows: Assume that Cinit
∗−→ Ĉfin . Since c does not satisfy the test in line

5 of the algorithm, it follows that 0 < Rank(c). If 0 < Rank(c) <∞, then
there is some c1 with c ; c1 and Rank(c) < Rank(c1); and the invariant will
obviously be preserved. Suppose that Rank(c) = ∞, Since Cinit

∗−→ Ĉfin

it follows by the induction hypothesis and the second invariant that there
is a c1 ∈ ToExploreold such that Rank(c1) <∞ and Rank(c1) < Rank(c2)
for each c2 ∈ Exploredold . Since c1 6= c it follows that c1 ∈ ToExplorenew

and hence the invariant still holds.
Furthermore, we remove all configurations in Explored which are larger

than c with respect to �. This operation preserves both invariants trivially.
The following theorem follows immediately from the invariants.

Theorem 5.4. Algorithm 3 is partially correct.

The reason why the algorithm always terminates is that only a finite set of
configurations can be added to Explored. This can be explained as follows.
Whenever a new element c is added to Explored it is ensured that c′ 6� c, for
each c′ already added to Explored. This means that the configurations added to
Explored form a sequence c1, c2, c3, . . . , such that ci 6� cj for all i < j. By WQO
of � it follows that this sequence is finite. This gives the following theorem.

Theorem 5.5. Algorithm 3 is guaranteed to terminate.

§6. Safety Properties. Sometimes, it is easier to describe safety proper-
ties by specifying the set of allowed (or bad) traces, rather than the set of bad
configurations of the system. To formalize the idea, we first equip transition
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systems with actions (lables) which represent their interaction with the envi-
ronment. Then, we recall the standard notion of finite automata which we use
to specify sets of bad traces of the system. Checking a safety property is thus
transformed to the reachability of accepting states of the finite automaton when
composed with the transition system. The method will also explain why check-
ing a safety property (almost always) translates to the reachability of an upward
set of configurations.

6.1. Labeled Transition Systems. We fix a finite set A of observable ac-
tions which represent interactions between the transition system and its environ-
ment. We also assume a silent action ε, where ε 6∈ A, and define Aε := A ∪ {ε}.
A Labeled Transition System (LTS) T is a tuple (C,−→,�, Cinit) (i.e., of the
same form as a transition system). The difference is that the relation −→
is indexed by the set of actions Aε. Formally, −→=

{
a−→ | a ∈ Aε

}
, where

a−→⊆ C × C. We write c1
a−→ c2 to denote that (c1, c2) ∈ a−→. A trace of T is

a word a1a2 · · · an ∈ A∗ such that there is a sequence of transitions of the form
c0

a1−→ c1
a2−→ c2 · · ·

an−→ cn where c0 ∈ Cinit .
The definition of WTS is extended in the obvious way from transition systems

to LTS.
A class of safety properties can be described by giving regular sequences of

observable actions which are allowed when the system executes. Formally, we
are given an LTS T , and a regular set Σ set over A, and want to check whether
Traces (T ) ⊆ Σ.

In the example of Figure 1, we can take the set A to be {enter , exit}, and
label each transition of the form (c1, t1, c2) with enter , and each transition of
the form (c1, t2, c2) with exit . Intuitively, the action enter indicates that a
process enters the critical section, while the action exit indicates that a process
leaves the critical section. We can define the set Σ to be the regular language
enter · (exit ·enter)∗, i.e., it cannot happen that two processes enter their critical
sections consecutively without a process leaving its critical section in between,
and conversely it cannot happen that two processes leave their critical sections
consecutively without a process entering its critical section in between.

6.2. Finite Automata. We recall the standard definition of finite automata.
A finite automaton A is a tuple (Q, δ,Qinit , Qfin), where Q is a finite set of states,
δ is the set of transitions, Qinit ⊆ Q is the set of initial states, and Qfin ⊆ Q
is the set if final states. Each transition is a triple of the form (s1, a, s2) where
s1, s2 ∈ S and a ∈ Aε. The language Lang (A) of A is defined as usual.

Given an LTS T = (C,−→,�, Cinit) and finite automatonA = (Q, δ,Qinit , Qfin),
we define the composition (T ||A) to be an LTS T ′ in which T and A syn-
chronize over transitions with actions in A. More precisely, the LTS T ′ :=(
C ′,−→′,�′, C ′init

)
, where

• C ′ = {(c, q) | (c ∈ C) ∧ (q ∈ Q)}.
• (c1, q1) a−→′ (c2, q2) iff one of the following conditions is satisfied:

– a 6= ε, c1
a−→ c2, and (q1, a, q2) ∈ δ. This corresponds to transitions

where T and A synchronize on actions in A.
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– a = ε, c1
ε−→ c2, and q1 = q2. This corresponds to transitions where

T moves silently without synchronizing with A.
– a = ε, c1 = c2, and (q1, ε, q2) ∈ δ. This is symmetric to the previous

case.
• (c1, q1) �′ (c2, q2) iff c1 � c2 and q1 = q2.
• (c, q) ∈ C ′init iff c ∈ Cinit and q ∈ Qinit .

It is straightforward to verify that if T is a WTS then T ′ is also a WTS.
6.3. Algorithm. Algorithm 4 solves the problem when the set of allowed

traces is regular (e.g., specified by a finite automaton). The algorithm needs one
extra condition compared to Algorithms 2 and 3, namely that the set gen (C) is
given. This set is trivially known in the examples of this paper. For instance,
in the case of Petri nets, the set gen (C) is given by the singleton {c0} where
c0(p) = 0 for all places p.

Algorithm 4 Checking Safety Properties

Input: • T = (C,−→,�, Cinit): LTS.
• Σ: regular set of words over A.

Output: Traces (T ) ⊆ Σ ?
1: construct A s.t. Lang (A) = ¬Σ
2: T ′ ← (T ||A) =

(
C ′,−→′,�′, C ′init

)
3: Cfin ← {(c, q) | c ∈ gen (C) ∧ q ∈ Qfin}.
4: use Algorithm 3 to check whether Ĉfin is reachable.

In Algorithm 4, we first construct a finite-state automaton automaton A which
accepts the complement of Σ, and then form the product (T ||A). The problem
of deciding whether T satisfies the safety property represented by Σ has now
been transformed to the question whether a state of the product in which the A-
component is accepting is reachable. More precisely, violating the safety property
is equivalent to the reachability of Ĉfin where Cfin = {(s, q) | s ∈ gen (S) ∧ q ∈ Qfin}.
Furthermore, the set Cfin is finite since both gen (S) and Q are finite. This ex-
plains why we can transform checking a safety property to the reachability of the
upward closure of a finite set of configurations Cfin : we specify the bad traces by
a finite automaton A. Then, the members of Cfin correspond to those configura-
tion in the composition where the T -component is a member of the set gen (C)
and the A-component is an accepting state in A.

§7. Lossy Channel Systems. We introduce the model of lossy channel sys-
tems [4]. We give the LTS induced by a lossy channel system, and show that it
is a WTS. We illustrate the model by a simple protocol.

7.1. Model. A Lossy Channel System, (LCS for short), consists of a finite-
state process which operates on a finite set of channels. Each channel behaves as
an unbounded FIFO queue which is unreliable in the sense it can lose messages.
Typically, the control (finite-state) part models the total behavior of a number
of processes which communicate over the channels. With each transition of
the control part there may be associated an operation on the channels. This
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enter

exit

exit exit

Figure 5. Bad traces of the example in Figure 1.

operation may remove a message from the head of a channel or insert a message
at the end of a channel. In addition, a channel can nondeterministically lose
messages at any time.

We fix a finite set C of channels, a finite set A of actions, and a finite set M of
messages which may reside inside the channels. An LCS L is a tuple (S, T, sinit),
where S is a finite set of control states, T is a finite set of transitions, and
sinit ∈ S is the initial control state. A transition t is a tuple (s1, op, a, s2), where
s1, s2 ∈ S, a ∈ Aε, and op is an operation of one of the following forms (where
c ∈ C and m ∈M):
• c!m is a send operation. The operation appends m to the end of channel
c.

• c?m is a receive operation. The operation removes m from the head of
channel c (it is enabled only if m is at the head of channel c).

• nop is an empty operation which does not affect the contents of the chan-
nels.

For an action a ∈ Aε, we define Ta to be the set of transitions of the form
(s1, op, a, s2).

Below, we apply the methodology of Sections 4–6 to derive an algorithm which
checks safety properties for LCS.

7.2. LTS. We define the LTS T = (C,−→,�, Cinit) induced by an LCS L =
(S, T, sinit). A configuration c ∈ C is a pair (s, β) where s ∈ S and β is a
mapping from C to M∗. Intuitively, the state of the control part is given by s,
while the channel state is given by β. For a channel c, β(c) gives the content of
channel c (which is a word over M).

To define the transition relation −→, we first give some definitions. For a
channel state β, a channel c, and a word w, we use β[c← w] to be the channel
state β′ such that β′(c) = w, and β′(c′) = β(c′) if c′ 6= c. For words w1, w2 ∈
M∗, we write w1 �∗ w2 to denote that w1 is a (not unnecessarily contiguous)
subword of w2. For channel states β1 and β2, we write β1 �∗ β2 to denote that
β1(c) �∗ β2(c) for all channels c ∈ C.

For an action a ∈ Aε and configurations c1 = (s1, β1), c2 = (s2, β2), we
write c1

a−→ c2 to denote that there are channel states β′1, β
′
2 and a transition

(s1, op, a, s2) ∈ T such that the following conditions are satisfied:
1. β′1 �∗ β1.
2. One of the following conditions is satisfied:
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• t is of the form (s1, c!m, s2) and β′2 = β′1[c← β′1(c) ·m].
• t is of the form (s1, c?m, s2) and β′1 = β′2[c← m · β′2(c)].
• t is of the form (s1,nop, s2) and β′2 = β′1.

3. β2 �∗ β′2.

The system starts from control state s1 and channel state β1, and then performs
a transition which consists of three steps. First, an arbitrary set of messages is
lost obtaining a smaller channel state β′1, while preserving the control state s1.
Then, the system changes control state to s2, and channel state to β′2 (the latter
according to the operation op). Finally, a set of messages is lost again to obtain
the channel state β2. In other words, the actual transition is both preceded and
followed by phases where the system may non-deterministically lose messages.

We define the ordering � on the set of configurations such that, for configura-
tions c1 = (s1, β1) and c2 = (s2, β2), we have c1 � c2 iff s1 = s2, and β1 �∗ β2.

The set Cinit is the singleton {(sinit , βinit)} where βinit(c) = ε for all channels
c ∈ C. In other words, the system starts from a configuration where the control
part is in its initial state, and where all the channels are empty.

7.3. WTS. First, we observe that gen (C) is the (finite) set {(q, βinit) | q ∈ Q}.
We show that the LTS obtained by an LCS is a WTS.

• The transition relation is monotonic since if c1 � c2 then c1 can first lose
messages and transform into c2. In this way, c2 can perform (at least) the
same transitions as c1.

• From Higman’s lemma [27] it follows that the pre-order � on configurations
is a WQO (see more details in Section 10).

• The ordering � on configurations is decidable. Given two configurations
c1 = (s1, β1) and c2 = (s2, β2), we can check c1 � c2, by checking whether
s1 = s2 and whether β1(c) is a subword of β2(c) for all channels c ∈ C.

• For configurations c1 and c2, the relation c1 ; c2 holds if there is a transi-
tion t = (s1, op, a, s2) ∈ T such that one of the following conditions holds:

– op = c!m and β1 = β2[c← β2(c) ·m].
– op = c!m, last (β1(c)) 6= m, and β1 = β2.
– op = c!m, β1(c) = ε, and β1 = β2.
– op = c?m and β2 = β1[c← m · β1(c)].
– op = nop and β1 = β2.

• For a configuration c = (s, β), Cinit ∩ ĉ = ∅ amounts to s = sinit and
βinit �∗ β. Since βinit �∗ β holds trivially, the test is equivalent to s = sinit .

7.4. Example: The Alternating Bit Protocol. In this section we model
the classical Alternating Bit Protocol [13] as an LCS. The model is illustrated
in Figure 6.

The alternating bit protocol contains a Sender and a Receiver that communi-
cate over two FIFO channels cM (used to transmit messages from the Sender to
the Receiver) and cA (used to transmit acknowledgments from the Receiver to
the Sender). Both channels are faulty in the sense that they can lose (but not
reorder) messages.

The purpose of the protocol is to transmit messages from the Sender to the
Receiver in correct order, in spite of the fact that the channels can lose messages.
Corruption of messages can also be taken into account by modeling it as loss
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Figure 6. The alternating bit protocol as an LCS. The left
and right parts of the figure represent the Sender and Receiver
processes respectively.

(some mechanism will detect and discard a corrupted message). The operation
of the protocol is the following:

The Sender reads a pending message to be sent to the Receiver (the action
Snd). It adds a sequence number to the message, sends it over the channel
cM to the Receiver and awaits an acknowledgment from the Receiver with the
same sequence number. If the message arrives, the procedure is repeated with
the next pending message but with sequence numbers inverted. If no acknowl-
edgment arrives within some time period the Sender retransmits the message.
Retransmissions are repeated until a corresponding acknowledgment arrives.

The Receiver receives messages with accompanying sequence numbers from the
channel cM . When the message has the expected sequence number, the message
is delivered (the action Rcv), and the Receiver looks for a message with inverted
sequence number. Messages with non-expected sequence numbers are discarded.
The Receiver sends acknowledgments to the Sender over the channel cA. An
acknowledgment contains the sequence number of the last received message.

In our example, we do not (need to) model the actual contents of the messages,
and hence, a message is represented simply by its sequence number (which is
either 0 or 1).

As mentioned earlier, the control part of an LCS may be used to represent
the total behaviour of several processes. In our case, the control part (Figure 6)
represents the Sender and the Receiver. To simplify the figure, we have omitted
the empty channel operation nop and the empty action ε. For instance, the
transition from s0 to s1 does not modify the channels, the transition from s1

to s2 performs the silent action ε, and so on. The protocol operates on the
two channels cM and cA. The set A is {Snd ,Rcv}, where Snd represents the
sending of a message by the environment to the protocol, and Rcv represents
the reception of a message by the environment from the protocol. The set M is
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q0 q2 q1

Snd

Rcv

Rcv Snd

Figure 7. Bad traces of the alternating bit protocol.

{0, 1}. This means that the model of the Alternating Bit Protocol is the LCS
L = (S, T, sinit) where

• S is the set of pairs of the form (s, r), where s ∈ {s0, s1, s2, s3} and r ∈
{r0, r1, r2, r3}.

• sinit is the state (r0, s0).
• A is the set {Snd,Rcv}.
• C is the set {cM , cA}.
• T consists of the tuples of the form ((s, r) , op, a, (s′, r′)) where either r = r′

and (s, op, a, s′) is a transition in the Sender component or s = s′ and
(r, op, a, r′) is a transition in the Receiver component. Examples of such
transitions are ((s0, r0) ,nop,Snd , (s1, r0)) and ((s1, r0) , cM?0, ε, (s1, r1)).

We require the protocol to satisfy the following property: the environment can-
not send two messages to the protocol without first receiving a message; and
conversely the environment cannot receive two messages from the protocol with-
out first sending a message. We apply the method of Sections 6 to verify this
safety property. Figure 7 depicts the finite automaton A which specifies the set
of bad traces, namely traces where two consecutive occurrences of Snd or Rcv
may occur (or if Rcv occurs first).

We apply the method of Sections 5- 6 to verify Algorithm 3 on the composition
T ′ = (T ||A) =

(
C ′,−→′,�′, C ′Init

)
. Notice that a configuration in C ′ is of the

form (((s, r) , β) , q) where s ∈ {s0, s1, s2, s3}, r ∈ {r0, r1, r2, r3}, β is a mapping
from {cM , cA} to {0, 1}, and q ∈ {q0, q1, q2}. Intuitively, the pair (s, r) is the
state of the control part of L (given by the local states s and r of the sender
and receiver respectively). The mapping β is the channel state of L, and hence
((s, r) , β) is a configuration of L. Finally, q is the state of A. To simplify the
notation, we will write such a configuration simply as tuple (s, r, q, wM , wA),
where wM = β(cM ) and wA = β(cA). The set Cfin contains all configurations of
T ′ of the form (s, r, q2, ε, ε) where s ∈ {s0, s1, s2, s3}, r ∈ {r0, r1, r2, r3}.

Observe that cinit = (s0, r0, q0, ε, ε) is the only initial configuration in C ′init .
When Algorithm 3 is applied to T ′ and Cfin , it answers that Ĉfin is not reach-
able. When the algorithm terminates the set Explored contains the following
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s0 s1

s2s3

x < 2

y ≥ 3

x := 0

y := 0

Figure 8. A timed automaton with two clocks x and y. The
operations x := 0 and y := 0 reset the values of clocks x resp. y
to zero. Transitions with no labels perform the empty operation.

configurations:

(s0, r0, q0, 0, ε) (s0, r0, q0, ε, 0) (s1, r0, q1, 01, ε)
(s1, r0, q1, ε, 0) (s1, r1, q1, 1, ε) (s1, r1, q1, ε, 0)
(s1, r2, q0, 1, ε) (s1, r2, q0, ε, 01) (s2, r2, q0, 1, ε)
(s2, r2, q0, ε, 1) (s3, r0, q0, 0, ε) (s3, r0, q0, ε, 10)
(s3, r2, q1, 10, ε) (s3, r2, q1, ε, 1) (s3, r3, q2, 0, ε)
(s3, r3, q2, ε, 1)

The set contains also all configurations of the form (s, r, q, ε, ε) where the triple
(s, r, q) does not occur in the above list. Notice that there is no configuration
c ∈ Explored where c � cinit and hence Cinit ∩ ̂Explored = ∅.

§8. Timed Automata. We recall the classical model of timed automata [12]
and describe how it induces a WTS.

8.1. Model. A Timed Automaton (Figure 8) consists of a finite-state process
which operates on a finite set of clocks. A clock assumes its values form the set
of non-negative real numbers. Transitions of the automaton may check or reset
values of the clocks.

We fix a finite set X of clocks. A timed automaton T is a tuple (S, T, sinit),
where S is a finite set of control states, T is a finite set of transitions, and sinit ∈ S
is the initial control state. A transition t is a tuple (s1, op, s2), where s1, s2 ∈ S,
and op is an operation of one of the following forms:

• x := 0, where x ∈ X, resets the value of clock x to zero.
• x ∼ k, where x ∈ X, ∼∈ {<,≤,=, >,≥}, and k ∈ N. The transition tests

the value of clock x, and is enabled only if the relation x ∼ k holds.
• nop is the empty operation.

8.2. Transition System. We define the transition system T = (C,−→,�, Cinit)
induced by a timed automaton T = (S, T, sinit). A configuration c ∈ C is a pair
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(s, β) where s ∈ S and β is a mapping from X to R≥0. Intuitively, the state of
the control part is given by s, while the clock values are given by β.

A timed automaton can perform two types of transitions, namely timed tran-
sitions and discrete transitions. First, we define the timed transition relation
−→Timed . For a clock state β and a non-negative real number δ ∈ R≥0, we
define β+ δ to be the clock state β′ such that β′(x) = β(x) + δ for all x ∈ X. For
a configuration c = (s, β), we write c+ δ to denote the configuration (s, β + δ).
A timed transition is of the form c −→Timed (c+ δ) where δ ∈ R≥0. Intuitively,
a timed transition corresponds to passage of time by an amount δ, and hence
hence all clock values are increased by δ.

Next, we define the discrete transition relation −→Disc . For configurations
c1 = (s1, β1) and c2 = (s2, β2), we write c1 −→Disc c2 to denote that there is a
transition t ∈ T of the form (s1, op, s2) such that one of the following conditions
is satisfied:

• op is of the form x := 0, β2(x) = 0, and β2(y) = β1(y) if y 6= x.
• op is of the form x ∼ k, β1(x) ∼ k, and β1 = β2.
• op is of the form nop and β1 = β2.

We define −→:=−→Timed ∪ −→Disc .
The ordering � in the case of timed automata turns out to be an equivalence

relation ≡, namely the classical region equivalence of [12]. More precisely, let
max be the maximum integer which occurs syntactically in the definition of
the timed automaton. For x ∈ R≥0, let fract (x) and bxc be the fractional and
integral parts of r respectively. For configurations c1 = (s1, β1) and c2 = (s2, β2),
we have c1 ≡ c2 iff the following properties hold for all clocks x, x′ ∈ X.

• s1 = s2.
• β1(x) > max iff β2(x) > max .
• if β1(x) ≤ max then bβ1(x)c = bβ2(x)c.
• if β1(x) ≤ max and β1(x′) ≤ max then the following property holds:

fract (β1(x)) ≤ fract (β1(x′)) iff fract (β2(x)) ≤ fract (β2(x′)).

Each equivalence class of ≡ is called a region. The set Cinit is the singleton{(
sinit , β

0
)}

where β0(c) = 0 for all clocks x ∈ X. In other words, the system
starts from a configuration where the control part is in its initial state, and where
all clock values are equal to 0.

8.3. Finite Partitioning. The region construction can be seen as an in-
stance of the method of finite partitioning which works as follows. A Finitely Par-
titioned Transition System (FPTS for short) is a tuple (C,−→,≡, Cinit) where
C is a set of configurations, −→⊆ C × C is a transition relation on C, ≡ is
an equivalence relation on C, and Cinit ⊆ C is the set of initial configurations.
Furthermore, the following conditions are satisfied:

• ≡ is a congruence wrt. −→. In other words, for all configurations c1, c2, c3,
whenever c1 ≡ c2 and c1 −→ c3 then c2 −→ c4 for some c4 ≡ c3.

• ≡ has a finite number of equivalence classes.

In [12] it is shown that ≡ is indeed a congruence. Furthermore, the number of
regions is finite. Hence, the transition system induced by a timed automaton is
a FPTS.
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Our method based on WTS is a generalization of finite partitioning. In fact,
each FPTS is a WTS as follows:

• An equivalence relation is a pre-order which is symmetric.
• Each bisimulation is a simulation by definition.
• In case a pre-order � is equivalence relation, then each set which is upward

closed wrt. � is an equivalence class. Conversely, each equivalence class is
an upward closed set.

• In case a pre-order � is equivalence relation, the condition that � is a
WQO is equivalent to the condition that the number of equivalence classes
is finite.

§9. Symbolic Analysis. In this section, we present a symbolic version of
Algorithm 3 (Section 5). More precisely, we introduce the notion of a constraint
system C = (C,−→,Ψ, Cinit), where C,−→, Cinit are of the same forms as in
the case of transition systems (Section 4). Compared to transition systems, we
replace the ordering � by a set of constraints. A constraint φ represents an
infinite set JφK of configurations. The advantage of working with constraints is
twofold. First, they sometimes remove unnecessary details in the definitions of
configurations, which makes the design of the reachability algorithm more clear
and easier to present. For instance, timed automata are usually analyzed using
the classical notion of regions [12] as constraints. As explained in Section 8, a
region is an equivalence class, and hence in our methodology a minimal element
corresponds to a representative of the equivalence class to which it belongs.
However, as we observed, only certain aspects of the clock values, such as the
integral parts and the ordering of the fractional parts, are relevant in the analysis
of timed automata (rather than the exact clock values). Therefore, all existing
algorithms for analysis of timed automata use (variants of) regions as symbolic
representations instead of using concrete configurations. The second (and more
important) advantage offered by constraints is that each constraint may represent
a (possibly large) set of minimal elements, and hence constraints may provide a
more compact representation of infinite sets of configurations. Again, referring
to the literature of timed automata, the constraint system of zones is used to
represent infinite sets of configurations, since each zone may correspond to a
large number of regions (minimal elements) and therefore zones provide a much
more efficient representation than regions. In a similar manner to the case of
transition systems (in Section 4), we will extract sufficient conditions which will
enable us to present a (symbolic) algorithm operating on constraints. We will
use the sufficient conditions to give a formal definition of the notion of a well
quasi-ordered constraint system.

9.1. Symbolic Algorithm. Consider a constraint system C = (C,−→,Ψ, Cinit).
We will work with a set of constraints, where each constraint φ denotes a set
JφK ⊆ C of configurations. We write c |= φ to denote that c ∈ JφK. For a (finite)
set Φ ⊆ Ψ of constraints, we define JΦK :=

⋃
φ∈ΦJφK, i.e., Φ denotes the union

of the denotations of its members. We say that Φ is reachable if the set JΦK is
reachable. We define an entailment relation v on constraints such that φ1 v φ2
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if Jφ2K ⊆ Jφ1K, i.e., φ1 is a weaker constraint than φ2. For a constraint φ, we de-
fine Pre(φ) to be a finite set of constraints such that JPre(φ)K :=

{
c| c ∗−→ JΦK

}
.

Later, in the definition of a well quasi-ordered constraint system, we will assume
that such a set always exists and that it is computable.

The symbolic algorithm (Algorithm 5) inputs a transition system T , together
with a finite set Φfin of constraints, and checks whether Φfin is reachable. The

Algorithm 5 Symbolic (Constraint-Based) Backward Reachability

Input: • C = (C,−→,Ψ, Cinit): transition system.
• Φfin : finite set of constraints.

Output: Is Φfin reachable?
1: ToExplore← Φfin

2: Explored := ∅
3: while ToExplore 6= ∅ do
4: remove some φ from ToExplore
5: if Cinit ∩ JφK 6= ∅ then
6: return true
7: else if ∃φ′ ∈ Explored · φ′ v φ then
8: discard φ
9: else

10: ToExplore := ToExplore
⋃

Pre(φ)
11: Explored := {φ}

⋃
{φ′| φ′ ∈ Explored ∧ (φ 6v φ′)}

12: end if
13: end while
14: return false

definition of Algorithm 5 is analogous to that of Algorithm 3; the difference
being that we now use constraints rather than minimal elements as symbolic
representations of sets of configurations.

9.2. Well Quasi-Ordered Constraint Systems. Considering Algorithm 5,
we need C to satisfy the following conditions :

1. For each constraint φ, the set Pre(φ) is finite and computable. This is
needed in line 10.

2. The relation v is decidable. This is needed in lines 7 and 11.
3. For each constraint φ, we can decide whether Cinit intersects with JφK. This

is needed in line 5.
4. The pre-order v is a WQO on the set of constraints. This is needed to

guarantee termination of the algorithm.

We say that C is a Well quasi-ordered Constraint System (WCS) if it satisfies
the above conditions.

9.3. WTS vs. WCS. Each transition system T = (C,−→,�, Cinit) induces
a constraint system C = (C,−→,Ψ, Cinit), where Ψ = {φc| c ∈ C} with JφcK =
{c′| c � c′}. In other words, a constraint φc characterizes an upward closed set,
namely the upward closure ĉ of c. Thus the constraints play the role of minimal
elements. In fact, if T is a WTS then C is a WCS as follows:
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1. Pre (φc) = {φc′ | c′ ∈ gen (c ;)}
2. φc1 v φc2 iff c1 � c2.
3. Cinit intersects with JφcK iff there is a c′ ∈ Cinit such that c � c′.
4. v is a WQO on the set of constraints since � is a WQO on C.

Given that T is a WTS, we can improve Algorithm 5 by weakening the definition
of the relation v on constraints. We will now have φ1 v φ2 if Jφ1K �∀∃ Jφ2K. In
other words, we do not require any longer that Jφ2K is a subset of Jφ1K, only that
for each configuration in Jφ2K there is one smaller (wrt. �) in Jφ1K. This means
that the constraints which are generated in Algorithm 5 will not necessarily
cover all the members of the set of configurations from which we can reach the
bad states. However, they are guaranteed to contain at least the member of a
generator of this set. To take this into consideration, we only need to change
the condition of line 5 to ∃c′ ∈ JφK · ∃c′ ∈ Cinit · c � c′. In the sequel, we refer to
this version as the improved symbolic reachability algorithm.

§10. Building WQOs. In this section, we describe a methodology for hier-
archically building more and more complicated domains which are WQOs.

A simple WQO is given by (A,=), where A is a finite set and the ordering =
is the identity relation. Any infinite sequence q0, a1, a2, . . . ∈ A is good since,
due to finiteness of A, there must exist i and j with ai = aj . Another simple
example of WQOs is (N,≤), i.e., the standard ordering on natural numbers.

The crucial step in building rich WQO domains is Higman’s lemma [27] which
can be explained as follows. Consider a WQO (A,�). We will extend the relation
� to the the relation �∗ on the set A∗ of finite words over A. Consider words
w = a0a1 · · · am and v = b0b1 · · · bn. We write w �∗ v to denote that there is
an injection h from m• to n• such that (i) h is strictly increasing, i.e., i < j
implies h(i) < h(j); and (ii) ai � bh(i). In other words, w is a subword of v,
albeit en element of w need not be identical to the corresponding one in v (it is
sufficient that it is smaller wrt. �). Then, Higman’s lemma states that (A∗,�∗)
is a WQO.

Below, we fix a WQO (A,�) which we extend in different ways. First, we
extend the ordering to multisets over A. More precisely, we define (A~,�~)
such that, for multisets M = [a1, . . . , am] and N = [b1, . . . , bn] in A~, we have
M �~ N if there is an injection h from m• to n• with ai � bh(i). Notice that
this ordering is a special case of that with words, where the relative ordering of
the elements inside the multiset is not relevant (this is reflected by dropping the
condition that the injection is increasing). Then, by Higman’s lemma it follows
that (A~,�~) is a WQO.

Using a similar reasoning, the ordering
(
Ak,�k

)
where Ak is the set of vectors

of length k over A, and where (a1, . . . , ak) �k (b1, . . . , bk) iff ai � bi for all
i : 1 ≤ i ≤ k, is a WQO. In fact, this is a special case of the word ordering,
where the words are of identical length k.

We also conclude the WQO of
(
2A,�P

)
where 2A is the powerset of A, and

where {a1, . . . , am} �P {b1, . . . , bn} if there is an injection h from m• to n• such
that ai � bh(i). This is a special case of multisets where each element occurs at
most once inside the set.
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Using the above methodology, we can build new more complicated WQOs.
Below, we give some some examples. Consider a finite set A; then the following
are WQOs:

• (A,=).
• (A~,�1), where �1 is the result of extending = to multisets over A as

described above, i.e., �1 is =~.
• (A∗,�2), where �2 extends = to words, i.e., �2 is =∗. This means that

the subword relation on words over a finite alphabet is a WQO.
•
(
(A~)∗,�3

)
, where a0a1 · · · am �3 b0b1 · · · bn if there is an injection h from

m• to n• such that ai �2 bh(i) for all i : 1 ≤ i ≤ n.

•
(

(A∗)k ,�4

)
, where (w1, . . . , wk) �4 (v1, . . . , vk) if wi �2 vi for all i : 1 ≤

i ≤ k. In other words, vectors of finite words over a finite alphabet is WQO.
Consequently, the ordering on channel contents for LCS in Section 7 is a
WQO.

•
(
A× (A∗)k ,�5

)
, where (q1, β1) �5 (q2, β2) if q1 = q2 and β1 �4 β2. This

means that the ordering on configurations of LCS in Section 7 is a WQO.
•
(
A~ × (A~)∗ ×A~,�6

)
, where (M1, w,M2) �6 (M ′1, w

′,M ′2) if M1 �2 M
′
1,

w �3 w
′, and M2 �2 M

′
2. We will use �6 for proving WQO of the entail-

ment relation on constraints (regions) for Timed Petri Nets (see Section 11).

§11. Timed Petri Nets. In a Timed Petri Net, each token is equipped with
a real-valued clock representing the “age” of the token. The firing conditions of
a transition include the usual ones for Petri nets (Section 3). Furthermore, each
arc between a place and a transition is labeled with a sub-interval of the natural
numbers. When a transition is fired, the tokens removed from the input places
of the transition and the tokens added to the output places should have ages
lying in the intervals of the corresponding arcs.

We use a set Intrv of intervals. An open interval is written as (a, b) where
z ∈ N and b ∈ N ∪ {∞}. Intervals can also be closed in one or both directions,
e.g., [a, b) is closed to the left and open to the right. For α ∈ R≥0, we write
α ∈ [a, b) to denote that a ≤ α < b. The other relations α ∈ (a, b), α ∈ (a, b],
and [a, b] are defined analogously.

First, we introduce the model of Timed Petri nets, and then describe a con-
straint system for the model by defining the set of configurations, the transition
relation, the set of constraints (regions), and the initial set of configurations.
Then, we proceed to show that the constraint system is WQO by showing how
to compute the Pre operation, how to check the entailment relation, how to check
intersection with initial configurations, and finally showing that the entailment
relation on regions is a WQO.

11.1. Model. A Timed Petri Net (TPN) is a tuple N = (P, T, F ) where P
is a finite set of places, T is a finite set of transitions, and the flow relation F is
a partial mapping from the set (P × T ) ∪ (T × P ) to the set Intrv . We define
In (t) := {(p, I) | F (p, t) = I} and Out (t) := {(p, I) | F (t, p) = I}.

11.2. Configurations. A configuration (marking) c is a finite multiset over
P ×R≥0. The configuration c defines the numbers and ages of the tokens in each
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A

2.3

3.5 6.8

t2

[3, 6]

t1

[1, 4]

t3

[2,∞]

B 0.2 0.2

[5, 7]
[0,∞]

C4.3

[0, 0]
[5, 7]

Figure 9. A simple TPN.

place in the net. That is, c(p, α) defines the number of tokens of age α in place p.
For instance, the configuration of Figure 9 is

[
(A, 2.3) , (A, 3.5) , (A, 6.8) , (B, 0.2)2

, (C, 4.3)
]
.

Abusing notation, we define, for each place p, a multiset c(p) over R≥0, where
c(p)(α) = c(p, α). Notice that untimed Petri nets (Section 3) are a special case of
TPNs where all intervals are of the form [0,∞). The set of initial configurations
is given by identifying an initial place pinit ∈ P and defining Cinit to be the
singleton {[(pinit , 0)]}. In other words, the initial configuration contains a single
token with age zero in the initial place. This definition is not as restrictive as it
might seem. Given a TPN N and a more general sets of initial configurations
Cinit , we can construct a new TPN N ′. The TPN N ′ first runs an initial phase
where it start from [(pinit , 0)] and then nondeterministically generates a mem-
ber of Cinit . Once this has been done, N ′ switches to the next phase, where it
simulates N .

11.3. Transition Relation. In a similar manner to timed automata (Sec-
tion 8), we define two types of transition relations on configurations. A timed
transition increases the ages of all tokens by the same real number. For a con-
figuration c1 = [(p1, α1) , . . . , (pn, αn)] and a number δ ∈ R≥0, we use c + δ to
denote the configuration [(p1, α1 + δ) , . . . , (pn, αn + δ)]. We use c1 −→Timed c2
to denote that c2 = c1 + δ for some δ ∈ R≥0.

Now, we define the discrete transition relation −→Disc . For configurations
c1 and c2, we write c1 −→Disc c2 to denote that there is a transition t ∈ T
with In (t) = [(p1, I1) , . . . , (pk, Ik)] and Out (t) = [(q1,J1) , . . . , (q`,J`)], and
multisets M1 = [(p1, α1) , . . . , (pk, αk)] and M2 = [(q1, α

′
1) , . . . , (q`, α′`)] such

that
• αi ∈ Ii for all i : 1 ≤ i ≤ k.
• M1 ≤ c1.
• α′i ∈ Ji for all i : 1 ≤ i ≤ `.



WELL (AND BETTER) QUASI-ORDERED TRANSITION SYSTEMS 29

A

3.8

5.0 8.3

t2

[3, 6]

t1

[1, 4]

t3

[2,∞]

B 1.7 1.7

[5, 7]
[0,∞]

C5.8

[0, 0]
[5, 7]

Figure 10. Performing a timed transition where time passes
by an amount of 1.5 from the configuration of Figure 9.

A

2.3 6.8

t2

[3, 6]

t1

[1, 4]

t3

[2,∞]

B
0.2

1.5 0.2

[5, 7]
[0,∞]

C4.3 6.3

[0, 0]
[5, 7]

Figure 11. A possible result of firing transition t2 from the
configuration of Figure 9.

• c2 = (c1 −M1) +M2.

We say that t is enabled at c1 if the first two conditions are satisfied.
11.4. Regions. We define a set of constraints called regions. These are ex-

tensions of the constraints with the same name we introduced for timed automata
(see Section 8). The main difference is that in the case of TPNs, the number of
clocks (ages of tokens) is not bounded in general (in contrast to timed automata
where the set of clocks is a priori given). This implies that there is a finite
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number of regions for a given timed automaton, while this is not the case for a
TPN.

Let max be the maximum integer which occurs syntactically in the defini-
tion of the TPN. We will distinguish between three types of tokens depend-
ing on their clock values (ages). In order to do this, we define three sets of
symbols, namely Symmax := {max+}, Sym0 :=

{
k0| k ∈ N, 0 ≤ k ≤ max

}
, and

Sym+ := {k+| k ∈ N, 0 ≤ k < max}. We use the (singleton) set Symmax to rep-
resent tokens whose ages are larger than max . The other two sets are used to
represent tokens whose ages are smaller than (or equal to) max , where tokens
represented by Sym0 resp. Sym+ have zero resp. positive fractional parts. We
define Sym := Sym0 ∪ Sym+ ∪ Symmax . We define an ordering < on Sym such
that k0 < k+ < (k + 1)0

< max+ for all k : 0 ≤ k < max . We define the
signature sig (α) of a real number α (where α represents the age of a token) as
follows:

• If α > max then sig (α) := max+. The actual ages of these tokens are
irrelevant, and hence the information about their ages is omitted in the
representation. (This is because the transitions in the net cannot distin-
guish between different ages of tokens if these are strictly larger than max .)

• If α ≤ max and fract (α) = 0 then sig (α) := α0.
• If α ≤ max and fract (α) > 0 then sig (α) := bαc+. If the fractional part is

positive then the age is approximated to bαc.

For a token (p, α), we define sig (p, α) := (p, sig (α)); and for a configuration
c = [(p1, α1) , . . . , (pn, αn)], we define sig (c) := [sig (p1, α1) , . . . , sig (pn, αn)].

A region stores tokens by their signatures, and reflects the ordering of the frac-
tional parts. For i ∈ {max , 0,+}, we let P i :=

{
(p, sym) | p ∈ P, sym ∈ Symi

}
.

A region R is a triple (Zero,Pos,Max ) where

• Zero ∈
(
P 0
)~ is a multiset of pairs that represent tokens with zero frac-

tional parts and values which are at most max . A pair of the form (p, k)
represents a token of age exactly k in place p.

• Pos ∈
(

(P+)~ − {∅}
)∗

. Each element in the word Pos is a non-empty

multiset over P+. The word Pos represents tokens with positive fractional
parts. A pair (p, k+) represents a token in place p with age α ≤ max such
that bαc = k. Pairs in the same multiset represent tokens whose ages have
identical fractional parts. The order of the multisets in Pos corresponds to
the order of the fractional parts (i.e., smaller fractional parts come first in
the word Pos).

• Max ∈ (Pmax )~ is a multiset over Pmax representing tokens with ages
strictly larger than max .

The semantics of a region (Zero,Pos,Max ) would not change if we allowed empty
multisets to appear in Pos. However, we forbid this in order to obtain a unique
representation. We call Zero, Pos, and Max the zero, positive, resp. max parts
of R.

Consider a configuration c and a region R = (M0,M1 · · ·Mn,Mn+1), i.e.,
Zero = M0, Pos = M1 · · ·Mn, and Max = Mn+1. We use c |= R to denote
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that there are configurations c0, . . . , cn+1 such that the following conditions are
satisfied:

• c ≥ c0 + c1 + · · ·+ cn + cn+1.
• Mi ≤ sig (ci) for all i : 0 ≤ i ≤ n+ 1.
• If (p1, α1) ∈ Mi and (p2, α2) ∈ Mj with 1 ≤ i, j ≤ n then fract (α1) <

fract (α2) iff i < j. This condition implies fract (α1) = fract (α2) iff i = j.
Thus, tokens with identical fractional parts correspond to elements in the
same multiset (unless they belong to Mn+1). Furthermore, the ordering
among the multisets inside Pos reflects the ordering among the fractional
parts of the clock values (increasing from left to right).

Remarks. The region R defines a set of minimal requirements on c. More
precisely, c should contain at least ` =

∑
0≤i≤n+1 |Mi| tokens. The places and

ages of these tokens are constrained as described above where R specifies the
integral parts of token ages and an ordering on their fractional parts (up to ages
equal to max ). A configuration c which satisfies R should have at least the `
tokens specified by R. In such a case, c may have any number of additional
tokens (whose places and ages are then irrelevant for the satisfiability of the
region by the configuration).

We notice that a configuration c defines a unique maximal (wrt. entailment
on regions) region Reg (c) = (M0,M1 · · ·Mn,Mn+1) such that c |= R; namely
the region where there are configurations c0, . . . , cn+1 satisfying the following
conditions:

• c = c0 + · · ·+ cn+1.
• Mi = sig (ci) for all i : 0 ≤ i ≤ n+ 1.
• If (p1, α1) ∈ Mi and (p2, α2) ∈ Mj with 1 ≤ i, j ≤ n then fract (α1) <

fract (α2) iff i < j.

The set of regions induces a natural ordering� on the set of configurations, where
c1 � c2 iff c1 |= R implies c2 |= R for all regions R. Let us define an equivalence
relation ≡Reg on configurations such that c1 ≡Reg c2 iff Reg (c2) = Reg (c′1). In
fact, c1 � c2 iff there are c′2, c

′′
2 such that c2 = c′2 + c′′2 and c1 ≡Reg c2 . Equiv-

alently, c1 � c2 iff Reg (c1) v Reg (c2). It can be verified that (C,−→,�, Cinit)
where C is the set of configurations of the TPN, Cinit is the set of initial mark-
ings, −→ is the transition relation, and � is the above ordering, is a WTS.
Examples. Assume that max = 7. Consider a configuration

c = [(p1, 3.2) , (p1, 1.0) , (p1, 5.7) , (p1, 1.8) , (p2, 4.2) , (p2, 9.2) , (p3, 4.0) , (p3, 7.2)]

Then

Reg (c) =

 (p1, 10
)

,(
p3, 40

)
 ,
 (p1, 3+)

,
(p2, 4+)

 [(p1, 5+
)] [(

p1, 1+
)]
,

 (p2, 7+)
,

(p3, 7+)


Consider the regions

R1 =

 (p1, 10
)

,(
p3, 40

)
 , [(p2, 4+

)] [(
p1, 5+

)] [(
p1, 1+

)]
,

 (p2, 7+)
,

(p3, 7+)


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R2 =

 (p1, 10
)

,(
p3, 40

)
 , [(p3, 2+

)]  (p1, 3+)
,

(p2, 4+)

 [(p1, 5+
)] [(

p1, 1+
)]
,

 (p2, 7+)
,

(p3, 7+)



R3 =


 (p1, 10

)
,(

p3, 40
)
 ,


(p1, 3+)
,

(p2, 4+)
,

(p3, 2+)

 [(p1, 5+
)] [(

p1, 1+
)]
,

 (p2, 7+)
,

(p3, 7+)




Then c |= R1, c 6|= R2, and c 6|= R3.
11.5. Computing Predecessors. We define Pre := PreTimed ∪ PreDisc ,

where PreTimed corresponds to running time backwards and PreDisc corresponds
to firing transitions backwards

To define PreTimed , we introduce an operation Rotate on regions which sim-
ulates the effect of running time backwards from a region. For a region R =
(Zero,Pos,Max ), we use Rotate(R) to denote the set of regions of the form(
Zero′,Pos ′,Max ′

)
, such that one of the following conditions is satisfied:

• Zero is empty, and there are multisets
– M1 =

[(
p1, k

+
1

)
, . . . , (p1, k

+
m)
]
.

– M ′1 =
[(
p1, k

0
1

)
, . . . ,

(
p1, k

0
m

)]
.

– M2 = [(q1,max+) , . . . , (qn,max+)].
– M ′2 =

[(
q1,max 0

)
, . . . ,

(
qn,max 0

)]
.

such that the following conditions are satisfied
– Pos = M1 · Pos ′ if M1 6= ∅ and Pos = Pos ′ otherwise.
– Max = Max ′ +M2.
– Zero′ = M ′1 +M ′2 6= ∅.

A configuration satisfying R does not contain any tokens whose ages have
zero fractional parts (Zero is empty). The first “interesting thing” to hap-
pen when running time backwards is that the fractional parts of some token
ages become equal to zero. All such ages have identical fractional parts (say
equal to r), i.e. their ages are of the form k+r, where k ∈ N. Notice that all
these tokens have signatures of the form (p, k+) where 0 ≤ k ≤ max . There
are three types of such tokens depending on whether k < max , k = max ,
or k > max . Tokens of the first two types are represented by the multi-
sets M1 and M2 respectively. These tokens will be transformed into tokens
whose ages have zero fractional parts; hence they will have signatures of the
form

(
p, k0

)
(represented by the multisets M ′1 and M ′2). The two multisets

M ′1 and M ′2 represent all tokens with zero fractional parts in R′ and hence
Zero′ = M ′1 +M ′2. The tokens in M1 are those with the smallest fractional
parts in Pos and therefore M1 is the first multiset in Pos (Pos is of the
form M1 · Pos ′). If M1 is empty, then this indicates that there are not
tokens of the first type (with ages of the form k + r, k < max ). The third
types of tokens will still have ages which are larger than max and hence
their signatures will remain unchanged (these tokens will remain part of
Max ).
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• Zero is not empty, Zero =
[(
p1, k

0
1

)
, . . . ,

(
pm, k

0
m

)]
, 0 < ki ≤ max for all

i : 1 ≤ i ≤ m, Zero′ is empty, Max ′ = Max , and Pos ′ = Pos · Zero′′

where Zero′′ =
[(
p1, (k1 − 1)+

)
, . . . ,

(
pm, (km − 1)+

)]
. A configuration

satisfying R contains some tokens whose ages have zero fractional parts
(Zero is not empty). The age of such a token is some natural number
0 < ki ≤ max . The first “interesting thing” to happen when running tie
backwards is that the integral parts of ages of these tokens will be reduced
by one. Also, the fractional parts become positive (and in fact larger than
the fractional parts of any other tokens). Therefore, the signature of such
a token will be of the form

(
pi, (ki − 1)+

)
. Since these tokens have the

highest fractional parts, the multiset representing them (i.e., Zero′′) will
be put last in Pos ′. Notice that we require that no token in Zero should
have a zero integral part (otherwise the age of the token would be equal to
zero and hence time cannot run backwards), and that no token whose age
have a zero fractional part will remain in the region (Zero′ is empty). The
tokens whose ages are larger than max (represented by Max ) will not be
affected since running time backwards “by a small amount” will keep their
values larger than max .

Figure 12 shows some examples of applications of the rotation operation. We de-
fine PreTimed to be the reflexive transitive closure of Rotate, i.e. R′ ∈ PreTimed(R)
iff there are regions R0, R1, . . . , Rn such that R0 = R, Rn = R′, and Ri+1 ∈
Rotate(Ri) for all i : 0 ≤ i < n.

Now, we turn our attention to computing PreDisc . We define PreDisc :=⋃
t∈T Pret, where Pret describes the effect of running the transition t backwards.

We start by describing a number of operations on regions. Consider a word
w ∈

(
(P+)~ − {∅}

)∗
, and a a pair (p, k+) ∈ P+. We define w 	 (p, k+) to be

the set of words w′ satisfying the following property:
• w = w1 ·M · w2, w′ = w1 ·M ′ · w2, (p, k+) ∈M , and M ′ = M − [(p, k+)].

We will use this operation to remove (the signature of) a token from the (word w
corresponding to the) positive part of a region. The token may be removed from
any multiset inside the word provided that the token occurs in the multiset.

We define w⊕ (p, k+) to be the set of words satisfying one of the following two
properties:
• w = w1 ·M · w2, w′ = w1 ·M ′ · w2, and M ′ = M + [(p, k+)].
• w = w1 · w2, and w′ = w1 · [(p, k+)] · w2.

We will use this operation to add a token to the positive part of a region. The
token can either be added to multiset in w (first case), or we create a new multiset
containing the token (second case).

For an interval I = [a, b], and ` ∈ Sym, we write ` ∈ I to denote that
a0 ≤ ` ≤ b0 (recall the ordering we have defined on the members of Sym). The
relations ` ∈ [a, b), ` ∈ (a, b], and ` ∈ (a, b) are defined analogously.

For a region R = (Zero,Pos,Max ) and a pair (p, `) ∈ P × Sym we define
R	 (p, `) to be the set of regions R′ satisfying one the following conditions:

• ` ∈ Sym0, (p, `) ∈ Zero, R′ =
(
Zero′,Pos,Max

)
, and Zero′ = Zero−[(p, `)].
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R0:
(
p, 40

)(
q, 20

) (p, 5+) (p, 3+)
(p, 3+)

(p, 7+)
(q, 7+)

R1: (p, 5+) (p, 3+)
(p, 3+)

(p, 3+)
(q, 1+)

(p, 7+)
(q, 7+)

R2:
(
p, 70

)(
p, 50

) (p, 3+)
(p, 3+)

(p, 3+)
(q, 1+) (q, 7+)

R3: (p, 3+)
(p, 3+)

(p, 3+)
(q, 1+)

(p, 6+)
(p, 4+) (q, 7+)

R4:
(
p, 30

)(
p, 30

) (p, 3+)
(q, 1+)

(p, 6+)
(p, 4+) (q, 7+)

R5: (p, 3+)
(q, 1+)

(p, 6+)
(p, 4+)

(p, 2+)
(p, 2+) (q, 7+)

R6:
(
p, 30

)(
q, 10

) (p, 6+)
(p, 4+)

(p, 2+)
(p, 2+) (q, 7+)

R7: (p, 6+)
(p, 4+)

(p, 2+)
(p, 2+)

(p, 2+)
(q, 0+) (q, 7+)

R8:
(
p, 60

)(
p, 40

) (p, 2+)
(p, 2+)

(p, 2+)
(q, 0+) (q, 7+)

R9: (p, 2+)
(p, 2+)

(p, 2+)
(q, 0+)

(p, 5+)
(p, 3+) (q, 7+)

R10:
(
p, 20

)(
p, 20

) (p, 2+)
(q, 0+)

(p, 5+)
(p, 3+) (q, 7+)

R11: (p, 2+)
(q, 0+)

(p, 5+)
(p, 3+)

(p, 1+)
(p, 1+) (q, 7+)

R12:
(
p, 20

)(
q, 00

) (p, 5+)
(p, 3+)

(p, 1+)
(p, 1+) (q, 7+)

Figure 12. A sequence of rotations: Ri+1 ∈ Rotate(Ri). No-
tice that Ri ∈ PreTimed(R0) for all i : 0 ≤ i ≤ 12.
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• ` ∈ Sym+, R′ =
(
Zero,Pos ′,Max

)
, and Pos ′ ∈ (Pos 	 (p, `)).

• ` ∈ Symmax , (p, `) ∈ Max , R′ =
(
Zero,Pos,Max ′

)
, and Max ′ = Max −

[(p, `)].
The operation is used to remove a token from a region. Depending on the
signature of the token, it is removed either from the zero, positive, or max part
of the region.

We define R ⊕ (p, `) to be the set of regions R′ satisfying one the following
conditions:
• ` ∈ Sym0, R′ =

(
Zero′,Pos,Max

)
, and Zero′ = Zero + [(p, `)].

• ` ∈ Sym+, R′ =
(
Zero,Pos ′,Max

)
, and Pos ′ ∈ (Pos ⊕ (p, `)).

• ` ∈ Symmax , R′ =
(
Zero,Pos,Max ′

)
, and Max ′ = Max + [(p, `)].

The operation can be explained in a similar manner to the previous one.
For a region R and a multiset [(p1, k1) , . . . , (pm, km)] ∈ (P × Sym)~, we define

R	M to be the set of regions R′ such that there regions R0, R1, . . . , Rm+1 where
R0 = R, Rn+1 = R′, and Ri+1 ∈ Ri 	 (p, ki) for all i : 1 ≤ i ≤ m. We define
R ⊕M analogously. These two operations are used to remove (add) a multiset
of tokens from (to) a region.

Consider a transition t ∈ T . Let In (t) = [(p1, I1) , . . . , (pk, Im)] and Out (t) =
[(q1,J1) , . . . , (q`,Jn)]. For a region R, we define Pret(R) to be the set of regions
R′ satisfying the following condition: there are multisetsM1 = [(p1, k1) , . . . , (pm, km)] ∈
(P × Sym)~ and M2 = [(qi1 , `i1) , . . . , (qir , `ir )] ∈ (P × Sym)~ such that
• 1 ≤ i1 < i2 < · · · < ir ≤ n.
• kj ∈ Ij for all i : 1 ≤ j ≤ m.
• `ij ∈ Iij for all j : 1 ≤ j ≤ r.
• R′ ∈ (R′′ ⊕M1) for some R′′ ∈ (R	M2).

We choose a subset of the output places of t (described by the sequence i1, i2, . . . , ir).
Since we are running t backwards, we remove tokens corresponding to all these
output places (these tokens were generated through the firing of t). For each
input place we add a token (these tokens were removed through the firing of t).
The tokens added and removed should have the correct ages (signatures), i.e.,
they should belong to the relevant intervals.
Example. Assume that max = 7. Consider a region

R =

 (p1, 10
)

,(
p3, 40

)
 ,
 (p1, 3+)

,
(p2, 4+)

 [(p1, 5+
)] [(

p1, 1+
)]
,

 (p2, 7+)
,

(p3, 7+)


The set R	 (p1, 4+) is the singleton {R1} where

R1 =

 (p1, 10
)

,(
p3, 40

)
 , [(p1, 3+

)] [(
p1, 5+

)] [(
p1, 1+

)]
,

 (p2, 7+)
,

(p3, 7+)


Examples of regions in R⊕ (p1, 4+) are the regions R2 and R3 defined as:

R2 =

 (p1, 10
)

,(
p3, 40

)
 ,
 (p1, 3+)

,
(p2, 4+)

 [(p1, 5+
)] [(

p1, 4+
)] [(

p1, 1+
)]
,

 (p2, 7+)
,

(p3, 7+)


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R3 =

 (p1, 10
)

,(
p3, 40

)
 ,
 (p1, 3+)

,
(p2, 4+)

 (p2, 4+)
,

(p1, 5+)

 [(p1, 1+
)]
,

 (p2, 7+)
,

(p3, 7+)


Let t be a transition with Let In (t) = [(p1, [3, 5)) , (p2, [2, 2])] and Out (t) =
[(p2, (0, 2)) , (p3, [2, 5))]. Examples of regions in Pret(R) are the regions R4 and
R5 defined as:

R4 =


 (p1, 10

)
,(

p2, 20
)
 ,


(p1, 3+)
,

(p2, 4+)
,

(p1, 4+)

 [(p1, 5+
)] [(

p1, 1+
)]
,

 (p2, 7+)
,

(p3, 7+)




R5 =

 (p1, 10
)

,(
p1, 20

)
 ,
 (p1, 3+)

,
(p2, 4+)

 [(p1, 5+
)]  (p1, 1+)

,
(p1, 4+)

 ,
 (p2, 7+)

,
(p3, 7+)


11.6. Checking Entailment and Proving WQO. Given regions R =

(Zero,Pos,Max ) and R′ =
(
Zero′,Pos ′,Max ′

)
, we have R v R′ iff R �6 R′

(see Section 10). It follows that v is computable and that is a WQO.
11.7. Intersection with Initial Configurations. We recall that Cinit is

the singleton {[(pinit , 0)]}. It follows that, for a region R = (Zero,Pos,Max ),
we have Cinit ∩ JRK = ∅ iff Pos = ε, Max = ∅, and either Zero = ∅ or Zero =
[(pinit , 0)].

§12. BQOs. We recall that in the previous sections we invented new con-
straint systems based on the fact that finite domains are WQOs under equality,
and that WQOs are also closed under a basic set of operations such as building
finite words, vectors, multisets, sets, etc. This means that we can start from
a set of constraints over finite domains, and then repeatedly generate new con-
straints by building more compound data structures. A typical application of
this approach was the constraint system of regions which we used for verification
of TPNs in Section 11. Many of the constraint systems developed according to
this methodology suffer from a “constraint explosion” problem, as a large num-
ber of constraints is generated during the reachability analysis algorithm. For
instance, using regions, the set of generated constraints explodes even for very
small TPNs. The constraint explosion can often be much reduced, either by
employing the improved symbolic reachability algorithm using the relation �∀∃
(as described in Section 9); or by considering new constraint systems where each
constraint is a set (disjunction) of the ones derived using the above mentioned
set of operations. For instance, in Section 13 we will present zones which offer
a much more compact representation of infinite sets of configurations than re-
gions (in the same way that zones are more efficient than regions in verification
tools for timed automata [29, 38]). We consider the region-induced ordering �
on the configurations of a TPN, and apply the improved symbolic reachability
algorithm on zones taking the entailment relation to be �∀∃. Also, in Section 14
we will present a constraint system, where each constraint corresponds to the
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disjunction of a (usually large) number of simpler constraints (called flat con-
straints). Unfortunately, as we will describe in this section, well quasi-ordered
constraint systems are in general not closed under disjunction or under applying
the �∀∃ relation; and hence we cannot prove WQO of zones or of the constraints
of Section 14 within the framework of Section 10. Therefore, instead of WQOs,
we propose here to use an alternative approach based on a refinement of the the-
ory of WQOs, called the theory of Better Quasi-Qrderings (BQOs) [33, 35]. We
motivate why this theory allows for constraint systems which are more compact
and hence less prone to constraint explosion. More precisely, BQOs offer two
advantages: (i) BQO implies WQO; hence all the verification algorithms we have
designed for well quasi-ordered constraint systems are also applicable to better
quasi-ordered ones; and (ii) BQOs are more “robust” than WQOs. For instance,
in addition to the operations of building sets, multisets, words, etc, better quasi-
ordered constraint systems (in contrast to well quasi-ordered ones) are also (i)
closed under disjunction: if a set of constraints is better quasi-ordered under
entailment, then the set of finite disjunctions (sets) of these constraints is also
better quasi-ordered under entailment; (ii) closed under �∀∃: if � is a better
quasi-ordering on a set of configurations then �∀∃ is a better quasi-ordering on
the denotations of any set of constraints.

12.1. Rado’s Example. We describe an example that illustrates why WQOs
are in general not closed under disjunction or �∀∃. Consider the the set X ⊆ N2

where X = {(a, b) | a < b}. Define a set Φ1 = {φa,b| (a, b) ∈ X} of constraints,
such that the denotation Jφa,bK ⊆ X of φa,b is the set {(c, d) | (c > b) ∨ ((c = a) ∧ (d ≥ b))}.
We show that Φ1 is WQO under entailment. Suppose that we have a sequence
φa1,b1 , φa2,b2 , . . . . We show that the sequence is good. We consider two cases.

• If b1 < aj for some j ≥ 1. We show that this implies φa1,b1 v φaj ,bj
. Take

any (c, d) ∈ Jφaj ,bj
K. Then, either c > bj or (c = aj) ∧ (d ≥ bj). In both

cases, we show that c > a1 and hence (c, d) ∈ Jφa1,b1K.
– c > bj . We have aj > b1 by assumption, and b1 > a1 and bj > aj by

definition of X. It follows that c > a1.
– (c = aj) ∧ (d ≥ bj). We know that b1 > a1 by definition of X, and
aj > b1 by assumption. It follows that c > a1.

• If aj ≤ b1 for all j ≥ 1. Then, we have a subsequence of the form
(a, bi1) , (a, bi2) , . . . for some a, and hence there are k and ` such that
bik ≤ bi` . We show that that this implies φa,bik

v φa,bi`
. Take any

(c, d) ∈ Jφa,bi`
K. Then, either c > bi` or (c = a) ∧ (d ≥ bi`). In both

cases, we show that (c, d) ∈ Jφa,bik
K.

– If c > bi` , then c > bik and hence (c, d) ∈ Jφa,bik
K.

– If (c = a) ∧ (d ≥ bi`), then d ≥ bik and hence (c, d) ∈ Jφa,bik
K.

Now, we consider the set Φ2 of constraints of the form ψj , where ψj ≡ φ0,j ∨
· · · ∨ φj−1,j . We show that ψ0, ψ1, . . . is bad. Consider k < `. We show that
(k, `) ∈ Jψ`K, but (k, `) 6∈ JψkK. By definition of φk,`, we know that (k, `) ∈ Jφk,`K.
Since k < ` we have φk,` ∈ ψ`, and hence (k, `) ∈ Jψ`K. Consider φi,k where
i < k. Since k 6> k and k 6= i we know that that (k, `) 6∈ Jφi,kK. By definition
ψk = {φi,k| 0 ≤ i < k}, so (k, `) 6∈ JψkK. It follows that k < ` implies Jψ`K 6⊆ JψkK,
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Figure 13. A graphic illustration of Jφ2,5K and JΦ5K. Filled
circles represent points satisfying the constraint.

i.e., ψk 6v ψ`. This means that the sequence ψ1, ψ2, . . . is bad. In Figure 13, we
give graphic illustrations of Jφ2,5K and Jψ5K.

In fact, the above example also shows that WQOs are not closed under �∀∃.
More precisely, suppose that we define the ordering � on X such that (i, j) �
(k, `) iff either i > ` or both i = k and j ≤ `. Define the constraints ψ0, ψ1, . . .
such that JψjK = ∪0≤i<j {(k, `) | (i, j) � (k, `)}. Notice that each ψj is upward
closed wrt. �. We can use the same reasoning as above to show that if ` > k
then (k, `) ∈ Jψ`K and (k, `) 6∈ JψkK. Since JψkK is upward closed it follows that
(i, j) 6∈ JψkK for all (i, j) � (k, `). Hence, ψk 6�∀∃ ψ`. This means that the
sequence ψ0, ψ1, . . . is bad wrt. �∀∃.

12.2. Basics of BQOs. We will introduce the basic definitions and proper-
ties of BQOs. Let N<∗ (N<ω) denote the set of finite (infinite) strictly increasing
sequences over N. For s ∈ N<∗, we let λ(s) be the set of natural numbers oc-
curring in s, and if s is not empty then we let tail(s) be the result of deleting
the first element of s. For s1 ∈ N<∗ and s2 ∈ N<∗ ∪ N<ω, we write s1 � s2 to
denote that s1 is a proper prefix of s2. If s1 is not empty then we write s1 �∗ s2

to denote that tail(s1) � s2. An infinite set β ⊆ N<∗ is said to be a barrier if
the following two conditions are satisfied:

• there are no s1, s2 ∈ β such that λ(s1) ( λ(s2).
• for each s2 ∈ N<ω there is s1 ∈ β with s1 � s2.
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Let (A,�) be a quasi-ordering. An A-pattern is a mapping f : β → A, where β
is a barrier. We say that f is good if there are s1, s2 ∈ β such that s1 �∗ s2 and
f(s1) � f(s2). We say that (A,�) is a better quasi-ordering if each A-pattern is
good. We use Aω to denote the set of infinite sequences over A. For w ∈ Aω,
we let w(i) be the the ith element of w. For a quasi-ordering (A,�), we define
the quasi-ordering (Aω,�ω) where w1 �ω w2 if and only if there is a strictly
increasing injection h : N → N such that w1(i) � w2(h(i)), for each i ∈ N. We
shall use the following two properties (from [33]):

Lemma 12.1. • If β is a barrier and β = β1 ∪ β2, then there is a barrier α
such that α ⊆ β1 or α ⊆ β2.

• If (A,�) is BQO then (Aω,�ω) is BQO

Using induction on n we can generalize the first property to β = β1 ∪ · · · ∪βn.
The base case n = 2 follows from the lemma. Consider β = β1 ∪ · · · ∪ βn where
n > 2. Define β′ := β2 ∪ · · · ∪ βn. By the lemma there is a barrier α such that
α ⊆ β1 or α ⊆ β′. In the first case we are done. Otherwise, define αi = α ∩ βi
for i : 2 ≤ i ≤ n. Notice that α = α2 ∪ · · · ∪ αn. By the induction hypothesis
there is a barrier α′ such that α′ ⊆ αi for some i : 2 ≤ i ≤ n. The result follows
from the fact that αi ⊆ βi.

The following lemma gives the desired properties for BQOs.

Theorem 12.2. 1. Each BQO is a WQO.
2. If A is finite, then (A,=) is a BQO.
3. If (A,�) is a BQO, then (A∗,�∗) is a BQO.
4. If (A,�) is a BQO, then (A~,�~) is a BQO.
5. If (A,�1) is a BQO and �1⊆�2 then (A,�2) is a BQO.
6. If (A,�) is a BQO, then

(
2A,�∀∃

)
is a BQO

Proof. The proof of property 6 can be found3 in [31]. Below, we show
properties 1-5.

1. Let (A,�) be a BQO. We show that (A,�) is a WQO. Consider a sequence
s = a0, a1, . . . of elements in A. We show that s is good in the WQO-sense (i.e.,
there are i, j such that i < j and ai � aj). First, we show that the set N of
natural numbers is a barrier (notice that each sequence in N is of length one):
• Take any i, j ∈ N. If i 6= j then the sets λ(i) = {i} and λ(j) = {j} do not

intersect. Otherwise, they are identical. In both cases, λ(i) ( λ(j).
• Consider any sequence s ∈ N<ω. Let i be the first element in s. Then i ∈ N

and i� s

Define the function f : N→ A such that f(i) = ai. Since N is a barrier it follows
that f is an A-pattern. From the assumption that (A,�) is a BQO it follows
that f is good in the BQO-sense, i.e., there are i, j ∈ N with f(i) � f(j). This
means that ai � aj and hence s is good in the WQO-sense.

2. Consider (A,=) where A = {a1, . . . , an} is finite. Let f : β → A be an
A-pattern. Define βi = f−1(ai), for i : 1 ≤ i ≤ n. By Lemma 12.1, there is a
barrier α ⊆ βi, for some i : 1 ≤ i ≤ n. Take a shortest s1 ∈ α, i.e., there is no s′1

3[28] provides a proof for a weaker version of the theorem, namely that BQO of (A,�) is
sufficient for WQO of

`
2A,v

´
.
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whose length is strictly smaller than the length of s1. Consider any s2 ∈ N<ω,
where s1 �∗ s2. Since α is a barrier, we know that there is s3 ∈ α such that
s3 � s2, and that λ(s3) ( λ(s1). From the fact that s1 is of minimal length in
β it follows that s1 �∗ s3 and hence f is good.

3. Suppose that (A,�) is BQO. We show that (A∗,�∗) is BQO. Take any
b 6∈ A. For w ∈ A∗, we let w′ denote wbω (i.e., we add infinitely many b:s to the
end of w). It is clear that w1 �∗ w2 if and only if w′1 �ω w′2. Let f : β → A∗

be an A∗-pattern. We know that f ′ : β → Aω, where f ′(s) = w′ iff f(s) = w,
is an Aω-pattern. By Lemma 12.1 it follows that there are s1, s2 ∈ β such that
s1 �∗ s2 and f ′(s1) �ω f ′(s2), and hence f(s1) �∗ f(s2). This means that f is
good.

4. Follows from 3.
5. Suppose that (A,�1) is a BQO. Consider an A-pattern f : β → A. Since

�1 is a BQO, it follows that f is good wrt. �1, i.e., there are s1, s2 ∈ β such
that s1 � s2 and f(s1) �1 f(s2). Since �1⊆�2 we know that f(s1) �2 f(s2).
This implies that f is good wrt. �2, and hence �2 is a BQO. a

12.3. Applications of BQOs. Theorem 12.2 gives the properties we need
to develop our methodology based on BQOs.

Since BQO is a stronger relation than WQO (property 1), it follows that, to
prove termination of the reachability algorithms of the previous sections, it is
sufficient to prove that the constraints are BQO under entailment.

Properties 2-3 mean that all the constraint systems we have built in the pre-
vious sections are BQO under entailment. In particular, the pre-orders �1,�2

,�3,�4,�5,�6 in Section 10 are all BQOs.
Notice that 6 mentions explicitly that BQOs are stable under �∀∃. Also, by

property 6, it follows that better quasi-ordered sets of constraints are closed
under entailment: Consider a better quasi-ordered set of constraints (Φ,v). By
property 6 it follows that (Φ,v∀∃) is a BQO. Notice that Φ1 v∀∃ Φ2 implies
that Φ1 v Φ2. By property 5 it follows that (Φ,v) is a BQO.

§13. Zones. In this section we introduce a constraint system called zones
for representing infinite sets of configurations in Timed Petri nets. In a similar
manner to regions, a zone Z represents minimal conditions on configurations,
and thus characterizes an upward closed set of configurations. Compared with
regions, zones provide a much more compact representation, and are therefore
more suitable for reachability analysis. A zone Z specifies a minimum number of
tokens which should be in the configuration, and then imposes certain conditions
on these tokens. The conditions are formulated as specifications of the places in
which the tokens should reside and restrictions on their ages. The age restrictions
are stated as bounds on clocks values, and bounds on differences between values
of pairs of clocks. A configuration c which satisfies Z should have at least the
number of tokens specified by Z. Furthermore, the places and ages of these
tokens should satisfy the conditions imposed by Z. In such a case, c may have
any number of additional tokens (whose places and ages are then irrelevant for
the satisfiability of the zone by the configuration).
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13.1. Zones. Assume a TPN N = (P, T, F ), and assume that max is the
maximum integer which occurs syntactically in the definition of N . For each
p ∈ P , we will use a set Xp of variables ranging over R≥0. For x ∈ Xp, we use
type (x) to denote the place p. We use X to denote the set

⋃
p∈P X

p. We will
also assume a special variable x0 6∈ X. We use x0 in our zone definitions to model
a reference clock whose value is equal to zero. The type of x0 is of no relevance.
A zone condition ϕ is of the form y−x ∼ k, where ∼ ∈ {≤, <}, x, y ∈ X ∪

{
x0
}

,
and k ∈ Z. A zone Z is a finite conjunction of zone conditions. We use Var (Z)
to denote the set of variables in X which occur in Z. We occasionally consider
a zone Z to be a set of zone conditions and write, for instance, (y − x ∼ k) ∈ Z
to indicate that y − x ∼ k is one of the conjuncts in Z.

We define a total ordering / on elements in the set {<,≤} × Z such that
(∼1, k1) / (∼2, k2) iff either

• k1 < k2; or
• k1 = k2 and either ∼1 = < or ∼2 = ≤.

We define (∼1, k1) + (∼2, k2) to be (∼3, k3) where k3 = k1 + k2 and ∼3 = < iff
either ∼1 = < or ∼2 = <.

Consider a zone Z, a configuration c = [(p1, α1) , . . . , (pn, αn)], and an injec-
tion h : Var (Z) 7→ n• such that type (x) = ph(x) for each x ∈ Var (Z). We
extend h such that h(x0) = 0. We write c |=h Z to denote that αh(y)−αh(x) ∼ k
holds for all zone conditions (y−x ∼ k) ∈ Z. When there is no risk of confusion,
we simplify the notation and write h(x) instead of αh(x). For instance, we write
h(y) − h(x) ∼ k instead of αh(y) − αh(x) ∼ k. We write c |= Z to denote that
c |=h Z for some h. We define JZK := {c| c |= Z}. Intuitively, each variable in
Var (Z) represents one token. The configurations in JZK contain tokens whose
places are defined by the types of the corresponding variables, and whose clock
values are related according to the zone conditions. To simplify the notation, we
sometimes write k < y−x, x > k, and x < k instead of x−y < −k, x−x0 < −k,
resp. x− x0 < k (we use a similar notation for ≤).

In a similar manner to regions (Section 11), our interpretation of zones is
different from the standard one (described e.g. in [15]). In the standard inter-
pretation, zones characterize sets of (multi-clock) configurations, while in our
interpretation a zone characterizes sets of tokens each with a single clock.

A zone Z is said to be consistent if JZK 6= ∅. We say that Z is stable if it
satisfies the following condition:

• If (y − x ∼1 k1) ∈ Z and (z − y ∼2 k2) ∈ Z then (z − x ∼3 k3) ∈ Z for
some (∼3, k3) / (∼1, k1) + (∼2, k2).

If the zone Z is stable we use the Floyd-Warshall procedure [20] to compute a
zone Z ′ such that Z ′ is stable and JZ ′K = JZK. We use Stabilize(Z) to denote
Z ′.

13.2. Computing Predecessors. As in the case of regions (Section 11), we
define Pre := PreTimed ∪ PreDisc , where PreTimed corresponds to running time
backwards and PreDisc corresponds to firing transitions backwards. Below, we
assume a consistent zone Z.
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First we define PreTimed . We define Relax (Z) to be the zone Z ′ we get from
Z by replacing each zone condition of the form x0− x ∼ k (where k ≤ 0 since Z
is consistent) by a zone condition of the form x0 − x ∼ 0.

Lemma 13.1. PreTimed(Z) := Relax (Stabilize(Z)).

Now, we show how to compute PreDisc . To do that, we define a number of
operations. For an interval I = [a, b], and a variable x ∈ Var (Z), we write
Z ⊗ (I, x) to be the zone Z ∪ {a ≤ x, x ≤ b}. Intuitively, we add to Z the
condition that the token correspondiing to the variable x should have an age
which belongs to the interval [a, b]. We define the operator for open intervals in
a similar manner. We use Z	x to denote the zone Z ′ we get from Z by removing
all conditions in which x occurs. For a place p and an interval I = [a, b], we define
the addition Z ⊕ (p, I) of (p, I) to Z to be the zone Z ′ = Z ∪ {a ≤ x, x ≤ b}
where x is an arbitrary variable not in Var (Z). Intuitively, the new zone Z ′

requires one additional token to be present in place p such that the age of the
token is in the interval I.

We define PreDisc :=
⋃
t∈T Pret, where Pret describes the effect of run-

ning the transition t backwards. Consider a transition t ∈ T . Let In (t) =
[(p1, I1) , . . . , (pk, Im)] and Out (t) = [(q1,J1) , . . . , (q`,Jn)]. We define Pret(Z)
be the set of zones Z ′ such that there are
• 1 ≤ i1 < i2 < · · · < ik ≤ m.
• variables xi1 , xi2 , . . . , xik .
• zones Z1, Z2, Z3

such that the following properties are satisfied:
• [(qi1 ,Ji1) , . . . , (qik ,Jik)] ≤ Out (t).
• type (xij) = qij .
• Z1 = Z ⊗ (xi1 ,Ji1)⊗ · · · ⊗ (xik ,Jik).
• Z2 = Stabilize(Z1).
• Z3 = Z2 	 xi1 	 · · · 	 xik .
• Z ′ = Z3 ⊕ (p1, I1)⊕ · · · ⊕ (pm, Im).
13.3. Entailment. We recall from Section 11 that the v relation on regions

coincides with the preorder �6 defined in Section 10. We also recall that ordering
� defined on the configurations of a TPN concides with v in the sense that
c1 � c2 iff Reg (c1) v Reg (c2). We follow the methodology of Section 9 and
implement the improved symbolic reachability algorithm, by defining the relation
v on zones such that Z1 v Z2 iff JZ1K �∀∃ JZ2K. Below, we describe how to check
the relation v on zones. To do that, we use formulas in a decidable logic, called
Difference Bound Logic (DBL). The atomic formulas are of the form y − x ∼ k,
where x and y are variables interpreted over R≥0 and k ∈ N. Furthermore the set
of formulas is closed under the propositional connectives. Satisfiability of DBL-
formulas is NP-complete [34]. NP-hardness follows by reducing the satisfiability
problem for Boolean formulas. We represent each atomic proposition p by two
variables xp and yp in the DBL formula. We replace each occurrence of p in
the Boolean formula by the atomic formula xp − yp ≤ 0. For NP-easiness, a
non-deterministic algorithm works by guessing which zone conditions are true
and which are false. A linear time test can check that the guess makes the entire
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formula true. A polynomial time test can check that the corresponding set of
constraints on the reals is in fact satisfiable. The satisability of a conjunction of
atomic formulas (a special case of linear programming) can be solved in cubic
time using the Floyd-Warshall algorithm [20].

To give the characterization of entailment, we define the notion of areas. An
area condition ψ is either of the form (y − x ∼ k) ∨ (x > max − k) where k ≥ 0;
or of the form (y − x ∼ k) ∨ (x > max ) where k < 0. Given a zone condition
ϕ = (y − x ∼ k), we use ϕ� to denote the area condition (y − x ∼ k) ∨ (x >
max − k) if k ≥ 0, and the area condition (y − x ∼ k) ∨ (x > max ) if k < 0. An
area A is a conjunction of area conditions. For a zone Z, we use Z� to be the
area

∧
ϕ∈Z ϕ

�. Given a zone Z with Var (Z) = {x1, . . . , xm}, it is sometimes
convenient to view Z as a predicate Z(x1, . . . , xm) on the set

(
R≥0

)m (replacing
any occurrence of x0 by 0). Observe that c |=h Z iff Z(h(x1), . . . , h(xn)) holds.
This representation can be extended in the obvious manner to areas. Relations
such as c |=h A, c |= A, JA1K �∀∃ JA2K, etc, are defined for areas in a similar
manner to zones.

For zones Z1 and Z2, a renaming from Z1 to Z2 is an injection R : Var (Z1) 7→
Var (Z2) such that type (x) = type (R(x)). We use Ren(Z1)(Z2) to denote the
set of renamings from Z1 to Z2. The following lemma describes how to check
the entailment relation.

Lemma 13.2. For zones Z1 and Z2 with Var (Z1) = {x1, . . . , xm} and Var (Z2) =
{y1, . . . , yn}, it is the case that Z1 �∀∃ Z2 iff

∀y1, . . . , yn.


Z2(y1, . . . , yn) =⇒∨

R∈Ren(Z1)(Z2)

Z�1 (R(x1), . . . ,R(xm))


Notice that the above is a DBL-formula. We devote the rest of this subsection

to the proof of Lemma 13.2. To do that, we introduce Lemma 13.3, Lemma 13.6,
Lemma 13.7, and Lemma 13.8 (Lemma 13.2 follows directly from Lemma 13.7,
and Lemma 13.8). The following lemma shows that, when we expand a zone Z
to the area Z�, then we only add configurations which are equivalent to ones
which are already in in the Z.

Lemma 13.3. For a consistent and stable zone Z and a configuration c ∈
JZ�K, there is a configuration c′ ∈ JZK with c ≡Reg c

′.

Proof. Let Z = ϕ1 ∧ · · · ∧ ϕn, i.e., Z� = ϕ1
� ∧ · · · ∧ ϕn�. Suppose that

c |=h Z
�. We show that c′ |= Z for some c′ ≡Reg c. Without loss of generality,

we assume that Var (Z) is of the form {x1, . . . , x`, x`+1, . . . , xm}, where the
following two conditions are satisfied:

1. h(xi) ≤ max for each i : 1 ≤ i ≤ `; and
2. If (xj − xi ∼ k) ∈ Z for some ` < i, j ≤ m, and (∼, k) / (≤,−1), then j < i.

The second condition can be satisfied since Z is consistent.
We derive a sequence c`, c`+1, . . . , cm of configurations and a corresponding

sequence h`, h`+1, . . . , hm such that ci |=hi Z	xi+1	· · ·	xm for all i : ` ≤ i ≤ m.
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We define h`(xi) = h(xi) for each i : 1 ≤ i ≤ `; and define c` = [h(x1), . . . , h(x`)].
Suppose that c` 6|=h`

Z 	 x`+1 	 · · · 	 xm. It follows that h`(xj) − h`(xi) 6∼ k
for some (xj − xi ∼ k) ∈ Z where 1 ≤ i, j ≤ `. There are two possible cases
depending on whether k is negative. We show that we get a contradiction in
each case:
• k ≥ 0 and (xj − xi ∼ k) ∨ (xi > max − k) ∈ Z�. Since c |=h Z�, we

have that (h(xj) − h(xi) ∼ k) ∨ (h(xi) > max − k). Since h`(xj) = h(xj)
and h`(xi) = h(xi) it follows that h(xj) − h(xi) 6∼ k. This means that
h(xi) + k ≤ h(xj) and h(xi) > max − k, and hence h(xj) > max which
contradicts condition 1 above.

• k < 0 and (xj − xi ∼ k) ∨ (xi > max ) ∈ Z�. Since c |=h Z
�, we have that

(h(xj) − h(xi) ∼ k) ∨ (h(xi) > max ). Since h`(xj) = h(xj) and h`(xi) =
h(xi) it follows that h(xj)−h(xi) 6∼ k. This means that h(xi) > max which
contradicts condition 1 above.

Now, we consider i : `<i ≤ m. We define hi(xj) = hi−1(xj) if j<i, and define
hi(xi) = ρ, where ρ is any number in R≥0 satisfying the following properties:
(a) max < ρ.
(b) If (xj − xi ∼ k) ∈ Z for some j < i then hi(xj)− k ∼ ρ.
(c) If (xi − xj ∼ k) ∈ Z for some j < i then ρ ∼ hi(xj) + k.

We show that such a ρ exists. Suppose that ρ does not exist. There are two
possible cases each leading to a contradiction as follows.
• Conditions (b) and (c) cannot be satisfied. This means that there are
j1, j2 : 1 ≤ j1, j2 < i such that (xj1 − xi ∼1 k1) ∈ Z, (xi − xj2 ∼2 k2) ∈ Z,
and hi(xj1) − hi(xj2) 6∼3 k3 where (∼3, k3) = (∼1, k1) + (∼2, k2). Since
Z is consistent and stable, we know that (xj1 − xj2 ∼4 k4) ∈ Z for some
(∼4, k4) / (∼3, k3). Notice that (xj1 − xj2 ∼4 k4) ∈ (Z 	 xi 	 · · · 	 xm).
Since ci−1 |=hi

Z	xi	· · ·	xm it follows that hi−1(xj1)−hi−1(xj2) ∼4 k4.
From hi(xj1) = hi−1(xj1), hi(xj2) = hi−1(xj2), it follows that hi(xj1) −
hi(xj2) ∼4 k4 which is a contradiction.
• Conditions (a) and (c) cannot be satisfied. This means that (xi−xj ∼ k) ∈
Z, for some 1 ≤ j < i and hi(xj) ≤ max − k. We distinguish two subcases

– If 1 ≤ j ≤ `. Again, we distinguish two subcases:
∗ If k< 0 then ((xi−xj ∼ k)∨ (xj > max )) ∈ Z�. Since c |=h Z

� it
follows that (h(xi)− h(xj) ∼ k) ∨ (h(xj) > max ). By condition 1,
we know that h(xj) ≤ max . This means that h(xi)−h(xj) ∼ k. By
condition 1, we know that h(xi) > max and hence max < h(xj) +
k. Since hi(xj) = h(xj) it follows that max < hi(xj) + k which
contradicts hi(xj) ≤ max − k.

∗ If k ≥ 0 then ((xi − xj ∼ k) ∨ (xj > max − k)) ∈ Z�. Since
c |=h Z

� it follows that (h(xi)− h(xj) ∼ k) ∨ (h(xj) > max − k).
If h(xi)−h(xj) ∼ k then we get a contradiction in the same manner
as above. Otherwise, h(xj) > max − k. Since hi(xj) = h(xj) it
follows that hi(xj) > max −k which contradicts hi(xj) ≤ max −k.

– If ` < j ≤ i − 1. If k < 0, then condition 2 implies that i < j which
contradicts j<i. This means that 0 ≤ k. Since hi(xj) > max it follows
that hi(xj) + k > max which contradicts hi(xj) ≤ max − k.



WELL (AND BETTER) QUASI-ORDERED TRANSITION SYSTEMS 45

It remains to show that cm ≡Reg c. This follows from the fact that hm(xi) =
h(xi) for all i : 1 ≤ i ≤ ` and both hm(xi) > max and h(xi) > max for all
i : ` < i ≤ m. a

Next, we show (Lemma 13.6) that configurations which are region-equivallent
satisfy the same areas. To do that, we define an equivalence relation ≈ on the set
R≥0×R≥0, such that (α1, α2) ≈ (α′1, α

′
2) iff the following conditions are satisfied:

• sig (αi) = sig (α′i) for i ∈ {1, 2}.
• if α2 ≤ max then fract (αi) < fract (αj) iff fract (α′i) < fract

(
α′j
)
, for

i, j ∈ {1, 2}.

Lemma 13.4. If (α1, α2) ≈ (α′1, α
′
2) and k ≥ 0 then α2 − α1 ∼ k

∨
α1 > max − k

 iff

 α′2 − α′1 ∼ k
∨

α′1 > max − k


Proof. We show the only-if direction. The if -direction is symmetric. We

consider two cases
• α1 ≤ max − k. It follows that α2 − α1 ∼ k holds and that α2 ∼ max (and

hence α2 ≤ max ). Since k ≥ 0 it follows that α1 ≤ max . We notice that
α1 = k1 + r1 and α2 = k2 + r2 where ki = bαic and ri = fract (αi). Since
(α1, α2) ≈ (α′1, α

′
2) it follows that α′1 = k1 + r′1 and α′2 = k2 + r′2 where

r′i = fract (α′i) (the integral parts of αi and α′i are identical). We consider
three cases:

– r1 < r2. Since α2 −α1 ∼ k and r1 < r2 it follows that k2 − k1 ≤ k− 1,
and hence α′2 − α′1 = (k2 − k1) + (r′2 − r′1) < k.

– r1 = r2. Since (α1, α2) ≈ (α′1, α
′
2) and α2 ≤ max we know that r′1 = r′2.

It follows that α′2 − α′1 = α2 − α1 and therefore α′2 − α′1 ∼ k.
– r1 > r2. Since α2 − α1 ∼ k and r1 > r2 it follows that k2 − k1 ≤ k.

Since (α1, α2) ≈ (α′1, α
′
2) it follows that r′1 > r′2 and hence α′2 − α′1 =

(k2 − k1) + (r′2 − r′1) < k.
• α1 > max − k. Since (α1, α2) ≈ (α′1, α

′
2) it follows that α′1 > max − k.

a

Lemma 13.5. If (α1, α2) ≈ (α′1, α
′
2) and k < 0 then α2 − α1 ∼ k

∨
α1 > max

 iff

 α′2 − α′1 ∼ k
∨

α′1 > max


Proof. We consider two cases
• α1 ≤ max . It follows that α2 − α1 ∼ k and hence α2 ∼ α1 + k ≤ max + k.

Since k < 0 it follows that α2 < max . The rest of the proof can be carried
out in a similar manner to Lemma 13.4.

• α1 > max . Since (α1, α2) ≈ (α′1, α
′
2) it follows that α′1 > max .

a

Lemma 13.6. Consider an area A and configurations c1 and c2. If c1 |= A
and c1 ≡Reg c2 then c2 |= A.
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Proof. Let Reg (c) be of the form (M0,M1 · · ·Mn,Mn+1), where Mi is of the
form [(pi1, `i1) , . . . , (pini , `ini)]. By definition we know that there are configura-
tions c0, . . . , cn+1 such that

• c = c0 + · · ·+ cn+1.
• ci is of the form [(pi1, αi1) , . . . , (pini

, αini
)], where `ij = sig (αij) for all

i : 0 ≤ i ≤ n+ 1 and j : 1 ≤ j ≤ ni.
• fract (αi1j1) < fract (αi2j2) iff i1 < i2 for all i1, i2 : 0 ≤ i1, i2 ≤ n + 1,
j1 : 1 ≤ j1 ≤ ni1 , and j2 : 1 ≤ j2 ≤ ni2 .

Since Reg (c′) = Reg (c), there are also configurations c′0, . . . , c
′
n+1 such that

• c′ = c′0 + · · ·+ c′n+1.
• c′i is of the form

[
(pi1, α′i1) , . . . ,

(
pini

, α′ini

)]
, where `ij = sig

(
α′ij
)

for all
i : 0 ≤ i ≤ n+ 1 and j : 1 ≤ j ≤ ni.

• fract
(
α′i1j1

)
< fract

(
α′i2j2

)
iff i1 < i2 for all i1, i2 : 0 ≤ i1, i2 ≤ n + 1,

j1 : 1 ≤ j1 ≤ ni1 , and j2 : 1 ≤ j2 ≤ ni2 .

This implies that (αi1j1 , αi2j2) ≈
(
α′i1j1 , αi2j2

)
for all i1, i2 : 0 ≤ i1, i2 ≤ n + 1,

j1 : 1 ≤ j1 ≤ ni1 , and j2 : 1 ≤ j2 ≤ ni2 .
Since c |= A we know that c |=h A for some injection h. We show that c′ |=h A

which implies the result.

• if
(
αh(y) − αh(x) ∼ k

)
∨
(
αh(x) > max − k

)
∈ A and k ≥ 0. Since c |= A it

follows that
(
αh(y) − αh(x) ∼ k

)
∨
(
αh(x) > max − k

)
holds. By Lemma 13.4

and the fact that
(
αh(x), αh(y)

)
≈
(
α′h(x), α

′
h(y)

)
it follows that

(
α′h(y) − α

′
h(x) ∼ k

)
∨(

α′h(x) > max − k
)

holds.

• if
(
αh(y) − αh(x) ∼ k

)
∨
(
αh(x) > max

)
∈ A and k < 0. Since c |= A it fol-

lows that
(
αh(y) − αh(x) ∼ k

)
∨
(
αh(x) > max

)
holds. By Lemma 13.5 and

the fact that
(
αh(x), αh(y)

)
≈
(
α′h(x), α

′
h(y)

)
it follows that

(
α′h(y) − α

′
h(x) ∼ k

)
∨(

α′h(x) > max
)

holds.

a

Lemma 13.7. For zones Z1 and Z2 with Var (Z1) = {x1, . . . , xm} and Var (Z2) =
{y1, . . . , yn}, if

∀y1, . . . , yn.


Z2(y1, . . . , yn) =⇒∨

R∈Ren(Z1)(Z2)

Z1
�(R(x1), . . . ,R(xm))


then Z1 �∀∃ Z2.

Proof. Suppose that c2 = [(p1, α1) , . . . , (pk, αk)] |= Z2. We show that
there is a c3 such that c3 |= Z1 and c3 � c2. Since c2 |= Z2, we know that
there is a mapping h2 : {y1, . . . , yn} 7→ k• such that c2 |=h2 Z2. This means
that type (yi) = ph2(yi) for all i : 1 ≤ i ≤ n and that Z2(αh2(y1), . . . , αh2(yn))
holds. By the premise of the lemma it follows that there is a renaming R ∈
Ren(Z1)(Z2) such that Z1

�(αh2(R(x1)), . . . , αh2(R(xm))) holds. Define c1 :=
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ph2(R(x1)), αh2(R(x1))

)
, . . . ,

(
ph2(R(xm)), αh2(R(xm))

)]
. Clearly c1 ≤ c2. De-

fine the mapping h1 : {x1, . . . , xm} 7→ m• such that h1(xi) = i for all i : 1 ≤
i ≤ m. By definition of a renaming, we have, for all i : 1 ≤ i ≤ m, that
type (xi) = type (R(xi)), and hence type (xi) = ph2(R(xi)). From this and the
fact that Z1

�(αh2(R(x1)), . . . , αh2(R(xm))) holds it follows that c1 |=h1 Z1
�. By

Lemma 13.3, there is a c3 such that c3 ≡Reg c1 and c3 |= Z1. Since c1 ≤ c2, we
have that c3 � c2. a

Lemma 13.8. For zones Z1 and Z2 with Var (Z1) = {x1, . . . , xm} and Var (Z2) =
{y1, . . . , yn}, if Z1 �∀∃ Z2 then

∀y1, . . . , yn.


Z2(y1, . . . , yn) =⇒∨

R∈Ren(Z1)(Z2)

Z1
�(R(x1), . . . ,R(xm))


Proof. Suppose that there is a mapping g : {y1, . . . , yn} 7→ R≥0 such that

Z2(g(y1), . . . , g(yn)) holds. We show that there is a renaming R from Z1 to Z2

such that Z1
�(g(R(x1)), . . . , g(R(xm))) holds. Define c2 := [(p1, α1) , . . . , (pn, αn)]

where where pi = type (yi) and αi = g(yi) for all i : 1 ≤ i ≤ n. Define
h2 : {y1, . . . , yn} 7→ n• such that h2(yi) = i. Obviously, c2 |=h2 Z2. Since
Z1 �∀∃ Z2, there is a c1 such that c1 � c2 and c1 |= Z1. It follows by defi-
nition that there is a c3 such that c3 ≤ c2 and c1 ≡Reg c3. Let c3 be of the
form [(pj1 , αj1) , . . . , (pjk , αjk)]. Since c1 |= Z1 it follows that c1 |= Z1

�. From
Lemma 13.6 we get c3 |= Z1

�, i.e., there is a mapping h1 : {x1, . . . , xm} 7→ k•

such that type (xi) = pjh1(xi)
for all i : 1 ≤ i ≤ m, and Z1

�(g(yjh1(x1)), . . . , g(yjh1(xm)))
holds. Define the mapping R ∈ Ren(Z1)(Z2) such that R(xi) = yjh1(xi)

for all

i : 1 ≤ i ≤ m. We notice that type (xi) = pjh1(xi)
= type

(
yjh1(xi)

)
, and hence R

is a renaming. Since Z1
�(g(yjh1(x1)), . . . , g(yjh1(xm))) holds and R(xi) = yjh(xi)

it follows that Z1
�(g(R(x1)), . . . , g(R(xm))) holds.

a

§14. Constrained Multiset Rewriting Systems. In this Section, we con-
sider Constrained Multiset Rewriting Systems (CMRS) [1]. A CMRS operates
on configurations which are multisets of monadic predicate symbols, each with
an argument ranging over the natural numbers. Transitions between configura-
tions are defined by a finite set of rewriting rules. Each rule is conditioned by
gap-order formulas [37] of the form x + c < y, x = y, x < c, x > c, or x = c,
where x and y are variable ranging over the natural numbers and c is a nat-
ural number. This model can capture the behaviour of parameterized systems
(systems with arbirary numbers of componenets) in which the internal states
of individual components may contain values ranging over the natural numbers.
There are several examples of classes of protocols which can be modelled in this
manner, e.g. , mutual exclusion protocols where the natural number inside each
process is used to define the identity of the process, and authentication protocols
where the number is used to define the key assigned to the process. In addition
to the relevance of CMRS as a formalism for parameterized systems, they are
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also interesting as a computation model in their own right. For instance, CMRS
subsume several existing models for infinite-state systems such as Petri nets and
relational automata [18]. In fact, it can be shown [1] that CMRS are strictly
more powerful than both these models.

14.1. Model. We assume a set V of variables which range over the integers,
and a set P of unary predicate symbols. For a set V ⊆ V, a valuation Val of V
is a mapping from V to N, and a renaming R of V is a mapping from V to V.
A renaming R need not be injective, i.e., several variables may be renamed to
the same variable by R. We say that R is a renaming to W if R(x) ∈ W for
each x ∈ V . When the set V is clear from the context, we do not mention it;
simply saying valuation (rather than valuation of V ) and renaming (rather than
renaming of V ). Sometimes, we write the explicit definition of a renaming. For
instance R = (x1 7→ w1 , x2 7→ w2 , x3 7→ w3) stands for R(x1) = w1, R(x2) =
w2, and R(x3) = w3. We use a similar notation for valuations.

A condition is a finite conjunction of formulas of the forms: x <c y or x = y,
where x, y ∈ V and c ∈ N. Here x <c y stands for x+c < y. Sometimes, we treat
a condition ψ as a set, and write e.g. (x <c y) ∈ ψ to indicate that x <c y is one
of the conjuncts in ψ. A term is of the form p(x) where p ∈ P and x ∈ V. A
ground term is of the form p(c) where p ∈ P and c ∈ N. A Constrained Multiset
Rewriting System (CMRS) S consists of a finite set of rules each of the form:

L ↪→ R : ψ

where L and R are multisets of terms, and ψ is a condition. We assume that
ψ is consistent (otherwise, the rule is never enabled). For a condition ψ, we
use Var (ψ) to denote the set of variables which occur in ψ. For a valuation
Val , we use Val(ψ) to denote the result of substituting each variable x in ψ by
Val(x). We use Val |= ψ to denote that Val(ψ) evaluates to true. Also, for
a renaming R, we define R(ψ) to be the condition we get by replacing each
x in ψ by R(x). For a multiset T of terms we define Var (T ), Val(T ), and
R(T ) in a similar manner. In particular, R(T ) and Val(T ) are multisets of
terms and ground terms respectively. For a rule ρ of the above form, we define
Var (ρ) = Var (L) ∪Var (R) ∪Var (ψ).

14.2. LTS. We describe how a CMRS induces an LTS T = (C,−→,�, Cinit).
A configuration is a multiset of ground terms. The transition relation −→ is
induced by a set of rules. Abusing notation, we use

ρ−→ to represent the effect
of applying the rule ρ, and define −→:=

⋃
ρ∈S

ρ−→.

More precisely, for a rule ρ of the form L ↪→ R : ψ, we have c1
ρ−→ c2 if

there is a valuation Val such that the following three conditions are satisfied:

• Val |= ψ • c1 ≥ Val(L) • c2 = c1 −Val(L) + Val(R)

For a configuration c and a predicate symbol p, we use c ∗−→ p to denote that
p occurs in some c′ with c

∗−→ c′.
We define the ordering � on the set of configurations to be the relation ≤ on

multisets. We assume an initial configuration cinit , and a final predicate symbol
pfin . We will check whether cinit

∗−→ pfin . Notice that pfin characterizes an
upward closed set of configurations.
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Example. The definition of the transition relation −→ interprets a rule of the
form given above as a collection of rewriting rules on ground terms. An instance
is obtained by taking a valuation which satisfies ψ. Consider the rule:

[p(x) , q(y)] ↪→ [q(z) , r(x) , r(w)] : {x <2 y , x <4 z , z < w}

A valuation which satisfies the condition is Val(x) = 1, Val(y) = 4, Val(z) = 8,
Val(w) = 10, Therefore, we have a transition [p(1), p(3), q(4)] −→ [p(3), q(8), r(1), r(10)]

14.3. Constraint System. We define a constraint system for CMRS as fol-
lows. A constraint φ is of the form T : ψ where T is a multiset of terms and
ψ is a condition. The constraint characterizes the (upward closed) set JφK =
{c| ∃Val . (Val |= ψ) ∧ (Val(T ) ≤ c)} of configurations. Notice that if ψ is incon-
sistent, then JφK is empty. Such a constraint can be safely discarded in the reach-
ability algorithm presented below. Therefore, we assume in the sequel that all
conditions in constraints are consistent. We define Var (φ) := Var (T )∪Var (ψ).
Example. Consider the constraint φ1 = [p(x1) , q(x2) , q(x3)] : {x1 <2

x2 , x2 <1 x3}, and the configurations c1 = [p(2), q(8), q(5), p(1)] and c2 =
[p(2), q(2), q(5), p(1)]. Then c1 ∈ Jφ1K and c2 6∈ Jφ1K. Consider the constraints
φ2 = [p(y1) , q(y2)] : {y1 < y2} and φ3 = [p(y1) , q(y2)] : {y1 <4 y2}. Then
φ2 v φ1 and φ3 6v φ1.

Below, we show computability of membership, entailment, and the predecessor
function for constraints. First, we define a normal form for constraints. A
constraint T : ψ is said to be in normal form whenever the condition ψ satisfies
the following requirements:

1. if (x <c1 y) ∈ ψ and (y <c2 z) ∈ ψ then (x <c3 z) ∈ ψ for some c3 with
c1 + c2 < c3.

2. if (x <c y) ∈ ψ and (y = z) ∈ ψ then (x <c z) ∈ ψ.
3. if (x <c y) ∈ ψ and (x = z) ∈ ψ then (z <c y) ∈ ψ.
4. if (x = y) ∈ ψ and (y = z) ∈ ψ then (x = z) ∈ ψ.
5. For each x, y ∈ V, at most one conjunct in ψ contains both x and y.
6. Var (ψ) ⊆ Var (T ).

Lemma 14.1. For each constraint φ we can effectively compute a constraint
φnorm such that φnorm is in normal form and such that JφK = JφnormK.

The normalization procedure consists of repeatedly adding conjuncts to ψ
which maintain properties 1-4 and removing conjuncts which violate property 5.
When the above procedure stabilizes, we remove all conjuncts in ψ containing
variables not in Var (T ). Normalization can also be used to check consistency:
the constraint is consistent if and only if no inequalities of the form x <c x are
generated.

Lemma 14.2. Membership, entailment, and Pre are computable for constraints.

The full proof of the lemma is given in [1]. The main concepts are the fol-
lowing. For a constraint φ and a configuration c, it follows by definition that
c ∈ JφK iff there is a valuation Val of Var (φ) such that Val(ψ) ∧ (c ≥ Val(T )).
Computability follows since there are only finitely many valuations Val with
c ≥ Val(T ).
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Consider constraints φ1 = (T1 : ψ1) and φ2 = (T2 : ψ2) which are in normal
form (by Lemma 14.1 this is not a restriction). Let Ren(φ1)(φ2) be the set of
renamings R of Var (T1) such that R(T1) ≤ T2. Then φ1 v φ2 is characterized
by the formula by

∀x1 · · ·x2.

ψ2 =⇒
∨

R∈Ren(φ1)(φ2)

R(ψ1)


Since the set Ren(φ1)(φ2) is finite, checking the formula amounts to checking the
satisfiability of a Boolean combination of formulas of the forms x = y or x <c y.

Let S be a CMRS and φ2 be a constraint. We define Pre(φ2) =
⋃
ρ∈S Preρ(φ2),

where Preρ(φ2) describes the effect of running the rule ρ backwards from the
configurations in φ2. Let ρ = (L ↪→ R : ψ) and φ2 = (T2 : ψ2). Let W be any
set of variables such that |W | = |Var (φ2) ∪ Var (ρ) |. We define Preρ(φ2) to be
the set of constraints of the form T1 : ψ1, such that there are renamings R,R2

of Var (ρ) and Var (φ2) respectively to W , and

• T1 = R2(T2)	R(R) +R(L) • ψ1 = R(ψ) ∧R2(ψ2)

Example. Consider the constraints

φ1 = [p(x1) , q(x2) , q(x3) , r(x4)] : {x1 <1 x2 , x2 <3 x4 , x1 < x3 , x1 <8 x4}
φ2 = [p(y1) , q(y2) , q(y3) , r(y4) , s(y5)] : {y1 <1 y3 , y2 <3 y3 , y1 < y4 , y2 <2 y4}

Then the set Ren(φ1)(φ2) = {R1,R2} where

R1 = (x1 7→ y1 , x2 7→ y2 , x3 7→ y3 , x4 7→ y4)
R2 = (x1 7→ y1 , x2 7→ y3 , x3 7→ y2 , x4 7→ y4)

Therefore, φ1 v φ2 is characterized by validity of the formula
y1 <1 y3

y2 <3 y3

y1 < y4

y2 <2 y4

 =⇒


y1 <1 y2

y2 <3 y4

y1 < y3

y1 <8 y4

 ∨


y1 <1 y3

y3 <3 y4

y1 < y2

y1 <8 y4


Consider the constraint φ = [q(x1) , s(x2) , r(x2)] : {x1 < x2} and

the rule ρ = [p(y1) , p(y3)] ↪→ [q(y2) , r(y3)] : {y3 < y2}. Fix W =
{w1, w2, w3, w4, w5}, and defineR2 = (x1 7→ w1 , x2 7→ w2),R = (y1 7→ w3 , y2 7→ w1 , y3 7→ w4).
Then one member of Preρ is given by [s(w2) , r(w2) , p(w3) , p(w4)] : {w1 <
w2 , w4 < w1}, which after normalization becomes [s(w2) , r(w2) , p(w3) , p(w4)] :
{w4 <1 w2}. Observe that (i) the normalization procedure may introduce new
constants (1 in this case) which are not part of the original constraint; (ii) if
we choose R = (y1 7→ w3 , y2 7→ w1 , y3 7→ w2) then the resulting constraint
will denote an empty set (its conditions will be inconsistent); (iii) the size of
constraints may increase when computing Pre.

14.4. BQO. We follow the methodology of Section 12 to show that v is a
BQO. The challenging task in applying the method is to find an “intermediate”
class of constraints, here called flat constraints, and then showing that (i) flat
constraints are BQO; and (ii) each constraint is the union of a finite set of flat
constraints. A flat constraint φfl is of the form M0 d1 M1 d2 · · · dn Mn

where M0,M1, . . . ,Mn ∈ P~ and d1, d2, . . . , dn ∈ N. In other words, a flat
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constraint is a word which alternatively contains multisets of predicate symbols
and natural numbers, starting and ending with multisets of predicate symbols.
Furthermore, we require that the multisets M0,M1, . . . ,Mn are all non-empty.
For a configuration c, we have c ∈ JφflK if there are natural c0, . . . , cn ∈ N such
that (i) ci − ci−1 > di for each i : 1 ≤ i ≤ n; and (ii) c(p(ci)) ≥ Mi(p) for each
predicate symbol p and i : 0 ≤ i ≤ n.

We observe that Each Mi is a multiset over the finite set P. Therefore the Mi’s
are BQO under the multiset ordering ≤ by Properties 2 and 4 in Theorem 12.2.
By a similar reasoning, the di’s are BQO under the standard ordering ≤ on
natural numbers. Since each flat constraint is a finite word of Mi’s and di’s, it
follows by Property 3 in Theorem 12.2 that flat constraints are BQO under v.
Finally v is WQO by Property 1 of Theorem 12.2. This gives the following.

Lemma 14.3. The entailment relation v is a BQO (and therefore also a WQO)
on flat constraints.

Example. Consider the flat constraint φ1 = [p] 4 [q, r] 2 [r], and the config-
urations c1 = [p(1), q(7), r(7), r(11), q(3)], c2 = [p(1), q(7), r(7), r(8), q(3)], and
c3 = [p(1), q(7), r(8), r(11), q(3)]. Then c1 ∈ Jφ1K and c2, c3 6∈ Jφ1K.

Consider the flat constraints φ2 = [p] 2 [r] 1 [r], φ3 = [p] 5 [r], and φ4 =
[p] 10 [r]. Then φ2 v φ1, φ3 v φ1, and φ4 6v φ1.

Now, we show how to translate constraints into falt constraints.
Consider a constraint φ = T : ψ in normal form. A flattening F of Var (φ) is

a word of the form X0 d1 X1 d2 · · · dn Xn where d1, d2, . . . , dn ∈ N and the
following three conditions are satisfied:
• X0, X1, . . . , Xn is a partitioning of Var (φ).
• If (x = y) ∈ ψ then x, y ∈ Xi for some i : 1 ≤ i ≤ n.
• If (x <c y) ∈ ψ, x ∈ Xi, and y ∈ Xj then c ≤

(∑j
k=i+1 dk + 1

)
.

Intuitively, variables which are required to be equal by φ, are put in the same
Xi. Also, variables which are ordered according to φ, are placed sufficiently far
apart to cover the corresponding gap. The flattening φfl of φ induced by F is
a flat constraint M0 d1 M1 d2 · · · dn Mn such that Mi(p) =

∑
x∈Xi

T (p(x))
for each p ∈ P and i : 1 ≤ i ≤ n. Since φ is in normal form, it follows that
Var (T ) = Var (φ) and hence Mi is not empty for each i : 1 ≤ i ≤ n.
Example. Consider the constraint

φ = [p(x1) , q(x2) , r(x3) , r(x4)] : {x1 <2 x2 , x1 <1 x3 , x2 <3 x4 , x1 <8 x4}

A flattening of the condition and the induced flat constraint is given by {x1} 3 {x2, x3} 5 {x4} resp. [p] 3 [q, r] 5 [r].
Another one is given by {x1} 3 {x2} 5 {x3, x4} resp. [p] 3 [q] 5 [r, r].
On the other hand, {x1} 3 {x2} 3 {x3, x4} is not a flattening of the condition
of φ.

Lemma 14.4. For a constraint φ and a configuration c, we have c |= φ iff
c |= φfl for some flattening φfl of φ.

From Theorem 12.2, Lemma 14.3, and Lemma 14.4, we get the following.

Lemma 14.5. The set of constraints is a BQO (and therefore also a WQO)
under entailment.
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