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Abstract. We compare the expressive power of a class of well-structured
transition systems that includes relational automata, (extensions of)
Petri nets, lossy channel systems, constrained multiset rewriting sys-
tems, and data nets. For each one of these models we study the class of
languages generated by labelled transition systems describing their se-
mantics. We consider here two types of accepting conditions: coverability
and reachability of a fixed a priori configuration. In both cases we obtain
a strict hierarchy in which constrained multiset rewriting systems is the
the most expressive model.
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1 Introduction

The theory of well-structured transition systems [1, 14] is a powerful tool for
studying the decidability of verification problems of infinite-state systems. A
system is well-structured when its transition relation is monotonic with respect
to a well-quasi ordering defined over configurations. A well-known example of
well-structured system is that of Petri nets [22] equipped with marking inclu-
sion [1, 14]. For a well-structured transition system, the coverability problem can
be decided by the symbolic backward reachability algorithm scheme proposed
in [1]. Since checking safety properties can be translated into instances of the
coverability problem, an algorithm for coverability as proposed in [1] can be
used for automatic verification of an infinite-state system. This connection has
been exploited in order to develop automatic verification procedures for several
infinite-state models:

– relational automata (RA) [8], an abstract models of imperative programs
with integer valued variables;

– Reset and transfer nets [12, 11], i.e., Petri nets extended with whole-place
operations that atomically operate on the whole set of tokens in a place;

– lossy (FIFO) channel systems (LCS) [4, 7], an abstract models of unreliable
communication systems;
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– constrained multiset rewriting systems (CMRS) [2], an extension of Petri nets
in which tokens are colored with natural numbers and in which transitions
are guarded by conditions on colors;

– affine well-structured nets (aWSNs) [19] a generalization of Petri nets and
transfer/reset nets in which the firing of a transition is split into three steps:
subtraction, multiplication, and addition of black tokens. Multiplication is a
whole-place operation that generalizes transfer and reset arcs;

– data nets (DNs) [20], a generalization of aWSNs in which subtraction, mul-
tiplication and addition are defined on tokens that carry data taken from
an infinite, ordered domain. Conditions on data values can be used here to
restrict the type of tokens on which apply whole-place operations. DNs are a
natural extension of CMRS with whole-place operations on colored tokens.

Although several efforts have been spent on studying the expressive power of
extensions of Petri nets like reset and transfer nets [12, 13, 15]), a comparison
of the relative expressiveness of the class of well-structured transition systems
is still missing. Such a comparison is a challenging research problem with a
possible practical impact. Indeed, it can be useful to extend the applicability
of a verification method (e.g., a particular instance of the scheme of [1]) to an
entire class of models.

In this paper we apply tools of language theory to formally compare the
expressive power of a large class of well-structured infinite-state systems that
includes extensions of Petri nets, constrained multiset rewriting systems, lossy
channel systems, relational automata, and data nets. To achieve the goal, for
each one of these models we study the class of languages generated by labeled
transition systems describing their semantics. We consider here two types of
accepting conditions: coverability (with respect to a fixed ordering) and reach-
ability of a given configuration. Two models are considered to be equivalent if
they generate the same class of languages.

For coverability accepting conditions, we obtain the following classification.

– We show that, differently from nets with indistinguishable tokens, whole-
place operations do not augment the expressive power of models in which
tokens carry data taken from an ordered domain. The proof is based on a
weak, effectively constructible encoding of data nets into CMRS that can
be used to reduce the coverability problem from one model to the other.
As a corollary, we have that the symbolic backward reachability algorithm
for solving the coverability problem in CMRS described in [2] can also be
applied to data nets.

As a second application of our CMRS encoding is the extension of decidabil-
ity results on Data nets. By slightly extending the CMRS encoding, we prove
that the coverability problem remains decidable for different extensions of
data nets. In particular we consider data net transitions that select data that
must be fresh (in [20] a transition selects values that may be fresh).

– We prove that lossy channel systems are equivalent to a syntactic fragment
of constrained multiset rewriting, we named Γ0. The fragment Γ0 is obtained



by restricting conditions of a rule in such a way that equalities cannot be
used as guards. Furthermore, we prove that lossy channel systems are strictly
less expressive than the full model of constrained multiset rewriting systems.
We then show that Petri nets are equivalent to a syntactic fragment of con-
strained multiset rewriting systems, we named Γ1, obtained by considering
nullary predicates only.

– We prove that aWSNs are strictly more expressive than Petri nets and
strictly less expressive than LCSs, thus separating Petri nets from LCSs
with respect to their relative expressive power. Furthermore, we prove that
aWSNs are as expressive as transfer/reset nets. This result show that the
inclusion between the coverability languages of transfer/reset nets and LCS
proved in [3] is strict.

– We prove that relational automata are equivalent to a syntactic fragment
of constrained multiset rewriting, we named Γ2, obtained by imposing an
upper bound on the size (number of predicates) of reachable configurations.

– Finally, we prove that Γ2 generates the class of regular languages. This im-
plies that relational automata are strictly less expressive than Petri nets.

For reachability accepting conditions, we obtain a slightly different classifica-
tion. First, we prove that Γ0 is equivalent to constrained multiset rewriting
systems and two counter machines. Thus, with reachability acceptance, Γ0 and
constrained multiset rewriting systems turn out to be strictly more expressive
than lossy channel systems. On the contrary, Γ1 is still equivalent to Petri nets
and strictly less expressive than Γ0 and Γ2 is still equivalent to relational au-
tomata and to finite automata. Finally, we show that lossy channel systems and
Petri nets define incomparable classes of languages.

Concerning related work, the relative expressiveness of well-structured sys-
tems has been investigated for a limited number of extensions of Petri nets with
reset, transfer, and non-blocking arcs in [13, 15]. Classical results on finite and
infinite languages generated by Petri nets can be found, e.g., in [16]. A classifi-
cation of infinite-state systems in terms of structural properties and decidable
verification problems is presented in [17]. The classification is extended to well-
structured systems in [6]. A classification of the complexity of the decision pro-
cedures for coverability is studied in [20]. In contrast with the aforementioned
work, we provide here a strict classification of the expressive power of several
well-structured transition systems built with the help of tools of language theory.

Outline In Section 2, we give some preliminary notions on well-structured transi-
tion systems. In Section 3, we introduce constrained multiset rewriting systems.
In Section 4, we give some first results on the class of languages accepted by
CMRS. In Section 5, we recall Data nets and compare the class of languages
accepted by CMRS and Data nets. In Section 6, 7, and 8, we compare the class
of languages recognized by constrained multiset rewriting systems and, respec-
tively, lossy channel systems, (extensions of) Petri nets, and relational automata.
Finally, in Section 9 we discuss some final remarks.



2 Wsts and Languages with Coverability Acceptance

In this section we recall some definitions taken from [1]. A transition system is a
tuple T = (S,R) where S is a (possibly infinite) set of configurations,R is a finite

set of transitions where each
σ

−→∈ R is a binary relation over S, i.e.
σ

−→⊆ S×S.

We use γ
σ

−→ γ′ to denote (γ, γ′) ∈
σ

−→, and γ
ρ1...ρk−→ γ′ to denote that there

exist γ1, . . . , γk−1 such that γ
ρ1
−→ γ1 . . .

ρk−1

−→ γk−1
ρk−→ γ′. Sometimes we will

also use γ −→ γ′ to denote that there exists σ ∈ R such that γ
σ

−→ γ′. A quasi-
ordering (S,�) is a well-quasi ordering if for any infinite sequence s1s2 . . . si . . .
there exist indexes i < j such that si � sj . A transition system T = (S,R) is
well-structured with respect to a quasi-order � on S iff:

(i) � is a well-quasi ordering;

(ii) for any
σ

−→∈ R and γ1, γ
′
1, γ2 s.t. γ1 � γ′1 and γ1

σ
−→ γ2, there exists γ′2 s.t.

γ′1
σ

−→ γ′2 and γ2 � γ′2, i.e., T is monotonic.

We use T = (S,R,�) to indicate a well-structured transition system (wsts for
short).

To formalize the comparison between models, a wsts T = (S,R,�) can be
viewed as a language acceptor. For this purpose, we assume a finite alphabet
Σ and a labelling function λ : R 7→ Σ that associates to each transition of R
a symbol of Σ ∪ {ǫ}, where ǫ denotes the empty sequence (w · ǫ = ǫ · w = w

for any w ∈ Σ∗). In the following, we use γ1
w

−→ γ2 with w ∈ Σ∗ to denote

that γ1
ρ1···ρk−→ γ2 and λ(

ρ1
−→) · · ·λ(

ρk−→) = w. Furthermore, we associate to T an
initial configuration γinit ∈ S and a final configuration γacc ∈ S and assume
an accepting relation ⊲⊳: S × S. For a fixed accepting relation ⊲⊳, we define the
language accepted (generated) by T = (S,R,�, γinit , γacc) as:

L(T ) = {w ∈ Σ∗ | γinit
w

−→ γ and γacc ⊲⊳ γ}

In this paper we consider two types of accepting relations:

– Coverability: the accepting relation ⊲⊳c is defined as γacc � γ.
– Reachability: the accepting relation ⊲⊳r is defined as γacc = γ.

Let M be a wsts model (e.g., Petri nets) and let T be one of its instances (i.e., a
particular net). We define Lc(T ), resp Lr(T ), as the language accepted by T with
accepting relation ⊲⊳c, resp. ⊲⊳r. We say that L is a c-language, resp. r-language,
of M if there is an instance T of M such that L = Lc(T ), resp. L = Lr(T ). We
use Lc(M), resp. Lr(M), to denote the class of c-languages, resp. r-languages,
of M. Finally, given two classes of languages L1 and L2, we use L1 6∼ L2 to
denote that L1 and L2 are incomparable classes.

Given a wsts T = (S,R,�) with labels in Σ ∪ {ǫ}, a lossy version of T is a
wsts T ′ = (S,R′,�) for which there exists a bijection h : R 7→ R′ such that
ρ
−→∈ R and

h(ρ)
−−−→ have the same label,

ρ
−→⊆

h(ρ)
−−−→ and if γ

h(ρ)
−−−→ γ′, then γ

ρ
−→ γ′′

with γ′ � γ′′. In other words, in a lossy version of a wsts the set of reachable



configurations contains configurations that are smaller than those of the original
model. The next lemma states an important property used in the remainder of
the paper.

Lemma 1. For any lossy version T ′ of a wsts T , we have that Lc(T ) = Lc(T
′).

3 Constrained Multiset Rewriting Systems (CMRS)

In this section we recall the main definitions and prove the first results for
constrained multiset rewriting systems [2]. Let us first give some preliminary
definitions. We use N to denote the set of natural numbers (including 0) and n
to denote the interval [0, . . . , n] for any n ∈ N. We assume a set V of variables
which range over N, and a set P of unary predicate symbols. For a set A, we
use A∗ and A⊗ to denote the sets of (finite) words and (finite) multisets over
A respectively. Sometimes, we write multisets as lists built using an associative-
commutative constructor, so [1, 5, 5, 1, 1] (equivalent to any of its permutations)
represents a multiset with three occurrences of 1 and two occurrences of 5; [ ]
represents the empty multiset. We use the usual relations and operations such
as ≤ (inclusion), + (union), and − (difference) on multisets. Given a finite set or
a finite multiset A, we use |A| to denote the cardinality of A. For a set V ⊆ V, a
valuation Val of V is a mapping from V to N. A condition is a finite conjunction
of gap order formulas of the forms: x <c y, x ≤ y, x = y, x < c, x > c, x = c,
where x, y ∈ V and c ∈ N. Here x <c y stands for x+ c < y. We often use x < y
instead of x <0 y. Sometimes, we treat a condition ψ as a set, and write e.g.,
(x <c y) ∈ ψ to indicate that x <c y is one of the conjuncts in ψ. We use true to
indicate an empty set of conditions. A term is of the form p(x) where p ∈ P and
x ∈ V. A ground term is of the form p(c) where p ∈ P and c ∈ N. We sometimes
say that a predicate symbol is nullary to mean that its parameter is not relevant
(hence may be omitted).

A constrained multiset rewriting system (CMRS) S consists of a finite set of
rules each of the form L ; R : ψ, where L and R are multisets of terms, and
ψ is a condition. We assume that ψ is consistent (otherwise, the rule is never
enabled). For a valuation Val , we use Val(ψ) to denote the result of substituting
each variable x in ψ by Val(x). We use Val |= ψ to denote that Val(ψ) evaluates
to true. For a multiset T of terms we define Val(T ) as the multiset of ground
terms obtained from T by replacing each variable x by Val(x). A configuration
is a multiset of ground terms. Each rule ρ = L ; R : ψ ∈ S defines a relation

between configurations. More precisely, γ
ρ

−→ γ′ if and only if there is a valuation
Val s.t. the following conditions are satisfied: (i) Val |=ψ, (ii) γ≥Val(L), and
(iii) γ′ = γ−Val(L)+Val(R).

Example 1. Consider the CMRS rule:

ρ = [p(x) , q(y)] ; [q(z) , r(x) , r(w)] : {x+ 2 < y , x+ 4 < z , z < w}

A valuation which satisfies the condition is Val(x) = 1, Val(y) = 4, Val(z) = 8,
and Val(w) = 10.



A CMRS configuration is a multiset of ground terms, e.g., [p(1), p(3), q(4)].

Therefore, we have that [p(1), p(3), q(4)]
ρ

−→ [p(3), q(8), r(1), r(10)].

Let us fix a CMRS S operating on a set of predicate symbols P. Let cmax be
the maximal constant which appears in the rules of S; cmax is equal to 0 if there
is no constant in S. We now define an ordering �c on configurations extracted
from the ordering defined in [2] to solve the coverability problem.

Definition 1. Given a configuration γ, we define the index of γ, index (γ), to
be a word of the form D0 · · ·Dcmax d0 B0 d1 B1 d2 · · · dn Bn where

– D0, . . . , Dcmax , B0, . . . , Bn ∈ P
⊗ and d0, d1, . . . , dn ∈ N \ {0};

– Bi must not be empty for 0 ≤ i ≤ n;
– for each p ∈ P, Di contains k occurrences of predicate p iff p(i) occurs k

times in γ for 0 ≤ i ≤ cmax;
– given v0 = cmax+d0, for each p ∈ P, B0 contains k occurrences of predicate
p iff p(v0) occurs k times in γ;

– given vi+1 = vi + di+1, for each p ∈ P, Bi+1 contains k occurrences of
predicate p iff p(vi+1) occurs k times in γ for all 0 ≤ i < n;

– for all p(v) ∈ γ with v > cmax, there exists i : 0 ≤ i ≤ n such that
v = cmax+ d0 + d1 + . . .+ di.

The ordering �c is obtained by composing string embedding and multiset inclu-
sion. The ordering �c is defined as follows.

Definition 2. Let D0 D1 · · · Dcmax d0 B0 d1 B1 d2 · · · dn Bn be the index
of a configuration γ1 and D′

0 D
′
1 · · · D′

cmax d
′
0 B

′
0 d

′
1 B

′
1 d

′
2 · · · d′m B′

m be the
index of a configuration γ2. Then, γ1 �c γ2 iff Di ≤ D′

i for 0 ≤ i ≤ cmax and
there exists a monotone injection h : n 7→ m such that B0 ≤ B′

h(0), Bi ≤ B′
h(i),

d0 ≤
∑h(0)

k=0 d
′
k, and di ≤

∑h(i)
k=h(i−1)+1 d

′
k for 1 ≤ i ≤ n.

From standard properties of orderings, it follows that �c is a well-quasi ordering.
Furthermore, a CMRS is monotonic with respect to corresponding ordering �c.
The following property then holds.

Proposition 1 ([2]). A CMRS S equipped with �c is well-structured.

Finally, to simplify the presentation, we assume in the rest of the paper
that the values appearing in the initial configuration γinit and in the accepting
configuration γacc are smaller or equal than cmax (to satisfy this condition we
can add a rule that is never fireable and in which there is a constant greater
than all values in γinit + γacc). We also asssume that the final configuration
γfin = [pfin] contains only one nullary term pfin.

3.1 A Symbolic Algorithm for Testing Coverability

In this section we give an overview of the algorithm for solving the coverability
problem based on the generic backward analysis algorithm presented in [1]. The



difficult challenge in applying this methodology is to invent a symbolic repre-
sentation (called constraints) which allows effective implementation of each step,
and which guarantees termination of the algorithm.

The algorithm operates on constraints, where each constraint φ characterizes
an infinite set [[φ]] of configurations. A constraint φ is of the form T : ψ where
T is a multiset of terms and ψ is a condition. The constraint characterizes the
(upward closed) set [[φ]] = {γ| ∃Val . (Val |= ψ) ∧ (Val(T ) �c γ)} of configura-
tions. Notice that if ψ is inconsistent, then [[φ]] is empty. Such a constraint can
be safely discarded in the reachability algorithm presented below. Therefore, we
assume in the sequel that all conditions in constraints are consistent. We define
Var(φ) = Var(T ) ∪ Var(ψ). Observe that the coverability problem can be re-

duced to constraint reachability. More precisely, γinit
∗

−→ [pfin ] is equivalent to

γinit
∗

−→ γ for some γ ∈ [[φfin ]] where φfin is the constraint [pfin(x)] : true.

For constraints φ1, φ2, we use φ1 ⊑ φ2 to denote that φ1 is entailed by
φ2, i.e., [[φ1]] ⊇ [[φ2]]. For a constraint φ, we define Pre(φ) to be a finite set
of constraints which characterize the configurations from which we can reach
a configuration in φ through the application of a single rule. In other words,
[[Pre(φ)]] = {γ| ∃γ′ ∈ [[φ]]. γ −→ γ′}.

For instance, given φ1 = [p(x1), q(x2), q(x3)] : {x1 <2 x2, x2 <1 x3}, and the
configurations γ1 = [p(2), q(8), q(5), p(1)] and γ2 = [p(2), q(2), q(5), p(1)]. Then
γ1 ∈ [[φ1]] and γ2 6∈ [[φ1]]. Consider now φ2 = [p(y1) , q(y2)] : {y1 < y2} and
φ3 = [p(y1) , q(y2)] : {y1 <4 y2}. Then φ2 ⊑ φ1 and φ3 6⊑ φ1.

Given an instance of the coverability problem, defined by γinit and the constraint
φfin corresponding to pfin , the symbolic algorithm performs a fixpoint iteration
starting from φfin and repeatedly applying Pre on the generated constraints.
The iteration stops if either (i) we generate a constraint φ with γinit ∈ [[φ]]; or
(ii) we reach a point where, for each newly generated constraint φ, there is a
constraint φ′ generated in a previous iteration with φ′ ⊑ φ. We give a positive
answer to the coverability problem in the first case, while we give a negative
answer in the second case.

In [2] we show computability of membership, entailment, and define an ef-
fective predecessor operator for constraints. To give an idea of these definition,
let S be a CMRS and φ2 be a constraint. We define Pre(φ2) =

⋃

ρ∈S Preρ(φ2),
where Preρ(φ2) describes the effect of running the rule ρ backwards from the
configurations in φ2. Let ρ = (L ; R : ψ) and φ2 = (T2 : ψ2). Let W be any set
of variables such that |W | = |Var(φ2) ∪ Var(ρ)|. We define Preρ(φ2) to be the
set of constraints of the form T1 : ψ1, such that there are renamings Ren,Ren2

of Var(ρ) and Var(φ2) respectively to W , and

• T1 = Ren2(T2) − Ren(R) + Ren(L) • ψ1 = Ren(ψ) ∧ Ren2(ψ2)

Example 2. For instance, consider the constraint φ = [q(x1) , s(x2) , r(x2)] :
{x1 < x2} and the rule ρ = [p(y1) , p(y3)] ; [q(y2) , r(y3)] : {y3 < y2}.
Fix W = {w1, w2, w3, w4, w5}, and define Ren2 = (x1 7→ w1, x2 7→ w2), and
Ren = (y1 7→ w3, y2 7→ w1, y3 7→ w4).



Then one member of Preρ is given by
[s(w2), r(w2), p(w3), p(w4)] : {w1 < w2 , w4 < w1}.

The termination of the algorithm is obtained by a non-trivial application of a
methodology based on the theory of well- and better-quasi orderings described
in [2].

3.2 Three Interesting Fragments of CMRS: Γ0, Γ1 and Γ2

In this section we defined three fragments of CMRS that we use as a technical
tool for comparisons with other wsts.

The fragment Γ0 In the fragment Γ0 of CMRS every rule L ; R : ψ satisfies
the following conditions: every variable x occurs at most once in L and at
most once in R, and ψ does not contain equality constraints. As an example,
[p(x), r(y)] ; [q(x), r(z)] : x < y, y < z is a rule in Γ0, whereas [p(x), q(x)] ;

[q(y)] : true and [p(x)] ; [q(y), r(y)] : true are not in Γ0.
The fragment Γ1 The fragment Γ1 is obtained by restricting CMRS to nullary

predicates only (i.e., predicates with no parameters).
The fragment Γ2 The fragment Γ2 is the fragment of CMRS in which each

rule L ; R : ψ satisfies the condition |R| ≤ |L|. In other words, in Γ2 the
cardinality of a reachable configuration is always bounded by the cardinality
of the initial configuration.

In the rest of the paper we show that these three fragments have the same
expressive power resp. as Lossy FIFO Channel Systems, Petri nets, and Integral
Relational Automata. To prove this statement, it is useful to isolate properties
of CMRS and of these fragments with respect to coverability acceptance.

3.3 Properties of CMRS

In this section we prove some properties of CMRS needed in the rest of the
paper.

We first introduce some new terminology. We say that a configuration γ with
index (γ) = D0 . . .DcmaxB0d0 . . . dnBn is linear if Bi is a singleton multiset for

i : 0 ≤ i ≤ n. We also say that an execution γ0
ρ1
−→ . . .

ρk−→ γk is linear whenever
γi is linear for any i : 0 ≤ i ≤ k.

Furthermore, we say that γ is cmax-bounded if index(γ) = D0 . . . Dcmax , i.e.,
all the natural numbers in γ are between 0 and cmax.

An important property of CMRS is related to the possibility of lifting an
execution from an initial cmax-bounded configuration γinit to a configuration γ
to a new execution leading from γinit to a configuration with larger ”gaps” (for
values greater than cmax) than those in γ.

We first define a restriction ≺ of the relation �c in which we require that the
distribution of predicates in two configurations has the same structure but larger
gaps.
Formally, γ1 ≺ γ2 holds iff the following conditions are satisfied:



– index (γ1) = D0 . . .Dcmaxd0B0d1 . . . dnBn

– index (γ2) = D0 . . .Dcmaxd
′
0B0d

′
1 . . . d

′
nBn

– d′i ≥ di for any i : 0 ≤ i ≤ n.

We say that an execution γ0
ρ1
−→ γ1 . . .

ρk−→ γk subsumes an execution γ′0
ρ′

1−→

γ′1 . . .
ρ′

k−→ γ′k if for all i : 0 ≤ i ≤ k, γ′i ≺ γi and for all i : 1 ≤ i ≤ k, ρi = ρ′i.
The following property then holds. The proof is in appendix A.

Proposition 2. Let a CMRS with initial cmax-bounded configuration γinit . For

any execution e = γinit
ρ1...ρk−→ γ, for any configuration γ′ such that γ ≺ γ′, there

exists an execution γinit
ρ1...ρk−→ γ′ that subsumes e.

Now, we introduce the notion of linearization of a configuration. Linearization
is used later in the paper to characterize the class of CMRS languages.

Given a configuration γ with

index (γ) = D0 . . .Dcmaxd0B0 . . . diBi + [p]di+1Bi+1 . . . dnBn

where Bi is not empty, we say that γ′ is a linearization of γ if

index (γ′) = D0 . . . Dcmaxd
′
0B0 . . . d

′
iBid[p]d

′
i+1Bi+1 . . . d

′
nBn

such that

– ∀0 ≤ j ≤ n : d′j ≥ dj ;
– d ≥ 1.

The following lemmas then hold. The proof is in appendix A.

Lemma 2. Let S be a Γ0 model with initial cmax-bounded configuration γinit .

Suppose there exists a linear execution γinit
ρ1...ρk−→ γk, γk

ρ
−→ γ and γ is not

linear. Then, there exists a (possibly different) linear execution γinit
ρ1...ρk−→ γ′k

such that γ′k
ρ

−→ γ′ and γ′ is a linearisation of γ.

Lemma 3. For a Γ0 model S, let γ1 and γ2 be two configurations such that γ2

is a linearisation of γ1, γ1
ρ1...ρk−→ γ3 implies there exists γ4 such that γ2

ρ1...ρk−→ γ4.

Given a CMRS S of Γ0 with initial cmax-bounded linear configuration γinit and
accepting cmax-bounded linear configuration γacc, we define Llin

c (S) as the set

{w | there is a linear executionγinit
ρ1...ρk−→ γk s.t.γacc �c γk, λ(ρ1) · · ·λ(ρk) = w}

From Lemma 2 and 3, we obtain the following proposition.

Proposition 3. For all CMRS S of Γ0 with an initial cmax-bounded linear con-
figuration γinit and cmax-bounded linear accepting configuration γacc, we have
Lc(S) = Llin

c (S).



Proof.
⊇: Immediate.

⊆: To simplify the presentation, let us assume that ∀L ; R : ψ ∈ S : for each
variable x that appears in L + R : either (x = c) ∈ ψ (0 ≤ c ≤ cmax) or
(x > cmax) ∈ ψ. This assumption implies that the effect of a rule ρ is constant
if we only consider ground terms p(x) with x : 0 ≤ x ≤ cmax.

Suppose that γinit
ρ1
−→ γ1

ρ2
−→ . . .

ρk−→ γk with γacc �c γk.
Now suppose that γ1 is not linear. Applying Lemma 2, we have a lineariza-

tion γ′1 of γ1 such that γinit
ρ1
−→ γ′1. Furthermore, following Lemma 3, we have

γ′1
ρ2...ρk−→ γ′k. Iterating the reasoning, we obtain a linear configuration γ′′1 such

that γinit
ρ1
−→ γ′′1 and γ′′1

ρ2...ρk−→ γ′′k .
Repeating the reasoning for the other intermediate configurations, we con-

clude that there exists a linear execution γinit
ρ1...ρk−→ γ′′′k .

From our hypothesis, ρ1 . . . ρk has constant effect if we only consider ground
terms p(x) with x : 0 ≤ x ≤ cmax. Hence, we have that

∑

p(n)∈γk,0≤n≤cmax

[p(n)] =
∑

p(n)∈γ′′′

k
,0≤n≤cmax

[p(n)]

and γacc �c γk implies that γacc �c γ
′′′
k since γacc is cmax-bounded. We conclude

that λ(ρ1) · · ·λ(ρk) ∈ Lc(S) implies λ(ρ1) · · ·λ(ρk) ∈ Llin
c (S). 2.

4 Expressive Power of CMRS

We are ready now to give a first characterization for the expressive power of
CMRS. In [15, Prop. 4], the authors show that there exists a recursively enu-
merable (RE) language that cannot be recognized by any wsts with coverability
acceptance. Hence, the following proposition holds.

Theorem 1. Lc(CMRS) ⊂ RE.

With reachability as accepting condition, CMRS recognize instead the class of
recursively enumerable languages (RE).

Theorem 2. Lr(CMRS) = RE.

Proof. We prove that CMRS can weakly simulate 2-counter machines. In the
proof we also show that repeated reachability is undecidable for CMRS. We
recall the model of a 2-counter machine (CM) which is pair (Q, δ), where Q is
a finite set of states, and δ is the transition function. A transition is of the form
(q1, op, q2), where q1, q2 ∈ Q, and op is either an increment (of the form cnt1++
or cnt2 + +); a decrement (of the form cnt1 −− or cnt2 −−); or a zero-testing
(of the form cnt1 = 0? or cnt2 = 0?). Operations and tests on counters have
their usual semantics, assuming that the values of counters are natural values.
In particular, decrement on a counter equal to zero is blocking. A 2-counter
machine accepts an execution if it ends into the state qfin. A lossy 2-counter



machine (LCM) is of the same form as a counter machine. The difference in
semantics is in the zero-testing operation. More precisely, the zero-testing of
cnt1 is simulated by resetting the value cnt1 to zero, and decreasing the value
of cnt2 by an arbitrary natural number (possibly 0). The zero-testing of cnt2 is
performed in a similar manner.

Assume an LCM M = (Q, δ). We shall construct a CMRS S which simulates
M. The simulation of M occurs in a sequence of phases. During each phase,
S simulates increment and decrement transitions of M. Each phase is indexed
by a natural number which is incremented at the end of the phase. As soon as
M performs a zero-testing of a counter, S enters an intermediate stage. After
conclusion of the intermediate stage, a new phase is started and the index phase
is increased.

The set of predicates symbols in S is divided into three groups:

– Two nullary predicate symbols q and q′ for each q ∈ Q. We use q′ during
the intermediate stages of the simulation;

– Two predicate symbols cnt1 and cnt2, which encode the values of cnt1 and
cnt2 respectively;

– A predicate phase whose argument carries the index of the current phase.
Furthermore, we use a predicate symbol phase ′ to store the index of the
previous phase during the intermediate stages of the simulation.

A configuration of S contains, during a given phase of the simulation, the
following ground terms:

– A term of the form q which encodes the current state of M;
– A term of the form phase(c) where c is the index of the current phase;
– Terms of the form cnt1(c) where c is the index of the current phase. The

number of such terms encodes the current value of cnt1. There are also
a number of terms of the form cnt1(d) where d is strictly lesser than the
index of the current phase. Such terms are redundant and do not affect the
encoding. Similar terms exist to encode cnt2.

W.l.o.g., assume that the initial configuration I0 of the 2-counter machine has
control state q0 and both counters equal to zero. The S configuration that en-
codes it is defined then as

γinit =
[

q0, phase(0), phase ′(0)
]

where phase ′ is an auxiliary predicate needed to simulate a reset. If cnt i is
initially equal to ki, then we simply add to γ0 ki occurrences of term cnt i(0) for
i : 1, 2. For instance, if in I0 cnt1 = 1 and cnt2 = 2, then

γinit = [q0, phase(0), cnt1(0), cnt2(0), cnt2(0)]

An increment transition (q, cnt1 + +, q2) ∈ δ labeled with a is simulated by
a rule labeled with a of the form

[q1 , phase(x)] ; [q2 , phase(x) , cnt1(x)] : true



We increase the value counter cnt1 by adding one more term whose predicate
symbol is cnt1 and whose argument is equal to the index of the current phase.

A decrement transition (q, cnt1 −−, q2) ∈ δ labeled with a is simulated by a
rule labeled with a of the form

[q1 , phase(x) , cnt1(x)] ; [q2 , phase(x)] : true

We decrease the value counter cnt1 by removing one of the corresponding terms
from the configuration. Observe that terms whose arguments are less than the
index of the current phase are not used, and hence they do affect the encoding.

A transition (q, cnt1 = 0?, q2) ∈ δ labeled by a is simulated by the following
three rules (the two first are labeled with ǫ and the last one with a):

[q1 , phase(x) , phase ′(x)] ; [q′1 , phase(y) , phase ′(x)] : x < y
[q′1 , cnt2(x) , phase(y) , phase ′(x)]

; [q′1 , cnt2(y) , phase(y) , phase ′(x)] : true
[q′1 , phase(y) , phase ′(x)] ; [q2 , phase(y) , phase ′(y)] : true

We enter the intermediate phase by changing from q1 to q′1. We store the current
index using phase ′, and generate a new index which is strictly larger than the
current one. This resets counter cnt1 since all terms in its encoding now have
too small arguments. Finally, we change the arguments of (some of) the terms
encoding cnt2 to the new phase. Here, not all such terms may receive new ar-
guments, and hence the value cnt2 may “unintentionally” be reduced. We use
redundant terms to refer to terms which have either cnt1 or cnt2 as predicate
symbol, and whose arguments are smaller than the current index,

Mayr shows in [21] undecidability of the repeated state reachability problem
for LCM, a decision problem defined as follows: Given a lossy counter machine
and two states qinit and qfin , check whether there is a computation starting from
qinit (with both counter values being equal to zero) that visits qfin infinitely
often.

We can extend the proof to show Theorem 2 as follows. The key observation
here is that redundant terms are not removed during the simulation procedure
described above. As a consequence, any reachable configuration which does not
contain redundant terms corresponds to a state in a computation of a perfect (i.e.
non-lossy) counter machine. We add the nullary predicate pfin and the following
rules labeled by ǫ to our CMRS:

[qfin ] ; [pfin] : true
[pfin , phase(x) , cnt1(x)] ; [pfin , phase(x)] : true
[pfin , phase(x) , cnt2(x)] ; [pfin , phase(x)] : true

[pfin , phase(x)] ; [pfin] : true

In other words, if we reach a configuration where M is in qfin , we first move to
pfin. Then, we start erasing ground terms that encode the value of the counters
such that their argument correspond to that of the current phase predicate. This
way, redundant ground terms (i.e., with arguments corresponding to previous



phases) are not erased. This implies that there exists an execution where S
recognizes a word w that reaches [pfin] (i.e., with no redundant terms) iff there
exists an execution where a non lossy 2-counter machine recognizes the word w
that reaches qfin . ⊓⊔

5 Data nets

Data nets [20] are an extension of Petri nets in which tokens are colored with
data taken from an infinite domain D equipped with a linear and dense ordering
≺. Due to lack of space, we present here only the key concepts needed in the rest
of the paper (see [20] for formal definitions). A data net consists of a finite set of
places P and of a finite set of transitions. A data net marking s is a multiset of
tokens that carry data in D. Formally, a marking s is a finite sequence of vectors
in N

P \ {0}, where 0 is the vector that contains only 0’s. Each index i in the
sequence s corresponds to some di ∈ D such that i ≤ j if and only if di ≺ dj .
For each p ∈ P , s(i)(p) is the number of tokens with data di in place p.

First of all, a data net transition t has an associated arity αt (a natural
number greater than zero). The arity αt = k is used to non-deterministically
select k distinct data d1 ≺ . . . ≺ dk from the current configuration s. Some of the
selected data may not occur in s (they are fresh). This choice induces a finite and
ordered partitioning of the data in s, namely R(αt) = (R0, S1, R1, . . . , Sk, Rk),
where R0 contains all data d : d ≺ d1 in s, Si = {di} for i : 1, . . . , k, Ri contains
all d : di ≺ d ≺ di+1 in s for i : 1, . . . , k − 1, and Rk contains all d : dk ≺ d in s.
Clearly, R(αt) also induces a natural partitioning of the multiset of tokens in s
based on the attached data.
For any k ≥ 1, let k0 = {1, . . . , k}. A transition t operates on the regions in
the partitioning R(αt) in three steps defined resp. by three matrices Ft, Ht ∈
N

R(αt)×P , and Gt ∈ N
R(αt)×P×R(αt)×P .

(1) Subtraction: Ft specifies the number of tokens with data d1, . . . , dk that has
to be removed from s. By definition, Ft(Ri, p) = 0 for i ∈ k and p ∈ P . The
transition t is enabled if the subtraction is possible on each place P . This step
yields an intermediate configuration s1 defined as follows:

For each i ∈ k0 and p ∈ P , s1(di)(p) = s(di)(p) − Ft(Si, p)
For each j ∈ k, d ∈ Rj , p ∈ P , s1(d)(p) = s(d)(p).

(2) Multiplication: Gt specifies how many tokens are transferred from one place
to another with possible multiplication of their occurrences and modification of
their data (Gt(π, p, π

′, p′) ≥ 0 and, by definition, Gt(Ri, p, Rj, q) = 0 for any
i 6= j ∈ k and any p, q ∈ P ). This step yields an intermediate configuration s2
defined as follows:
For each i ∈ k0 and p ∈ P :

s2(di)(p) =
∑

j∈k0

∑

q∈P

s1(dj)(q) ·Gt(Sj , q, Si, p)+
∑

j∈k

∑

d∈Rj

∑

q∈P

s1(d)(q) ·Gt(Rj , q, Si, p)



For each i ∈ k, d ∈ Ri, and p ∈ P :

s2(d)(p) =
∑

j∈k0,q∈P

s1(dj)(q) ·Gt(Sj , q, Ri, p) +
∑

q∈P

s1(d)(q) ·Gt(Ri, q, Ri, p)

Notice that transfers of tokens from region Ri to region Rj with i 6= j are
forbidden.

(3) Addition: Finally, Ht specifies the number of tokens that are added to each
place in P . Its application yields the successor configuration s′ such that:

For each i ∈ k0 and p ∈ P , s′(di)(p) = s2(di)(p) +Ht(Si, p)
For each j ∈ k, d ∈ Rj , p ∈ P , s′(d)(p) = s(d)(p) +Ht(Rj , p).

As proved in [20], data nets are well-structured with respect to the well-quasi
ordering �d defined on markings as follows. Let Data(s) be the set of data values
that occur in a marking s. Then, s1 �d s2 iff there exists an injective function
h : Data(s1) 7→ Data(s2) such that (i) h is monotonic and (ii) s1(d)(p) ≤
s2(h(d))(p) for each d ∈ Data(s1) and p ∈ P .

Ft =





R0 S1 R1

p q p q p q
0 0 1 0 0 0





Ht =





R0 S1 R1

p q p q p q
0 0 0 1 0 0





Gt =

























R0 S1 R1

p q p q p q

R0
p 1 0 3 0 0 0
q 3 1 0 0 0 0

S1
p 0 0 1 0 0 0
q 2 0 0 0 0 0

R1
p 0 0 0 0 1 0
q 0 0 0 0 0 1

























Fig. 1. A data net transition with arity αt = 1.

Example 3. Consider a data net with P = {p, q} and the transition in Fig. 1.
For a generic configuration s, the new configuration s′ is such that:

– s′(d1)(p) = s(d1)(p) − 1 +Σd∈R0
3 ∗ s(d)(p) and s′(d1)(q) = 1;

– For each d ≺ d1, s
′(d)(p) = s(d)(p)+3 ∗ s(d)(q)+2 ∗ s(d1)(q) and s′(d)(q) =

s(d)(q);

– For each d ≻ d1, s
′(d)(p) = s(d)(p) and s′(d)(q) = s(d)(q).

For instance, let e1 ≺ e2 ≺ e3 ≺ e4 ∈ D and assume that the transition selects
e3 as index in S1, then:





e1 e2 e3 e4
p q p q p q p q
3 2 5 1 2 10 2 2



 →





e1 e2 e3 e4
p q p q p q p q
29 2 28 1 25 1 2 2







5.1 Data nets vs CMRS

In [20] the authors mention that it is possible to define an encoding of CMRS
in the fragment of data net without whole place operations (Petri data nets)
that preserves coverability. From this observation, it follows that Lc(CMRS) ⊆
Lc(Data nets).

In this section we tighten this relation and show that for each data net D we
can effectively build a CMRS S such that Lc(S) = Lc(D). In the following, given
a multiset M with symbols in P and a value or variable x, we use Mx to denote
the multi set of P -terms such that Mx(p(x)) = M(p) (=number of occurrences
of p in M) for each p ∈ P , and Mx(p(y)) = 0 for any y 6= x and p ∈ P .

Configurations Assume an initial data net marking s0 with data d1 ≺ . . . ≺
dn. We build a CMRS representation of s0 by non-deterministically selecting n
natural numbers v1 < . . . < vn strictly included in some interval [f, l]. P -terms
with parameter vi represent tokens with data di in place p. Formally, we generate
the representation of s0 by adding to S a rule labelled with ǫ that rewrites an
initial nullary term init as follows:4

[init] ; [first(f), last(l)] +
∑

i:1,...,nM
xi

i : f < x1 < . . . < xn < l (init)

where Mi is the multiset s0(di) for each i ∈ n0. The non-determinism in the
choice of f, l, x1, . . . , xn make the CMRS representation of s0 independent from
specific parameters assumed by terms.

Transitions are encoded by CMRS rules that operate on the values in [f, l]
used in the representation of a marking. Most of the CMRS rule are based on
left-to-right traversals of P -terms with parameters in [f, l].

Subtraction Consider a transition t with αt = k. We first define a (silent) CMRS-
rule that implements the subtraction step of t:

[first(f), last(l)] + Ft(S1)
x1 + . . .+ Ft(Sk)xk ; (subtract)

[ı0(f), ı1(x1), ...., ık(xk), ık+1(l), newt] : f < x1 < ... < xk < l

In the subtract rule we non-deterministically associate a value xi to region Si.
The selection is performed by removing (from the current configuration) the
multiset Ft(Si)

xi that contains Ft(Si, p) occurrences of p(xi) for each p ∈ P .
The association between value xi and region Si is maintained by storing xi in
a ıi-term (introduced in the right-hand side of the rule). If Ft(Si, p) = 0 for
any p ∈ P , then xi may be associated to a data di not occurring in the current
marking (i.e., selection of fresh data is a special case). Furthermore, by removing
both the first- and the last-term, we disable the firing of rules that encode other
data net transitions. Fig. 9 in appendix shows an example of application of the
subtract rule.

4 We recall that [t1, . . . , tn] denotes a multisets of terms. Furthermore,
∑

i:1,...,k
Mi =

M1 + . . . + Mk, where + is multiset union.



The values x1, . . . , xk stored in ı1-,. . . ,ık-terms play the role of pointers to the
regions S1, . . . , Sk. We refer to them as to the set of αt-indexes. The parameters
of terms in [f, l] associated to the other regions R0, . . . , Rk are called region-
indexes.

Multiplication To simulate the multiplication step we proceed as follows. We
first make a copy of the multiset of P -terms with parameters v1, . . . , vn in [f, l]
by copying each p-term with parameter vi in a p-term with parameter wi such
that f ′ < w1 < . . . < wn < l′ and [f ′, l′] is an interval to the right of [f, l], i.e.,
l < f ′. The newt-term in the subtract rule is used to enable the set of (silent)
CMRS rules in Fig. 2 in appendix that create the copy-configuration. During
the copy we add a X-term for any visited region index. These terms are used to
remember region indexes whose corresponding P -terms are all removed in the
multiplication step (e.g., when all tokens with data d ∈ Ri are removed).

For instance, [p(v1), p(v2), p(v2), q(v3)] with f < v1 < v2 < v3 < l is copied
as [p(w1),X(w1), p(w2), p(w2),X(w2), q(w3)X(w3)] for some w1, w2, w3 such that
f < l < f ′ < w1 < w2 < w3 < l′. The CMRS rules of Fig. 2 use a special term
↑ as a pointer to scan the indexes in [f, l] from left to right and create new P -
term with parameters in the interval [f ′, l′]. The pointer is non-deterministically
moved to the right. Thus during the traversal we may forget to copy some token.
This is the first type of loss we find in our encoding. Notice that lost tokens have
parameters strictly smaller that f ′.

The simulation of the multiplication step operates on the copy-configuration
only (that with P -terms). The (silent) CMRS rules that implement this step are
shown in Fig. 3 in appendix. The intuition behind their definition is as follows.

We first consider all αt-indexes of P -terms from left to right. For each αt-
index vi, we proceed as follows. We first select and remove a term p(vi) (encoding
a given token). We compute then the effect of the whole-place operation on the
entire set of αt-indexes (including vi itself). More specifically, for an αt-index
vj we add Gt(Si, p, Sj , q) occurrences of the term q(vj) to the current CMRS
configuration. The use of P - and P -terms with parameters in the same interval
allows us to keep track of tokens still to transfer (P -terms) and tokens already
transferred (P -terms). We then consider all remaining indexes by means of a
left-to-right traversal of region-indexes in the current configuration. During the
traversal, we add new P -terms with region-indexes as parameters as specified by
Gt. During this step, we may forget to transfer some P -term. This is the second
type of loss we find in the encoding. After this step we either consider the next
token with αt-index vi or we move to the next αt-index. Fig. 10(a) in appendix
illustrates the simulation of this kind of transfers (i.e., from Si to Sj/Rj).

After the termination of the whole-place operations for terms with αt-indexes,
we have to simulate the transfer of P -terms with region-indexes. For each such
an index, we transfer tokens within the same region-index or to an αt-index. To
simulate these operations we scan region-indexes from left-to-right to apply the
matrix Gt. The (silent) CMRS rules that implement this step (enabled by the by
term trRt) are shown in Fig. 4. Fig. 10(b) in appendix illustrates the simulation
of this type of whole-place operation.



Addition As a last step we add tokens to αt-indexes and visited region indexes as
specified by Ht. For αt-indexes, we need a single rule that applies the matrix Ht.
For region-indexes, we traverse from left-to-right the current configuration and
apply Ht to each marked (with a X-term) region-index w. As mentioned before,
the X-term allows us to apply Ht to regions emptied by the multiplication step.
The rules for this step (associated to terms addt and addRt) are shown in Fig.
5. All the rules are silent except the last one whose label is the same as that of
t. Fig. 10(c) in appendix shows an example of their application.

During the traversal, we may ignore some (marked) region-index. This is the
last type of loss in our encoding. The new configuration is the final result of the
simulation of the transition. Due to the possible losses in the different simulation
steps, we may get a representation of a data net configuration smaller than the
real successor configuration.

To formalize the relation between a data net D and its CMRS encoding E(D),
for a configuration s with data d1 ≺ . . . ≺ dk we use sv to denote the CMRS
representation with indexes v = (v1, . . . , vk).

Proposition 4. For configurations s0, s1, s, s
′, the following properties hold:

i) If s0
w

−→ s1 in D, then there exists v such that [init]
w

−→ s1
v in E(D);

ii) Furthermore, if [init]
w

−→ c in E(D) and sv �c c for some v, then there

exists s1 such that s0
w

−→ s1 in D with s �d s1.

Finally, suppose that the accepting data net marking is a sequence M1 . . .Mk of
k vectors (multisets) over N

P . Then, we add a silent CMRS rule

[first(f), last(l)] +
∑

i∈{1,...,k}

Mxi

i ; [pfin] : f < x1 < x2 < . . . < xk < l, x = 0

where pfin is a fresh (with arity zero) predicate. By adding this rule, the accept-
ing CMRS configuration can be defined as the singleton [pfin]. From Lemma 1
and Prop. 4, we have the following result.

Theorem 3. Lc(data nets) = Lc(CMRS)

5.2 Extensions of data nets

We show in this section how to modify the encoding of Data nets defined in the
previous section to encode some extensions of Data nets. This allows us to show
that the proposed extensions have the same expressiveness as CMRS and, hence,
as Data nets. Since the encoding we propose is effective (i.e., it can be computed
automatically), from the algorithm for coverability in CMRS we obtain for free
verification algorithm for the proposed extensions of Data nets.

As a first extension, we consider freshness of data values. Let us consider
a data net transition t with αt = k. In the semantics of data nets, some of
the k data values selected by t may be fresh, i.e., they don’t have to occur in
the current configuration. This definition can be extended by introducing the



constraint that some of the selected data must be fresh for the transition to be
fired. In the Petri net setting a similar operator has been considered in the ν-nets
of [18] to create new, unused identifier.

For simplicity, we consider here the extension of data net transitions in which
we require that only one of the αt data value must be fresh. This kind of transi-
tion can be modelled by extending the CMRS encoding of the subtraction step
as follows. Before selecting the αt data, we make a copy (in a new interval) of the
current configuration. In the new configuration we non-deterministically mark
using predicate new a value x distinct from the values used to represent tokens.
After this preliminary step, we apply the subtraction phase by requiring that
the value x is one of the selected ones (i.e., we need αt rules for this last step).
Formally, we use the rules in Fig. 6 in appendix. This extension provides a direct
way to model freshness without need of ordering identifiers and of maintaining in
a special place the last used one (the natural way of modelling ν-nets in ordinary
data nets).

Another possible extension concerns the relaxation of some of the restrictions
in the definition of data nets in [20]. Assume we allow transfers between regions
Ri and Rj with i 6= j. The semantics of a transfer with Gt(Ri, p, Rj , p

′) = m > 0
is the following. For each d ∈ Ri, place p ∈ P , and each token with d in p,
we add m tokens with data d′ to p′ for each d′ ∈ Rj . Furthermore, we can also
consider a new type of whole-place operation within the same region Ri in which
we can multiply the tokens with data d for each data with value d′ ∈ Ri with
d 6= d′. More formally, assume we add a new matrix Mt(Ri, p, Ri, p

′) to specify,
for each token in p with data d ∈ Ri, how many tokens to add to place p′ with
data d′ for each d′ ∈ Ri, d

′ 6= d. These extensions of data net transitions are still
monotonicity w.r.t. �d. Furthermore, they can be weakly simulated in CMRS as
shown in Fig.7 in appendix. Thus, we have that coverability remains decidable
and, from Lemma 1, we have that

Lc(extended data nets) = Lc(CMRS).

6 Lossy FIFO Channel Systems

In this section we study the relationship between the fragment Γ0 of CMRS
defined in Section 3.2 and lossy (FIFO) channel systems (LCS) [4].

A Lossy FIFO Channel System (LCS) consists of an asynchronous parallel
composition of finite-state machines that communicate by sending and receiving
messages via a finite set of unbounded lossy FIFO channels (in the sense that
they can non-deterministically lose messages). Formally, an LCS F is a tuple
(Q,C,M, δ) where Q is a finite set of control states (the Cartesian product of
those of each finite-state machine), C is a finite set of channels, M is a finite set
of messages, δ is a finite set of transitions, each of which is of the form (q1, Op, q2)
where q1, q2 ∈ Q, and Op is a mapping from channels to channel operations. For
any c ∈ C and a ∈M , an operation Op(c) is either a send operation !a, a receive
operation ?a, the empty test ǫ?, or the null operation nop. A configuration γ is a



For k = αt , i ∈ {0 , . . . , k}, and any p ∈ P :

Copy of indexes in αt

[ı0(x0), . . . , ık+1(xk+1), newt] ;

[ı0(x0), . . . , ık+1(xk+1), 0(x
′

0), . . . , k+1(x
′

k+1), ↑(x0),⇑(x′

0)] :
xk+1 < x′

0 < . . . < x′

k+1

Copy p to p for αt − indexes

[↑(x), ıi(x),⇑(y), i(y), p(x)] ; [↑(x), ıi(x),⇑(y), i(y), p(y)] : true

Copy p to p for region − indexes

[ıi(x), ↑(u), p(u), ıi+1(x
′), i(y),⇑(v), i+1(y

′)] ;

[ıi(x), ↑(u), ıi+1(x
′), i(y), p(v),⇑(v), i+1(y

′)] : x < u < x′, y < v < y′

Move pointers to the right

[↑(u), p(u′), ık+1(x),⇑(v), k+1(y)] ;

[↑(u′), ık+1(x),⇑(v′), p(v′), X(v′), k+1(y)] : u < u′ < x, v < v′ < y

Terminate copy , replace current conf with new one

[ı0(f), ı1(x1), ...., ık(xk), ık+1(l), 0(f
′), 1(x

′

1), ...., k(x′

k), k+1(l
′), ↑(u),⇑(v)] ;

[ı0(f
′), ı1(x

′

1), ...., ık(x′

k), ık+1(l
′), trt] : true

Fig. 2. Silent CMRS rules for newt: generation of a new configuration with p-terms.

pair (q, w) where q ∈ Q, and w is a mapping from C to M∗ giving the content of
each channel. The initial configuration γinit of F is the pair (q0, ε) where q0 ∈ Q,
and ε denotes the mapping that assigns the empty sequence ǫ to each channel.
To simplify the presentation, w.l.o.g. we fix usually the accepting configuration
γfin = (qfin, ε) for some qfin ∈ Q. The (strong) transition relation (that defines
the semantics of machines with perfect FIFO channels) is defined as follows:

(q1, w1)
σ

−→ (q2, w2) if and only if σ = (q1, Op, q2) ∈ δ such that if Op(c) =!a,
then w2(c) = w1(c) · a; if Op(c) =?a, then w1(c) = a · w2(c); if Op(c) = ǫ?
then w1(c) = ǫ and w2(c) = ǫ; if Op(c) = nop, then w2(c) = w1(c). Now let �l

be the quasi ordering on LCS configurations such that (q1, w1) �l (q2, w2) iff
q1 = q2 and ∀c ∈ C : w1(c) �w w2(c) where �w indicates the subword relation.
By Higman’s theorem, we know that �l is a well-quasi ordering. We introduce
then the weak transition relation

σ
=⇒ that defines the semantics of LCS: we have

γ1
σ

=⇒ γ2 iff there exists γ′1 and γ′2 s.t. γ′1 �l γ1, γ
′
1

σ
−→ γ′2, and γ2 �l γ

′
2. Thus,

γ1
σ

=⇒ γ2 means that γ2 is reachable from γ1 by first losing messages from the
channels and reaching γ′1, then performing a transition, and, thereafter losing
again messages from channels. As shown in [4], an LCS is well-structured with
respect to �l. Furthermore, notice that for any model with lossy semantics like
LCS, e.g., lossy vector addition systems [21], the class of c-languages coincide
with the class of r-languages, i.e., Lr(LCS) = Lc(LCS).

Our first result is that Γ0 and LCS define the same class of c-languages.

Theorem 4. Lc(Γ0) = Lc(LCS).

To prove the previous result, we give separate proofs of the two inclusions.



For k = αt , i ∈ {1 , . . . , k}, j ∈ {0 , . . . , k}, and p ∈ P :

Start from first index

[trt] ; [trt,1] : true

Select a token from an index in αt , apply Gt to other indexes :

[ı0(x0), ı1(x1), . . . , ıi(xi), . . . , ık(xk), ık+1(xk+1), p(xi), trt,i] ;

[ı0(x0), ı1(x1), . . . , ık(xk), ık+1(xk+1), applyt,i,p(x)] + Σk
j=1Gt(Si, p, Sj)

xj : x0 < x < xk+1

Apply Gt to indexes inside regions, move to the right

[ıj(v), applyt,i,p(u), p(u), ıj+1(v
′)] ;

[ıj(v), applyt,i,p(u
′), p(u), ıj+1(v

′)] + Gt(Si, p, Rj)
u : v < u < v′, u < u′

Terminate visit continue with next token

[applyt,i,p(u)] ; [trt,i] : true

Move to next index

[trt,j ] ; [trt,j+1] : true

Terminate transfer of tokens for indexes in αt , start transfer of tokens of regions

[ı0(f), trt,k] ; [trRt(f)] : true

Fig. 3. Silent CMRS rules for simulation of transfer: Gt(Si, p, π)x is the multiset that,
for each q ∈ P , contains Gt(Si, p, π, q) occurrences of the term q(x).

Proposition 5. Lc(LCS) ⊆ Lc(Γ0).

Proof. Assume an LCS F . We build a Γ0 S that simulates F . The set of predicate
symbols in S consists of the following: For each q ∈ Q, there is a nullary predicate
symbol q in S. For each channel ci we use the function symbols headi and taili

as pointers to the head and tail of the queue ci. For each channel ci and each
message a ∈M we have the predicate symbol ai in S.

If C = {c1, . . . , cn}, then the initial configuration (s0, ǫ) is represented as

M0 =
[

s0 , head
1(v0) , tail

1(v0 + 1) , . . . , headn(v0) , tail
n(v0 + 1)

]

for some v0 ∈ N.
In order to represent the queue ci containing the word a1a2 . . . an, we will

use the multiset
[

headi(v0) , a
i
1(v1) , . . . , a

i
n(vn) , taili(vn+1)

]

for some positive integers v0 < v1 < . . . < vn+1.

Since an LCS transition (q1, Op, q2) operates simultaneously on all the queues,
the corresponding CMRS rule (with the same label) has the following form:

[ q1 ] + B1 + . . . + Bn ; [ q2 ] + B′
1 + . . . + B′

n : C1 ∪ . . . ∪ Cn

where Bi, B
′
i and Ci define the encoding of Op(ci) for i : 1, . . . , n. The encoding

of the operation is defined by atomic formulas defined on a distinct variables



For k = αt, i ∈ {0, . . . , k}, and any p ∈ P :

Remove token and apply Gt to indexes inside regions

[ı0(x0), ı1(x1), . . . , ıi(xi), ıi+1(xi+1), . . . , ık+1(xk+1), p(u), trRt(u)] ;

[ı0(x0), ı1(x1), . . . , ıi(xi), ıi+1(xi+1), . . . , ık+1(xk+1), trRt(u)]

+ Gt(Ri, p, Ri)
u + Σk

j=1Gt(Ri, p, Sj)
xj : xi < u < xi+1

Move pointers to the right

[trRt(u), ık+1(l)] ; [trRt(u
′), ık+1(l), ] : u < u′ < l

Terminate visit , move to addition step

[trRt(u)] ; [addt] : true

Fig. 4. Silent CMRS rules for trR: transfer inside a region-index and from a region-
index to αt-indexes: Gt(Ri, p, π)x is the multiset that, for each q ∈ P , contains
Gt(Ri, p, π, q) occurrences of the term q(x).

For k = αt , i ∈ {0 , . . . , k}, and any p ∈ P :

Apply Ht to indexes in αt

[ı0(x0), ı1(x1), . . . , ık(xk), addt] ;

[ı0(x0), ı1(x1), . . . , ık(xk), addRt(x0)] + Σk
j=1Ht(Sj)

xj : true

Apply Ht to an index inside a region and advance pointer

[ıi(v), ıi+1(v
′), addRt(u), X(u)] ;

[ıi(v), ıi+1(v
′), addRt(u

′)] + Ht(Ri)
u : v < u < v′, u < u′

Terminate simulation of transition t

[ı0(x0), ı1(x1), . . . , ık+1(xk+1), addRt(u)]
λ(t)
; [first(x0), last(xk+1)] : true

Fig. 5. CMRS rules for addt and addRt (all silent except the last one): Ht(π)x is the
multiset that, for each p ∈ P , contains Ht(π, p) occurrences of the term p(x) for any
π ∈ R(αt).

x1, y1, . . . , xn, yn as follows.
For Op(ci) =!a,

Bi =
[

taili(xi)
]

B′
i =

[

ai(xi) , tail
i(yi)

]

Ci = {xi < yi}

For Op(ci) =?a,

Bi =
[

headi(xi) , a
i(yi)

]

B′
i =

[

headi(yi)
]

Ci = {xi < yi}

For Op(ci) = empty?,

Bi =
[

headi(xi) , tail
i(yi)

]

B′
i =

[

headi(x′i) , tail(y
′
i)

]

Ci = {yi < x′i < y′i}

For Op(ci) = nop,
Bi = B′

i = [ ] Ci = true

The accepting CMRS configuration is [qfin]. Let us consider a LCS with one



Start copy :
[first(f), last(l)] ; [first1(f), scan0

t (f), last1(l), copy0
t (l′)] : l < l′

Copy a term :
For i ∈ {0 , 1}
[scani

t(x), p(x), copyi
t(y)] ; [scani

t(x), copyi
t(y), p(y)] : true

Move to the right :
For i ∈ {0 , 1}
[scani

t(x), last1(l), copyi
t(y)] ;

[scani
t(x

′), last1(l), copyi
t(y

′)] : x < x′ < l, y < y′

Move to the right and reserve a fresh value in the copy tape :
[scan0

t (x), last1(l), copy0
t (y)] ;

[scan1
t (x

′), last1(l), fresht(y
′), copy1

t (y′′)] : x < x′ < l, y < y′ < y′′

Terminate copy (copy tape becomes current configuration) :
[first1(f), scan1

t (x), last1(l), copy1
t (y)] ; [first1(l), last1(y)] : true

Subtraction :
For j ∈ {1 , . . . , k}

[first1(f), fresht(x), last1(l)] + Σk
i=1Ft(Si)

xi
;

[ı0(f), ı1(x1), .., ıj(x), .., ık(xk), ık+1(l), newt] :
f < x1 < .. < xj < x < xj+1 < xk < l

Fig. 6. Silent CMRS rules for the simulation of subtraction with selection of one fresh
value.

channel. Note that, as shown in [5], n channels can be encoded into one channel
in presence of transitions labeled with ǫ. Hence, considering a unique channel is
not restrictive.
The following properties then hold. Given an LCS configuration γ = (s, w),
let γ• be the corresponding CMRS encoding. Moreover, given γ• containing
head1(c), let G(γ•) be the set of CMRS configurations built from γ• by adding
some ground terms a1(c′) where a ∈M and c′ < c, i.e., by adding useless ground
terms corresponding to lost messages.

It is easy to check that (1) if γ•1
ρ

−→ η with η ∈ G(γ•2 ) in S, then γ1
σρ

=⇒ γ2 in
F where ρ is the CMRS rule corresponding to the LCS transition σρ. Indeed,
notice that in the CMRS implementation of the dequeue operation we move the
head pointer to an arbitrary position within the queue and thus we perform a
lossy step followed by a dequeue step. Similarly, the emptiness test is simulated
by means of a lossy step in which all elements are removed from the queue (with
the weak reduction of LCS the emptiness test is always executable and it has
the effect of emptying the queue). Finally, the enqueue operation is simulated in

an exact way. We can also easily see that for all η ∈ G(γ•1 ): (2) if η
ρ

−→ η′ in S,

then γ•1
ρ

−→ γ•2 with η′ ∈ G(γ•2 ).

Hence, if γ•0
ρ1
−→ η1 . . .

ρn
−→ ηn with [qfin] �c ηn, then we deduce from (2)

that for all i : 1 ≤ i ≤ n, there exists γ•i such that ηi ∈ G(γ•i ). Moreover, for all

i : 0 ≤ i < n, γ•i
ρi
−→ η′i+1 with η′i+1 ∈ G(γ•i+1). Since [qfin] �c ηn and ηn ∈ G(γ•n)



For k = αt, i ∈ {0, . . . , k}, and any p ∈ P :

Remove token, apply Gt to indexes inside region and to αt − indexes

[ı0(x0), ı1(x1), . . . , ıi(xi), ıi+1(xi+1), . . . , ık+1(xk+1), p(u), trRt(u)] ;

[ı0(x0), ı1(x1), . . . , ıi(xi), ıi+1(xi+1), . . . , ık+1(xk+1), applyRi,p,t(u)]

+ Gt(Ri, p, Ri)
u + Σk

j=1Gt(Ri, p, Sj)
xj : xi < u < xi+1

Apply Gt to other region − indexes, move to the right For i 6= j, π ∈ {p, X} :

[ıj(v), applyRt,i,p(u), π(u), ıj+1(v
′)] ;

[ıj(v), applyRt,i,p(u
′), π(u), ıj+1(v

′)] + Gt(Ri, p, Rj)
u : v < u < v′, u < u′

Apply Mt to other index in the same region, move to the right

[ıi(v), applyRt,i,p(u), π(z), ıi+1(v
′)] ;

[ıi(v), applyRt,i,p(u
′), π(z), ıi+1(v

′)] + Mt(Ri, p,Rj)
z : z 6= u, v < u < v′, u < u′

Terminate visit continue with next token

[applyt,i,p(u)] ; [trRt] : true

Move trRt pointer to the right

[trRt(u), ık+1(l)] ; [trRt(u
′), ık+1(l), ] : u < u′ < l

Terminate visit , move to addition step

[trRt(u)] ; [addt] : true

Fig. 7. Silent CMRS rules for the simulation of transfer between distinct regions, or
distinct indexes inside the same region.

we also have [qfin] �c γ
•
n. Following (1), we deduce γ0

σρ1=⇒ γ1 . . .
σρn=⇒ γn with

γfin �l γn.

Vice versa, suppose that γ1
σ

=⇒ γ2 in F . Then, we have that there exists η

such that γ•1
ρσ
−→ η• and γ•2 �c η

• where ρσ is the CMRS rule corresponding
to σ. This is immediately verified for the enqueue operation and for the empty
test (their simulation is exact, and thus returns a more precise representation of
the queues). The same holds for the dequeue operation since we cannot forget
elements to the right of the new position of the header.

Now let γ1
ρ0

=⇒ γ2 . . .
ρn

=⇒ γn with γfin �l γn. Then, we know that there exist

η′2, . . . , η
′
n such that γ•i

σρi−1

−→ η•i+1 and γ•i+1 �c η
•
i+1 for i : 1, . . . , n − 1. By the

monotonicity of CMRS, we have that γ•1
σρ0

...σρn
−→ η•n, and [qfin] �c γ

•
fin �c η

•
n.
⊓⊔

Proposition 6. Lc(Γ0) ⊆ Lc(LCS).

Proof. Consider a Γ0 S over the finite set of predicate symbols P, an initial con-
figuration γinit and an accepting configuration γfin. Remember that we assume
that for each p(v) ∈ γinit + γfin : 0 ≤ v ≤ cmax.

The proof follows three steps: first, we show how to encode a configuration
as words (i.e., contents of LCS queues). Second, we show how a rule L ; R : ψ



Autonomous transitiont1 :

Ft1
x + [X(x), last(l)]

λ(t1)
; Ht1

x + [X(x), last(l)] : x < l

Synchronized transitions t2 and t3 :

Ft2
x + Ft3

y + [X(x), X(y), last(l)]
λ(t2,t3)

;

Ht2
x + Ht3

y + [X(x),X(y), last(l)] : x 6= y < l

Replication rule t4 labelledwiththemarkingM :

Ft4
x + [X(x), last(y)]

λ(t4)
; Ht4

x + My + [X(x),X(y), last(z)] : z > y

Fig. 8. CMRS rules that simulate autonomous, synchronized, and replication transi-
tions.

can be applied to the word representation of configurations, and finally we show
how to simulate such an application using an LCS.

Γ0 configurations as words. Γ0 configurations consisting of terms with strictly
increasing parameters can be naturally viewed as words defined over the cor-
responding predicate symbols. The execution of a Γ0 on such a configuration,
however, may lead to a new configuration with two terms with the same value.

As an example, consider the rule ρ defined as [p(x), q(y)] ; [p(x), r(z), q(y)] :
x < z < y and a configuration γ = [p(0), t(3), q(6)]. We notice here that the
application of ρ to γ may lead to different results depending on the valuation
of z. One of the possible successors is γ′ = [p(0), r(3), t(3), q(6)]. γ′ obtained by
applying the valuation x 7→ 0, z 7→ 3, y 7→ 6. The question now is if we gain
something in assigning to z the same value of a parameter in another term. The
answer is no. Indeed, since in Γ0 we cannot test for = in a rule, the effect of
mapping z to 3 only restricts the set of rules that can be fired at γ′, i.e., this
choice can lead to dead ends.

This intuition is made formal in Prop. 3. This lemma tells us that all strings
in Lc(S) can be recognized by an execution that passes through configurations
where all the terms with a value greater than cmax are totally ordered on the
values of their parameters w.r.t. < (i.e., they can be viewed as words). Notice
that this reasoning can be applied only to terms with values greater than cmax.
Indeed, for this kind of terms Prop. 2 tells us that if we fire a sequence of
transitions and reach a configurations γ from γinit then we can fire the same
sequence of transitions from γinit and reach a configuration with larger gap than
in γ. Prop. 2 also implies that we do not have to retain gap between parameters
greater than cmax since it is always possible to increase them. Terms with values
smaller than cmax must be treated in a special way.

More precisely, a configuration γ is encoded as a word w1 ·w2 where w1 and
w2 are built as follows.

– Each ground term p(c) ∈ γ with 0 ≤ c ≤ cmax is encoded as a (message)
symbol (p, c). Thus, from γ we first extract the word

w1 = w0
1 · · ·w

cmax
1



where wi
1 has many occurrences of (p, i) as those of p(i) for any predicate

p ∈ P and 0 ≤ i ≤ cmax (multiple occurrence of the same term produce
different symbols, to disambiguate the encoding we assume a total order on
symbols in P).

– Each ground term p(c) ∈ γ with c > cmax is encoded as a symbol p. Thus,
from γ we also extract the word

w2 = p1 · · · pk

where pi(ci) ∈ γ, ci > cmax and ci < cj for 1 ≤ i < j ≤ k. Here we assume
that there cannot be two terms with the same value for parameters greater
than cmax.

Applying rewriting rules to words. W.l.o.g. we assume that each rule L ; R : ψ
in S with set of variables V satisfies the following conditions.

– For each x ∈ V , either (x = c) ∈ ψ and 0 ≤ c ≤ cmax or (x > cmax) ∈ ψ.
– Furthermore, we assume that for all pair of variables x, y in L+R such that
x > cmax ∈ ψ and y > cmax ∈ ψ we have that x•y ∈ ψ with • ∈ {=, >,<}.

Given a Γ0 rule ρ, we can compile ρ in a finite set of Γ0 rules that satisfy the above
mentioned conditions and that model the possible effects of applying ρ. The rules
are obtained by completing the order in ρ with all possible missing relations
between variables. By Prop. 3, we can safely introduce new equality constraints
only when the resulting rule respecting the restrictions of Γ0 (i.e., we do not
need to introduce equality constraints involving more than two variables). As an
example, the effect of the rule [p(x), q(y)] ; [r(z)] : x < y on a configuration
in Γ0 is modelled by the rules [p(x), q(y)] ; [p(z)] : x < y < z, [p(x), q(y)] ;

[p(z)] : x < z < y, [p(x), q(y)] ; [p(z)] : z < x < y, [p(x), q(y)] ; [p(x)] : x < y,
and [p(x), q(y)] ; [p(y)] : x < y. Notice that in the last two rules we introduce
an implicit equality between a variable in the rhs and a variable in the lhs.

Under these assumptions, a rule ρ = L ; R : ψ in S defined over the
variables V = {x1, . . . , xm+r} can be represented by the word

wρ = wρ
1 · wρ

2

where wρ
1 describes the effect of ρ on w1, i.e., on ground terms with parameter

smaller than cmax, and wρ
2 describes the effect of ρ on w2, i.e., on ground terms

with parameter greater than cmax. More precisely,

wρ
2 =

[

α1

β1

]

· · ·

[

αr

βr

]

is the maximal sequence that satisfies the following conditions:

– For 1 ≤ k ≤ r,
• αk = p ∈ P, if p(xjk

) ∈ L and (xjk
> cmax) ∈ ψ,

• βk = q ∈ P, if q(xjk
) ∈ R and (xjk

> cmax) ∈ ψ,
• αk and βk are equal to ǫ in all other cases.



– For 1 ≤ k ≤ r − 1, xjk
< xjk+1

follows from ψ;

Pairs of the form

[

ǫ
ǫ

]

are not included in wρ
2 . The word wρ

2 specifies the order

of terms in ρ and how a single term of a configuration (element in a word) is

modified (using the pair

[

α
β

]

) by the rule. Notice that the syntactic restrictions

of Γ0 ensure that there cannot be elements

[

α
β

]

with more than one predicate

in α or β. Furthermore, if α = ǫ then ρ adds a new occurrence of β, if β = ǫ
then ρ removes an occurrence of α.

As an example, for cmax = 2, the rule ρ defined as [p(x), q(y)] ; [q(x), r(z)] :
2 < x < z < y is represented by the word

wρ
2 =

[

p
q

]

·

[

ǫ
r

]

·

[

q
ǫ

]

The word wρ
1 = wρ

1,0 · · ·w
ρ
1,cmax is such that for all i : 0 ≤ i ≤ cmax,wρ

1,i = ε
if there is no variable x such that x = i ∈ ψ, otherwise wρ

1,i is a sequence of

elements of the form

[

(p, i)
ǫ

]

or

[

ǫ
(p, i)

]

that describe the modifications that

concerns ground terms with parameter x = i as mentioned above.
Given a word w1 · w2 associated to a configuration γ and a word wρ

1 · wρ
2

associated to a rule ρ, it should be clear now that the application of ρ to γ
can be simulated by rewriting w1 according to the ordered pairs in wρ

1 and w2

according to the ordered pairs in wρ
2 . Clearly, the application of wρ

2 to w2 has
some non-determinism, since we only have to ensure that in the resulting string
w′

2 the order in the two strings is preserved.
Going back to our example, the application of wρ

2 to the word w2 = q ·p ·s ·q ·t
produces the strings q · q · r · s · t and q · q · s · r · t. (we recall that Prop. 3 tells us
that we can safely ignore configurations in which r gets the same value as s).

Simulation in LCS. We are ready now to define the encoding of a Γ0 S into
an LCS F . The LCS F has one channel c that contains the word encodings of
configurations and one channel c′ used as auxiliary memory. The control states
of F are used for encoding different steps of simulation of a rule ρ = L ; R : ψ
where we assume that all pair of variables x, y in ρ are in the relation < ∪ =
induced by ψ. In particular, we will assume to have one distinct control state for
each pair in wρ.

First, we simulate the effect on the terms with parameters less or equal
than cmax. For a fixed i 1 ≤ i ≤ cmax, the simulation consists in dequeuing
symbols of the form (p, i) from c, and by copying them into c′ after applying the
transformations defined in wρ

1 . Notice that the information on the structure of
wρ

1 can be stored in the control states of F . When there are no more symbols of
the form (p, i) in c, we moves to the value i+ 1.

Second, we simulate the effect of wρ
2 for ground terms p(c) with c > cmax.

Suppose that wρ
2 has r pairs

[

α
β

]

. Starting from the first pair in wρ
2 , we define



control states in which we either copy symbols from c to c′ or, non determinis-

tically, decide to apply the current pair

[

α
β

]

to the head p of the queue:

– If α = p and β = q, then we remove p from c, add q to c′, and move to the
next pair in wρ

2 ;
– If α = p and β = ǫ, then remove p from c, and move to the next pair in wρ

2 ;
– If α = ǫ and β = q, we add q to c′, and move to the next pair in wρ

2 .

Note that since we non-deterministically choose the positions where modifica-
tions must be applied, the LCS F may get into a deadlock. Deadlocked compu-
tations do not influence the language Lc(F).

Once the new word has been written into c′ (and c is empty), we copy the
content of c′ into c and get ready for simulating the execution of another rule.
In this last step we also recognize the symbols λ(ρ) that labels ρ (all the other
transitions used to simulate ρ are labelled by ε).

Finally, note that channels may lose messages. As a consequence, we encode
lossy Γ0 into LCS where ground terms may non-deterministically disappear dur-
ing executions. However, following Lemma 1, the languages accepted by Γ0 and
lossy Γ0 are the same (for coverability acceptance). ⊓⊔

We show next that CMRS are strictly more expressive than LCS and Γ0.

Theorem 5. Lc(LCS) ⊂ Lc(CMRS).

Proof. We define a language Lent which is accepted by a CMRS and that cannot
be accepted by any LCS. Assume a finite alphabet Σ such that {$,#} 6⊆ Σ.
For each w = a1 · · · ak ∈ Σ∗, we interpret w in the following as the multiset
[a1, . . . , ak]. Hence, we do not distinguish words in Σ∗ from the multiset they
represent, and vice versa. In particular, we will use the notation a1 · · · ak ≤
a′1 · · · a

′
l to denote that [a1, . . . , ak] ≤ [a′1, . . . , a

′
l]. Define V to be the set of words

of the form w1#w2# · · ·#wn where wi ∈ Σ∗ for each i : 1 ≤ i ≤ n. Consider
v = w1#w2# · · ·#wm ∈ V and v′ = w′

1#w
′
2# · · ·#w′

n ∈ V . We write v ⊑ v′ to
denote that there is an injection h :{1, . . .,m} 7→{1, . . ., n} such that

1. 1 ≤ i < j ≤ m implies h(i) < h(j) (h is monotonic) and
2. wi ≤ w′

h(i) (≤ is multiset inclusion) for each i : 1 ≤ i ≤ m.

We now define the language Lent = {v$v′ | v′ ⊑ v} ⊆ (Σ ∪ {#, $})∗. As an
example, given Σ = {a, b}, we have that [a, b, b]#[a, b, b]#[a, a]$[b, a]#[a, a] is in
Lent, whereas [a, b, b]#[b, a, b]#[a, a]$[a, a]#[a, b] is not in Lent.

We now exhibit a CMRS S with Lc(S) = Lent. The set of predicate symbols
which appear in S consists of (i) a predicate symbol a for each a ∈ Σ, and
(ii) the symbols guess , check , sep# and the nullary predicate pfin. The initial
configuration γinit is defined as [guess(0)]. Furthermore, we have the following
rules:
(1) For each a ∈ Σ, we have a rule labelled with a and which is of the form

[guess(x)] ; [guess(x) , a(x)] : true



Rules of this form are used to guess the letters in wi in the first part of a word
in Lent. We keep track of the symbols inside wi through their argument. These
arguments are all the same by definition of the rule.
(2) A rule labelled with # of the form:

[guess(x)] ; [sep#(x) , guess(y)] : {x < y}

This rule is used to switch from the guessing of the part wi to the guessing of
the next part wi+1. sep#(x) remembers the parameter on which the switch has
been executed.
(3) A rule labelled with $ of the form:

[guess(x) ] ; [check (y) , sep#(x)] : {y = 0}

This rule is used to switch from the guessing of the part w1# . . .#wn to the
selection of the second part of the word. The parameter of check is equal to the
initial value of guess , i.e., to 0. This way, we can scan the word stored in the
first phase from left-to-right, i.e., working on the argument order we define a
monotonic injective mapping h.
(4) For each a ∈ Σ, we have a rule labelled with a which is of the form

[check (y) , a(y)] ; [check (y)] : true

This rule is used to read a word (multiset) ui contained in wh(i).
(5) A rule labelled with # of the form:

[check (x) , sep#(x) , sep#(y) ] ; [check (y) , sep#(y)] : {x < y}

This rule is used to pass from ui to ui+1 for i ≥ 1.
(6) A rule labelled with ǫ of the form:

[check (x) ] ; [pfin] : true

This rule is used to non-deterministically terminate the checking phase. The
accepting configuration γfin is defined as [pfin].

Assuming that Σ = {a, b}, we now show that Lent is not an LCS language.
Suppose that Lc(F) = Lent for some LCS F = (Q, {c},M, δ). We show that this
leads to a contradiction. Let γinit be the initial global state in F and γfin be the
accepting global state. We use a binary encoding enc : Q ∪M 7→ Σ∗ such that
enc(m) 6≤ enc(m′) if m 6= m′. We will also use a special word vinit ∈ Σ∗ such
that vinit 6≤ enc(m) for each m ∈ Q ∪M . It is clear that such enc function and
vinit exist. As an example, if |Q∪M | = n then we define enc as an injective map
from Q∪M to multisets of n+ 1 elements with i+ 1 occurrences of a and n− i
occurrences of b for 0 ≤ i ≤ n, and we use the multiset with n + 1 occurrences
of b for vinit . For instance, for n = 2 we use [a, a, a], [a, a, b], [a, b, b] for control
states and messages and [b, b, b] for vinit . We extend enc to global states such
that if γ = (q,m1m2 · · ·mn) then

enc(γ) = enc(q)#enc(m1)#enc(m2)# · · ·#enc(mn)



Observe that (i) enc(γ) ∈ V ; (ii) for global states γ1 and γ2, it is the case that
γ1 �l γ2 iff enc(γ1) ⊑ enc(γ2); and (iii) vinit 6⊑ enc(γ) for each global state γ.

Since Lent = Lc(F) and v$v ∈ Lent for each v ∈ V , it follows that for each

v ∈ V , there is a global state γ such that γinit
v

−→ γ
$v
−→ γ′ with γfin �l γ

′.
We use reach(v) to denote γ. We define two sequences γ0, γ1, γ2, . . . of global
states, and v0, v1, v2, . . . of words in V such that v0 = vinit , γi = reach(vi), and
vi+1 = enc(γi) for each i ≥ 0. By Higman’s theorem we know that there is a j
such that γi �l γj for some i < j. Let j be the smallest natural number satisfying
this property. First, we show that vi 6⊑ vj . There are two cases: if i = 0 then
vi 6⊑ vj by (iii); if i > 0 then we know that γi−1 6�l γj−1 and hence, following
(ii), vi = enc(γi−1) 6⊑ enc(γj−1) = vj . Since γj = reach(vj), we know that

γinit

vj

−→ γj . By monotonicity, γi
$vi−→ γ′i, γfin �l γ

′
i, γi �l γj implies γj

$vi−→ γ′j

with γfin �l γ
′
i �l γ

′
j . We conclude that γinit

vj

−→ γj
$vi−→ γ′j with γfin �l γ

′
j .

Hence, vj$vi ∈ Lc(F) = Lent which is a contradiction since vi 6⊑ vj . ⊓⊔

Let us now consider r-languages. As mentioned at the beginning of the section,
the expressive power of LCS remains the same as for coverability accepting
conditions, However, this property does not hold anymore for Γ0.

Proposition 7. Lc(Γ0) ⊂ Lr(Γ0) = Lr(CMRS) = RE.

Proof. It is well known that perfect FIFO channel systems with reachability ac-
cepting condition recognize the class RE. We prove that perfect channel systems
accept the same languages as Γ0 with reachability accepting condition. Given an
LCS F , let S be the Γ0 used to encode an LCS in the proof of Theorem 4. In each
step of a run σ in S the head and tail delimiters are moved to the right of their
current positions. Thus, a “lost” ground term to the left of the head delimiter
corresponding to its queue ci, i.e., with parameter smaller than that of headi,
can never be removed in successive steps of σ. This implies that an accepting
configuration in which all ground terms have parameters strictly greater than
the parameter of the head delimiter characterize reachable configurations of a
perfect FIFO channel system. ⊓⊔

Hence, we have the following property.

Corollary 1. Lr(LCS) ⊂ Lr(CMRS).

7 Petri Nets Extensions

Petri nets (PN), a well-known model of concurrent computation [22], can natu-
rally be reformulated in a multiset rewriting system operating on nullary pred-
icates only (i.e. predicates with no parameters). This class of rewriting rules
corresponds to those in the fragment Γ1 of CMRS defined in Section 3.2. To fix
the notations, a PN configuration, called marking, is a multiset of symbols taken
from the set of places P of the PN. A marking M containing k symbols p means
that the place p contains k tokens. A PN transition t is a pair of multi-set (It, Ot)



where It, resp. Ot, defines the tokens removed, resp. added, when applying t;
i.e. firing t from a marking M leads to the marking M ′ = M − It + Ot. Notice
that the firing of t from M can occur only if It ≤ M . It is easy to see that, if
we associate a predicate symbol to each place of a net, configurations and rules
of a Γ1 model are just alternative representations of markings and transitions
of a Petri net. As an immediate consequence of this connection, we have that
Lc(Γ1) = Lc(PN) and Lr(Γ1) = Lr(PN). To formally compare Γ1 with the
other models, we use the following extensions of Petri nets:

Lossy Petri net with inhibitor arcs (LN) are Petri nets in which it is possible
to test if some places have no tokens and in which tokens may get lost before
and after executing a transition. To achieve this, each transition t is equipped
with a (possibly empty) set of place Zt, often called inhibitor arc. A transition
t = (It, Ot) is fireable from a marking M as usual. If it does, the firing of t
leads to any marking M ′ such that there exists three markings M1,M2,M3:
It ≤M1 ≤M and M1 contains no p ∈ Zt,M2 = M1 − It +Ot, and M3 ≤M2.

Transfer nets (TN) are Petri nets extended with transfer arcs. A transfer arc is
a pair S →֒ q where S is a set of places of the net and q 6∈ S is a place. Given
a set of places P , let us consider a transition t = (It, Ot) with transfer S →֒ q.
Given a marking M , t is fireable if It ≤ M . Its firing leads to the new marking
M ′ computed in three steps: we first compute M1 = M − It, then we move all
tokens in the places in S to the place q obtaining M2; finally, we compute M ′

as M2 +Ot.

Reset nets (RN) are Petri nets extended with reset arcs, i.e., with a transfer arc
S →֒ ⊥ where ⊥ is a special place used only to reset places.

As an example, let P = {p, q, r, s} and consider a transition t with I = {p, q},
O = {p, s}, and transfer arc {p, q} →֒ r. Now, consider the marking M =
[p, p, q, q, q]. Then, the execution of t leads to the marking M ′ = [p, s, r, r, r] (we
first compute M − I = [p, q, q], then execute the transfer obtaining [r, r, r], and,
finally, add O). If the transfer arc is instead {p, q} →֒ ⊥, the execution of t leads
to the marking M ′ = [p, s] (marking do not refer to tokens in the special place
⊥).

We first notice that the lossy version of RN(TN) (i.e. where tokens can be lost
before and after applying the effect of transitions)define the same c-languages as
RN(TN). We now prove that Lossy TN, Lossy RN and LN recognize the same
class of c-languages.

– Lossy TN as Lossy RN: Let P and T be the set of places and transitions of a
Lossy TN N . We build a lossy RN with places P augmented by place n and
st for each transition t ∈ T . The new places are used to distinguish normal
transitions from simulations of the transfer of transition t. Consider now a
transition t with label ℓ, It = {p1, . . . , pm}, Ot = {q1, . . . , qn} and transfer
S →֒ q with S = {r1, . . . , rk}. Transition t is simulated via the following set
of transitions:
• A transition t0 labelled with ǫ such that It1 = I ∪ {n} and Ot1 = {st}.

This transition checks if t is fireable and then activates the simulation
of its transfer by adding a token to st.



• A set of transitions t1, . . . , tk labelled with ǫ such that Iti
= {st, ri} and

Oti
= {st, q} for i : 1, . . . , k. Each such transition moves a single token

from a places in S to q.

• A transition t′ labelled with ℓ such that It′ = {st}, Ot′ = Ot ∪ {n},
and with the reset arc S →֒ ⊥. This transition non-deterministically
terminates the simulation of the transfer and the tokens that remained
in the places of S are lost.

– Lossy RN as LN: Given a Lossy RN N , we can build a LN N ′ that accepts the
same c-language simply by replacing each reset arc S →֒ ⊥ of a transitions t
with an inhibitor arc Zt = S. Indeed, notice that the firing of a transition t
with reset arc S →֒ ⊥ in N at a markingM has the effect of forcing all places
in S to be empty in the successor marking of M . Now, the corresponding
transition t′ in N ′ can be fired at M only if each place in S is empty in M .
However, since N ′ is lossy this condition can always be verified (all tokens
in places in S may get lost) and it has the same effect on M as t. Vice versa,
if all tokens in places in S get lost, then we can fire t′ and its firing has the
same effect of t.

– LN as Lossy TN: Given a LN N , we build a Lossy TN N ′ that accepts
the same c-language simply by replacing each inhibitor arc Zt = S of a
transitions t with a transition t′ with a transfer arc S →֒ pt where pt is a
new place. We assume that tokens in pt can never be re-used (i.e. pt cannot
occur in the preset of a transition in N ′). Indeed, notice that, since N is
lossy, the inhibitor arcs Zt = S in N are enabled if we first lose all tokens in
places in S. Thus, the inhibitor arcs have the same effect of a transfer to the
new place pt from which tokens can never be re-used. Vice versa, a transition
t with transfer of all tokens of places in S to place pt can be simulated by
its corresponding transition with inhibitor arc t′. Indeed, in a lossy step all
tokens in places in S may get lost thus enabling the inhibitor arc Zt.

– LN as LCS: Given a LN N with places P and transitions in T , we build
an LCS F that accepts the same c-language as follows. The LCS F has
messages defined over the singleton set of symbols {t}. Furthermore, it uses
a distinguished channel cp to model each place p ∈ P . Thus, we use a queue
cp with k occurrences of t to simulate a place p with k tokens. Notice that
we do not need to exploit the FIFO ordering of channels. Based on this idea,
the simulation of a transition becomes straightforward. The consumption
of a token from place p is simulated by a dequeue operation of message t
executed on channel cp, the production of a token in place p is simulated
by an enqueue operation on channel cp, and an inhibitor arc on place p is
modelled by the empty test on channel cp.

Thus, we have that Lc(LN) = Lc(RN) = Lc(TN), Lc(LN) ⊆ Lc(LCS), and,
as for LCS, Lr(LN) = Lc(LN).

Furthermore, in [15] the authors proved that Lc(PN) ⊂ Lc(TN). From all
these properties, we obtain the following result.

Theorem 6. Lc(Γ1) ⊂ Lc(Γ0).



For r-languages, the classification changes as follows.

Theorem 7. Lr(Γ1) 6∼ Lr(LCS), Lr(Γ1) 6∼ Lr(LN), and Lr(Γ1) ⊂ Lr(Γ0).

Proof. We first prove that Lr(Γ1) = Lr(PN) 6⊆ Lc(LCS) = Lr(LCS), hence
Lr(Γ1) 6⊆ Lc(LN) = Lr(LN) since Lc(LN) ⊆ Lc(LCS) = Lr(LCS). Consider
the language L = {anbn | n ≥ 0}. It is easy to verify that there exists a Petri
net N such that Lr(N ) = L. We now prove that L 6∈ Lr(LCS). Per absurdum,
suppose there exists an LCS F such that Lc(F) = L. For any k ≥ 1, let γk

and γ′k be two global states s.t. γinit leads to γk by accepting the word ak, γk

leads to γ′k by accepting the word bk, and γacc �l γ
′
k. Since �l is a well-quasi

ordering, there exists i < j such that γi �l γj . By monotonicity of F , we have
γj leads to γ′′ by accepting the word bi and γacc �l γ

′
i �l γ

′′. We conclude that
ajbi ∈ Lc(F) with i < j, which gives us a contradiction.

We now prove that Lc(LN) 6⊆ Lr(Γ1), hence Lc(LCS) 6⊆ Lr(Γ1). Let Σ =
{a, b} and let Lpar be the language over the alphabet Σ ∪ {#} that contains all
the words w1# . . .#wn with n ≥ 0 such that wi ∈ Σ∗ and there is no prefix
of wi that contains more occurrences of symbol b than those of symbol a, for
i : 1 ≤ i ≤ n. Notice that the number of occurrences of symbols a and b in
wi may be different. The language can be accepted by a LN defined as follows.
When we accept the symbol a we add one token in a special place pa. To accept
the symbol b, we remove one token from pa. To pass from wi to wi+1, we accept
symbol # whenever pa is empty (in LN the empty test is just a reset).
We now show that Lpar cannot be recognized by a Petri net with reachability
accepting condition. Suppose that there exists a Petri net N such that Lr(N ) =
Lpar. Starting from N , we build a net N1 by adding a new place d that keeps
track of the difference between the number of occurrences of symbols a and b in
the prefix of the word that is being processed in N . Furthermore, we add the
condition that d is empty to the accepting marking of N . It is easy to verify that
N1 accepts the language Lbal consisting of words of the form w = w1# · · ·#wn

where wi belongs the the language of balanced parentheses on the alphabet Σ
for i : 1 ≤ i ≤ n. We exploit now [16, Lemma 9.8] that states that Lbal cannot
be recognized by a Petri net with reachability accepting condition, which gives
us a contradiction.

Finally, the property Lr(Γ1) = Lr(PN) ⊂ Lr(Γ0) follows from [16, Lemma
9.8] and Prop. 7, Indeed, we have that Lbal ∈ Lr(Γ0) = RE and Lbal 6∈ Lr(Γ1).

⊓⊔

Finally, we observe that we can use an argument similar to that used in the proof
of Theorem 7 (part Lr(Γ1) 6∼ Lr(LCS)) to show that Lr(PN) 6∼ Lc(CMRS).

7.1 Affine well-structured nets

Affine well-structured nets (aWSNs) [19] are a generalization of Petri nets with
black tokens and whole-place operations like reset and transfer arcs [12]. They
can also be viewed as a subclass of data nets in which a configuration s is such
that s(d)(p) > 0 only for a specific data d chosen a priori from D. Furthermore,



all transitions have arity 1 and we can remove from Ft, Ht and Gt all the
components in regions different from S1, i.e., Ft and Ht are vectors in N

P where
P is the set of places, and Gt is a matrix in N

P × N
P . In the remainder of this

section, we see markings M as vectors in N
P . For any place p, M(p) gives the

number of occurrences of p in M . In that case, the order ≤ is defined as follows:
M1 ≤M2 iff M1(p) ≤M2(p) for all p ∈ P .

An aWSN-transition t is enabled at marking M if Ft ≤M . The firing of t at
M produces a new marking M ′ = (M − Ft)Gt +Ht. aWSN are well-structured
with respect to the order ≤.

Example 4. The projection of Ft, Ht and Gt in Fig. 1 on S1 (i.e. restricted to
the single data d1) gives us the aWSN-transition t with αt = 1 defined as

Ft = (1 0) Ht = (0 1) Gt =

(

1 0
0 0

)

This transition removes a token from p and resets the number of tokens in q to
1, i.e. for M = (m1,m2) with m1 ≥ 1, it yields M ′ = (m1 − 1, 1).

We compare now aWSNs and LCSs.

Theorem 8. Lc(aWSN) ⊂ Lc(LCS).

Proof. (1) We first prove the inclusion Lc(aWSN) ⊆ Lc(LCS). Assume an
aWSN W with the set of places P = {p1, . . . , pn}. We build an LCS F =
(Q,C,N, δ) such that Lc(W ) = Lc(F). The set of channels is defined as C =
P ∪ P ′ where P ′ (auxiliary channels) contains a primed copy of each element
in P . The set of messages N contains the symbol • (a representation of a black
token).
Assume that q0 ∈ Q is the initial state of F . Then, a markingM = (m1, . . . ,mn)
is encoded as an LCS configuration enc(M) with state q0 and in which channel
pi ∈ P contains a word •mi containing mi occurrences of symbol • for i ∈ n0.
For each transition t with label ℓ, we need to simulate the three steps (subtrac-
tion, multiplication, and addition) that correspond to Ft, Gt andHt. Subtraction
and addition can be simulated in a straightforward way by removing/adding the
necessary number of tokens from/to each channel. The multiplication step is
simulated as follows. For each i ∈ n0, we first make a copy of the content of
channel pi in the auxiliary channel p′i. Each copy is defined by repeatedly mov-
ing a symbol from pi to p′i and terminates when pi becomes empty. After the
copy is terminated for all channels, we start the multiplication step. For each
i ∈ n0, we remove a symbol from p′i and add as many symbol to channel pj as
specified by Gt(pi, pj) for j ∈ n0. The analysis terminates when the channels
p′1, . . . , p

′
n are all empty. The following properties then hold:

i) We first notice that M ≤M ′ iff enc(M) �l enc(M
′);

ii) Furthermore, if M0
w

=⇒M1 in W , then enc(M0)
w

=⇒ enc(M1) in F ;

iii) Finally, since • symbols may get lost in F , if enc(M0)
w

=⇒ enc(M1) then

there exists M2 such that M0
w

=⇒M2 and M1 ≤M2.



If the accepting marking is Mf = (m1, . . . ,mk) then the accepting LCS config-
uration contains the control state q0, the channel pi ∈ P contains mi symbols
•, and the channels p′ ∈ P ′ are empty. Since we consider languages with cover-
ability acceptance, Lc(W ) = Lc(F) immediately follows from properties (i),(ii),
(iii) and Lemma 1.

(2) We prove now that Lc(LCS) 6⊆ Lc(aWSN). For this purpose, we exhibit a
language in Lc(LCS) and prove that it cannot be recognized by any aWSN.

Fix a finite alphabet Σ = {a, b, ♯} and let L = {w♯w′| w ∈ {a, b}∗ and w′ �w

w}. It is easy to define a LCS that accepts the language L: we first put w in a
lossy channel and then remove one-by-one all of its messages. Thus, we have that
L ∈ Lc(LCS). We now prove that there is no aWSN that accepts L. Suppose it
is not the case and there exists a aWSN N , with (say) n places, that recognizes
L with initial marking Minit and accepting marking Mf .

For each w ∈ {a, b}∗, there is a marking Mw such that Minit
w♯

=⇒Mw
w

=⇒M
and Mf ≤ M (otherwise w♯w would not be in Lc(N)). Consider the sequences
w0, w1, w2, . . . and Mw0

,Mw1
,Mw2

, . . . of words and markings defined as follows:

– w0 := bn;
– If Mwi

= (m1, . . . ,mn) then wi+1 := am1 b am2 b · · · b amn , for i = 0, 2, . . .

We observe that (a) w0 6�w wi for all i > 0, since w0 contains n occurrences of b,
while wi contains only n−1 occurrences of b; and (b) for any i < j,Mwi

≤Mwj
iff

wi+1 �w wj+1. By Dickson’s lemma [10], there are i < j such that Mwi
≤Mwj

.
Without loss of generality, we can assume that j is the smallest natural number
satisfying this property. Remark that we have that wi 6�w wj . Indeed, w0 6�w wj

for any j > 0 by (a), and in the case of i > 0 we have by (b) that wi 6�w wj

since Mwi−1
6≤ Mwj−1

. Since Mwi
≤ Mwj

, by monotonicity of aWSNs, we have

that Mwi

wi=⇒M with Mf ≤M implies that Mwj

wi=⇒M ′ with Mf ≤M ≤M ′.

Hence, Minit

wj♯wi

=⇒ M ′ and wj♯wi ∈ Lc(N) = L, which is a contradiction. ⊓⊔

It is interesting to notice that aWSNs can also be simulated by reset nets by
using an encoding similar to the one based on LCSs. Indeed, in that encoding
the channels are used as counters. The emptiness test on a channel is replaced by
a reset on the corresponding place. From this observation and from the results
in [3], we have the following classification

Proposition 8. Lc(PN) ⊂ Lc(TN) = Lc(RN) = Lc(LN) = Lc(aWSN) ⊂
Lc(LCS).

This result shows that c-language recognized by reset/transfer nets are strictly
included in those recognized by LCSs.

Finally, we finish the section by reminding that Lr(TN) = Lr(RN) is the
class of recursively enumerable languages [9]. Hence, since transfer/reset nets are
sub-classes of aWSNs, we directly conclude that

Lr(aWSNs) = RE.



8 (Integral) Relational Automata

In this section we compare the class of languages accepted by the fragment Γ2

of CMRS defined in Section 3.2 with those accepted by relational automata [8].
An (integral) relational automaton (RA) operates on a finite set X of positive

integer variables, and is of the form (Q, δ) where Q and δ are finite sets of
control states and transitions respectively. A transition is a triple (q1, op, q2)
where q1, q2 ∈ Q and op is of one of the following three operations: (i) reading:
read(x) reads a new value of variable x (i.e., assigns a non-deterministically
chosen value to x), (ii) assignment: x := y assigns the value of variable y to x;
(ii) testing: x < y, x = y, x < c, x = c, and x > c are guards which compare the
values of variables x, y and the natural constant c. Assume a RA A = (Q, δ). A
valuation v is a mapping form X to N. A configuration is of the form (q, v), where
q ∈ Q and v is a valuation. We define γinit to be (qinit , vinit ) where qinit ∈ Q
and vinit (x) = 0 for all x ∈ X . For a transition ρ ∈ δ of the form (q1, op, q2), we

let γ1
ρ

−→ γ2 if and only if γ1 = (q1, v1), γ2 = (q2, v2), and one of the following
holds: op = read(x) and v2(y) = v1(y) for each y ∈ X − {x}; op = (y := x),
v2(z) = v1(z) for each z ∈ X − {y}, and v2(y) = v1(x); op = (x < y), v2 = v1,
and v1(x) < v1(y). Other testing operations are defined in a similar manner.

In [8] Čerāns has shown that RA equipped with the sparser-than order of
tuples of natural numbers are well-structured. The sparser-than order is defined
as follows. Let cmin (resp. cmax) be the smallest (resp. largest) constant in the
RA A. Let C be the set of integers in the interval [cmin, cmax]. Given two RA
configurations γ1 and γ2, γ2 = (q2, v2) is sparser than γ1 = (q1, v1), written
γ1 � γ2, if the following conditions hold:

– q1 = q2;
– For every x, y ∈ X ∪ C,

• v1(x) ≤ v1(y) iff v2(x) ≤ v2(y) for every x, y ∈ X ∪ C;
• v1(x) < v1(y) implies v1(y) − v1(x) ≤ v2(y) − v2(x).

For instance, assume that X = {x1, . . . , x5}, i.e., valuation are 5-tuples, C =
{0, 1, 2} and Q is a singleton. Then, the valuation (2, 10, 12, 1994) is sparser
than (2, 4, 6, 1000), but not sparser than (1, 10, 12, 1994) since the value of the
first variable is no longer equal to 2, and not sparser than (2, 4, 7, 17), since the
gap between 7 and 4 is larger than the gap between 10 and 12, i.e., 7−4 > 12−10.

For RA equipped with the sparser-than order, the coverability accepting
condition is equivalent to the control state acceptance, i.e., a word is accepted
if it is recognized by an execution ending in a particular control state qfin ∈ Q.

As stated in the following propositions, RA and Γ2 define the same class of
c- and r-languages.

Proposition 9. Lc(Γ2) = Lc(RA).

Proof. Given an RA A = (Q, δ) over the set of variables X , we can build the Γ2

S defined below. The set of predicate symbols in S consists of the following: (i)
for each q ∈ Q, there is a predicate symbol q in S; and (ii) for each variable x



in X , there is a predicate symbol px in S. Transitions in δ are encoded via the
following CMRS rules (with the same labels)

(q1, read(x), q2) ⇒ [q1, px(z)] ; [q2, px(w)] : true
(q1, x := y, q2) ⇒ [q1, px(z), py(w)] ; [q2, px(w), py(w)] : true
(q1, x < y, q2) ⇒ [q1, px(z), py(w)] ; [q2, px(z), py(w)] : {z < w}

We observe now that the sparser-than order of [8] is just a special case of the
CMRS ordering �c in which, for each reachable configuration, the number of
bags occurring in is bounded by the number of variables in X (the number of
possible partitioning of the variables in X w.r.t. their current value).

ForX = {x1, . . . , xn}, the initial configuration is γinit = [q0, px1
(0), . . . , pxn

(0)].
The accepting configuration γfin is the multiset [qfin]. It is important to remark
that in general for CMRS we cannot determine a priori the number of bags oc-
curring in for reachable configurations γ. Thus, the encoding of RA reachability
and coverability accepting conditions in Γ2 is straighforward.

For the other inclusion, by using Prop. 2, we assume w.l.o.g. that there is no
gap order formula x <c y with c > 0 in S. We also observe that we can assume
that all configurations of S have the same size (the size of the initial configuration
of the Γ2 model). Thus, we associate a variable of X to each ground term of
the initial CMRS configuration and compose the predicate symbols in a CMRS
configuration to form a single control state. CRMS rules can then be simulated
in several steps by operations on variables and updates of control states.

Remember we assume that the accepting configuration of S is γfin = [pfin].
Hence, to each control state containing pfin, we add a transition labeled with ǫ
to the accepting control state qfin. Those transitions are labelled with either a
reading or an assignement operation, hence they can always be followed. ⊓⊔

We now prove that Lc(Γ2) is the class of regular languages. For this purpose, we
first need some preliminary definitions. Given a configuration γ with

index (γ) = D0 . . . Dcmaxd0B0 . . . dnBn

we define

index′(γ) = D0 . . .Dcmax♯B0 . . . Bn.

Let us now consider a Γ2 specification S with an initial (cmax-bounded) con-
figuration γinit and a final (cmax-bounded) configuration γfin = [pfin]. The
symbolic graph GS associated to S is an automaton (V,→GS

, c0, F ) where

– V = {index′(γ) | |γ| ≤ |γinit |};
– →GS

⊆ V × S × V such that ∀c1, c2 ∈ V : (c1, ρ, c2) ∈→GS
iff there exist

two configurations γ1 and γ2 such that index′(γ1) = c1, index
′(γ2) = c2 and

γ1
ρ
−→ γ2;

– c0 = index′(γinit );

– F = {index′(γ) ∈ V | γfin �c γ}.



We easily see that GS is a finite automata since the number of predicate symbols
that appears in states is bounded by the size of γinit .

In the following, we use c
ρ
−→GS

c′ to denote that (c, ρ, c′) ∈→GS
.

Moreover, given a sequence of rules w = ρ1 . . . ρl, c
w

−→GS
c′ denotes that

there exists c1, . . . , cl−1 in V such that c
ρ1
−→GS

c1 . . .
ρl−→GS

cl−1
ρl−→GS

c′ and
w = ρ1 · · · ρl+1.
The next lemma states the main property of GS : all the executions of GS corre-
sponds to an execution in S starting from γinit .

Lemma 4. If index′(γinit )
w

−→GS
c, then γinit

w
−→ γ such that index′(γ) = c.

Proof. The proof is by induction on the number of transitions to reach c.
n = 0: Immediate.
n > 0: Let

index′(γinit )
w

−→GS
c

ρ
−→GS

c′

and suppose that c = D0 . . . Dcmax♯B0 . . . Bn and c′ = D′
0 . . . D

′
cmax♯B

′
0 . . . B

′
n′ .

By ind. hypothesis, we have γinit
w

−→ γ with index′(γ) = c.

Since c
ρ
−→GS

c′, we know from definition of symbolic graph that there exist two

configurations γ1, γ2 such that index′(γ1) = c, index′(γ2) = c′ and γ1
ρ
−→ γ2.

Since
index′(γ) = index′(γ1) = D0 . . .Dcmax♯B0 . . . Bn

we have
index(γ) = D0 . . . Dcmaxd0B0 . . . dnBn

and
index(γ1) = D0 . . .Dcmaxd

′
0B0 . . . d

′
nBn

Moreover, suppose that

index(γ2) = D′
0 . . . D

′
cmaxb0B

′
0 . . . bn′Bn′

Following Prop. 2, we have γinit
w

−→ γ′ such that

index(γ′) = D0 . . . Dcmaxd
′′
0B0 . . . d

′′
nBn

and for any i : 0 ≤ i ≤ n d′′i ≥ di + d′i.

Since CMRS are monotonic (so do Γ0), γ1
ρ

−→ γ2 and γ1 �c γ′, we have

that γ′
ρ
−→ γ′′ with γ2 �c γ

′′. Since the number of ground terms in configu-
rations is bounded, γ2 �c γ

′′ implies γ2 ≺ γ′′. Thus, we have that index′(γ′′) =
index′(γ2) = c′. 2

Theorem 9. Lc(Γ2) = Regular Languages.

Proof. We first show how to encode a finite automata in Γ2. The encoding of
a finite automaton is direct: each state corresponds to a nullary predicate and
CMRS rules mimic the transition relation. Acceptance of words is simulated as
follows: for any final state c we have a rule {c} ; {pfin} : true labelled with



ǫ and the final configuration is {pfin}. Finally, the initial configuration is {c0}
where c0 is the initial state of the automaton.

We now show that all the c-languages accepted by a Γ2 are regular. Con-
sider a Γ2 S with an initial (cmax-bounded) configuration γinit and the final
(cmax-bounded) final configuration γfin = [pfin]. From Lemma 4 we have that
a word accepted by the symbolic graph GS corresponds to sequence of rules cor-
responding to a word accepted by S (following definition of GS , γfin �c γ iff
index′(γ) ∈ F ). Moreover, from the definition of GS we have

γinit
ρ1
−→ γ1

ρ2
−→ . . .

ρl−1

−−−→ γl

implies that

index′(γinit )
ρ1
−→GS

index′(γ1)
ρ2
−→GS

. . .
ρl−1

−−−→GS
index′(γl)

by definition of GS . Furthermore, from definition of accepting states F , γfin �c γl

if and only if index′(γl) ∈ F . Hence, if we replace symbols ρ in GS by λ(ρ) we
conclude that a words w is accepted by S if and only if w is accepted by GS . 2

We are ready now to compare Γ2 (hence RA) with the other models studied in
this paper. For this purpose, we first observe that Petri nets can accept regular
languages (finite automata can be encoded as Petri nets). Furthermore, it is
straightforward to build a Petri net that accepts a non-regular language like
L = {an#bm | n ≥ m}. As a consequence of this observation and of Theorem 9,
we have the following result.

Corollary 2. Lc(Γ2) ⊂ Lc(Γ1).

Let us now consider the reachability accepting condition. We first notice that
Lc(Γ2) = Lr(Γ2) = Lc(RA) = Lr(RA). Indeed, in both cases of Γ2 and RA
we can encode the reachability acceptance into the coverability acceptance by
adding transitions (labelled with ǫ) that can be fired only from the accepting
configuration and leads to a configuration with control state qfin in the case of
RA and a configuration containing a special accepting predicate symbol pfin in
the case of Γ2. Furthermore, reduce the coverability acceptance to reachability
acceptance is straightforward. Indeed, for RA it suffices to add a mechanism
that sets all the counters to 0 once an accepting configuration (for coverability)
is reached. In the case of Γ2, it suffices to add a mechanism to remove all the
terms but pfin once an accepting configuration is reached. Thus, we have the
following property.

Theorem 10. Lr(Γ2) ⊂ Lr(Γ1).

9 Conclusions

In this paper we have compared wsts by using languages with coverability ac-
ceptance and reachability acceptance as a measure of their expressiveness. From
our results we obtain the following classification for coverability acceptance:
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Furthermore, since CMRS and Petri data nets (data nets without whole-place
operations) recognize the same class of c-languages (coverability in CMRS can
be reduced to coverability in Petri data nets [20]) we have that data nets, Petri
data nets, and transfer data nets (another subclass of data nets with restrictions
on the type of transfers) all define the same class of c-languages as CMRS, i.e.

Lc(data nets) = Lc(Petri data nets) = Lc(transfer data nets) = Lc(CMRS).

When considering the reachability acceptance, the picture changes and be-
comes:
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Finally, with the two previous pictures we can also compare classes of lan-
guages obtained with coverability acceptance and with reachability acceptance.
Beside the results we summarized herebefore, we also obtained three results that
make the picture of comparisons between classes of languages complete. First,
some models recognize the same class of languages with the two accepting condi-
tions we consider in this paper. More precisely, we have that Lc(LN) = Lr(LN)
and Lc(LCS) = Lr(LCS). We also know that Lc(PN) ⊂ Lr(PN). Finally, we
obtained as result that the class Lr(PN) is incomparable with all the classes of
languages with coverability acceptance between Lc(LN) and Lc(CMRS).
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7. G. Cécé, A. Finkel, and S. P. Iyer. Unreliable channels are easier to verify than
perfect channels. Inf. Comput. 124(1): 20-31 (1996)
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A Appendix: Technical Lemmas and Propositions

A.1 Proof of Proposition 2

The proof is by induction on the size k of the sequence of rules ρ1 . . . ρk.
Base case: (k = 0) Since we assume that all the constants that appear in

γinit are lesser or equal than cmax, we have that index(γinit ) is of the form
D0 . . . Dcmax. Hence, the lemma trivially holds.

Induction step:(k > 0) Suppose that we have γinit

ρ1...ρk−1

−→ γ1
ρk−→ γ with

index (γ1) = E0 . . . Ecmaxe0F0 . . . emFm



Suppose that γ is built from γ1 by applying the instance ρ = L1 ; R1 of
ρk = L ; R : ψ. This means that there exists a multi-set of ground terms η
such that γ1 = L1 + η and γ = R1 + η.
Under this hypothesis, the multisets in index (γ1) satisfy the following conditions:

– For any i : 0 ≤ i ≤ cmax, we have that Ei = Gi + EL
i where

• EL
i is the maximal (possibly empty) multiset of predicate symbols with

parameter equal to i that occur in L1;
• Gi is the maximal multiset of predicates with parameter i that are not

consumed by ρ (i.e. they also occur in index (γ)).

– For any i : 0 ≤ i ≤ m and given vi = cmax + Σ0≤j≤iej , we have that
Fi = Hi + FL

i where

• FL
i is the maximal (possibly empty) multiset of predicate symbols with

parameter equal to vi that occur in L1;
• Hi is the maximal multiset of predicates with parameter vi that are not

consumed by ρ (i.e. they also occur in index (γ)).

Let us now suppose that instead of removing L1 from γ1, we add R1 to γ1. The
resulting configuration γ2 = γ1 +R1 has index

index (γ2) = E′
0 . . . E

′
cmaxσ0c0F

′
0 . . . σmcmF

′
mσm+1

with

∀0 ≤ i ≤ m+ 1 : σi = ci0K
i
0 . . . c

i
ni
Ki

ni

where (assuming ∀0 ≤ k ≤ m : e′k = ck +Σ0≤j≤nk
ckj )

– For any i : 0 ≤ i ≤ cmax, we have that

E′
i = Gi + EL

i + ER
i

where ER
i is the maximal (possibly empty) multiset of predicate symbols

with parameter equal to i that occur in R1;
– for any i : 0 ≤ i ≤ m+1, for any j : 0 ≤ j ≤ ni,K

i
j is the maximal (possibly

empty) multiset of predicate symbols that occur in R1 with parameter equal
to cmax+

∑

0≤k<i ck +
∑

0≤k≤j c
i
k;

– Furthermore, for any i : 0 ≤ i ≤ m :

F ′
i = Gi + FL

i + FR
i

where FR
i is the maximal (possibly empty) multiset of predicate symbols

with parameter equal to cmax+Σ0≤j≤ie
′
i that occur in R1.

Intuitively, σi represent the structure added to index (γ1) by R1 for what con-
cerned all predicate symbols with a parameter v not directly represented in
index (γ1), i.e., such that

cmax+Σ0≤j≤i−1ej < v < cmax+Σ0≤j≤iej .



The sequence

ς = (EL
0 + ER

0 ) . . . (EL
cmax + ER

cmax)σ0c0(F
L
0 + FR

0 ) . . . σmcm(FL
m + FR

m)σm+1

can be transformed into index (L1 + R1) by removing all empty multisets and
summing up constants in order to correctly maintain gaps between non-empty
multisets of predicates.

To simplify the presentation, let us assume that ς coincides with index (L1 +
R1). The following can be easily extended to the general case. We now observe
that ρ corresponds to an instance of a specialization ρ′ of ρk in which the variables
in ρk are totally ordered w.r.t. < ∪ =. In other words, from ς we can reconstruct
the constraint ψ′ of ρ′ as follows:

– To each non-empty multiset M in ς we associate a distinct variable xM , each
predicate in M takes xM as parameter in ρ′;

– For each non empty multiset M = EL
i +ER

i with 0 ≤ i ≤ cmax, we associate
the condition xM = i in ψ′;

– If M and M ′ are two consecutive multisets in ς (and M occurs before M ′)
with a constant c between them then ρ′ contains the gap-order constraint
xM<cxM ′ .

Since the condition ψ′ of ρ′ corresponds to one of the possible linearizations of
the condition of ρk, every instance of ρ′ is also an instance of ρk. Furthermore,
ψ′ in ρ′ represents the minimal gap-order constraints extracted from ς which
is compatible with ψ (i.e. ψ ∧ ψ′ ≡ ψ′). This implies that any other instance
L2 ; R2 of ρ′ can be represented by a sequence

ς1 = (EL
0 + ER

0 ) . . . (EL
cmax + ER

cmax)σ′
0f0(F

L
0 + FR

0 ) . . . σ′
mfm(FL

m + FR
m)σ′

m+1

where the following conditions are satisfied:

– for any i : 0 ≤ i ≤ m we have fi ≥ ci,
– for any i : 0 ≤ i ≤ m + 1, σ′

i = f i
0K

i
0 . . . f

i
ni
Ki

ni
such that f i

j ≥ cij for all
j : 0 ≤ j ≤ ni.

Fixed a given instance L2 ; R2 of ρ′ with associated sequence ς1, we define the
new sequence

ς2 = S0 . . . Scmaxσ
′
0f0T0 . . . σ

′
mfmTmσm+1

with Si = EL
i + ER

i + Gi for i : 0 ≤ i ≤ cmax and Ti = FL
i + FR

i + Hi for
i : 0 ≤ i ≤ m.
Following the definition of index and ≺, this sequence corresponds to the index
of a configuration γ′2 such that γ +R1 = γ2 ≺ γ′2. Now let us define the values

e′′i = fi +Σ0≤j≤ni
f i

j

for i : 0 ≤ i ≤ m. Furthermore, let us define the sequence

ς3 = (EL
0 +G0) . . . (E

L
cmax +G0)e

′′
0(FL

0 +H0) . . . e
′′
m(FL

m +Hm)



Again, following definition of index and ≺, there exists γ′1 such that ς3 =
index (γ′1) and γ1 ≺ γ′1.

Now we note that γ′2 corresponds to γ′1 +R2. This implies that the instance
L2 ; R2 of ρ can be applied at γ′1.

If we now define γ = γ2 − L1 and γ′′ = γ′2 − L2, then we have γ ≺ γ′′.
Indeed, index (γ) and index (γ′′) are obtained by removing predicate symbols in
multiset occurring in the same position in index (γ2) and index (γ′2), respectively.

Furthermore, we have that γ′1
ρ′

−→ γ′′. Finally, note that for any sequence ς1
there exists an instance ρ′′ of ρ′ (the specialization of ρk we consider). Hence,
there exists an instance ρ′′ such that γ′′ = γ′.

By applying the inductive hypothesis, we have that there exists an execution

γinit

ρ1...ρk−1

−→ γ′1 that subsumes γinit

ρ1...ρk−1

−→ γ1 such that γ′1
ρk−→ γ′. We conclude

that there exists an execution γinit
ρ1...ρk−→ γ′ that subsumes γinit

ρ1...ρk−→ γ. 2

A.2 Proof of Lemma 2

If the length of the execution is one the thesis trivially holds because γinit is
cmax-bounded. Now suppose that

γinit
ρ1
−→ γ1 . . .

ρk−→ γk
ρ

−→ γ

and γ is not linear. Suppose that L1 ; R1 is the instance of ρ applied to γk to
obtain γ. As in the proof of Prop. 2, we have that

index (γk) = E0 . . . Ecmaxe0(F
L
0 +G0) . . . em(FL

m +Gm)

where FL
i are the predicate symbols of terms in L1 with parameter cmax +

Σ0≤j≤iej for i : 0 ≤ i ≤ m.
Now let us consider γk +R1. Then we have that

index (γk + R1) = E′
0 . . . E

′
cmaxσ0c0T0 . . . σmcmTmσm+1

where

– E′
i = Ei + ER

i where ER
i are the predicate symbols of terms in R1 with

parameter i for i : 0 ≤ i ≤ cmax;
– Ti = FL

i +FR
i +Gi where FR

i are the predicate symbols of terms in R1 with
parameter cmax+Σ0≤j≤iej for i : 0 ≤ i ≤ m; and

– σi is a sub-sequence
ci0K

i
0 . . . c

i
ni
Ki

ni

that represents terms with new values added by R1 for i : 0 ≤ i ≤ m+ 1.

Since γ is not linear, there is a multiset FR
r + Gr or a multiset Ki

j that
contains at least two predicates p and q with the same parameter say v. Let us
suppose such a multiset FR

r + Gr. The case where a multi-set Ki
j contains at

least two predicates is treated is a similar way. Since by hypothesis FL
r + Gr



contains at most one symbol and by the syntactic restriction of Γ0, we have that
(at least) one between p(v) and q(v) is produced by a valuation to a variable in
ρ which is not involved in = constraints.

Following Prop. 2, for any γ′k with γk ≺ γ′k we know that there exists a linear
execution from γinit to γ′k with the same rules ρ1, . . . , ρk and passing through
γ′1, . . . , γ

′
k−1 such that γi ≺ γ′i for i : 1 ≤ i ≤ k. This implies that we can choose

γ′k and instance L2 ; R2 of ρk such that

index(γ′k +R2) = E′
0 . . . E

′
cmaxσ0c0T0 . . . σrcrTrσ

′
r+1c

′
r+1Tr+1 . . . σ

′
mc

′
mTmσm′+1

where for any j > r c′j and the constants in σ′
j are strictly greater than cj and

the values in σj , respectively (i.e. we “shift to the right” all values greater than
v).
Now notice that in a Γ0 rule it is not possible to impose the equalities over more
than two parameters. Furthermore, when imposing equality of two parameters
of ground terms, one ground term is removed by the rule and the second one is
added to configurations by the rule. Hence, there is no constraints that impose
that the parameter of p(v) and q(v) must be equal. W.l.o.g. we assume that
there is no constraint that impose that the parameter v of p(v) must be equal
to another parameter. This means that ρ remains applicable to γ′k whenever the
evaluation for the argument of predicate p is the value v′ = v + 1.
With this new instance L3 ; R3 of ρ we have that

index (γ′k+R3) = E′
0 . . . E

′
cmaxσ0c0T0 . . . σrcrTr1[p]σ′′

r+1c
′
r+1Tr+1 . . . σ

′
mc

′
mTmσm′+1

where σ′′
r+1 is obtained from σ′

r+1 by decrementing by 1 the first constant that
appears.

We conclude by noticing that from γ′k +R3 we can compute γ′ by removing
L3. This operation maintains the same structure of the index of γ′k + R3 for
what concerns predicate [p]. Hence, assuming that d1, . . . , dn are the constants
of index (γ) and v = cmax+

∑

j=1..i di we have that

index (γ′) = D0 . . . Dcmaxd0B0 . . . diBi1[p]d′i+1Bi+1 . . . d
′
nBn

such that ∀i+ 1 ≤ j ≤ n : d′j ≥ dj . 2

A.3 Proof of Lemma 3

We prove by induction on the number of transitions that γ1
ρ1...ρk−→ γ3 implies

there exists γ4 such that γ2
ρ1...ρk−→ γ4 with either γ3 ≺ γ4 or γ4 is a linearisation

of γ3.
Base case:(k = 1) Suppose that the lemma does not hold. Let L1 ; R1

be the instance of ρ1 that allows to build γ3 from γ1, i.e. γ3 = γ1 − L1 + R1.
Suppose that γ1 = γ′1 + [p(v)], γ2 = γ′2 + [p(v′)] and γ′1 ≺ γ′2. In other words,
the predicate p is “isolated” in the index of γ2. We consider two cases: either
L1 ≤ γ′1 or not, i.e. the instance L1 ; R1 does not remove p(v) or it does.



In the case of L1 ≤ γ′1, let

index (L1 +R1) = E1 . . . Ecmaxe0H0 . . . erHr.

To any sequence,
ς = E1 . . . Ecmaxe

′
0H0 . . . e

′
rHr

such that ∀0 ≤ i ≤ r : e′i ≥ ei correspond another instance L2 ; R2 of ρ1.
Furthermore, since γ2 is a linearization of γ1, all the constants that appear in
index (γ2) are greater than the corresponding ones in index (γ1). Hence, there
exists an instance L3 ; R3 of ρ1 that has the same effect on the structure of
index (γ2) than the instance L1 ; R1 on index (γ1), i.e. predicates are removed
from and added to the same multi-sets and the same sequences of multi-sets
(interleaved with constants) are added at the same point into index (γ2). Hence,

γ2
ρ1−→ γ4 = γ2 − L3 +R3 and γ4 is a linearisation of γ3.
In the second case, i.e. L1 6≤ γ′1 and p(v) is removed from γ1 when applying

L1 ; R1, let

index (L1 +R1) = E1 . . . Ecmaxe0H0 . . . eiHi + [p]ei+1Hi+1 . . . erHr

such that v = cmax+
∑

j=0..i ei. Following the syntactic restriction of Γ0, either
(i) ρ1 imposes no equality constraint between the parameter of p(v) and the
parameter of another ground term q(v′), or (ii) ρ1 imposes such an equality
constraint on the parameters of p(v) and q(v′) which is added by ρ1. In case (i),
the sequence

ς = E1 . . . Ecmaxe0H0 . . . eiHi1[p]ei+1Hi+1 . . . erHr

corresponds to another instance L2 ; R2 of ρ1, i.e. index (L2 + R2) = ς, since
the gap-orders between predicates defined by L1 +R1 are not violated. Further-
more, if we increase the gap orders defined by ς we still obtain a sequence that
corresponds to an instance of ρ1. Hence, any sequence

ς ′ = E1 . . . Ecmaxe
′
0H0 . . . e

′
iHie[p]e

′
i+1Hi+1 . . . e

′
rHr

such that e ≥ 1 and e′i ≥ ei for any i : 0 ≤ i ≤ r corresponds to an instance of
ρ1. Furthermore, since γ2 is a linearisation of γ1, all the constants that appear
in index (γ2) are greater than the corresponding ones in index (γ1). Hence, there
exists a instance L3 ; R3 of ρ1 that has the same effect on the structure of
index (γ2) than L1 ; R1 on index (γ1), except that L3 ; R3 removes the multi-

set [p] that corresponds to the ground term p(v). We conclude that γ2
ρ1
−→ γ4 =

γ2 − L3 +R3 and γ3 ≺ γ4.
In case (ii), the sequence

ς = E1 . . . Ecmaxe0H0 . . . eiHi1[p, q]ei+1Hi+1 . . . erHr

corresponds to another instance L2 ; R2 of ρ1, i.e. index (L2 + R2) = ς, since
the gap-orders (and equality between parameters of p and q) defined by L1 +R1

are not violated. Again, any sequence

ς ′ = E1 . . . Ecmaxe
′
0H0 . . . e

′
iHie[p, q]e

′
i+1Hi+1 . . . e

′
rHr



such that e ≥ 1 and e′i ≥ ei for any i : 0 ≤ i ≤ r corresponds to an instance of
ρ1. Furthermore, since γ2 is a linearisation of γ1, all the constants that appear
in index (γ2) are greater than the corresponding ones in index (γ1). Hence, there
exists a instance L3 ; R3 of ρ1 that has the same effect on the structure
of index (γ2) than L1 ; R1 on index (γ1), except that L3 ; R3 replaces the
multi-set [p] that corresponds to the ground terms p(v′) by the multi-set [q]. We

conclude that γ2
ρ1
−→ γ4 = γ2 − L3 +R3 and γ4 is a linearisation of γ3.

Induction Step:(k > 1) By induction Hypothesis, we have that γ1
ρ1...ρk−1

−→

γ′3 implies that there exists γ′4 such that γ2
ρ1...ρk−1

−→ γ′4 with either γ′3 ≺ γ′4 or γ′4
is a linearisation of γ′3.

In the case where γ′4 is a linearisation of γ′3, we apply the same reasoning
than in the base base.

In the case where γ′3 ≺ γ′4, let γ′3
ρk−→ γ3 and L1 ; R1 be the instance of ρk

used to build γ3 from γ′3, i.e. γ3 = γ′3 − L1 +R3. Consider

index (L1 +R1) = E1 . . . Ecmaxe0H0 . . . erEr.

To any sequence
ς = E1 . . . Ecmaxe

′
0H0 . . . e

′
rEr

with ∀0 ≤ i ≤ r : ei ≤ e′i corresponds to another instance of ρk where the
gap-orders between parameters of ground terms increase. Hence, there exists an
instance L2 ; R2 of ρk such that γ4 = γ′4 − L2 +R2 and γ3 ≺ γ4. ⊓⊔
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