
Analysis of Message Passing Programs using
SMT-Solvers

Parosh Aziz Abdulla, Mohamed Faouzi Atig, and Jonathan Cederberg

Uppsala University, Sweden

Abstract. We consider message passing programs where processes communi-
cate asynchronously over unbounded channels. The reachability problem for such
systems are either undecidable or have very high complexity. In order to achieve
efficiency, we consider the phase-bounded reachability problem, where each pro-
cess is allowed to perform a bounded number of phases during a run of the sys-
tem. In a given phase, the process is allowed to perform send or receive tran-
sitions (but not both). We present a uniform framework where the channels are
assigned different types of semantics such as lossy, stuttering, or unordered. We
show that the framework allows a uniform translation of bounded-phase reacha-
bility for each of the above mentioned semantics to the satisfiability of quantifier-
free Presburger formulas. This means that we can use the full power of modern
SMT-solvers for efficient analysis of our systems. Furthermore, we show that the
translation implies that bounded-phase reachability is NP-COMPLETE. Finally,
we prove that the problem becomes undecidable if we allow perfect channels or
push-down processes communicating through (stuttering) lossy channels. We re-
port on the result of applying the prototype on a number of non-trivial examples.

1 Introduction

Programs modeled as message passing processes have a wide range of applications in-
cluding communication protocols [13, 5], programs operating on weak memory models
[3, 7], WEB service protocols [27], and as semantic models for modern languages such
as ERLANG [31] and SCALA [32]. Typically, the processes exchange information asyn-
chronously through a shared unbounded data structure, e.g., counters, multisets, and
channels. Despite the increasing popularity of such program models, precise algorith-
mic analysis is still a major challenge. This is perhaps not without a good reason: it is
well known that basic analysis problems (e.g., state reachability) are undecidable for
processes communicating via perfect FIFO channels [13], even under the assumption
that each process is finite-state. Although, checking state reachability becomes decid-
able for (important) special cases such as lossy FIFO channels [1], or unordered chan-
nels [26], the algorithms have very high complexity (non-primitive recursive for lossy
channels [29] and EXPSPACE-HARD for unordered channels [20]).

Given the importance of concurrent software, much research has been devoted in
recent years to developing practically useful algorithms. The undecidability and high
complexity obstacles are usually addressed by considering different types of over- or
under-approximations of system behavior (e.g., [16, 4, 9, 12, 27, 8, 11, 10, 33, 17, 15]).

2 Parosh Aziz Abdulla, Mohamed Faouzi Atig, and Jonathan Cederberg

One useful approach that has recently been proposed is context-bounding [25]. The
idea is to only consider computations performing at most some fixed number of con-
text switches between processes. This provides a trade-off between computational com-
plexity and verification coverage: on the one hand, context-bounded verification can be
more efficient than unbounded verification; and on the other hand, many concurrency
errors, such as data races and atomicity violations, are manifested in executions with
few context switches [22].

In this paper, we present a new approach to model checking of concurrent processes
that communicate through channels. We introduce a new bounding parameter in the
behavior of such systems, namely the number of alternations between send operations
and receive operations performed by each processes. We consider the bounded-phase
reachability problem, where each process is restricted to performing at most k phases
(for some natural number k). A phase is a run where the process performs either send
or receive operations (but not both). Notice that the bounded-phase restriction does not
limit the number of sends or receives, and in particular it does not put any restriction
on the length of the run. Also, the number of context switches is not limited. We will
present a framework and instantiate it for several variants of channel semantics, such
as lossy, stuttering, and multiset that allow the messages inside the channels to be lost,
duplicated, and re-ordered respectively. One main contribution of this paper is to show
that our framework allows to translate (in polynomial time) the bounded-phase reach-
ability problem to the satisfiability of quantifier-free Presburger formulas. This opens
the way to leveraging the full power of state-of-the-art SMT-solvers for obtaining a very
efficient solution to the bounded-phase reachability problem for all above mentioned
models. We perform the translation in two steps. First, we show that bounded-phase
reachability can be reduced to (general) reachability under a new restriction, namely
that we only consider simple computations. A computation is simple if any (local) state
of a process appears at most once along the computation. In the second step, we show
that simple reachability can be captured by satisfiability of a quantifier-free Presburger
formula (that we can then feed to an SMT-solver).

In order to simplify the presentation, we first describe our framework for lossy chan-
nel systems LCS. Then, we describe how the method can be modified (in a straightfor-
ward manner) to the other channel semantics. Also, as consequence of our transla-
tion, we show that bounded-phase reachability for LCS (and the other models) is NP-
COMPLETE. This is to be contrasted with the fact that the general reachability problem
is not primitive recursive.

Finally, we show undecidability of bounded-phase reachability for several cases,
e.g., under the perfect channel semantics, or under the (stuttering) lossy semantics when
one the processes is allowed to have a (single) stack.

We have implemented our method in a prototype that we have applied on a number
of examples with promising results. The examples span several application areas, such
as WEB service protocols, communication protocols, and multithreaded programs coun-
ters. The prototype and the details of the examples and experimentation are available
online (see Section 11).

Analysis of Message Passing Programs using SMT-Solvers 3

Related Work. Our work can be seen as a non-trivial extension of bounded-context
switches for concurrent shared-memory programs [25] and reversal-bounded analysis
for programs manipulating counters [18, 16] to the class of message-passing programs.

La Torre et al. [33] propose context-bounded analysis for pushdown processes com-
municating through perfect channels, where in each context a process is allowed to re-
ceive from only one channel (but is allowed to send to all other channels). This implies
that, in a context, a process can have an unbounded number of alternations between
send and receive modes (which is not allowed in our bounded-phase analysis). How-
ever, our bounded-phase analysis allows multiple processes to be active at the same
time and each one of them can send or receive to/from all the channels (which is not
permitted by context-bounded analysis of [33]).

In [9, 4, 12] symbolic representations of the contents of the channels have been
proposed for analysis of message-passing programs. Our technique does not restrict
the content of channels to a class of representable descriptions. Moreover, our reduc-
tion to the satisfiability of quantifier-free Presburger formulas allows us to use highly-
developed and optimized SMT-solvers.

In [10], the authors consider a different model where the communication is done
via Perfect FIFO channels and where ”messages/tasks” can be consumed only when
the process stack is empty. Although, their proposed bounding scheme is more general
than bounding the number of alternations between receive and send operations, their
notion leads to undecidability. To obtain decidability, they restrict the number of pro-
cessor interleavings. We do not do this since we would like to allow any possible shuffle
between two processes.

2 Preliminaries

We let N denote the set of natural numbers. For a natural number n, we define [n] :=
{1,2, . . . ,n}. For a set A, we use |A| to denote its cardinality. For a function f : A 7→ B
from a set A to a set B we use f [a← b] to denote the function f ′ such that f (a) =
b and f ′(a′) = f (a′) if a′ 6= a. We use [A 7→ B] to denote the set of (total) functions
from A to B. For a set A, we let A∗ denote the set of finite words over A. We let |w|
denote the length of w. We use w[i] to denote the ith element of w, and write a ∈ w to
denote that w[i] = a for some i. For words w1 = a1a2 · · ·am and w2 = b1b2 · · ·bn, we
write w1 � w2 to denote that there is an injection h : [m] 7→ [n] such that i < j implies
h(i)< h(j) and ai = bh(i), i.e., w1 is a (not necessarily contiguous) subword of w2. We
use w1 ·w2 to denote the concatenation of w1 and w2, and ε to denote the empty word.
For a word w = a1a2 · · ·am, we use Stuttering(w) to denote the set of words defined as
{ai1

1 ai2
2 · · ·aim

m |1≤ i1, i2, . . . , im}.

3 Communicating Finite-State Processes

In this section, we introduce finite-state processes communicating through lossy chan-
nels. We introduce the notion of processes and the transition system induced by com-
municating processes, and then consider bounded-phase computations. In the rest of the
section, we fix a finite set M of messages and a finite set C of channels.

4 Parosh Aziz Abdulla, Mohamed Faouzi Atig, and Jonathan Cederberg

Processes. A process p is a tuple
〈
Qp,qinit

p ,∆p
〉

where Qp is a finite set of states,
qinit

p ∈ Qp is the initial state, and ∆p is a finite set of transitions. A transition t ∈ ∆p
is a triple 〈q1,op,q2〉 where q1,q2 ∈ Qp are states, and op is an operation of one of
the following three forms: (i) c!m sends the message m ∈ M to channel c ∈ C (m is
appended to the tail of c), (ii) c?m receives the message m ∈ M from channel c ∈ C
(only enabled if m is at the head of c, and if performed, m is removed from the head of
c), (iii) nop is the dummy operation (it does not affect the contents of the channels). We
define source(t) := q1, target (t) := q2, and operation(t) := op. For a state q ∈ Qp, we
define source−1 (q) := {t|source(t) = q} and define target−1 (q) and operation−1 (op)
similarly. We define ∆snd

p to be the set of transitions in ∆p whose operations are send.
We define ∆rcv

p and ∆nop similarly. A sequence δ = t1t2 · · · tn is said to be a cycle if (i)
target (ti) = source(ti+1) for i : 1≤ i < n, (ii) target (tn) = source(t1), and (iii) ti 6= t j if
i 6= j. We say that δ is a q-loop if source(t1) = q.

Transition System. We define the transition system induced by processes communicat-
ing through lossy channels. A Lossy Channel System (LCS for short) consists of a set
P of processes. Let process p ∈ P be of the form

〈
Qp,qinit

p ,∆p
〉
. Define Q := ∪p∈PQp,

∆ := ∪p∈P∆p, ∆snd := ∪p∈P∆snd
p , and define ∆rcv, ∆nop similarly. A state map is a func-

tion s : P 7→ Q such that s(p) ∈ Qp, and a channel map is a function ω : C 7→ M∗.
We extend the subword ordering � to channel maps as follows: Given two channel
maps ω1 : C 7→M∗ and ω2 : C 7→M∗, we write ω1 � ω2 if and only if ω1(c) � ω2(c)
for all c ∈ C. A configuration γ is of the form 〈s,ω〉 where s is a state map and ω is
a channel map. Intuitively, s defines the states of the processes, while ω defines the
contents of the channels. We define a transition relation −→ on the set of configura-
tions as follows. Consider configurations γ1 = 〈s1,ω1〉, γ2 = 〈s2,ω2〉, and a transition
t = 〈q1,op,q2〉 ∈ ∆p for some p ∈ P. We write γ1

t−→ γ2 to denote that s1(p) = q1,
s2 = s1[p← q2], and one of the following three properties is satisfied: (i) op = c!m and
ω2 � ω1[c← m ·ω1(c)], (ii) op = c?m and ω2 � ω1[c← w] where ω1(c) = w ·m, and
(iii) op = nop and ω2 � ω1. A computation π (from a configuration γ to a configuration
γ′) is a sequence γ0

t1−→ γ1 · · ·
tn−→ γn such that γ0 = γ and γn = γ′. In such a case we say

that γ′ is reachable from γ by π. We define the initial configuration γinit :=
〈
sinit,ωinit

〉
,

where sinit(p) = qinit
p for all p∈ P, and ωinit(c) = ε for c∈C. In other words, the system

starts from a configuration where all the processes are in their initial states and where
all the channels are empty. A configuration γ is said to be reachable if it is reachable
from γinit. A state map s ∈ [P 7→ Q] is reachable, if there is a channel map ω such that
〈s,ω〉 is reachable. In the reachability problem for the LCS P, we are given a state map
starget ∈ [P 7→ Q], and we are asked whether starget is reachable.

Bounded-Phase Computations. We introduce bounded-phase computations. From the
point of view of any process p, the computation consists of a number of phases where,
during a given phase, process p either only performs send operations, or only performs
receive operations (in addition to the dummy operation). Consider a computation π =

γ0
t1−→ γ1

t2−→ ·· · tn−→ γn. We define π↑:= t1t2 · · · tn, i.e., it is the sequence of transitions
that occur in π. For a process p∈ P, we define π↑ p to be the maximal subword t ′1t ′2 · · · t ′m
of π↑ such that t ′i ∈ ∆p for i : 1≤ i≤ m, i.e., it is the sequence of transitions performed

Analysis of Message Passing Programs using SMT-Solvers 5

by p in π. Given a sequence of transitions δ = t1t2 · · · tn ∈ ∆∗p, we say that δ is a phase
if either ti ∈ ∆snd

p ∪∆
nop
p for all i : 1 ≤ i ≤ n, or ti ∈ ∆rcv

p ∪∆
nop
p for all i : 1 ≤ i ≤ n. We

define ∼ snd := rcv, and ∼ rcv := snd.
A computation π is said to be k-bounded with respect to a process p if π ↑ p =

δ1 · δ2 · · ·δ j where j ≤ k and δi is a phase for all i : 1 ≤ i ≤ j. In other words, the
transitions performed by p in π form at most k phases. We say that π is k-bounded if it
is k-bounded with respect to all process p ∈ P. For configurations γ and γ′, we say that
γ′ is k-reachable from γ if γ′ is reachable from γ by a k-bounded computation. (State
map) k-reachability is defined in a similar manner to state map reachability (see above).
In the bounded-phase reachability problem, we are also given a natural number k ∈ N,
and we are asked whether starget is k-reachable. The following theorem follows from the
definitions. It shows that k-reachability is an under-approximation of reachability.

Theorem 1. A state map s : P 7→ Q is reachable iff s is k-reachable for some k ∈ N.

4 Simple Reachability

In this section, we introduce simple reachability, i.e., reachability by computations
in which a state may occur at most once along the computation. We show that k-
reachability is polynomially reducible to simple reachability. We do that in two steps.
First, we define pure LCS and show that the k-reachability problem for general LCS can
be reduced to the reachability problem for pure LCS. Second, for a pure LCS, we derive
a new LCS and show that the reachability problem for the former coincides with the
simple reachability problem for the latter.

Simple Computations. Consider a set of processes P. Let p =
〈
Qp,qinit

p ,∆p
〉

for p ∈ P.
A sequence of transitions δ = t1t2 · · · tn ∈ ∆∗p is said to be simple if there are no δ1,δ2,δ3
such that δ = δ1 · δ2 · δ3 and δ2 is a q-cycle for some state q ∈ Qp. In other words, the
states appearing along the sequence are all different. A computation π is simple if π↑ p
is simple for all p ∈ P. A simple computation then does not visit any state more than
once. For configurations γ,γ′, we say that γ′ is simply reachable from γ if γ′ is reachable
from γ by a simple computation. The simple reachability problem is defined in a similar
manner to the reachability problem (see Section 3) except that we replace computations
in the definition by simple computations.

Pure LCS. Consider a process p =
〈
Qp,qinit

p ,∆p
〉
. We say that p is pure if there is no

cycle t1t1 · · · tn such that ti ∈ ∆snd
p and t j ∈ ∆rcv

p for some i 6= j. In other words, p is pure if
there is no cycle (equivalently there is no strongly connected component) in the graph
of p that contains both a send and a receive transition. Notice that this is a syntactic
property of the process and it does not depend on the operational semantics. An LCS
consisting of a set P of processes is pure if all processes p ∈ P are pure. We will now
reduce the k-reachability problem for general LCS to the reachability problem for pure
LCS. Suppose that we are given an instance of the k-reachability problem, defined by a
set P of processes and a target state map starget. We will derive an equivalent instance of
the reachability problem where the given LCS is pure. We do this by transforming each

6 Parosh Aziz Abdulla, Mohamed Faouzi Atig, and Jonathan Cederberg

process to a pure one. The idea of the transformation is to make a number of copies
of (parts of) the graph of p where each copy contains either transitions in ∆snd

p ∪∆
nop
p

or transitions in ∆rcv
p ∪∆

nop
p . Each copy will represent one phase of the computation

from the point of view of p. If the next transition of p is consistent with the current
“mode” of the phase (i.e., send or receive) then p will continue in states belonging to
the current copy; otherwise it moves to the next one. Let p =

〈
Qp,qinit

p ,∆p
〉
. Define

pure(p) :=
〈
Rp,rinit

p ,∆R
p
〉
, where:

– Rp :=
{

rinit
p ,rtarget

p
}
∪ {〈q,m, i〉|q ∈ Qp∧m ∈ {snd,rcv}∧1≤ i≤ k}. In other

words, pure(p) has an initial state rinit
p , a target state rtarget

p , together with a set
of states each of which is triple. A triple consists of a state q of p, a mode m, and
a natural number i ≤ k. Intuitively, triples containing i are used to simulate the ith

phase performed by the process, and the mode m describes whether the process is
sending or receiving during the current phase.

– ∆R
p contains the following transitions:
•
〈
rinit

p ,nop,
〈
qinit

p ,m,1
〉〉

for m∈ {snd,rcv}. This corresponds to a transition from
the initial state of pure(p) to the initial state of p in its first phase. In the first
mode, the process may be either sending or receiving.

• 〈〈q1,m, i〉 ,op,〈q2,m, i〉〉 if t = 〈q1,op,q2〉 ∈ ∆m
p ∪∆

nop
p for m ∈ {snd,rcv} and

1 ≤ i ≤ k. The process performs another transition in the same mode m and
therefore it stays in the same phase i.

• 〈〈q1,m, i〉 ,op,〈q2,∼ m, i+1〉〉 if t = 〈q1,op,q2〉 ∈ ∆∼mp for m ∈ {snd,rcv} and
1 ≤ i < k. The process performs a transition that violates the current mode m,
and hence it moves to the next phase i+1.

•
〈
〈starget(p),m, i〉 ,nop,rtarget

p
〉

for m ∈ {snd,rcv} and i : 1 ≤ i ≤ k. In its final
phase, the process moves from the target state of p to the target state of pure(p).
The mode of the final phase may be snd or rcv.

Define pure(P) := {pure(p)|p ∈ P}, and define the state map starget
R (p) := rtarget

p for
all p ∈ P. It follows that starget

R is reachable in (the pure LCS) pure(P) iff starget is k-
reachable in P, which leads to the following lemma.

Lemma 2. k-Reachability for LCS is polynomially reducible to reachability for pure
LCS.

Saturation. Consider an LCS consisting of a set P of processes. Let p =
〈
Qp,qinit

p ,∆p
〉

and q ∈ Qp. We define qsnd to be the set of operations of the form c!m such that there
is a q-cycle δ and a transition t ∈ δ with operation(t) = c!m. In other words, it is
the set of all send operations that appear in cycles visiting q. For a given k ∈ N, we
derive a new LCS through “k-saturating” P as follows. For a process p ∈ P, we de-
rive sat (p,k) from p by adding a number of states and transitions. For each transi-
tion 〈q,op,q′〉 ∈ ∆p, with qsnd 6= /0, we add k + 1 new states qtmp

0 ,qtmp
1 , . . . ,qtmp

k . Fur-
thermore, for each operation c!m ∈ qsnd and each i : 0 ≤ i < k we add the transition〈
qtmp

i ,c!m,qtmp
i+1

〉
. Finally, we add the transitions

〈
q,nop,qtmp

0

〉
and

〈
qtmp

k ,op,q′
〉
. We

define sat (P,k) := {sat (p,k)|p ∈ P}, i.e., we k-saturate all the processes in the set P.
From the definitions, we notice that sat (P,k) satisfies the following properties. (i) The

Analysis of Message Passing Programs using SMT-Solvers 7

size |sat (P,k)| of sat (P,k) is polynomial in k and in the size |P| of P (for any appro-
priate definition of the size |P|). This holds since we add at most k+ 1 new states per
state of p (more precisely, either k+1 states if qsnd 6= /0, or no states if qsnd = /0). Also,
for each new state the number of added transitions is bounded by ∑p∈P |∆p|. (ii) If P is
pure then sat (P,k) is pure. This follows from the fact that we only add send transitions
and we add such transitions only from states that are on cycles not containing receive
transitions. This implies that we will not create any cycles involving both send and re-
ceive transitions. (iii) If P is pure then, for any configurations γ,γ′, we have that γ′ is
reachable from γ in P iff γ′ is reachable from γ in sat (P,k). This follows from the fact
that for any added sequence of transitions, the send operations are already present in
existing cycles. Therefore, the effect of the added cycles can be simulated by iterating
the existing cycles (possibly) combined with the loss of messages. (iv) For any state
mapping starget, we have that starget is reachable in P iff starget is simply reachable in
sat
(
P,∑p∈P |Qp|

)
. The reason is that effect of performing all the receive transitions be-

tween the two occurrences of a state q can be simulated by losing messages (by purity
of P, none of these transitions can perform a send operation). This implies that we need
only to consider computations where the number of receive transitions is bounded by
∑p∈P |Qp|. In turn, this implies that each cycle involving send transitions need not be
iterated more than ∑p∈P |Qp| times. The result follows from the fact that we add the
(∑p∈P |Qp|)-unfolding of all such cycles in the construction of sat

(
P,∑p∈P |Qp|

)
. This

gives the following lemma.

Lemma 3. Reachability for pure LCS is polynomially reducible to simple reachability
for (pure) LCS.

5 Translation

In this section, we reduce the simple reachability problem for LCS to the problem of
checking satisfiability of existential Presburger formulas. Suppose that we are given an
instance of the simple reachability problem defined by an LCS consisting of a set P of
processes, and a state map starget. We will derive a quantifier-free Presburger formula
φ such that φ is satisfiable iff starget is reachable. For each state and transition in P, we
introduce a number of variables that we use to build φ. We define φ as a conjunction
where the conjuncts are divided into four sets, called indexing, traversal, simplicity,
and matching respectively. Each set of conjuncts is used to describe one aspect of a
potential computation reaching starget. For p ∈ P, let p =

〈
Qp,qinit

p ,∆p
〉
. Define Q and

∆ as in Section 3.

Indexing. For a state q ∈Q, we use an “index variable” index(q). For all pair of states
q,q′ ∈Q, φ contains index(q) 6= index(q′), i.e., we assign to each state a unique index.

Traversal. This set of conjuncts ensures that each computation corresponds to a traver-
sal of the graphs of the processes. This is inspired by the construction of an existential
Presburger formula for the Parikh image of the language of finite-state automata [30].
To define this group we use the following variables. For each t ∈ ∆ we use an “oc-
currence variable” occ(t) that encodes whether the transition t is executed during the

8 Parosh Aziz Abdulla, Mohamed Faouzi Atig, and Jonathan Cederberg

computation or not (1 if yes and 0 if no). For each state q ∈ Q, we use an “in-flow”
variable in(q) and an “out-flow” variable out(q) that encode whether state q is en-
tered resp. left during the computation (1 if yes and 0 if no). The formula φ contains the
following conjuncts: (i) For each q ∈ Q, φ contains in(q) = ∑t∈target−1(q) occ(t), i.e.,
q is entered iff exactly one of its ingoing transitions is executed. (ii) For each q ∈ Q, φ

contains out(q) =∑t∈source−1(q) occ(t), i.e., q is left iff exactly one of its outgoing tran-
sitions is executed. (iii) For each process p ∈ P, φ contains out

(
qinit

p
)
= in

(
qinit

p
)
+1,

i.e., the initial state of a process is left once but not entered. (iv) For each pro-
cess p ∈ P, φ contains in(starget(p)) = out(starget(p)) + 1, i.e., the target state in
a process is entered once but not left. (v) For each process p ∈ P and each state
q ∈ Qp −

{
qinit

p ,starget(p)
}

, φ contains in(q) = out(q), i.e., all other states are ei-
ther not visited or both entered once and left once. (vi) For each q ∈ Q, φ contains
(in(q) = 1) =⇒

(∨
t∈target−1(q)(occ(t) = 1)∧index(source(t))< index(q)

)
. The

indexing on the states guarantees that the computation corresponds to executing suc-
cessive edges in the graph of each process p. Each visited state is indexed higher than
its (unique) predecessor in the computation. Notice that this means that the order in
which states occur in the computation is consistent with the indexing (if q appears be-
fore q′ then index(q)< index(q′)).

Simplicity. For each q∈Q, φ contains in(q)≤ 1. Since the computation is simple, each
state is visited at most once.

Matching. This set of conjuncts ensures that each receive transition is matched by a
preceding send transitions. More precisely, we will match the occurrence of a receive
transition by the target state of a corresponding send transition as follows. For each
transition t ∈ ∆rcv, we use a “matching” variable match(t). For each transition t =
〈q1,c?m,q2〉 ∈ ∆rcv, φ contains

(occ(t) = 1) =⇒

∨

t ′∈operation−1(c!m)

match(t) = index(target (t ′))

∧
occ(t ′) = 1

∧
index(target (t ′))< index(q2)

Intuitively, if the receive transition t occurs in the computation (i.e., occ(t) = 1), then
a matching transition t ′ occurs (i.e., occ(t ′) = 1). The matching of t with t ′ is achieved
by requiring that the “matching” variable of t is equal to the index of the target state of
t ′. Furthermore, t ′ should occur before t. The latter condition requires that the index of
the target state of t (state q2) is larger than the index of the target state of t ′.

Finally, for any pair of receive transitions t, t ′ ∈ ∆rcv the formula φ con-
tains (occ(t) = 1) ∧ (occ(t ′) = 1) ∧ (index(target (t))< index(target (t ′))) =⇒
(match(t)< match(t ′)). This means that if both t and t ′ occur (i.e., occ(t) = 1 and
occ(t ′) = 1) and t occurs before t ′ (the index of the target state of t occurs before
the one of t ′) then the matching send transition of t occurs before the matching send
transition of t ′.

The above construction gives the following lemma.

Analysis of Message Passing Programs using SMT-Solvers 9

Lemma 4. Simple reachability for LCS is polynomially reducible to the satisfiability of
quantifier-free Presburger formulas.

6 Bounded-Phase Reachability

In this section, we collect the results of the previous sections to prove that k-reachability
for LCS is polynomially reducible to the satisfiability of quantifier-free Presburger for-
mulas. The main consequence of this is that it allows the use of advanced tools for
SMT-solving for efficient analysis of LCS (see Section 11). Furthermore, we use this
result to show an upper bound on the complexity of the k-reachability problem for LCS,
namely inclusion in NP. We complete the picture by giving a lower bound which shows
that the problem is NP-COMPLETE.

Upper Bound. From Lemma 2, Lemma 3, Lemma 4, we get the following theorem.

Theorem 5. k-reachability for LCS is polynomially reducible to the satisfiability of
quantifier-free Presburger formulas.

Since the latter problem is known to be NP-COMPLETE, we get the following corollary.

Corollary 6. k-reachability for LCS is in NP.

Lower Bound. We show NP-hardness by a reduction from the Boolean Satisfiability
Problem (SAT) (which is known to be NP-COMPLETE [14]). Consider a propositional
formula φ in conjunctive normal form. We will construct an LCS consisting of a set
of processes P. The set P contains (i) one process px for each variable x appearing in
φ, and (ii) one process p` for each clause ` in φ. Furthermore, for each variable x, we
associate a channel cx, and two messages mx,mx̄. The finite-state automaton describing
the behavior of the process px generates traces in the language (cx!mx)

∗∪(cx!mx̄)
∗ from

its initial state qinit
px to its unique target state qtarget

px . Intuitively, the process px guesses
the assigned value to the variable x by sending a number of copies of the message mx
to the channel cx if the value assigned to x is true, and sending mx̄ otherwise. For a
clause `, the process p` contains two states, namely an initial state qinit

p` and a target
state qtarget

p` . For any positive (resp. negative) literal x (resp. x̄) in `, the process p` has
a transition of the form

〈
qinit

p` ,cx?mx,q
target
p`

〉
(resp.

〈
qinit

p` ,cx?mx̄,q
target
p`

〉
). The transition

checks if the assigned value to x is true (resp. false). Define the state map starget such
that starget(p) := qtarget

p for each p ∈ P. It is easy to see that φ is satisfiable if and only
if starget is 2-reachable. This shows that the k-reachability problem for LCS is NP-HARD
for k ≥ 2. From this and Corollary 6 we get the following theorem.

Theorem 7. k-reachability for LCS is NP-COMPLETE.

7 Communicating Pushdown Processes

In this section, we define pushdown processes communicating through lossy channels
and we show the undecidability of its k-reachability problem. Let M be a finite set of
messages and C be a finite set of channels.

10 Parosh Aziz Abdulla, Mohamed Faouzi Atig, and Jonathan Cederberg

Pushdown Processes. A pushdown process p is a tuple
〈
Qp,qinit

p ,Γp,∆p
〉

where Qp

is finite set of states, qinit
p ∈ Qp is the initial state, Γp is the stack alphabet, and ∆p is

the set of pushdown transitions. A transition t ∈ ∆p is a tuple 〈q1,a,op,a′,q2〉 where
q1,q2 ∈ Qp are states, a,a′ ∈ Γp∪{ε} are stack symbols, and op is an operation of the
form c!m, c?m, or nop with m ∈M and c ∈C.

Transition System. We define the transition system induced by pushdown processes
communicating through lossy channels. A Lossy Channel Pushdown System (LCPS for
short) consists of a set P of pushdown processes. Let process p ∈ P be of the form〈
Qp,qinit

p ,Γp,∆p
〉
. Define Q := ∪p∈PQp and Γ := ∪p∈PΓp. A configuration γ is of the

form 〈s,α,ω〉, where s : P 7→Q is a state map such that s(p) ∈Qp, α : P 7→ Γ∗ is a stack
map such that α(p) ∈ Γp

∗, and ω : C 7→ M∗ is a channel map. Intuitively, α defines
the contents of the stacks of the processes, while s and ω have the same meaning as
for the case of LCS. We define the initial configuration γinit :=

〈
sinit,αinit,ωinit

〉
where

sinit(p) = qinit
p and αinit(p) = ε for all p ∈ P, and ωinit(c) = ε for all c ∈ C (i.e., the

system starts from a configuration where all the processes are in their initial states and
where all the stacks and channels are empty).

We define a transition relation −→ on the set of configurations as follows.
Consider configurations γ1 = 〈s1,α1,ω1〉, γ2 = 〈s2,α2,ω2〉, and a transition t =

〈q1,a1,op,a2,q2〉 ∈ ∆p for some p ∈ P. We write γ1
t−→ γ2 to denote that s1(p) = q1,

s2 = s1[p← q2], α1(p) = a1 · u for some u ∈ Γp
∗, α2 = α1[p← a2 · u] and one of the

following properties is satisfied: (i) op = c!m and ω2 �ω1[c←m ·ω1(c)], (ii) op = c?m
and ω2 � ω1[c← w] where ω1(c) = w ·m, (iii) op = nop and ω2 � ω1. The notions of
computations and bounded phase computations are defined in the similar way as for the
case of LCS.

Bounded-Phase Reachability Problem. In the following, we show that the (bounded-
phase) reachability problem for LCPS is undecidable. The undecidability holds even for
the 2-reachability problem for an LCPS that contains only one pushdown process with
two lossy channels (the proof is in Appendix A).

Theorem 8. k-reachability for LCPS is undecidable.

8 Stuttering Lossy Channels

In this section, we consider processes communicating through stuttering lossy channels
where messages can be both lost and duplicated.

Communicating Finite-State Processes. In the following, we give the model definition
for finite-state processes communicating through stuttering lossy channels and show
that the bounded-phase reachability problem is NP-COMPLETE. The syntax of the con-
sidered system is exactly the same as the one of LCS (described in Section 3). Next,
we define the induced transition system. A Stuttering Lossy Channel System (SLCS
for short) consists of a set P of finite-state processes. Let process p ∈ P be of the
form

〈
Qp,qinit

p ,∆p
〉
. Configurations are defined as for the case of LCS. We define a

Analysis of Message Passing Programs using SMT-Solvers 11

transition relation −→ on the set of configurations as follows. Consider configurations
γ1 = 〈s1,ω1〉, γ2 = 〈s2,ω2〉, and a transition t = 〈q1,op,q2〉 ∈ ∆p for some p ∈ P. We
write γ1

t−→ γ2 to denote that s1(p) = q1, s2 = s1[p← q2], and that there is ω : C 7→M∗

such that ω2(c′) ∈ Stuttering(ω(c′)) for all c′ ∈C and one of the following properties
is satisfied: (i) op = c!m and ω� ω1[c← m ·ω1(c)], (ii) op = c?m and ω� ω1[c← w]
where ω1(c) = w ·m, (iii) op = nop and ω � ω1. The notions of computations and
bounded phase computations are defined in the similar way as for the case of LCS.
Then, we can show the following theorem (the proof is in Appendix B).

Theorem 9. k-reachability for SLCS is NP-COMPLETE.

Communicating Pushdown Processes. We can extend the definition of SLCS to the
case where each process is a pushdown as for the case of LCPS (Section 7). This leads
to the class of Stuttering Lossy Channel Pushdown System (SLCPS). The proof of the
following theorem is in Appendix C.

Theorem 10. k-reachability problem for SLCPS is undecidable.

9 Unordered Channels

In this section, we consider finite-state processes communicating through unordered
lossy channels where messages can be re-ordered.

Communicating Finite-State Processes. In the following, we give the model when the
processes are finite-state. finite-state processes. The syntax of the system is the same as
the one of LCS (Section 3). Next, we define the induced transition system. An Unordered
Channel System (UCS for short) consists of a set P of finite-state processes. Let process
p ∈ P be of the form

〈
Qp,qinit

p ,∆p
〉
. Define Q := ∪p∈PQp. A configuration γ is of the

form 〈s,ω〉, where s : P 7→ Q is a state map such that s(p) ∈ Qp, and ω : C×M 7→ N
is a channel map. Intuitively, ω defines the contents of the channels (i.e., we associate
to each message its number of occurrences in each channel). We define the initial con-
figuration γinit :=

〈
sinit,ωinit

〉
where sinit(p) = qinit

p for all p ∈ P, and ωinit(c,m) = 0 for
all c ∈C and m ∈M (i.e., the system starts from a configuration where all the processes
are in their initial states and where all the channels are empty).

We define a transition relation−→ on the set of configurations as follows. Consider
configurations γ1 = 〈s1,ω1〉, γ2 = 〈s2,ω2〉, and a transition t = 〈q1,op,q2〉 ∈∆p for some
p ∈ P. We write γ1

t−→ γ2 to denote that s1(p) = q1, s2 = s1[p← q2], and one of the
following three properties is satisfied: (i) op = c!m and ω2 = ω1[(c,m)← (ω1(c,m)+
1)], (ii) op = c?m, ω1(c,m)≥ 1 and ω2 = ω1[(c,m)← (ω1(c,m)−1)], or (iii) op = nop
and ω2 =ω1. The notions of computations and bounded phase computations are defined
in the similar way as in the case of LCS. Then, we can show the following theorem (the
proof is in Appendix D).

Theorem 11. k-reachability for UCS is NP-COMPLETE.

12 Parosh Aziz Abdulla, Mohamed Faouzi Atig, and Jonathan Cederberg

Communicating Pushdown Processes. We can extend the definition of UCS to the case
where each process is a pushdown as for the case of LCPS (Section 7). This leads to the
class of Unordered Channel Pushdown System (UCPS for short).

Theorem 12. k-reachability problem for UCPS is NP-COMPLETE.

10 Perfect Channels

In this section, we consider finite-state processes communicating through perfect chan-
nels, and show that the bounded-phase reachability problem is undecidable.

The syntax of the considered system is the same as the one of LCS (described in
Section 3). We define the induced transition system. A Perfect Channel System (PCS
for short) consists of a set P of finite-state processes. Let process p ∈ P be of the
form

〈
Qp,qinit

p ,∆p
〉
. Configurations are defined as for the case of LCS. We define a

transition relation −→ on the set of configurations as follows. Consider configurations
γ1 = 〈s1,ω1〉, γ2 = 〈s2,ω2〉, and a transition t = 〈q1,op,q2〉 ∈ ∆p for some p ∈ P. We
write γ1

t−→ γ2 to denote that s1(p) = q1, s2 = s1[p← q2], and one of the following
properties is satisfied: (i) op = c!m and ω2 = ω1[c← m ·ω1(c)], (ii) op = c?m and
ω2 = ω1[c← w] where ω1(c) = w ·m, (iii) op = nop and ω2 = ω1. The notions of com-
putations and bounded phase computations are defined in the similar way as for the
case of LCS. Then, we can show the following theorem (the proof is in Appendix E).

Theorem 13. k-reachability problem for PCS is undecidable.

11 Experimental Data

We have implemented our technique in a prototype tool called Alternator. The tool is
available on GitHub [2], where we also supply the source of all experiments listed be-
low. The tool uses the frontend of the implementation provided by Marques et al in [19],
to get XML representations of the protocols from spreadsheets. We have implemented a
Python application that, given such an XML representation, builds an SMT-LIB [6] for-
mula as described in Section 5. This SMT-LIB formula can then be given to any SMT
solver supporting the SMT-LIB version 2 standard. In our case we use the Z3 solver [21].

We have applied our prototype to a number of different protocols. The results
demonstrate the efficiency of our framework. We analyze the web service protocols
Subservice Termination Protocol (STP) and Business Agreement with Coordinator
Completion (CC). The purpose of these protocols is to ensure that two (or three in the
case of STP) processes agree on the global state of the system, as is commonly needed in
SOA (Service-Oriented Architecture) frameworks. For more information on these pro-
tocols, see [23, 19]. By CCv2, we mean the augmented version of the CC protocols that
can be found in [23]. Furthermore, we have applied our tool to modified versions of
the well-known Alternating Bit Protocol (ABP f) and Sliding Window protocol (SW f)
where we have intentionally introduced some errors. The SYNC protocol is a simple
protocol requiring perfect channels. The Jingle example [28] is a multimedia session
establishment protocol that is used by applications such as Google Talk, Coccinella and
Miranda IM.

Analysis of Message Passing Programs using SMT-Solvers 13

P Sem Gen. Time SMT Ph. Res P Sem Gen. Time SMT Ph. Res
STP UCS 0.1 0.1 12 U CC UCS 0.8 0.2 6 U
STP SLCS 2.8 38.4 8 S CC SLCS 70.8 10.7 2 S
STP LCS 2.8 13.0 8 S CC LCS 70.2 10.1 2 S

CCv2 UCS 1.8 0.8 8 U ABP f SLCS 0.5 3.7 4 U
CCv2 SLCS 163.8 26.2 2 S ABP f LCS 0.5 5.9 4 U
CCv2 LCS 159.3 24.3 2 S ABP f UCS 0.1 0.0 4 U
SW f SLCS 0.4 0.6 2 U SYNC SLCS 0.2 1.3 14 U
SW f LCS 0.4 0.4 2 U SYNC LCS 0.2 2.1 14 U
SW f UCS 0.0 0.0 2 U SYNC UCS 0.2 0.1 14 U

JINGLE SLCS 18.4 10.8 8 U JINGLE LCS 21.2 21.1 8 U

Table 1. Experimental Results

The results of our analyses can be seen in Table 1. The column “Gen. Time” gives
the time that our tool takes to build an SMT-LIB formula. The column “SMT” shows
the time that the SMT-solver takes to decide the satisfiability of the generated formula.
All times are in seconds. The column “Sem” shows under which channel semantics we
have run the examples. Finally the columns “Ph.” and “Res” show the number of phases
and the result of our analysis. If the result of the analysis is “U” (Unsafe), the number
in the “Ph.” column is the bound required to prove the result. If the result is “S” (Safe),
meaning we did not reach the bad state within the given bound, the number in the “Ph.”
column is the greatest number of phases that we are able to use without the SMT-solver
needing more than 30 s to return an answer. The sizes of the generated automata and
the number of assertions fed to the SMT-solver are reported in [2]. More examples and
results are also available in [2]. All experiments were performed on a 3.1 GHz Intel
Core i5 with 4 GB of RAM.

12 Conclusions and Future Work

Semantics Finite-state process Pushdown process

Lossy NP-COMPLETE undecidable
Stuttering Lossy NP-COMPLETE undecidable
Unordered NP-COMPLETE NP-COMPLETE

Perfect undecidable undecidable

Table 2. Decidability/Complexity Results for the Bounded-Reachability

We have introduced a new concept for under-approximating the behavior of commu-
nicating processes, namely phase-bounded computations. We have shown that phase-
bounded reachability can be reduced to the satisfiability of logical formulas whose sat-
isfiability can be checked by SMT-solvers, thus yielding an efficient analysis of system

14 Parosh Aziz Abdulla, Mohamed Faouzi Atig, and Jonathan Cederberg

behavior. The framework can be instantiated to several classes of channel semantics
such as lossy, stuttering, and unordered. The strength of the method is confirmed by
results form the application of our prototype on examples from several different ap-
plication areas. Using the translation, we have also established complexity results for
checking bounded reachability on the above classes of systems. Finally, we give un-
decidability results for the case where the channels are perfect and for the case where
the processes are not finite-state with (stuttering) lossy channels. A summary of these
results is given in Table 2. While our prototype is already efficient on the considered
examples, there is room for several improvements such as minimizing the graphs of
processes and the size of the unfolding of processes obtained in the purification step
(Section 4) in order to reduce the time that our prototype takes to build an SMT-LIB for-
mula. Also, we are planning to consider systems where the message alphabet is infinite,
e.g., ranging over numerical domains.

References

1. Abdulla, P., Jonsson, B.: Undecidable verification problems for programs with un-
reliable channels. In: ICALP. pp. 316–327. LNCS 820, Springer (1994)

2. Abdulla, P.A., Atig, M.F., Cederberg, J.: Alternator - Verifier of programs by
bounding mode alternations https://github.com/it-apv/alternator

3. Abdulla, P.A., Atig, M.F., Chen, Y.F., Leonardsson, C., Rezine, A.: Counter-
example guided fence insertion under tso. In: TACAS. LNCS, vol. 7214, pp. 204–
219. Springer (2012)

4. Abdulla, P.A., Collomb-Annichini, A., Bouajjani, A., Jonsson, B.: Using forward
reachability analysis for verification of lossy channel systems. Formal Methods in
System Design 25(1), 39–65 (2004)

5. Abdulla, P.A., Jonsson, B.: Verifying programs with unreliable channels. In: Proc.
LICS ’93, 8th IEEE Int. Symp. on Logic in Computer Science. pp. 160–170 (1993)

6. et al, C.B.: C.: The smt-lib standard: Version 2.0. Tech. rep. (2010)
7. Atig, M.F., Bouajjani, A., Burckhardt, S., Musuvathi, M.: On the verification prob-

lem for weak memory models. In: POPL. pp. 7–18. ACM (2010)
8. Atig, M.F., Bouajjani, A., Touili, T.: On the reachability analysis of acyclic net-

works of pushdown systems. In: CONCUR. LNCS, vol. 5201, pp. 356–371.
Springer (2008)

9. Boigelot, B., Godefroid, P.: Symbolic verification of communication protocols with
infinite state spaces using qdds. FMSD 14(3), 237–255 (1999)

10. Bouajjani, A., Emmi, M.: Bounded phase analysis of message-passing programs.
In: TACAS. LNCS, vol. 7214, pp. 451–465. Springer (2012)

11. Bouajjani, A., Esparza, J., Touili, T.: A generic approach to the static analysis of
concurrent programs with procedures. In: POPL. pp. 62–73. ACM (2003)

12. Bouajjani, A., Habermehl, P.: Symbolic reachability analysis of fifo-channel sys-
tems with nonregular sets of configurations. Theor. Comput. Sci. 221(1-2), 211–
250 (1999)

13. Brand, D., Zafiropulo, P.: On communicating finite-state machines. J. ACM 30(2),
323–342 (1983)

Analysis of Message Passing Programs using SMT-Solvers 15

14. Cook, S.A.: The complexity of theorem-proving procedures. In: STOC. pp. 151–
158. ACM (1971)

15. Geeraerts, G., Raskin, J.F., Begin, L.V.: Expand, enlarge and check: New algo-
rithms for the coverability problem of wsts. J. Comput. Syst. Sci. 72(1), 180–203
(2006)

16. Hague, M., Lin, A.W.: Synchronisation- and reversal-bounded analysis of multi-
threaded programs with counters. In: CAV. LNCS, vol. 7358, pp. 260–276. Springer
(2012)

17. Heußner, A., Leroux, J., Muscholl, A., Sutre, G.: Reachability analysis of commu-
nicating pushdown systems. Logical Methods in Computer Science 8(3) (2012)

18. Ibarra, O.H.: Reversal-bounded multicounter machines and their decision prob-
lems. J. ACM 25(1), 116–133 (1978)

19. Jr., A.P.M., Ravn, A., Srba, J., Vighio., S.: csv2uppaal
https://github.com/csv2uppaal

20. Lipton, R.: The reachability problem requires exponential time. Technical Report
TR 66 (1976)

21. de Moura, L.M., Bjørner, N.: Z3: An efficient SMT solver. In: TACAS. LNCS, vol.
4963, pp. 337–340. Springer (2008)

22. Musuvathi, M., Qadeer, S.: Iterative context bounding for systematic testing of
multithreaded programs. In: PLDI. pp. 446–455. ACM (2007)

23. Newcomer, E., Robinson, I.: (chairs). Web Services Business Activity Version 1.2
(2009), http://docs.oasis-open.org/ws-tx/wstx-wsba-1.2-spec-os.pdf

24. Post, E.L.: A variant of a recursively unsolvable problem. Bull. of the American
Mathematical Society 52, 264–268 (1946)

25. Qadeer, S., Rehof, J.: Context-bounded model checking of concurrent software. In:
TACAS’05. LNCS 3440 (2005)

26. Rackoff, C.: The covering and boundedness problems for vector addition systems.
Theor. Comput. Sci. 6, 223–231 (1978)

27. Ravn, A.P., Srba, J., Vighio, S.: Modelling and verification of web services business
activity protocol. In: TACAS. LNCS, vol. 6605, pp. 357–371. Springer (2011)

28. Saint-Andre, P.: Jingle: Jabber does multimedia. IEEE MultiMedia 14(1), 90–94
(Jan 2007)

29. Schnoebelen, P.: Verifying lossy channel systems has nonprimitive recursive com-
plexity. Information Processing Letters 83(5), 251–261 (Sep 2002)

30. Seidl, H., Schwentick, T., Muscholl, A., Habermehl, P.: Counting in trees for free.
In: ICALP. LNCS, vol. 3142, pp. 1136–1149. Springer (2004)

31. The Erlang Programming Language: http://erlang.org
32. The Scala Programming Language: http://scala-lang.org
33. Torre, S.L., Madhusudan, P., Parlato, G.: Context-bounded analysis of concurrent

queue systems. In: TACAS. LNCS, vol. 4963, pp. 299–314. Springer (2008)

16 Parosh Aziz Abdulla, Mohamed Faouzi Atig, and Jonathan Cederberg

A Proof of Theorem 8

We prove Theorem 8 through a reduction from PCP (Post’s Correspondence Problem),
which is known to be undecidable [24]. We recall that PCP consists of two finite lists
{u1, . . . ,un} and {v1, . . . ,vn} of nonempty words over some alphabet Σ, and the task
is to check whether there is a sequence of indices i1, . . . , ik ∈ [n] such that ui1 · · ·uik =
vi1 · · ·vik .

We construct a pushdown process p communicating through two lossy channels
C = {c1,c2} such that, a specific state of p is 2-reachable from the initial configuration
if and only if PCP has a solution for the considered instance. The pushdown process
p proceeds as follows. First, it pushes twice the stack symbol ⊥. Then, p guesses the
solution of PCP as a sequence of indices ik, . . . , i1 and performs iteratively a sequence
of operations: It (1) sends the symbols of ui j to the channel c1 while pushing |ui j |-times
the stack symbol a into its stack, and (2) sends the symbols of vi j to the channel c2 and
pushes |vi j |-times the stack symbol a into its stack. At the end of this step, p sends the
special message] to the channels c1 and c2 (to mark the end of the sent sequences).
Thus, the channels c1 and c2 contain respectively subwords of u :=] · ui1 · · ·uik and
v :=] · vi1 · · ·vik (due to the loss of some messages) while the stack of p contains the
word a(|u|+|v|−2) · ⊥ ·⊥. Then, p checks that the two channels have the same contents
and that no message has been lost. This is done by successively receiving a message in
Σ from c1 and c2 while popping twice the symbol a from its stack. Finally, p checks
whether it can receive the message] from c1 and c2 while popping twice the symbol⊥.

We observe that p can reach a configuration where its stack is empty (which can
be reduced to state reachability problem) iff PCP has a solution (i.e., no message in the
lossy channels has been lost). The formal definition of p can be found below.

Let Γp = {a,⊥} be the stack alphabet of p and M = Σ∪{]} be the set of messages
manipulated by p.

To simplify the presentation, we will introduce some notations. Let c ∈ C be a
channel, u ∈ Γ+

p be a stack content, and w ∈ Σ+ be a sequence of messages such that
|u|= |w|= i. We use the macro transition 〈q,ε,c!w,u,q′〉 to denote the sequence of con-
secutive transitions

〈
q,ε,nop,ε,qtmp

1

〉
,
〈
qtmp

l ,ε,c!w[i− l +1],u[l],qtmp
l+1

〉
for all l ∈ [i],

and
〈
qtmp

i+1 ,ε,nop,ε,q′
〉

where qtmp
1 , . . . ,qtmp

i+1 are extra intermediate states of p that are
not used anywhere else (and that we may omit from the set of states of p). Then, the set
of transitions of p is defined as follows:

1. Push twice the symbol ⊥:
〈
qinit

p ,ε,nop,⊥,q⊥
〉

and 〈q⊥,ε,nop,⊥,q〉
2. Choose a number l ∈ [1..n]: 〈q,ε,nop,ε,ql〉 and 〈q′,ε,nop,ε,ql〉
3. Send the sequence of ul to c1:

〈
ql ,ε,c1!ul ,a|ul |,q′l

〉
4. Send the sequence of vl to c2:

〈
q′l ,ε,c2!vl ,a|vl |,q′

〉
5. Send the end marker]:

〈
q′,ε,c1!],ε,q]

〉
and

〈
q],ε,c2!],ε,r

〉
6. Choose to receive a symbol m ∈ Σ from c1 and c2: 〈r,ε,nop,ε,rm〉
7. Receive m from c1 and c2: 〈rm,a,c1?m,ε,r′m〉 and 〈r′m,a,c2?m,ε,r〉
8. Receive the end marker]:

〈
r,⊥,c1?],ε,r]

〉
and

〈
r],⊥,c2?],ε,r′

〉
Let P be the LCPS consisting in the single pushdown processes p. Let starget be

the target state map of P such that starget(p) = r′. Then the relation between the 2-

Analysis of Message Passing Programs using SMT-Solvers 17

reachability problem for the LCPS P := {p} and the existence of a solution for the PCP
is given by the following lemma:

Lemma 14. There is i1, . . . , ik ∈ [n] such that ui1 · · ·uik = vi1 · · ·vik and k≥ 1 iff starget is
2-reachable in P.

B Proof of Theorem 9

The proof of Theorem 9 is similar to the case of LCS. The NP-hardness can be obtained
using the same reduction from the Boolean Satisfiability Problem to the bounded-phase
reachability problem for LCS (see Section 6).

The upper-bound is obtained by a polynomial reduction to the satisfiability of
quantifier-free Presburger formulas. The construction of the formula follows the
same steps as for the case of LCS. The only difference is in the matching con-
junct that ensures that there is one-to-one matching between each receive transition
and send transition (see Section 5). In the case of SLCS, this condition is weak-
ened in order to allow that a send transition can be matched to several receive
transitions (i.e., taking into account that any message in the channel can be du-
plicated). More precisely, we replace the conjunct (occ(t) = 1) ∧ (occ(t ′) = 1) ∧
(index(target (t))< index(target (t ′))) =⇒ (match(t)< match(t ′)) by the follow-
ing one: (occ(t) = 1)∧ (occ(t ′) = 1)∧ (index(target (t))< index(target (t ′))) =⇒
(match(t)≤ match(t ′)).

C Proof of Theorem 10

We will prove the undecidability of the k-reachability problem for SLCPS by show-
ing the every LCPS can be simulated by an SLCPS. More precisely, for any LCPS P
over a finite set of channels C and a finite set of messages M, there is an SLCPS
P′ over the set of channels C and the set of messages M ∪ {]}, where] /∈ M is a
fresh message, such that a given target state map starget is k-reachable in P if and
only if it is k-reachable in P′. In the following we will sketch the main details of
the reductions. Corresponding to each pushdown process p in P, P′ has a push-
down process p′. For each state q of p, p′ has two states q and qtmp. Moreover, for
each send transition t = 〈q1,a1,c!m,a2,q2〉 ∈ ∆p, p′ has two consecutive transitions
t1 =

〈
q1,a1,c!m,a2,q

tmp
2

〉
∈ ∆p′ and t2 =

〈
qtmp

2 ,ε,c!],ε,q2
〉
∈ ∆p′ . Intuitively, if p sends

a message m∈M to the channel c∈C, then p′ sends m to c followed by a send operation
of the message] to c. The insertion of the special symbol] allows to ensure that, any
sent message in M, just one copy of it can be received (i.e., eliminating the stuttering be-
havior). A receive transition t = 〈q1,a1,c?m,a2,q2〉 ∈ ∆p is simulated in p′ by two con-
secutive transitions t1 =

〈
q1,a1,c?m,a2,q

tmp
2

〉
∈ ∆p′ and t2 =

〈
qtmp

2 ,ε,c?],ε,q2
〉
∈ ∆p′ .

This means that if p receives a message m ∈M from the channel c ∈C, then p′ receives
m from c followed by a receive operation of] from c. Finally, any dummy transition of
p is a transition of p′. Then, it is easy to see that: starget is 2-reachable in P iff starget is
2-reachable in P’.

18 Parosh Aziz Abdulla, Mohamed Faouzi Atig, and Jonathan Cederberg

D Proof of Theorem 11

The NP-hardness can be shown using the same reduction from the Boolean Sat-
isfiability Problem to the bounded-phase reachability problem for LCS (see Sec-
tion 6). The upper-bound is obtained by a polynomial reduction the satisfiability
of quantifier-free Presburger formulas. The construction of the formula follows the
same steps as in the case of LCS. The only difference is in the matching con-
junct that ensures that if a receive transition t occurs before another one t ′ then
the matching send transition of t occurs before the matching send transition of t ′

(see Section 5). For the case of UCS, this condition is weakened in order to allow
that the matching send transition of t ′ can occur before the matching send transi-
tion of t. More precisely, we replace the conjunct (occ(t) = 1) ∧ (occ(t ′) = 1) ∧
(index(target (t))< index(target (t ′))) =⇒ (match(t)< match(t ′)) by the follow-
ing one: (occ(t) = 1)∧ (occ(t ′) = 1)∧ (index(target (t)) 6= index(target (t ′))) =⇒
(match(t) 6= match(t ′)).

E Proof of Theorem 13

We prove Theorem 13 through a reduction from the PCP (Post’s Correspondence Prob-
lem). Let {u1, . . . ,un} and {v1, . . . ,vn} be an instance of PCP over some alphabet Σ.

We construct a process p communicating through two perfect channels C = {c1,c2}
such that, a specific state of p is 2-reachable from the initial configuration if and only if
PCP has a solution for the considered instance. The process p proceeds as follows. First,
it guesses the solution of PCP as a sequence of indices ik, . . . , i1 and performs iteratively
a sequence of operations: It (1) sends the symbols of ui j to the channel c1, and (2) sends
the symbols of vi j to the channel c2. At the end of this step, p sends the special message
] to the channels c1 and c2 (to mark the end of the sent sequences). Thus, the channels
c1 and c2 contain respectively u :=] · ui1 · · ·uik and v :=] · vi1 · · ·vik . Then, p checks
that the two channels have the same contents. This is done by successively receiving a
message in Σ from c1 and c2. Finally, p checks if it can receive the message] from c1
and c2.

We observe that p can reach a configuration where its channels are empty (which
can be reduced to state reachability problem) iff PCP has a solution.

Let us define more formally the reduction. Let M = Σ∪{]} be the set of messages
manipulated by p.

To simplify the presentation, we will introduce some notations. Let c ∈ C be a
channel, and w ∈ Σ+ be a sequence of messages such that |w| = i. We use the macro
transition 〈q,c!w,q′〉 to denote the sequence of consecutive transitions

〈
q, ,nop,qtmp

1

〉
,〈

qtmp
l ,c!w[i− l +1],qtmp

l+1

〉
for all l ∈ [i], and

〈
qtmp

i+1 ,nop,q′
〉

where qtmp
1 , . . . ,qtmp

i+1 are ex-
tra intermediate states of p that are not used anywhere else (and that we may omit from
the set of states of p). Then, the set of transitions of p is defined as follows:

1. Choose a number l ∈ [1..n]:
〈
qinit,nop,ql

〉
and 〈q,nop,ql〉

2. Send the sequence of ul to c1:
〈
ql ,c1!ul ,q′l

〉
3. Send the sequence of vl to c2:

〈
q′l ,c2!vl ,q

〉

Analysis of Message Passing Programs using SMT-Solvers 19

4. Send the end marker]:
〈
q,c1!],q]

〉
and

〈
q],c2!],r

〉
5. Choose to receive a symbol m ∈ Σ from c1 and c2: 〈r,nop,rm〉
6. Receive m from c1 and c2: 〈rm,c1?m,r′m〉 and 〈r′m,c2?m,r〉
7. Receive the end marker]:

〈
r,c1?],r]

〉
and

〈
r],c2?],r′

〉
Let P be the PCS consisting in the single processes p. Let starget be the target state

map of P such that starget(p) = r′. Then the relation between the 2-reachability prob-
lem for the PCS P := {p} and the existence of a solution for the PCP is given by the
following lemma:

Lemma 15. There is i1, . . . , ik ∈ [n] such that ui1 · · ·uik = vi1 · · ·vik and k≥ 1 iff starget is
2-reachable in P.

F Proof of Theorem 12

Globally bounded-phase reachability problem. First, we introduce the notion of glob-
ally bounded-phase computations for UCPS. Given a bound k ∈ N, a computation is
k-globally bounded if it can be seen as a concatenation of a at most k computations
where all the processes are either in a receive or send mode. Formally, let C be a finite
set of channels, M be a finite set of messages, and P be a UCPS such that for every
p ∈ P, we have

〈
Qp,qinit

p ,Γp,∆p
〉
. A computation π is said to be k-globally-bounded,

for a given k ∈ N, if π ↑= δ1 · δ2 · · · · · δ j where j ≤ k and δi ∈ (
⋃

p∈P(∆
snd
p ∪∆

nop
p))∗

or δi ∈ (
⋃

p∈P(∆
rcv
p ∪∆

nop
p))∗ for all i : 1 ≤ i ≤ j. The k-global reachability problem is

defined in the similar way as for the k-reachability problem.
We can show that:

Theorem 16. k-globally reachability problem for UCPS is NP-COMPLETE.

The NP-hardness can be obtained using the same reduction from the Boolean Satis-
fiability Problem to the bounded-phase reachability problem for LCS (see Section 6).

The upper-bound can be obtained by an easy reduction from the k-globally reacha-
bility problem for a given UCPS P, with C as a finite set of channels and M as a finite set
of messages, to the 0-synchronisation reachability problem for communicating push-
down automata C with (|C|× |M|) k-reversal bounded counters (which is in NP [16]) .
We use a similar notation as in [16]. The idea is to associate a counter x(m,c) for each
message m∈M and channel c∈C. The current value of x(m,c) will denote the number of
pending messages m in the channel c. For each process p =

〈
Qp,qinit

p ,Γp,∆p
〉
, we asso-

ciate a pushdown automaton Pp that has the same set of states as p. The stack alphabet
of Pp consists of the stack alphabet Γp of p and the bottom stack symbol ⊥ /∈ Γp.

A send operation of t = 〈q1,a1,c!m,a2,q2〉 ∈ ∆p of p, with a1 ∈ Γp, will be simu-
lated in Pp by an increment transition of the form ((q1,a1, true),ε,(q2,a2,u)) where u
is defined as follows u(x(m,c)) = 1 and u(x(m′,c′)) = 0 for all (m,c) 6= (m′,c′) (i.e., incre-
menting the counter x(m,c)). A send operation of the form t = 〈q1,ε,c!m,a2,q2〉 ∈ ∆p of
p will be simulated in Pp by an increment transition of the form ((q1,a, true),ε,(q2,a2 ·
a,u)) where a ∈ Γp∪{⊥} and u is defined as in the previous case.

20 Parosh Aziz Abdulla, Mohamed Faouzi Atig, and Jonathan Cederberg

A receive operation of t = 〈q1,a1,c?m,a2,q2〉 ∈ ∆p of p, with a1 ∈ Γp, will be
simulated in Pp by a decrement transition of the form ((q1,a1, true),ε,(q2,a2,u))
where u is defined as follows u(x(m,c)) = −1 and u(x(m′,c′)) = 0 for all (m,c) 6=
(m′,c′) (i.e., decrementing the counter x(m,c)). A receive operation of the form t =
〈q1,ε,c?m,a2,q2〉 ∈ ∆p of p will be simulated in Pp by a decrement transition of the
form ((q1,a, true),ε,(q2,a2 ·a,u)) where a ∈ Γp∪{⊥} and u is defined as in the previ-
ous case.

A nop operation of t = 〈q1,a1,nop,a2,q2〉 ∈ ∆p of p, with a1 ∈ Γp, will be sim-
ulated in Pp by a transition of the form ((q1,a1, true),ε,(q2,a2,u)) where u is de-
fined as follows u(x(m,c)) = 0 for all (m,c) ∈ M ×C. A nop operation of the form
t = 〈q1,ε,nop,a2,q2〉 ∈ ∆p of p will be simulated in Pp by a transition of the form
((q1,a, true),ε,(q2,a2 · a,u)) where a ∈ Γp ∪{⊥} and u is defined as in the previous
case.

Moreover, for every state q ∈ Qp, c ∈ C, a ∈ Γp ∪{⊥} and m ∈ M, the pushdown
automaton Pp has a decrement transition of the form ((q,a, true),ε,(q,a,u)) where u
is defined as follows u(x(m,c)) = −1 and u(x(m′,c′)) = 0 for all (m,c) 6= (m′,c′) (i.e.,
decrementing the counter x(m,c)). This transition is added in order to reduce the state
reachability for UCPS problem to the configuration reachability problem for communi-
cating pushdown automata with reversal bounded counters as considered in [16].

Then, it is easy to see that a target state starget is k-globally reachability in P if and
only if the configuration ((starget(p),⊥)p∈P,v) is 0-synchronisation-bounded reacha-
bility in C from the initial configuration ((qinit

p ,⊥)p∈P,v) where v(x(m,c)) = 0 for all
(m,c) ∈M×C.

Bounded-phase reachability problem. In the following we show that the bounded-phase
reachability problem for UCPS is reducible to the globally bounded-phase reachability
problem for UCPS.

Let us fix an UCPS P with a finite set of messages M and a finite set of channels C.
Let p =

〈
Qp,qinit

p ,Γp,∆p
〉

for all p ∈ P. Let starget be a target state.
We define pure(P) := {pure(p)|p ∈ P}, and define the state map starget

R (p) := rtarget
p

for all p ∈ P in similar way as for the case of LCS (see Section 4). It follows that starget
R

is reachable in (the pure UCPS) pure(P) iff starget is k-reachable in P, which leads to the
following lemma.

We recall that the set of states of pure(p) by
{

rinit
p ,rtarget

p
}
∪

{〈q,m, i〉|q ∈ Qp∧m ∈ {snd,rcv}∧1≤ i≤ k}.

Lemma 17. starget is k-reachable in P iff starget
R is reachable in pure(P).

Now, we borrow the idea of mode vectors from [16] (called here mode map). A
mode map is a mapping from P to {snd,rcv}. Given a computation π of the form γ0

t1−→
γ1

t2−→ ·· · tn−→ γn in pure(P), we associate to it a sequence map(π) of mode maps as
follows: m0m1 · · ·mn such that m0(p) = snd for all p ∈ P (we can also choose to set
m0(p) = rcv for all p∈ P), and mj = mj+1[p← rcv] (resp. mj = mj+1[p← snd]) if t j+1
is a receive (resp. send) transition of the process p, and mj = mj+1 otherwise.

Since each process in pure(P) can only perform at most k phases in π. There are at
most n(k+ 1) changes in the mode map where a change is defined when mj 6= mj+1.

Analysis of Message Passing Programs using SMT-Solvers 21

This implies that there is q sequence of indices i1, . . . , ih ∈ [n] such that: (1) h≤ n(k+1),
(2) mi`−1 6=mi` for all `∈ [h], and (3) mj−1 =mj for all j ∈ ({1 . . . ,n}\{i1, i2, . . . , ih}).

Let i0 = 0 and ih+1 = n+1. For every `∈ {0, . . . ,h+1}, let π` be a sub-computation

of π defined by the following sequence γi`

ti`+1−→ γi`+1
ti`+2−→ ·· ·

ti`+1−1
−→ γi`+1−1. We know

from the mode vector that each process is either performing non-receive or non-send
transitions (i.e., π` is an 1-bounded computation). Let Psnd

` be the set of processes in
a non-receive phase in π` (i.e., mi`(p) = snd for all p ∈ Psnd

`) and Prcv
` be the set of

processes in a non-send phase in π` (i.e., mi`(p) = rcv for all p ∈ Prcv
`).

Since channels have unordered semantics, we can construct a run π′` of the form

γi`

t ′i`+1−→ γ′i`+1

t ′i`+2−→ ·· ·
t ′i`+1−1
−→ γi`+1−1 such that π′` ↑ p = π` ↑ p for all p ∈ P and there is

an index e ∈ {i`, i`+2, . . . , i`+1−1} such that for every j ∈ {i`+1, i`+2, . . . , i`+1−1}
with j ≤ e, we have t j is a transition of a process belonging to Psnd

` and for every
j′ ∈ {i`+1, i`+2, . . . , i`+1−1} with j′ > e, we have t j′ is a transition of a process
belonging to Prcv

` . Observe that the order in which the non-send (resp. non-receive)
operation of different processes in a non-receive (resp. non-send) phase is not important.
Moreover, π′` is at most 2-globally bounded computation.

Since π′` and π` have the same source and target configurations, we can construct a
π′ having the same source and target configurations as π′. This is done by concatenating

the computations π′` and γi`−1
t ′i`−→ γ′i` . Thus, the computation π′ is at most 2n(k+ 1)-

globally bounded. Hence, we have:

Lemma 18. starget
R is reachable in pure(P) iff starget

R 2n(k+1)-globally bounded reach-
able in pure(P).

As corollary of Theorem 16, Lemma 17, and Lemma 18, we obtain Theorem 12.

