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ABSTRACT. We propose a new approach for minimizing alternating Büchi automata (ABA). The
approach is based on the so called mediated equivalence on states of ABA, which is the maximal equiv-
alence contained in the so called mediated preorder. Two states p and q can be related by the mediated
preorder if there is a mediator (mediating state) which forward simulates p and backward simulates
q. Under some further conditions, letting a computation on some word jump from q to p (due to
they get collapsed) preserves the language as the automaton can anyway already accept the word
without jumps by runs through the mediator. We further show how the mediated equivalence can
be computed efficiently. Finally, we show that, compared to the standard forward simulation equiv-
alence, the mediated equivalence can yield much more significant reductions when applied within
the process of complementing Büchi automata where ABA are used as an intermediate model.

1 Introduction
Alternating Büchi automata (ABA) are succinct state-machine representations of ω-regular
languages (regular sets of infinite sequences). They are widely used in the area of formal
specification and verification of non-terminating systems. One of the most prominent ex-
amples of the use of ABA is the complementation of nondeterministic Büchi automata [9].
It is an essential step of the automata-theoretic approach to model checking when the speci-
fication is given as a positive Büchi automaton [12] and also learning based model checking
for liveness properties [4]. The other important usage of ABA is as the intermediate data
structure for translating a linear temporal logic (LTL) specification to an automaton [7].

However, because of the compactness of ABA∗, usually the algorithms that work on
them are of high complexity. For example, both the complementation and the LTL transla-
tion algorithms transform an intermediate ABA to an equivalent NBA. The transformation
is exponential in the size of the input ABA. Hence, one may prefer to reduce the size of the
ABA (with some relatively cheaper algorithm) before giving it to the exponential procedure.

In the study of Fritz and Wilke, simulation-based minimization is proven as a very
effective tool for reducing the size of ABA [6]. However, they considered only forward sim-
ulation relations. Inspired by some previous works [1], we believe that backward simulation
can be used for reducing the size of ABA as well. Unfortunately, as will be explained in
Section 3, quotienting wrt. backward simulation (i.e., simplify the automaton by collapsing
backward simulation equivalent states) does not preserve the language.

∗ABA’s are exponentially more succinct than the nondeterministic ones.
c© ; licensed under Creative Commons License-NC-ND



2

In this paper, we develop an approach that uses backward simulation for simplifying
ABA indirectly. Instead of looking for a suitable fragment of backward simulation that can
be used to reduce the number of states of an ABA, we combine backward and forward
simulation to form an even coarser relation called mediated preorder that can be used for
minimization. The performance of minimizing ABA with mediated preorder is evaluated on
a large set of experiments. In the experiments, we apply different simulation-based mini-
mization approaches to improve the complementation algorithm of nondeterministic Büchi
automata. The experimental results show that the minimization using mediated preorder
significantly outperforms the minimization using forward simulation. To be more specific,
in average, mediated minimization results in a 30% better reduction in the number of states
and 50% better reduction in the number of transitions than forward minimization on the
intermediate ABA. Moreover, in the complemented nondeterministic Büchi automata, me-
diated minimization results in a 100% better reduction in the number of states and 300%
better reduction in the number of transitions than forward minimization.

2 Basic Definitions
Given a finite set X, we use X∗ to denote the set of all finite words over X and Xω for the
set of all infinite words over X. The empty word is denoted ε and X+ = X∗ \ {ε}. The
concatenation of a finite word u ∈ X∗ and a finite or infinite word v ∈ X∗ ∪ Xω is denoted
by uv. For a word w ∈ X∗ ∪ Xω, |w| is the length of w (|w| = ∞ if w ∈ Xω), wi is the ith
letter of w and wi the ith prefix of w (the word u with w = uv and |u| = i). w0 = ε. The
concatenation of a finite word u and a set S ⊆ X∗ ∪ Xω is defined as uS = {uv | v ∈ S}.

An alternating Büchi automaton is a tuple A = (Σ, Q, ι, δ, α) where Σ is a finite alphabet,
Q is a finite set of states, ι ∈ Q is an initial state, α ⊆ Q is a set of accepting states, and δ : Q×
Σ→ 22Q

is a total transition function. A transition ofA is of the form p a−→ P where P ∈ δ(q, a).
A tree T over Q is a subset of Q+ that contains all nonempty prefixes of each one of its

elements (i.e., T ∪ {ε} is prefix-closed). Furthermore, we require that T contains exactly one
r ∈ Q, the root of T, denoted root(T). We call the elements of Q+ paths. For a path πq, we
use leaf (πq) to denote its last element q. Define the set branches(T) ⊆ Q+ ∪ Qω such that
π ∈ branches(T) iff T contains all prefixes of π and π is not a proper prefix of any path in
T. In other words, a branch of T is either a maximal path of T, or it is a word from Qω such
that T contains all its nonempty prefixes. We use succT(π) = {r | πr ∈ T} to denote the set
of successors of a path π in T, and height(T) to denote the length of the longest branch of T.
The tree U over Q is a prefix of T iff U ⊆ T and for every π ∈ U, succU(π) = succT(π) or
succU(π) = ∅. The suffix of T defined by a path πq is the tree T(πq) = {qψ | πqψ ∈ T}.

Given a word w ∈ Σω, a tree T over Q is a run ofA on w, if for every π ∈ T, leaf (π)
w|π|−−→

succT(π) is a transition of A. Finite prefixes of T are called partial runs on w. A run T of A
over w is accepting iff every infinite branch of T contains infinitely many accepting states.
A word w is accepted by A from a state q ∈ Q iff there exists an accepting run T of A over
w with root(T) = q. The language of a state q ∈ Q in A, denoted LA(q), is the set of all
words accepted by A from q. Then L(A) = LA(ι) is the language of A. For simplicity
of presentation, we assume in the rest of the paper that δ never allows a transition of the
form p a−→ ∅. This means that no run can contain a finite branch. Any automaton can be
easily transformed into one without such transitions by adding a new accepting state q with
δ(q, a) = {{q}} for every a ∈ Σ and replacing every transition p a−→ ∅ by p a−→ {q}.
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3 Simulation Relations
In this section, we give the definitions of forward and backward simulation over ABA and
discuss some of their properties. The notion of backward simulation is inspired by a similar
tree automata notion studied in [1, 3]—namely, the upward simulation parametrised by a
downward simulation (the connection between tree automata and ABA follows from the
fact that the runs of ABA are in fact trees).

For the rest of the section, we fix an ABAA = (Σ, Q, ι, δ, α). We define relations �α and
�ι on Q s.t. q �α r iff q ∈ α =⇒ r ∈ α and q �ι r iff q = ι =⇒ r = ι. For a binary relation
� on a set X, the relation�∀∃ on subsets of X is defined as Y �∀∃ Z iff ∀z ∈ Z. ∃y ∈ Y. y � z,
i.e., iff the upward closure of Z wrt. � is a subset of the upward closure of Y wrt. �.

Forward Simulation. A forward simulation on A is a relation �F ⊆ Q×Q such that p �F r
implies that (i) p �α r and (ii) for all p a−→ P, there exists a r a−→ R such that P �∀∃F R.

For the basic properties of forward simulation, we rely on the work [8] by Gurumurthy
et al. In particular, (i) there exists a unique maximal forward simulation �F on A which is
reflexive and transitive, (ii) for any q, r ∈ Q such that q �F r, it holds that LA(q) ⊆ LA(r),
and (iii) quotienting wrt. �F ∩ �−1

F preserves the language of A.

Backward Simulation. Let �F be a forward simulation on A. A backward simulation on A
parameterized by �F is a relation �B ⊆ Q × Q such that p �B r implies that (i) p �ι r,
(ii) p �α r, and (iii) for all q a−→ P ∪ {p}, p 6∈ P, there exists a s a−→ R ∪ {r}, r 6∈ R such that
q �B s and P �∀∃F R. The below lemma describes some properties of backward simulation.

LEMMA 1. For any reflexive and transitive forward simulation�F onA, there exists a unique
maximal backward simulation�B onA parameterized by�F that is reflexive and transitive.

Backward simulation itself cannot be used for quotienting. In Appendix F.1, we give an
example of an automaton, where quotienting using backward simulation does not preserve
language. However, in Section 4.1, we show how backward simulation can be used to define
a new relation for reducing ABA.

Let �F and �B be forward and backward simulations on A, which are both reflexive
and transitive. For every x ∈ {B, F, α}, we extend the relation �x to Q+ ×Q+ such that for
π, ψ ∈ Q+, π �x ψ iff |π| = |ψ| and for all 1 ≤ i ≤ |π|, πi �x ψi. We say that ψ forward
simulates π, ψ backward simulates π, or ψ is more accepting than π when π �F ψ, π �B ψ,
or π �α ψ, respectively. This notation is further extended to trees. For trees T, U over Q and
for x ∈ {α, F}, we write, T �x U if branches(T) �∀∃x branches(U). Similarly, we say that U
forward simulates T, or U is more accepting than T when T �F U, or T �α U, respectively.
Note that �x is reflexive and transitive for all the variants of x ∈ {F, B, α} defined over
states, paths, or trees (this follows from the assumption that the original relations �F and
�B on states are reflexive and transitive). Moreover, �B ⊆ �α, �B ⊆ �ι, and �F ⊆ �α.

The following two lemmas formulate properties of the simulation relations that we will
use in the rest of the paper.

LEMMA 2. For any p, r ∈ Q with p �F r and a partial run T of A on w ∈ Σω with the root p,
there is a partial run U of A on w with the root r such that T �F U.

For a tree T over Q, π ∈ T, and 1 ≤ i ≤ |π|, the set T 	i π is the union of branches
of suffix trees T(πiq), q ∈ succT(πi), with the branches of the suffix tree T(πi+1) excluded.
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Figure 1: Illustration of the lemmas

Formally, let Qi = succT(πi) \ {πi+1} be the set of all successors of πi in T without the
successor continuing in π. Then T 	i π =

⋃
q∈Qi branches(T(πiq)) (notice that if i = 0, then

T 	i π = ∅).

LEMMA 3. For any p, r ∈ Q with p �B r, a partial run T ofA on w ∈ Σω and π ∈ branches(T)
with leaf (π) = p, there is a partial run U of A on w and ψ ∈ branches(U) with leaf (ψ) = r
such that π �B ψ, and for all 1 ≤ i ≤ |π|, T 	i π �∀∃F U 	i ψ.

4 Mediated Equivalence and Quotienting
Here we discuss the possibility of an indirect use of backward simulation for simplifying
ABA via quotienting. We do not look for a suitable fragment of backward simulation only.
Instead, we (1) combine backward and forward simulation to form an equivalence that sub-
sumes both backward and forward simulation equivalence and (2) take a certain fragment
of this equivalence, called mediated equivalence, that can be used for quotienting.

4.1 The Notion and Intuition of Mediated Equivalence
Collapsing states of an automaton wrt. some equivalence allows a run that arrives to some
state to jump to another equivalent state and continue from there. Alternatively, this can be
viewed as extending the source state of the jump by the outgoing transitions of the target
state†. The equivalence must have the property that the language is not increased even
when the jumps (or, alternatively, transition extensions) are allowed. This is what we aim
at when introducing the mediated equivalence ≡M based on a so called mediated preorder �M.
The mediated preorder �M will in particular be defined as a suitable transitive fragment of
�F ◦ �−1

B in the following.
The intuition behind allowing a run to jump from a state r to a state q such that q �F

◦ �−1
B r is the existence of the so called mediator, i.e., a state s such that q �F s �−1

B r
(cf. Fig. 2(a)). The state s can be reached in the same way and in the same context‡ as r, and,
at the same time, the automaton can continue from s in the same way as from q. Hence,
intuitively, the newly allowed run based on the jump from r to q does not add anything to
the language because it can anyway be realized through s without jumps.

Unfortunately, the relation �F ◦ �−1
B cannot be directly used as it is not transitive, and

taking its symmetric closure would thus not yield an equivalence. We thus have to take
some of its transitive fragments. This is natural as if the automaton can safely jump from q1
to q2 and from q2 to q3, it should be able to safely jump from q1 to q3 too.

This is, however, still not enough. Not all of the transitive fragment of �F ◦ �−1
B can

be used for quotienting. We can only take a fragment �M that is forward extensible, meaning

†The first view is better when explaining the intuition whereas the other is easier to be used in proofs.
‡If a state s is a leaf of a partial run, then by a context of s we mean all the other leaves of the partial run.
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Figure 2: Basic Intuition Behind Mediated Equivalence

that if q1 �M q2 �F q3, then q1 �M q3. The intuitive meaning of this requirement is the
following. When a run jumps from r to q, it may be the case that r is again reached later on
or it appears in the context of itself (cf. Fig. 2(b)). If r is reached in the continuation of the
run from q, the mediated preorder assures that there is some state y in the run continuing
from the mediator s that forward simulates r. Similarly, if the context of r contains another
occurrence of r, there is some state y in the context of s that forward simulates r. However,
this forward simulation is in general guaranteed to hold only when no further jumps are
allowed. In order to guarantee a possibility of further simulation, we require that if the
computation is allowed to jump from r to q, it is allowed to jump from y to q too.

Finally, to make the mediated equivalence applicable, we must pose one more require-
ment. Namely, we require that the transitions of the given ABA are not �F-ambiguous,
meaning that no two states on the right hand side of a transition are forward equivalent.
Intuitively, allowing such transitions goes against the spirit of the backward simulation. For
a mediator p to backward simulate a state r wrt. rules ρ1 : p′ a−→ P ∪ {p}, p 6∈ P, and
ρ2 : r′ a−→ R ∪ {r}, r 6∈ R, it must be the case that each state x in the context P of p within ρ1
is less restrictive (i.e., forward bigger) than some state y in the context R of r within ρ2. The
state r itself is not taken into account when looking for y because we aim at extending its be-
haviour by collapsing (and it could then become less restrictive than the appropriate x). In
the case of �F-ambiguity, the spirit of this restriction is in a sense broken since the forward
behaviour of r may still be taken into account when checking that the context of p is less
restrictive than that of r. This is because the behaviour of r appears in R as the behaviour
of some other state r′′ too. Consequently, r and r′′ may back up each other in a circular way
when checking the restrictiveness of the contexts within the construction of the backward
simulation. Both of them can then seem extensible, but once their behaviour gets extended,
the restriction of their context based on their own original behaviour is lost, which may then
increase the language (an example of such a scenario is given in Appendix F.2). However,
in Section 5, we show that �F-ambiguity can be efficiently removed.

Mediated Preorder and Equivalence. Let�F be a reflexive and transitive forward sim-
ulation onA, and�B a reflexive and transitive backward simulation onA parameterized by
�F. A preorder �M ⊆ �F ◦ �−1

B such that for all q, r, s ∈ Q, q �M r �F s implies q �M s, is
a mediated preorder induced by �F and �B. The relation ≡M = �M ∩ �−1

M is then a mediated
equivalence induced by �F and �B.

LEMMA 4.[3] There is a unique maximal mediated preorder �M induced by �F and �B.
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4.2 Extending Automata According to Mediated Preorder Preserves Language
Quotient Automata versus Extended Automata. We first show that quotienting can be seen
as a simpler operation of adding transitions and accepting states. Let A = (Σ, Q, ι, δ, α) be
an ABA and let ≡ be an equivalence on Q such that ≡ = � ∩ �−1 for some preorder �. Let
the automaton A/≡ be the quotient of A wrt. ≡ that arises by merging ≡-equivalent states
of A, and let A+ be the automaton extended according to �, that is created as follows: for
every two states q, r ofAwith q � r, (i) add all outgoing transitions of q to r, (ii) if q ≡ r and
q is final, make r final.

The automata A/≡ and A+ are formally defined as follows. Let Q/≡ denote the
quotient of Q wrt. ≡, and let [q] denote the equivalence class of ≡ containing q. Then
A/≡ = (Σ, Q/≡, [ι], δ/≡, {[q] | q ∈ α}) and A+ = (Σ, Q, δ+, ι, α+), where α+ = {p | ∃q ∈
α. q ≡ p} and, for each a ∈ Σ, q ∈ Q, δ/≡([q], a) =

⋃
p∈[q]{{[p′] | p′ ∈ P} | P ∈ δ(p, a)} and

δ+(q, a) =
⋃

p∈Q∧p�q δ(p, a). It is not difficult to show thatL(A/≡) ⊆ L(A+) [2] (Lemma 12
in the appendix). Hence, if adding transitions and accepting states according to� preserves
the language, then quotienting according to ≡ preserves the language too.

Language Preservation by Mediated Equivalence. We now give a sketch of the proof
that extending automata according to the mediated preorder preserves the language. The
full proofs can be found in [2] (or Appendix D). For the rest of the section, we fix an ABA
A = (Σ, Q, ι, δ, α), a reflexive and transitive forward simulation �F on A such that A is �F-
unambiguous, and a reflexive and transitive backward simulation �B on A parameterized
by�F. Let�M be a mediated preorder induced by�F and�B, and letA+ be the automaton
extended according to �M. Let ≡M = �M ∩�−1

M .
We want to prove that L(A+) = L(A). The nontrivial part is showing that L(A+) ⊆

L(A)—the converse is obvious. To prove L(A+) ⊆ L(A), we need to show that, for every
accepting run of A+ on a word w, there is an accepting run of A on w. We proceed as
follows. We first prove Lemma 5, which shows how partial runs of A with an increased
power of their leaves (wrt. �F) can be built incrementally from other runs of A, bridging
the gap between A and A+. Then we prove Lemma 7 saying that, for every partial run on
a word w of A+, there is a partial run of A on w that is more accepting (recall that partial
runs are finite). By carry this result over to infinite runs we get the proof of Theorem 8.

Consider a partial run T ofA on a word w, we choose for each leaf p of T an�M-smaller
state p′. Suppose that we allow p to make one step using the transitions of p′ or to become
accepting if p′ is accepting and p′ ≡M p. (Thus, we give the leaves of T a part of the power
they would have in A+). We will show that there exists a partial run U of A on w such that
(1) it is more accepting than T, and (2) the leaves of U can mimic the next step of the leaves
of T even if the leaves of T use their extended power.

The above is formalized in Lemma 5 using the following notation. For a partial run T
of A on w, we define ext as an extension function that assigns to every branch π of T a state
ext(π) such that ext(π) �M leaf (π).

Let U be a partial run ofA on w. For two branches π ∈ branches(T) and ψ ∈ branches(U),
we say that ψ strongly covers π wrt. ext, denoted π �ext ψ, iff π �α ψ and ext(π) �F leaf (ψ).
Similarly, we say that ψ weakly covers π wrt. ext, denoted π �w-ext ψ, iff π �α ψ and
ext(π) �M leaf (ψ). We extend the concept of covering to partial runs as follows. We write
T �ext U (U strongly covers T wrt. ext) iff branches(T) �∀∃ext branches(U) and root(T) �B
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root(U). Likewise, we write T �w-ext U (U weakly covers T wrt. ext) iff branches(T) �∀∃w-ext
branches(U) and root(T) �B root(U). Note that we have �ext ⊆ �w-ext for branches as well
for partial runs because �F ⊆ �M. So, the strong covering implies the weak one.

LEMMA 5. For any partial run T of A on a word w with an extension function ext, there is
a partial run U of A on w with T �ext U.

Proving Lemma 5 is the most intricate part of the proof of Theorem 8. We introduce the
concepts used within the proof of Lemma 5 and provide an overview of the proof.

If T �ext T, we are done as in the statement of the lemma, we can take T to be U. So,
suppose that T �ext T. Observe that root(T) �B root(T), and every branch of T weakly
covers itself, which means that T �w-ext T. We will show how to reach U by a chain of
partial runs derived from T. The partial runs within the chain will all weakly cover T. Runs
further from T will in some sense cover T more strongly than the runs closer to T. The last
partial run of the chain will cover T strongly. To do this, we need a suitable measure that,
for a partial run V of A on w with T �w-ext V, tells us how strongly V covers T.

To define the measure, we concentrate on branches of V that cause that V does not cover
T strongly. These are branches ψ ∈ branches(V) for which there is no π ∈ branches(T) with
π �ext ψ (there are only some π ∈ branches(T) with π �w-ext ψ). We call them strict weakly
covering branches. Let swT(V) denote the tree which is the subset of V containing prefixes
of strict weakly covering branches of V wrt. T. Note that T �ext V iff V contains no strict
weakly covering branches, which is equivalent to swT(V) = ∅. For a partial run W of A
on w, we will define which of V and W cover T more strongly by comparing swT(V) and
swT(W). For this, we need the following definitions.

Given a finite tree X over Q and τ ∈ Q+, we define the tree decomposition of X according
to τ as the sequence of (finite) sets of paths 〈τ, X〉 = X	1 τ, X	2 τ, . . . , X	|τ| τ. We also let
〈ε, X〉 = branches(X), which is a sequence of length 1. Notice that under the condition that
τ 6∈ branches(X), 〈τ, X〉 = ∅ . . . ∅ implies that X = ∅§.

Let τV ∈ V ∪ {ε} and τW ∈ W ∪ {ε} be such that τV 6∈ branches(swT(V)) and τW 6∈
branches(swT(W)). We say that W covers T more strongly than V wrt. τV and τW , denoted
V ≺T

τV ,τW
W, iff root(V) �B root(W) and 〈τV , swT(V)〉 @ 〈τW , swT(W)〉, where @ is a binary

relation on sequences of sets of paths defined as follows.
For two sets of paths P and P′, we use P ≺∀∃F P′ to denote that P �∀∃F P′ but not

P′ �∀∃F P. In other words, the upward closure of P′ wrt. �F is a proper subset of the
upward closure of P wrt. �F. Then, for sequences of finite sets S, S′ ∈ (2Q)+, S @ S′

iff there is some k ∈ N, k ≤ min{|S|, |S′|}, such that Sk ≺∀∃F S′k and for all 1 ≤ j < k,
Sj �∀∃F S′j. It is not hard to show that the relation @ is a partial order. Observe that @
does not allow infinite increasing chains of sequences where the length of the sequences
is bounded by some constant (this follows from that �F compares only paths of an equal
length and therefore every increasing chain of finite sets of paths related by ≺∀∃F is finite).
Moreover, S @ ∅ . . . ∅ for every sequence of sets of paths S 6= ∅ . . . ∅.

§Note that if τ ∈ branches(X), 〈τ, X〉 = ∅ . . . ∅ does not imply X = ∅ as τ could be the only branch of X. This
is important as for a partial run Y and τ′ ∈ Y, if τ′ 6∈ branches(Y), the implications 〈τ′, swT(Y)〉 = ∅ . . . ∅ =⇒
swT(Y) = ∅ =⇒ T �ext Y hold. However, the first implication does not hold if τ′ ∈ branches(Y).
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LEMMA 6. Given a partial run V of A on w s.t. T �w-ext V, T 6�ext V, and τV ∈ V ∪ {ε} with
τV 6∈ branches(swT(V)), we can construct a partial run W of A on w with T �w-ext W and
a path τW ∈W with τW 6∈ branches(swT(W)) such that V ≺T

τV ,τW
W.

PROOF. [Sketch] The proof of Lemma 6 relies on Lemma 3 and the definition of �M. We
first choose a suitable branch π of swT(V) as follows. Let 1 ≤ k ≤ |τV | be some index such
that swT(V)	k τV is nonempty. If τV = ε, then k = 1. We choose some π′ ∈ swT(V)	k τV
which is minimal wrt. �F, meaning that there is no π′′ ∈ swT(V) 	k τV different from
π′ such that π′′ �F π′. We put π = τk

Vπ′. We note that this is the place where we use
the �F-unambiguity assumption. If A was �F-ambiguous, there need not be a k such that
swT(V)	k τV contains a minimal element wrt. �F.

From ext(π) �M leaf (π), there is a mediator s with ext(π) �F s �B leaf (π). We apply
Lemma 3 to V, π, leaf (π) and s, which give us a partial run W and ψ ∈ branches(W) with
leaf (ψ) = s such that π �B ψ, and for all 1 ≤ i ≤ |π|, V 	i π �∀∃F W 	i ψ. Let τW = ψ. The
proof can be concluded by showing that (i) T �w-ext W, (ii) τW 6∈ branches(swT(W)), and (iii)
〈τV , swT(V)〉 @ 〈τW , swT(W)〉, which implies V ≺T

τV ,τW
W.

Now we construct a run U strongly covering T as follows. Starting from T and ε, we can
construct a chain T ≺T

ε,τ1
T1 ≺T

τ1,τ2
T2 ≺T

τ2,τ3
T3 . . . by successively applying Lemma 6 for each

i, τi ∈ Ti, τi 6∈ branches(swT(Ti)), and T �w-ext Ti. Observe that by the definition of stronger
covering, we have that 〈ε, swT(T)〉 @ 〈τ1, swT(T1)〉 @ 〈τ2, swT(T2)〉 @ 〈τ3, swT(T3)〉 . . . No-
tice that, for each i, as T �w-ext Ti, height(Ti) = height(T). Therefore the length of τi as well
as the length of 〈τi, swT(Ti)〉 are bounded by height(T).

Recall that (i) the relation @ is a partial order, (ii) that @ does not allow infinite increas-
ing chains of sequences where the length of the sequences is bounded by some constant, and
(iii) that S @ ∅ . . . ∅ for every sequence S 6= ∅ . . . ∅. This means that after a finite number
of steps, this chain must arrive to its last Tk and τk with 〈τk, swT(Tk)〉 = ∅ . . . ∅. This means
that swT(Tk) = ∅, which implies that T �ext Tk. We can put U = Tk and Lemma 5 is proven.

Now we can use Lemma 5 to prove Lemma 7. It relates partial runs of A+ with partial
runs of A by the relation �α+⇒α defined as follows. For two states q and r, q �α+⇒α r iff
q ∈ α+ =⇒ r ∈ α. For two paths π, ψ ∈ Q+, π �α+⇒α ψ iff |π| = |ψ| and for all
1 ≤ i ≤ |π|, πi ∈ α+ =⇒ ψi ∈ α. Finally, for finite trees T and U over Q, we use
T �α+⇒α U to denote that branches(T) �∀∃α+⇒α branches(U).

LEMMA 7. For any partial run T of A+ on w ∈ Σω, there exists a partial run U of A on w
such that root(T) �B root(U) and T �α+⇒α U.

The proof of Lemma 7 is done by induction on the structure of T, where the induction
step employs Lemma 5 (which bridges the gap between A+ and A by showing that there
is a partial run of A strongly covering T even when the power of its leaves is extended by
transitions of some �M-smaller states). With Lemma 7 in hand, we can prove that for each
accepting run ofA+ on a word w, there is an accepting run ofA on w. This requires to carry
Lemma 7 from finite partial runs to full infinite runs¶. This results in Theorem 8, which
together with the fact that L(A/≡) ⊆ L(A+) immediately gives Corollary 9.

¶For an accepting run T ofA+ on a word w, Lemma 7 gives us for every k ∈N and a prefix of T of the height
k a partial run of U of the same height that is more accepting. From the infinite set of partial runs of A obtained
this way, we can construct an accepting run of A on w. The details may be found in [2] and in Appendix D.3.
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THEOREM 8. L(A+) = L(A).

COROLLARY 9. Quotienting with mediated equivalence preserves the language.

5 Algorithm for Computing Mediated Preorder
In this section, we describe an algorithm for computing mediated preorder on an ABA A =
(Σ, Q, ι, δ, α). We first explain how to compute the maximal forward simulation �F and
backward simulation �B of A. Both �F and �B will be used as the input parameters for
computing the mediated preorder �M. In the rest of the section, we will fix A as the input
ABA, use n for the number of states in A, and use m for the number of transitions in A.

Forward Simulation. The algorithm for computing maximal forward simulation �F on
A can be found in Fritz and Wilke’s work [5] (it is called direct simulation in their paper).
They reduce the problem of computing maximal forward simulation to a simulation game.
Although Fritz and Wilke use a slightly different definition of ABA, it is easy to translate A
to an ABA under their definition with O(n + m) states and O(nm) transitions and then use
their algorithm to compute �F. The time complexity of the above procedure is O(nm2).

Removing Ambiguity. As shown in Section 4.1, A needs to be �F-unambiguous for me-
diated minimization. Here we describe how to modifyA to make it not�F-ambiguous. The
modification does not change the the language of A and also the forward simulation rela-
tion �F, therefore we do not need to recompute forward simulation again for the modified
automaton.

Here we describe the ambiguity removal procedure. For every transition p a−→ P with
P = {p1, . . . , pk} and for each i ∈ {1, . . . , k}, we check if there exists some i < j ≤ k such
that pj �F pi. If there is one, remove pi from P. This procedure has time complexity O(n2m).

Backward Simulation. We now show how to translate the problem of computing maximal
backward simulation to a problem of computing maximal simulation on a labeled transition
system.

Computing Simulation on Labeled Transition Systems. Let T = (S,L,→) be a finite labeled
transition system (LTS), where S is a finite set of states, L is a finite set of labels, and → ⊆
S×L× S is a transition relation. A simulation on T is a binary relation �L on S such that if
q �L r and (q, a, q′) ∈ →, then there is an r′ with (r, a, r′) ∈ → and q′ �L r′.

Here we describe the problem of computing the maximal simulation on an LTS. Given
an LTS T = (S,L,→) and an initial preorder I ⊆ S × S, the task is to find out the unique
maximal simulation on T included in I. An algorithm for computing maximal simulation�I

on the LTS T included in I with time complexity O(|L|.|S|2 + |S|.|→|) and space complexity
O(|L|.|S|2) can be found in [1].

Computing Backward Simulation via a Reduction to LTS. The problem of computing the
maximal backward simulation onA can be reduced to the problem of computing simulation
on an LTS. In order to simplify the explanation of the reduction, we first make the following
definition. An environment is a tuple of the form (p, a, P \ {p′}) obtained by removing a state
p′ ∈ P from the transition p a−→ P of A. Intuitively, an environment records the neighbors of
the removed state p′ in the transition p a−→ P. We denote the set of all environments of A by
Env(A). Formally, we define the LTS A� = (Q�, Σ, ∆�) as follows:
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Figure 3: An example of the reduction from an ABA transition to LTS transitions

• Q� = {q� | q ∈ Q} ∪ {(p, a, P)� | (p, a, P) ∈ Env(A)}.
• ∆� = {(p, a, P \ {p′})� a−→ p�, p′� a−→ (p, a, P \ {p′})� | P ∈ δ(p, a), p′ ∈ P}.

An example of the reduction is given in Figure 3. The goal of this reduction is to obtain
a simulation relation on A� with the following property: p� is simulated by q� in A� iff
p �B q in A. However, the maximal simulation on A� is not sufficient to achieve this goal.
Some essential conditions for backward simulation (e.g., p �B q =⇒ p �α q) are missing in
A�. This can be fixed by defining a proper initial preorder I.

Formally, we define I = {(q�1 , q�2 ) | q1 �ι q2 ∧ q1 �α q2} ∪ {((p, a, P)�, (r, a, R)�) |
P �∀∃F R}. Observe that I is a preorder. Recall that according to the definition of the
backward simulation, p �B r implies that (1) p �ι r, (2) p �α r, and (3) for all transi-
tions q a−→ P ∪ {p}, p 6∈ P, there exists a transition s a−→ R ∪ {r}, r 6∈ R such that q �B s and
P �∀∃F R. The set {(q�1 , q�2 ) | q1 �ι q2 ∧ q1 �α q2} encodes the conditions (1) and (2) required
by the backward simulation, while the set {((p, a, P)�, (r, a, R)�) | P �∀∃F R} encodes the
condition (3). A simulation relation �I can be computed using the aforementioned proce-
dure with LTS A� and the initial preorder I. The following theorems shows the correctness
and complexity of computing backward simulation.

THEOREM 10. For all q, r ∈ Q, we have q �B r iff q� �I r�.

THEOREM 11. Computing backward simulation has both time and space complexity O(nm3).

The complexity comes from three parts of the procedure: (1) compiling A into its cor-
responding LTS A�, (2) computing the initial preorder I, and (3) running the algorithm
for computing the LTS simulation relation. The LTS A� has at most nm+n states and 2nm
transitions. It follows that Part (3) has time complexity O(|Σ|n2m2) and space complexity
O(|Σ|n2m2). In Appendix E, we show that among the three parts, Part (3) has the highest
time‖ and space complexity and therefore computing backward simulation also has time
complexity O(|Σ|n2m2) and space complexity O(|Σ|n2m2). Under our definition of ABA, ev-
ery state has at least one outgoing transition for each symbol in Σ. It follows that m ≥ |Σ|n.
Therefore, we can also say that the procedure for computing maximal backward simulation
has time complexity O(nm3) and space complexity O(nm3).

Mediated Preorder. Here we explain how to compute the mediated preorder �M of A
from �F and �B. It is proved in [1] that �M equals the maximal relation R ⊆�F ◦ �−1

B
satisfying x R y �F z =⇒ x (�F ◦ �−1

B ) z. Based on the result, we can obtain the mediated
preorder by the following procedure. Initially, let �M = �F ◦ �−1

B . For all (p, q) ∈ �M, if
there exists some (q, r) ∈ �F such that (p, r) /∈ �F ◦ �−1

B , remove (p, q) from �M. A naive
implementation of this simple procedure has time complexity O(n3).

‖In [2] we will describe an efficient algorithm for computing I. It has time complexity O(n2m2) and space
complexity O(n2m2).
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6 Experimental Results
In this section, we evaluate the performance of mediated minimization by applying it to
accelerate the algorithm proposed by Vardi and Kupferman [9] for complementing nonde-
terministic Büchi automata (NBA). In this algorithm, ABA’s are used as intermediate no-
tion for the complementation. To be more specific, the complementation algorithm has two
steps: (1) it translates an NBA to an ABA that recognizes its complement language, and (2) it
translates the ABA back to an equivalent NBA. The second step is an exponential procedure
(exponential in the size of the ABA), hence reducing the size of the ABA before the second
step usually pays off.

The experimentation is carried out as follows. Three sets of 100 random NBA’s (of |Σ| =
2,4, and 8, respectively) are generated by the GOAL [11] tool and then used as inputs of the
complementation experiments. We compare results of experiments performed according
to the following different options: (1) Original: keep the ABA as what it is, (2) Mediated:
minimizing the ABA with mediated equivalence, and (3) Forward: minimizing the ABA
with forward equivalence.

For each input NBA, we first translate it to an ABA that recognizes its complement lan-
guage. The ABA is (1) processed according to one of the options described above and then
(2) translated back to an equivalent NBA using an exponential procedure ∗∗. The results
are given in Table 1 and Table 2. Table 1 is an overall comparison between the three dif-
ferent options and Table 2 is a more detailed comparison between Mediated and Forward
minimization.

|Σ| NBA Complemented-NBA Time (ms) Timeout
St. Tr. St. Tr. (10 min)

Original
2 2.5 3.3

13.9 52.75 5500.9 0
Mediated 6.68 34.02 524.7 0
Forward 9.45 55.25 5443.7 1
Original

4 3.3 6.0
46.4 348.5 9298.6 6

Mediated 20.42 235.5 1985.4 6
Forward 26.88 325.6 1900.6 7
Original

8 4.7 11.9
127.1.3 1723.4 33429.4 24

Mediated 57.63 1738.3 12930.6 21
Forward 81.23 2349.2 22734.2 24

Table 1: Combining minimization with complementation.

In Table 1, the columns
“NBA” and “Complemented-
NBA” are the average statisti-
cal data of the input NBA and
the complemented NBA. The
column “Time(ms)” is the av-
erage execution time in mil-
liseconds. “Timeout” is the
number of cases that cannot
finish within the timeout pe-
riod (10 min). Note that in the table, the cases that cannot finish within the timeout period
are excluded from the average number. From this table, we can see that minimization by
mediated equivalence can effectively speed up the complementation and also reduce the
size of the complemented NBA’s.

|Σ| Minimized-ABA Complemented-NBA
St. Tr. St. Tr.

Average 2 33.54% 51.62% 63.3% 235.56%
Difference 4 36.24% 51.44% 89.9% 298.99%

8 27.94% 40.88% 152.3% 412.7%

Table 2: Comparison: Mediated v.s. Forward

In Table 2, we compare the perfor-
mance between Mediated and Forward
minimization in detail. The columns
“Minimized-ABA” and “Complemented-
NBA” are the average difference in the
sizes of the ABA after minimization and the complemented BA. From the table, we observe
that mediated minimization results in a much better reduction than forward minimization.

∗∗For the option “Original”, we also use the optimization suggested in [9] that only takes consistent subset.
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7 Conclusion and Future Work

We combined forward and backward simulation to form a coarser relation called mediated
preorder and showed that quotienting wrt. mediated equivalence preserves the language of
ABA. Moreover, we developed an efficient algorithm for computing mediated equivalence.
Experimental results show that the mediated reduction of ABA significantly outperforms
the reduction based on forward simulation.

In the future, we would like to extend our experiments to other applications such as
LTL to NBA translation. Furthermore, we would like to extend the mediated equivalence by
building it on top of even coarser forward simulation relations, e.g., delayed or fair forward
simulation relations [6]. Also, we would like to study the possibility of using mediated
preorder to remove redundant transitions (similar to the approaches described in [10]). We
believe that the extensions described above can significantly improve the performance of
mediated reduction.
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[10] F. Somenzi and R. Bloem. Efficient Büchi automata from LTL formulae. In Proc. of CAV’00,
LNCS 1855. Springer, 2000.

[11] Y.-K. Tsay, Y.-F. Chen, M.-H. Tsai, K.-N. Wu, and W.-C. Chan. GOAL: A graphical tool for
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A Initial Preorder for Computing Backward Simulation

As mentioned in the main text, we need to compute a proper initial preorder I for the re-
duction from the problem of backward simulation on an ABA A = (Σ, Q, ι, δ, α) to prob-
lem of simulation on the LTS A� = (Q�, Σ, ∆�). The preorder I is the union of two sets:
{(q�1 , q�2 ) | q1 �ι q2 ∧ q1 �α q2} and {((p, a, P)�, (r, a, R)�) | ∀rj ∈ R.∃pi ∈ P.pi �F rj}. Let
n and m be the number of states and transitions in A, respectively. It is trivial that the first
set can be computed by an algorithm with time complexity O(n2). However, a naive algo-
rithm (via a pairwise comparison of all different environments in env(A)) for computing the
second set has time complexity O(n4m2). Here we will describe a more efficient algorithm,
which allows the computation of I to have both time and space complexity O(n2m2).

The main idea of the algorithm is the following. For each pair of two given transitions,
it examines all pairs of related environments at once and adds pairs of states in A� to I when
needed. This action has both time and space complexity O(n2). Because A has at most m2

different pairs of transitions, the second set of I can be computed by the new algorithm with
both time and space complexity O(n2m2).

In the rest of this section, we will explain how to efficiently compute all pairs of envi-
ronments that should be added to I at once from two given transitions. For each pair of
transitions p a−→ P and r a−→ R, we maintain a mapping function β : R → {T, F} ∪ P such
that

β(r′) =


T if there exsit more than two states in P that are forward smaller than r′.
F if there exsits no state in P that is forward smaller than r′.
p′ if p′ is the only state in P such that p′ �F r′.

The mapping function β can be computed by Algorithm 1 with both time and space
complexity O(n2).

Algorithm 1: Generate a Mapping Function For Two Transitions

Input: Two transitions p a−→ P and r a−→ R in A.
Output: A mapping function β : P→ R ∪ {T, F}.
/* initialization */
forall r′ ∈ R do β(r′) := F;
forall p′ ∈ P, r′ ∈ R do

if p′ �F r′ then
if β(r′) = F then β(r′) := p′;
else β(r′) := T;

Let us consider a pair of states ((p, a, P \ {p′})�, (r, a, R \ {r′})�) in A�. This pair can
be added to I if and only if the following two conditions hold:

1. ∀r̂ ∈ (R \ {r′}).β(r̂) 6= F.
2. ∀r̂ ∈ (R \ {r′}).β(r̂) 6= p′.

With some preprocessing, both conditions can be efficiently checked in constant time.
Although the preprocessing has time complexity and space complexity O(n), it has to be
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done only at the beginning of the algorithm and can then be reused to check all pairs of
environments generated from the given pair of transitions.

We need the following preprocessing for condition 1. We define p̂ ∈ P as the KeyState
if p̂ is the only one state in P such that β( p̂) = F. Given a mapping function β, the KeyState
can be found efficiently (with time complexity O(n) and space complexity O(1)) by scanning
through R and
• if there exist two states r1, r2 ∈ R such that β(r1) = β(r2) = F, the algorithm terminates

immediately because it follows that none of the pairs of environments generated from
the given pair of transitions satisfies the requirement of I.
• if there exists only one state such that β maps it to F, let it be the KeyState.

Then we have condition 1 is satisfied if (1) there is no KeyState or (2) r′ is the KeyState.
The preprocessing for condition 2 is the following. We maintain a mapping function

γ : P→ {T, F} ∪ R (similar to the reverse function of β) such that

γ(p′) =


T if |{r̂ | r̂ ∈ R ∧ β(r̂) = p′}| > 1
F if |{r̂ | r̂ ∈ R ∧ β(r̂) = p′}| = 0
r′ if |{r̂ | r̂ ∈ R ∧ β(r̂) = p′}| = 1∧ β(r′) = p′.

The mapping function γ can be found with both time complexity O(n) and space complexity
O(n2) by scanning through β. With the function γ, condition 2 can be easily verified by
checking if γ(p′) ∈ {F, r′}, which means that for all the states r̂ in R \ {r′}, p′ is not the only
state such that p′ �F r̂.

Algorithm 2: Add Pairs of States to I

Input: Transitions p a−→ P, r a−→ R in A and the corresponding mapping function β.
/* Preprocessing for condition 1 */
forall r′ ∈ R do if β(r′) = F then

if there is no KeyState then Let r′ be the KeyState;
else Terminate the algorithm;

/* Preprocessing for condition 2 */
forall p′ ∈ P do γ(p′) := F;
forall r′ ∈ R do if β(r′) /∈ {T, F} then

if γ(β(r′)) = F then γ(β(r′)) := r′;
else γ(β(r′)) := T;

/* main loop */
forall p′ ∈ P, r′ ∈ R do

if there is no KeyState or r′ is the KeyState then
if γ(p′) ∈ {F, r′} then add ((p, a, P \ {p′})�, (r, a, R \ {r′})�) to I

In Algorithm 2, we first find out the KeyState if there is one and compute the function
γ from β. Then in the main loop, for each pair of states ((p, a, P \ {p′})�, (r, a, R \ {r′})�), we
check if it can be included to I by verifying the two conditions that we mentioned before.
Now it is easy to see that the Algorithm 2 has both time and space complexity O(n2). It
follows that the initial preorder I can be computed with both time and space complexity
O(n2m2).
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Figure 4: Potential Problems When �M Is Not Forward Extensible

B Potential Problems When �M Is Not Forward Extensible
Here we describe in detail the potential problems when �M is not forward extensible (see
Figure B for the illustrations).

Problem (i): The first problem will arise if there is a branch φ of U with leaf (φ) = r.
Here, apart from interconnecting T and U, r can use its new transitions also at the end of
πφ and connect another copy of U to the end of πφ. Suppose that all leaves of T except r
accept vvw and that all leaves of U except r accept vw. Then this enables a new accepting
run on the word uvvw. In this case, the existence of the mediator s is not a guarantee that
some accepting run on uvvw was possible before adding transitions to r.

Problem (ii): Another problem may arise if there are two (or more) branches in T ending
by r. Here we use the two branches π and π′ in Figure B as an example. To construct an
accepting run on uvw from T, r has to use the transitions of q at the end of π as well as at the
end of π′ to connect U to T in the both places. But partial run V “covers” only one of the two
occurrences of r. There may be a leaf x of V different from s for which r is the only leaf in T
with r �F x. Therefore, x needs not to accept vw as there is no guaranteed relation between
q and x in which case V is not a prefix of an accepting run on uvw and uvw need not be in
L(A). Note that a very similar situation can arise while attempting to quotient using pure
backward simulation equivalence which is the main reason why it cannot be used.

The solution of the both problems is to allow r to use the transitions of q only if q � r,
where q � r means that (a) there is a mediator for q and r and (b) for any state t, r �F t
implies q � t. We will show how the assumption of q � r helps to solve Problem (i) and (ii).

In the case of Problem (i), if y uses transitions of q to accept vw, then W becomes a prefix
of an accepting run on vvw and thus V becomes a prefix of a new accepting run on uvvw.
We know that r �F y. Thus, according to the definition of �, q � r �F y gives q � y, which
implies that there is a mediator for q and y. Observe that y used transitions of q just once.
Therefore, by an analogical argument by which we derived that A accepts uvw in the first
case when r used the new transitions only once, we can here derive that there is an accepting
run of A on uvvw which does not involve new transitions.

In the case of Problem (ii), if x uses the transitions of q to accept vw, V becomes a prefix
of a new accepting run on uvw. We know that r �F x and thus q � r �F x gives q � x,
which means that there is a mediator for q and x. Similarly as in the previous case, as x used
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the transitions of q only once, we can derive that there exists an accepting run of A on uvw
that does not involve new transitions.

The argumentation from the two above paragraphs can be used inductively for a run
where r uses transitions of q arbitrarily many times.

C Basic Properties of Simulation Relations

Here we give the proofs lemmas from Section 3.

PROOF. [Lemma 2] We prove the lemma by induction on height(T). In the base case when
T = {p}, it is sufficient to take U = {r}. Suppose now that the lemma holds for every
word u and for every partial run V of A on u such that height(V) < height(T). From p �F r,
there is a transition r

w1−→ R of A where such that succT(p) �∀∃F R. Observe that T =
{p} ∪ ⋃

p′∈succT(p) pT(p′), where for each p′ ∈ succT(p), T(p′) is a partial run of A with
the root p′ on the word v such that w = w1v. Notice that height(T(p′)) < height(T). The
induction hypothesis now can be applied to every triple p′ ∈ succT(p), r′ ∈ R, T(p′) with
p′ �F r′. It gives us a partial run Ur′ of A on v with root(Ur′) = r′, such that T(p′) �F Ur′ .
The run U with the required properties is then constructed by plugging the runs Ur′ , r′ ∈ R,
to r, i.e., U = {r} ∪⋃

r′∈R rUr′ .

PROOF. [Lemma 3] By induction on the length of π. In the base case, when π = p and
T = {p}, it is sufficient to take U = {r} and ψ = r. Suppose now that π 6= p and that the
lemma holds for every partial run T′ of A on w, states p′, r′ ∈ Q such that p′ �B r′, and
every π′ ∈ branches(T′) with leaf (π′) = p′ and |π′| < |π|.

For the induction step, let π = π′p and let succT(π′) = P∪{p}, p 6∈ P. By the definition
of �B, there is a transition s

w|π|−−→ R ∪ {r}, r 6∈ R of A such that leaf (π′) �B s and P �∀∃F R.
Let T′ = T \ {π} \⋃

p′∈P π′T(π′p′). Then T′ is a partial run ofA on w and π′ ∈ branches(T′),
|π′| < |π|, and therefore we can apply induction hypothesis to T′, leaf (π′), s, and π′. This
gives us a partial run U′ of A on w with ψ′ ∈ branches(U′) such that leaf (ψ′) = s, π′ �B ψ′

and for each 1 ≤ j ≤ |π′|, T′ 	j π′ �∀∃F U′ 	j ψ′. For every p′ ∈ succT(π′), T(π′p′) is a
partial run of A with the root p′ on the suffix v of w such that w = uv, |u| = |π| − 1. We
can apply Lemma 2 to the triples r′ ∈ R, p′ ∈ P, T(π′p′) with p′ �F r′. This gives us for
each r′ ∈ R a run Ur′ of A on v with root(Ur′) = r′ such that there is some p′ ∈ P with
T(π′p′) �F Ur′ . Now we construct a run U and a path ψ with the required properties by
plugging r and runs Ur′ , r′ ∈ R to the path ψ′ in U′, i.e., ψ = ψ′r and U = U′ ∪ {ψ} ∪⋃

r′∈R ψ′Ur′ . (To see that U really satisfies the required properties, observe the following: (i)
As U	|π′| ψ =

⋃
r′∈R branches(Ur′) and T	|π′| π =

⋃
p′∈P branches(T(π′p′)), and because for

each r′ ∈ R, there is p′ ∈ P with T(π′p′) �F Ur′ , we have that T 	|π′| π �∀∃F U 	|π′| ψ. (ii)
For all 1 ≤ j < |π′|, T 	j π = T′ 	j π′ �∀∃F U′ 	j ψ′ = U 	j ψ.).

D Mediated Equivalence Can Be Used for Quotienting

We give full proofs of lemmas in Section 4.1 leading to Theorem 8 and Corollary 9.
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D.1 Quotienting versus Extending

LEMMA 12. L(A/≡) ⊆ L(A+).

PROOF. Let A+
≡ = (Σ, Q, ι, δ+

≡ , α+
≡) be the automaton extended according to ≡. Observe

that states q and r with q ≡ r are forward simulation equivalent in A+
≡. (q and r are in A+

≡
either both accepting or both nonaccepting, and for all a ∈ Σ, δ+

≡(q, a) = δ+
≡(r, a)). Guru-

murthy et al. in [8] prove that quotienting with respect to forward simulation preserves
language. Therefore, L(A/≡) = L(A+

≡). It is also easy to see that L(A+
≡) ⊆ L(A+), as A+

has a richer transition function than A+
≡ and α+ = α+

≡. Thus, L(A) ⊆ L(A+).

D.2 Relating Partial runs of A+ and A

PROOF. [Lemma 6] The proof of Lemma 6 relies on Lemma 3 and the definition of�M. We
first choose a suitable branch π of swT(V) as follows. Let 1 ≤ k ≤ |τV | be some index such
that swT(V)	k τV is nonempty. If τV = ε, then k = 1. We choose some π′ ∈ swT(V)	k τV
which is minimal wrt. �F, meaning that there is no π′′ ∈ swT(V) 	k τV different from
π′ such that π′′ �F π′. We put π = τk

Vπ′. We note that this is the place where we use
the �F-unambiguity assumption. If A was �F-ambiguous, there need not be a k such that
swT(V)	k τV contains a minimal element wrt. �F.

From ext(π) �M leaf (π), there is a mediator s with ext(π) �F s �B leaf (π). We apply
Lemma 3 to V, π, leaf (π) and s, which give us a partial run W and ψ ∈ branches(W) with
leaf (ψ) = s such that π �B ψ, and for all 1 ≤ i ≤ |π|, V 	i π �∀∃F W 	i ψ. Let τW = ψ. The
proof will be concluded by showing that (i) T �w-ext W, (ii) τW 6∈ branches(swT(W)), and (iii)
〈τV , swT(V)〉 @ 〈τW , swT(W)〉, which implies V ≺T

τV ,τW
W.

(i) To show that T �w-ext W, we proceed as follows. Observe that for every φ ∈
branches(W) \ {ψ} there is a branch φ′ ∈ branches(V) \ {π} such that leaf (π) �F leaf (ψ)
and π �α ψ. This holds because for all 1 ≤ i ≤ |π|, V 	i π �∀∃F W 	i ψ and because π �B ψ

(to be more detailed, for every φ ∈ branches(W) \ {ψ}, φ = ψiρ for some i and ρ ∈ W 	i ψ.
There must be ρ′ ∈ V 	i π with ρ′ �F ρ. As π �B φ, πi �B φi which implies πi �α φi.
Similarly, ρ′ �F ρ implies ρ′ �α ρ and also leaf (ρ′) �F leaf (ρ). Therefore, we can construct
the branch πiρ′ ∈ branches(V) \ {π} with πiρ′ �α ψiρ = φ and leaf (πiρ′) �F leaf (ψiρ)).
We also know that T �w-ext V, so branches(T) �∀∃w-ext branches(V). Thus, by the definition
of �w-ext, we have that for every φ ∈ branches(W) \ {ψ}, there are φ′ ∈ branches(V) and
φ′′ ∈ branches(T) with φ′′ �α φ′ �α φ and ext(φ′′) �M leaf (φ′) �F leaf (φ). This by tran-
sitivity of α and the definition of �M gives φ′′ �α φ and ext(φ′′) �M leaf (φ), which means
φ′′ �w-ext φ. As T �w-ext V, there must also be a ρ ∈ branches(T) with ρ �w-ext π, and thus
we have ρ �α π �B ψ and ext(ρ) �F s = leaf (ψ), which by �B ⊆ �α and transitivity of �α

gives ρ �ext ψ. As �ext ⊆ �w-ext, this implies ρ �w-ext ψ. Finally, from root(T) �B root(V)
(implied by T �w-ext V), π �B ψ, and transitivity of �B, root(T) �B root(W). This overall
gives that T �w-ext W.

(ii) Showing that ψ 6∈ branches(swT(W)) is easy. In the above paragraph we have just
shown that ρ �ext ψ for some ρ ∈ branches(T), this ψ is not a strict weakly covering branch.

(iii) To show that 〈τV , swT(V)〉 @ 〈ψ, swT(W)〉, we will proceed as follows: Will show
that (a) for all 1 ≤ i < k, we have swT(V)	i τV �∀∃F swT(W)	i ψ and that (b) swT(V)	k τV ≺∀∃F
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swT(W)	k ψ. Notice first that for any partial run X ofA and τ ∈ X with τ 6∈ branches(swT(X)),
for all 1 ≤ j ≤ |τ|, swT(X) 	j τ ⊆ X 	j τ. Recall that τk

V = πk, that swT(V)	k τV is
nonempty, and that for all 1 ≤ i < |π|, V 	i π �∀∃F W 	i ψ.

We first show that for all 1 ≤ i < |π|, swT(V)	i π �∀∃F swT(W)	i ψ. For every φ ∈
swT(W) 	i ψ, there is at least one φ′ ∈ V 	i π with φ′ �F φ (because V 	i π �∀∃F W 	i ψ

and swT(W)	i ψ ⊆ W 	i ψ). We will show by contradiction that φ′ ∈ swT(V)	i π which
will imply swT(V)	i π �∀∃F swT(W)	i ψ. Suppose that φ′ 6∈ swT(V)	i π. Then the branch
πiφ′ of V is not strict weakly covering, and as T �w-ext V, we have that there is some φ′′ ∈
branches(T) with φ′′ �ext πiφ′. As π �B ψ, we have that πi �α ψi. As φ′ �F φ, we
have that φ′ �α φ and leaf (φ′) �F leaf (φ). This together with φ′′ �ext πiφ′ gives that
φ′′ �α πiφ′ �α ψiφ and ext(φ′′) �F leaf (πiφ′) �F leaf (ψiφ). By transitivity of �α and �F
and by the definition of �ext, we obtain φ′′ �ext ψiφ. This contradicts with the fact that
ψiφ is strict weakly covering (as φ ∈ swT(W) 	i ψ) and therefore it must be the case that
φ′ ∈ swT(V)	i π.

(a) The fact that for all 1 ≤ i < k, swT(V)	i τV �∀∃F swT(W)	i ψ is implied by the
result of the previous paragraph, because τk

V = πk (thus swT(V)	i τV = swT(V)	i π).
(b) It remains to show that swT(V)	k τV ≺∀∃F swT(W)	k ψ. By the definitions of 	k, π

and τV , it holds that swT(V)	k π ⊂ swT(V)	k τV . (To see this, recall that π is strict weakly
covering, but τV is not. Therefore, swT(V)	k π = swT(V)	k τV \ branches(swT(V)(πk+1))).
Thus, swT(V)	k τV �∀∃F swT(W)	k ψ. As π′ 6∈ swT(V)	k π and π′ is a minimal el-
ement of swT(V)	k τV , swT(V)	k π �∀∃F swT(V)	k τV cannot hold (there is no π′′ ∈
swT(V)	k π with π′′ �F π′). Therefore, swT(V)	k τV ≺∀∃F swT(V)	k π, which together
with swT(V)	k π �∀∃F swT(W)	k ψ gives (by transitivity of �F) that swT(V)	k τV ≺∀∃F
swT(W)	k ψ. This completes the part (iii) of the proof and we can conclude that V ≺T

τV ,ψ W.

PROOF. [Lemma 7] The proof of Lemma 7 is done by induction to the structure of T, using
Lemma 5 within the induction step. To make the induction argument pass, we will prove a
stronger variant of the lemma. Let us first define the relation �M

α+⇒α on paths such that for
two paths π and ψ, π �M

α+⇒α ψ iff π �α+⇒α ψ and leaf (π) �M leaf (ψ). For two partial runs V
and W, we use V �M

α+⇒α W to denote that branches(V) (�M
α+⇒α)

∀∃ branches(W). Apparently,
�α+⇒α ⊆ �M

α+⇒α for paths as well ans for partial runs.

A stronger variant of the lemma: For any partial run T of A+ on w ∈ Σω, there exists a
partial run U of A on w such that root(T) �B root(U) and T �M

α+⇒α U.

It is obvious that the above statement implies the statement of the lemma. We will
prove it by induction to the structure of T. In the base case, T = {q} for some q ∈ Q. If
q 6∈ α+, we can put U = {q} (�M and �B are reflexive). If q ∈ α+, then by the definition of
α+, there is p ∈ α such that p ≡M q. This means that q �M p and p �M q. By the definition
of �M, there exists a mediator s with p �F s �B q. As �F ⊆ �α, s ∈ α. Again by the
definition of �M, q �M p �F s �B q gives us q �M s �B q and we can put U = {s}.

Suppose now that T is not only a root and that the stronger variant of the lemma holds
for every partial run of A+ on w that is a proper subset of T. We choose some π ∈ T such
that succT(π) 6= ∅ and for every p ∈ succT(π), succT(πp) = ∅. Denote P = succT(π) and
q = leaf (π). Let T′ = T \ {πp | p ∈ P}. T′ is a partial run of A+ on w which is a proper
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subset of T, so we can apply the induction hypothesis. This gives us a partial run V of A on
w such that root(T′) �B root(V) and T′ �M

α+⇒α V.
Let BadV ⊆ branches(V) be the set such that ψ ∈ BadV iff there is no φ ∈ branches(T)

such that φ �M
α+⇒α ψ, and let GoodV = branches(V) \ BadV . Intuitively, BadV contains the

problematic branches because of which T �M
α+⇒α V does not hold.

By the definition of δ+ and because q
w|π|−−→ P is a transition of A+, there must be some

s ∈ Q, s �M q where s
w|π|−−→ P is a transition of δ. We define an extension function extV

such that extV(φ) = s for every φ ∈ BadV and extV(ψ) = leaf (ψ) for every ψ ∈ GoodV .
By applying Lemma 5 to V and extV , we get a partial run W of A on w with V �extV W.
Now, for each ψ ∈ branches(W), there is φ ∈ branches(V) with φ �extV ψ. As T′ �M

α+⇒α V,
ρ �M

α+⇒α φ for some ρ ∈ branches(T′). There are two cases of how ρ and ψ may be related,
depending on φ:

1. If φ ∈ GoodV , then ext(φ) = leaf (φ). In this case, by the definitions of�M
α+⇒α and�extV ,

we have ρ �α+⇒α φ �α ψ and leaf (ρ) �M leaf (φ) �F leaf (ψ), which gives ρ �α+⇒α ψ

and leaf (ρ) �M leaf (ψ) (by the definition of �M), meaning that ρ �M
α+⇒α ψ.

2. To analyze the case when φ ∈ BadV , observe that π is the only branch of T′ which
is not a branch of T. Therefore, it has to be the case that π is the only branch of T′

with π �M
α+⇒α φ (If there was a another such a branch π′ of T′ with π′ �M

α+⇒α φ, then
φ ∈ GoodV as π′ ∈ branches(T). There must be at leas one such a branch of T′ as
T′ �M

α+⇒α V). Thus ρ = π. According to the definition of extV , extV(φ) = s. Together
with V �extV W, we have π �M

α+⇒α φ �α ψ which gives π �α+⇒α ψ. However, we
cannot guarantee any further relation between leaf (φ) and leaf (ψ), and therefore we
cannot derive leaf (π) �M leaf (ψ) and π �M

α+⇒α ψ as in the previous case.
We define the set BadW ⊆ branches(W) such as ψ ∈ BadW iff there is no ρ ∈ T with ρ �M

α+⇒α ψ

and we let GoodW = branches(W) \ BadV . Analogically as BadV , BadW contains the branches
because of which T �M

α+⇒α W does not hold. Note that if ψ ∈ BadV , then all the φ ∈
branches(V) with φ �extV ψ are as in the case (2) above, i.e., π is the only branch of T′

with π �M
α+⇒α φ. By the definition of �extV , s = extV(φ) �F leaf (ψ). Therefore, by the

definition of �F, there must be some transition leaf (ψ)
w|π|−−→ Rψ of A where P �∀∃F Rψ.

We extend W by firing these transitions for every ψ ∈ BadW , in which way we get a run
X = W ∪ {ψRψ | ψ ∈ BadW} of A on w.

Let us use NewX = {ψRψ | ψ ∈ BadW} to denote the branches of X that erased by firing
the transitions. Observe that branches(X) = GoodW ∪ NewX. Recall that for all ψ ∈ BadW ,
π �α+⇒α ψ and that for every ψ ∈ NewX, there is some p ∈ P such that p �F leaf (ψ). We
will define an extension function extX of X as follows:

1. If ψ ∈ GoodW , extX(ψ) = leaf (ψ).
2. If ψ ∈ NewX and there is p ∈ P with p �F leaf (ψ) and p �α+⇒α leaf (ψ), we let

extX(ψ) = leaf (ψ).
3. If ψ ∈ NewX and there is no p ∈ P with p �F leaf (ψ) and p �α+⇒α leaf (ψ), we proceed

as follwos. By the definition of NewX, there is some p′ ∈ P such that p′ �F leaf (ψ).
Because of �F ⊆ �α, the fact that p′ �F leaf (ψ) and not p′ �α+⇒α leaf (ψ) implies that
p′, leaf (ψ) 6∈ α and p′ ∈ α+. This by the definition of α+ means that there is some v ∈ α

with p′ ≡M v. We put extX(ψ) = v.
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We apply Lemma 5 to X and extX, which gives us a partial run U of A on w with
X �extX U. We will check that U satisfies the statement of the stronger variant of the lemma.
We will first prove that that T �M

α+⇒α U. For each τ ∈ branches(U), there is ψ ∈ branches(X)
with ψ �extX τ. We will derive that there is some ρ ∈ branches(T) with ρ �M

α+⇒α τ. The
argument will depend on which of the above three types ψ is of:

1. If ψ ∈ GoodW , then there is some ρ ∈ T with ρ �M
α+⇒α ψ. Recall that extX(ψ) = leaf (ψ)

in this case. Thus, by the definitions of �M
α+⇒α and �extX , we have ρ �α+⇒α ψ �α τ

and leaf (ρ) �M leaf (ψ) �F leaf (τ), which gives ρ �α+⇒α τ and leaf (ρ) �M leaf (τ), i.e.,
ρ �M

α+⇒α τ.
2. If ψ ∈ NewX and there is some p ∈ P with p �F leaf (ψ) and p �α+⇒α leaf (ψ), then by

the definition of extX, extX(ψ) = leaf (ψ). Recall that as ψ|ψ|−1 ∈ BadW , π �α+⇒α ψ|ψ|−1.
Therefore, also πp �α+⇒α ψ. By the definition of �extX , we have that ψ �α τ and
leaf (ψ) �F leaf (τ). Finally, πp �α+⇒α ψ �α τ and p �F leaf (ψ) �F leaf (τ) together
imply that πp �M

α+⇒α τ.
3. If ψ ∈ NewX and there is no p ∈ P with p �F leaf (ψ) and p �α+⇒α leaf (ψ), then by

the definition of extX, extX(ψ) = v, where v ∈ α and p′ ≡M v, p′ �F leaf (ψ) for some
p′ ∈ P. By ψ �extX τ, we have ψ �α τ and v �F leaf (τ). Thus, by the definition of �M,
p′ ≡M v �F leaf (τ) gives p′ �M leaf (ψ). As �F ⊆ �α, we have that leaf (τ) ∈ α and
thus p′ �α+⇒α leaf (τ). As ψ|ψ|−1 ∈ BadW , we have that π �α+⇒α ψ|ψ|−1. Together with
ψ �α τ, this gives πp′ �α+⇒α τ. Therefore, πp′ �M

α+⇒α τ.
Thus, we have proven that T �M

α+⇒α U. Finally, as V �extV W and X �extX U, we
have root(V) �B root(W) and root(X) �B root(U). Together with root(X) = root(W) and
root(T) = root(T′) �B root(V), we have root(T) �B root(V) �B root(X) �B root(U). By
transitivity of �B, root(T) �B root(U). We have verified that U satisfies the statement of the
of the stronger variant of the lemma, which concludes the proof.

D.3 Relating Accepting Runs of A+ and A

LEMMA 13. A run T of A with root(T) = ι is accepting if and only if for every π ∈ T, there
exists a constant kπ ∈ N such that every ψ with πψ ∈ T and |ψ| ≥ k contains an accepting
state.

PROOF. (if) For every π ∈ branches(T), there is an infinite sequence of k0, k1 . . . such that:
• k0 = 0 and
• for all i ∈N, ki = ki−1 + kπn where n = ki−1 + 1.

For all i ∈ N, every segment of π between ki−1 + 1 and ki contains and accepting state, so,
π contains infinitely many accepting states.

(only if) By contradiction. Suppose that there is π ∈ T for which there is no kπ. We will
show that in this case, there must be ψ ∈ Qω such that πψ ∈ branches(T) and ψ does not
contain an accepting state (which contradicts with the assumption that T is accepting).

We will give a procedure which for each i ∈ N returns ψi (based on the knowledge of
ψi−1). For each i ∈ N0, we will keep the invariant that for πψi, there is no kπψi and that ψi

does not contain an accepting state. As ψ0 = ε, the invariant holds for i = 0.
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Let the invariant hold for i − 1, i ∈ N, and suppose that we have already constructed
ψi−1. There must be some q ∈ succT(πψi−1) such that q 6∈ α, otherwise πψi−1 = 1, which
contradicts the invariant for i− 1. We put ψi = ψi−1q. Observe that the invariant is satisfied
for i too. Therefore, we can construct the ith prefix ψi of ψ that does not contain an accepting
state for every i ∈ N. This proves that there is a branch πψ of T where ψ does not contain
an accepting state, which contradicts the assumption that T is accepting.

LEMMA 14. For every accepting run T of A+ a word w ∈ Σω, there exists an accepting run
U of A on w.

PROOF. For a tree X over Q, let X(i) = {π ∈ X | |π| ≤ i} be the ith prefix of X (X(0) = ∅).
From Lemma 7, for each i ∈ N, there is a partial run Ui of A on w such that T(i) �α+⇒α Ui
and root(T(i)) �B root(Ui). As �B ⊆ �ι, root(Ui) = ι. Note that for all π ∈ branches(Ui),
|π| equals i, because only paths of the same length can be related by �α+⇒α. Denote U∞ =
{U1, U2, . . .}. U∞ is an infinite set that for each k ∈N contains a partial run Uk ofAwith all
the branches of the length k. We will use U∞ to construct the infinite accepting run U.

Observe that for any infinite set V∞ of partial runs of A and for any i ∈ N, there has
to be at least one partial run W of A such that for infinitely many V ∈ V∞, W = V(i). The
reason is that for any i ∈N, there is obviously only finitely many of possible partial runs of
the height i that A can generate.

We prove the existence of U by giving a procedure, which for every k ∈N gives the kth
prefix U(k) of U.
• Let U∞

0 = U∞ and let U(0) = ∅.
• For every k ∈ N, U(k) is derived from U(k− 1) as follows. Let U∞

k ⊆ U∞ be defined
as the set such that for all i ∈ N, Ui ∈ U∞

k iff U(k− 1) = Ui(k− 1). In other words,
U∞

k is the subset of U∞ of the partial runs with the ith prefix equal to U(k− 1). Then,
U(k) = Un(k) for some n ≥ k such that Un ∈ U∞

k and there is infinitely many m ∈ N

such that Um ∈ U∞
k and Un(k) = Um(k). I other words, U(k) is a tree that appears as

the kth prefix of infinitely many partial runs in U∞
k .

To see that this construction is well defined, observe that:
• U∞

0 is infinite, and
• for all k ∈N, if U∞

k−1 is infinite, then U(k− 1) is defined and U∞
k is infinite.

Thus, U(k) is well defined for every k ∈N and U is a run of A.
I remains to show that U is accepting. We will show that for every π ∈ U, there is

kπ ∈ N such that every ψ with πψ ∈ T and |ψ| ≥ k contains an accepting state. By Lemma
13, it will follow that U is accepting.

Let us choose arbitrary π ∈ U. Let n = |π|. By Lemma 13, for every π′ ∈ branches(Tn),
there is there is kπ′ ∈ N such that every ψ′ with π′ψ′ ∈ T and |ψ′| ≥ kπ′ contains an
accepting state. Let k = max{kπ′ | π′ ∈ branches(T(n))}. By the construction of U, T(n +
k) �α+⇒α U(n + k). This implies that for every π′′ ∈ branches(U(n)), every ψ′′ with π′′ψ′′ ∈
T and |ψ′′| ≥ k contains an accepting state. As π in branches(U(n)), we can put kπ = k and
we are done.

PROOF. [Theorem 8] The inclusion L(A) ⊆ L(A+) is obvious as L(A+) has riches both
transition function and the set of accepting states. The inclusion L(A+) ⊆ L(A) follows
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immediately from Lemma 14.

E Correctness and Complexity of Computing �B

PROOF. [Theorem 10] (if) We define � to be a binary relation on Q such that p � r iff
p� �I r�. We show that � is a backward simulation on Q which immediately implies the
result.

Suppose that p � r and p′ a−→ {p} ∪ P where p 6∈ P is a transition of A. Since p � r,
we know that p� �I r�; and since p′ a−→ {p} ∪ P is a transition of A, we know by definition
of A� that p� a−→ (p′, a, P)� and (p′, a, P)� a−→ p′� are transitions in A�. Since �I is a
simulation, we can find two transitions r� a−→ (r′, a, R)� and (r′, a, R)� a−→ r′� in A� with
(p′, a, P)� �L (r′, a, R)� and p′� �L r′�. From p′� �I r′�, (p′, a, P)� �I (r′, a, R)�, and the
definition of the initial preorder I, we have p′ � r′ and P �∀∃F R. It follows that � is in fact
a backward simulation.

(only if) Define �� as a binary relation on Q� such that p� �� r� iff p �B r and
(p, a, P)� �� (r, a, R)� iff P �∀∃F R and p �B r. By definition, ��⊆ I. We show that
�� is a simulation on Q� which immediately implies the result. In the proof, we consider
two sorts of states in A�; namely those corresponding to states and those corresponding to
“environments”.

Suppose that p� �� r� and the transition p� a−→ (p′, a, P)� is in A�. Since p� �� r�,
we know that p �B r. From the transition p� a−→ (p′, a, P)� and by definition of A�, p′ a−→
P ∪ {p} is a transition in A. Since p �B r, there exists a transition r′ a−→ R ∪ {r} in A such
that p′ �B r′ and P �∀∃F R. It follows that there exists a transition r� a−→ (r′, a, R)� in A�

such that (p′, a, P)� �� (r′, a, R)�.
Suppose that (p, a, P)� �� (r, a, R)� and the transition (p, a, P)� a−→ p� is in A�. Since

(p, a, P)� �� (r, a, R)�, we know that P �∀∃F R and p �B r. By definition of A�, the
transition (r, a, R)� a−→ r� is in A�. Since p �B r, we have p� �� r�. Together we have
there exists a transition (r, a, R)� a−→ r� in A� such that p� �� r�. It follows that �� is a
simulation on Q�.

PROOF. [Theorem 11] The complexity comes from three parts of the entire procedure: (1)
compiling A into its corresponding LTS A�, (2) computing the initial preorder I, and (3)
running the algorithm for computing the LTS simulation. The LTS A� has at most nm+n
states and 2nm transitions. It is trivial that Part (1) has both time and space complexity
O(nm). As we explained in Appendix A, Part(2) has time complexity O(n2m2) and space
complexity O(nm2). From the size of the LTS obtained from Part (1), Part (3) has time com-
plexity O(|Σ|n2m2) and space complexity O(|Σ|n2m2). It follows that computing backward
simulation has time complexity O(|Σ|n2m2) and space complexity O(|Σ|n2m2). Under our
definition of ABA, every state has at least one outgoing transition for each symbol in Σ. It
follows that m ≥ |Σ|n. Therefore, we can also say that the procedure for computing maxi-
mal backward simulation has time complexity O(nm3) and space complexity O(nm3).



24

F Counterexamples
F.1 Backward Simulation Cannot Be Used For Quotienting

Consider the following ABAA = ({a, b}, {s0, s1, s2, s3, s4, s5, s6}, s0, δ, {s0, s1, s2, s3, s4, s5, s6}),

where s0
a−→ {s4}, s0

a−→ {s1}, s0
b−→ {s0}, s1

b−→ {s2, s5}, s1
b−→ {s1, s3}, s2

b−→ {s2, s3},
s3

a−→ {s0}, s4
b−→ {s4, s6}, s5

b−→ {s0}, and s6
a−→ {s0} are transitions of A. The maximal for-

ward simulation relation �F in A is {(s0, s0), (s1, s0), (s1, s1), (s1, s5), (s2, s0), (s2, s1), (s2, s2),
(s2, s4), (s2, s5), (s3, s3), (s3, s6), (s4, s0), (s4, s1), (s4, s2), (s4, s4), (s4, s5), (s5, s0), (s5, s5), (s6, s3),
(s6, s6)}. The maximal backward simulation relation �B parameterized with �F is {(s0, s0),
(s1, s1), (s1, s4), (s2, s2), (s3, s3), (s4, s1), (s4, s4), (s5, s2), (s5, s3), (s5, s5), (s5, s6), (s6, s2), (s6, s3),
(s6, s5), (s6, s6)}.

If we collapse states wrt. �M (i.e., two sets of states {s1 ,s4}, {s5, s6} are collapsed),
we will get the following ABA A′ = ({a, b}, {s0, s1, s2, s3, s4}, s0, δ, {s0, s1, s2, s3, s4}), where

s0
a−→ {s1}, s0

b−→ {s0}, s1
b−→ {s2, s4}, s1

b−→ {s1, s4}, s1
b−→ {s1, s3}, s2

b−→ {s2, s3}, s3
a−→ {s0},

s4
a−→ {s0}, and s4

b−→ {s0} are transitions of A′.
Note that A′ accepts the word abω, but A does not.

F.2 Mediated Minimization Cannot Be Used On An �F-Ambiguous ABA

Consider the following ABAA = ({a, b}, {s0, s1, s2, s3, s4}, s0, δ, {s4}), where s0
a−→ {s1, s2, s3},

s1
b−→ {s4}, s2

b−→ {s4}, s3
b−→ {s4}, s3

a−→ {s1, s2, s3}, and s4
a−→ {s4} are transitions of A. The

maximal forward simulation relation �F in A is {(s0, s0), (s0, s3), (s1, s1), (s1, s2), (s1, s3),
(s2, s1), (s2, s2), (s2, s3), (s3, s3), (s4, s4)}. From s1 ≡F s2 and the transition s0

a−→ {s1, s2, s3}
we can find thatA is�F-ambiguous. The maximal backward simulation relation�B param-
eterized with �F is {(s0, s0), (s1, s1), (s1, s2), (s1, s3), (s2, s1), (s2, s2), (s2, s3), (s3, s1), (s3, s2),
(s3, s3), (s4, s4)} and the mediated preorder �M is {(s0, s0), (s0, s1), (s0, s2), (s0, s3), (s1, s1),
(s1, s2), (s1, s3), (s2, s1), (s2, s2), (s2, s3), (s3, s1), (s3, s2), (s3, s3), (s4, s4)}.

If we collapse states wrt. �M (i.e., merge the three states s1, s2, and s3), we will get the

following ABA A′ = ({a, b}, {s0, s1, s2}, s0, δ, s2), where s0
a−→ {s1}, s1

a−→ {s1}, s1
b−→ {s2},

and s2
a−→ {s2} are transitions of A′. Note that A′ accepts the word aabaω, but A does not.
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