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Abstract. We consider the verification problem for Communicating Register
Automata (BDRA) which extend classical register automata by process creation.
In this setting, each process is equipped with a mailbox (i.e., a channel) in which
received messages can be stored. Moreover, each process has a finite number of
registers in which IDS of other processes can be stored. A process can send mes-
sages to the mailbox of the processes whose IDS are stored in its registers and can
send them the content of its registers. The state reachability problem asks whether
a BDRA reaches a configuration where at least one process is in an error state.
In this paper, we study the decidability of the reachability problem for different
kind of channels and we provide a complete characterisation of the (un)decidable
subclasses in this generalised setting.

Keywords: Formal Verification, Distributed Systems

1 Introduction

Register automata [14] were introduced as a reasonable extension of finite automata
to deal with languages over infinite alphabets. The expressiveness and computational
properties of different versions of this model are intensively studied (see e.g. [17, 18, 4,
19, 12]). A register automaton is a finite state automaton equipped with a finite number
of registers in which symbols from an infinite domain can be stored for later compar-
ison. There are many papers investigating the strong relationship between logics on
structures over infinite alphabets and register automata [8, 10, 15, 13].

In [6, 5] register automata with process creation are proposed to describe the behav-
ior of parallel processes. In this approach registers are used to store the IDS of other
processes in the network. Every process can spawn new processes and communicate
asynchronously with processes whose IDS are stored in its registers through unbounded
channels. This extended register automata model is used as an (implementation) model
for ad-hoc networks [6] and dynamic message sequence charts [5].

In [3], we studied the state reachability problem for Dynamic Register Automata
(DRA) which is basically the automata model in [6, 5] adapted to rendezvous-based
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communication and equipped with a reset transition for deleting register contents. Given
a DRA and an (error) state qerr the sate reachability problem asks whether the network
induced by the DRA reaches a configuration where at least one process is in state qerr.
The reachability problem for DRA is in general not decidable. Searching for decid-
able sub-classes and inspired by recent investigations on ad-hoc networks [7, 1], we
set several restrictions on the configuration graphs induced by DRA and considered
degenerative DRA, i.e. DRA which are able to reset registers nondeterministically.

In this paper we consider Buffered Dynamic Register Automata (BDRA) which,
compared to the model we studied in [3], is closer to the original model in [6, 5] in
terms of communication. Besides finitely many registers, a BDRA is equipped with an
(un)bounded FIFO buffer. A process described by a BDRA can create new processes
and send messages to the buffers of other processes whose IDS are stored in its regis-
ters. An exchanged message can contain a symbol from a finite alphabet along with a
process ID (from one of the process registers for instance). Moreover, the process can
read messages from its own buffer and store incoming IDS in its own registers. Thus,
the number of processes involved in the network induced by a BDRA and the commu-
nication topology of the network are not fixed a priori but change dynamically during
the run of the system. Note also, that message sending and message receiving occur
asynchronously. Finally, processes may execute a disconnect action, which will detach
them from the whole network. As a result of this action, the content of the process
registers and the process buffer are deleted.

We investigate the decidability borders of the state reachability problem for both
BDRA and lossy BDRA, a sub-class of BDRA in which any process in the network
can non deterministically disconnect itself. We show first that, in terms of reachable
states, every BDRA is equivalent to its lossy counterpart.

Note that in order to simulate rendezvous communication through buffered systems,
acknowledgement messages from receiver to sender are needed. This requires the ex-
istence of communication cycles in the graph of the network, which in turn makes the
state reachability problem undecidable. In fact, we show that the reachability problem
for (lossy) BDRA is undecidable even in the case where only configurations of which
the graph of the network contains at most one edge are allowed.

We consider therefor a new restriction on (lossy) BDRA that would diminish the
power of the model coming from the buffer: bounding the process buffers. We show that
the problem remains undecidable for this case, even if the buffer is set to contain at most
one message. The undecidability result still holds when only acyclic configurations are
allowed and even if we bound the simple paths of the communication graph.

Finally, we concentrate on strongly bounded BDRA with bounded buffers. A
BDRA is called strongly bounded if the only configurations allowed are those in which
the simple paths of the underlying undirected graph of the network is bounded by some
constant. While the reachability problem for strongly bounded BDRA with bounded
buffer is still undecidable, we get decidability when we consider lossy BDRA. The
proof comes from a non-trivial instantiation of the well-structured transition system
framework. It is worth mentioning here that, due to the channel semantics we consid-
ered in our model (non-lossy FIFO), messages with IDS can not be dropped. Therefor,
there is no trivial reduction from strongly bounded lossy BDRA with bounded buffers
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to strongly bounded degenerative DRA considered in [3]. Furthermore, the definitions
of the graph encoding of configurations and the well-quasi ordering needed in order to
instantiate the framework of well-structured transition systems to show decidability for
strongly bounded lossy BDRA with bounded buffer are different from the ones used to
prove the decidability of strongly bounded degenerative DRA in [3] and more involved.

Related work. For related work concerning register automata and wireless Ad-Hoc
networks, we refer the reader to the related work section in [3]. In the following, we
mainly compare our work with [3].

The main difference between the two works is the communication modality. In
[3], the communication is done via rendezvous, while in our work, we consider asyn-
chronous communication through the use of buffers. Both models are Turing powerful.
Also, as it is not obvious how reset transitions can be simulated by disconnect transi-
tions, there is no simple reduction of the reachability problem from one model to the
other. Moreover, our model allows a more fine-grained analysis since we can reason
about the acyclicity of the communication graph while the rendezvous communication
requires the synchronisation of sender and receiver and consequently the creation of an
implicit cycle in the communication graph.

We show that our general undecidability result and the undecidability result for
BDRA with bounded buffer hold even in the case where the communication graph
is acyclic and all its simple paths are bounded. Our undecidability proofs are more
involved and complicated than in the case of DRA [3] due to the acyclicity restriction
of the communication graph. We show also the decidability of the reachability problem
for strongly bounded BDRA when the underlying undirected graphs of the network
are acyclic. This case was not considered in [3]. Finally, the graph encoding used
for the configurations and the well-quasi ordering for strongly bounded lossy BDRA
are different and more involved than the ones used in the case of strongly bounded
degenerative DRA in [3].

2 Preliminaries

Let A and B be two sets. We use |A| to denote the cardinality of A (|A| = ω if A is
infinite). Let N be the set of natural numbers. For a partial function g : A ⇀ B and a∈ A,
we write g(a) = ⊥ if g is undefined on a. We use ⊥A to denote the partial function
which is undefined on all elements of A, i.e. ⊥A (a) =⊥ for all a ∈ A. Given a (partial)
function f : A ⇀ B, a ∈ A and b ∈ B, we denote by f [a← b] the function f ′ defined by
f ′ (a) = b and f ′ (a′) = f (a′) for all a′ ∈ A with a 6= a′.

Let Σ be an alphabet. We denote by Σ∗ (resp. Σ+) the set of all finite words (resp.
finite non-empty words) over Σ, and by ε the empty word. Let w be a word over Σ. The
length of w is denoted by |w|; we assume that |ε|= 0. For every j : 1≤ j ≤ |w|, we use
w( j) to denote the jth letter of w. For every letter a ∈ Σ, we use a ∈ w to denote that
there is an index j such that 1 ≤ j ≤ |w| and w( j) = a. Let A =

〈
QA,q0

A,δA,FA
〉

be a
finite state automaton over the alphabet Σ, with QA being the set of control states, q0

A
the initial state, δA ⊆ QA×Σ×QA the transition relation, and FA the set of accepting
states. We use L(A) to denote the regular language accepted by A.
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A transducer T over the alphabet Σ is a tuple
〈
QT ,q0

T ,δT ,FT
〉

where QT is the set of
control states, q0

T is the initial state, δT ⊆Q×(Σ∪{ε})×(Σ∪{ε})×Q is the transition
relation and FT is the set of accepting states. A transducer T induces a binary relation
RelT over Σ∗ where two words w1,w2 ∈ Σ∗ are in relation (w1 RelT w2) if T outputs w2
when accepting w1. If (w1 RelT w2) we say that w2 is a transduction of w1 by T . Given
a word w ∈ Σ∗, we use T (w) := {w′ ∈ Σ∗| wRelT w′} to denote the set of all possible
transductions of the word w by T . We define the transduction of a language L ⊆ Σ∗ as
T (L) := {w′ ∈ Σ∗| ∃w ∈ L,wRelT w′}. By induction, we define the ith transduction of
L as follows: T 0 (L) := L and T i+1 (L) := T

(
T i (L)

)
.

Given two finite state automaton A and B and a transducer T , all over the same
alphabet Σ, the transduction problem TRANSD consists in checking whether there exits
i ∈ N such that T i (L(A))∩L(B) 6=∅.

We define a directed labeled graph (or simply graph) G as a tuple 〈V,Lv,Le, l,E〉
composed of a finite set of vertices V , a set of vertex labels Lv, a set of edge labels Le, the
vertex labeling function l : V → Lv and the set of labeled edges E ⊆V ×Le×V . A path
in G is a finite sequence of vertices π = v1v2 . . .vk, k ≥ 1, where, for every i : 1≤ i < k,
there is an a∈ Le such that 〈vi,a,vi+1〉 ∈ E. The path is a cycle if v1 = vk and k≥ 2. The
path π is simple if all vertices in π are distinct, i.e. vi 6= v j for all i, j : 1≤ i < j ≤ k. We
define length(π) := k− 1. The largest k such that there is a simple path π in G with
length(π) = k is called the diameter of G, and is denoted by �(G).

We define a transition system T as a triple 〈C,Cinit ,−→〉, where C is a set of con-
figurations, Cinit ⊆ C is a set of initial configurations, and −→⊆ C×C is a transition
relation. We write c1 −→ c2 if 〈c1,c2〉 ∈−→ and −→∗ to denote the reflexive transitive
closure of−→. A configuration c∈C is reachable in T if there is some cinit ∈Cinit such
that cinit −→∗ c.

3 Buffered Dynamic Register Automata

A network induced by a Buffered Dynamic Register Automaton (BDRA or buffered
DRA) consists of a set of processes. Each process has a unique ID and is modelled
as a finite-state system equipped with a mailbox and a finite number of registers. The
mailbox is the recipient of all messages addressed to that process. In this paper, we
assume that the mailbox is described by a (bounded) perfect FIFO buffer. The finitely
many registers of a process are used to store the IDS of other processes in the network.
A process is allowed to send a message (together with a possible content of one of its
registers) to the mailbox of another process only if the ID of the receiver is stored in one
of its registers. A process can receive a message from its mailbox and store a received
ID in one of its registers. Finally, a process can also create (or spawn) a new process,
allowing the number of processes in the network to increase over time.

In the following, we describe the syntax and semantics of BDRA. We introduce its
subclass of Lossy BDRA where any process can be disconnected from the network in
a non-deterministic way. Finally, we define the state reachability problem

Syntax. A BDRA D is a tuple 〈Q,q0,M,X ,δ〉 where Q is a finite set of control states,
q0 ∈Q is the initial state, M is a finite set of messages, X = {x1, . . . ,xn} is a finite set of
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registers, and δ is a set of transitions, each of the form 〈q1,action,q2〉where q1,q2 ∈Q
are control states and action is of one of the following forms:

(i) τ which corresponds to a local action,
(ii) x� create(q) where x ∈ X and q ∈Q, which creates a new process with a fresh

ID in state q, and stores this fresh ID in the register x of the creating process,
(iii) m(v) !y where m ∈ M, v ∈ X ∪{⊥,self}, and y ∈ X . This transition sends the

message m together with the value pointed by v to the mailbox of the process
whose ID is stored in register y. Observe that the value pointed by v is either the
content of register v if v ∈ X and v is assigned to a process ID, the ID of the
sending process if v = self or the null value otherwise. This transition can not be
performed if the register y is undefined (i.e. containing the value ⊥).

(iv) m?x where m ∈M and x ∈ X , receives a message of the form m(id) and stores id
in its register x if id is a process ID or deletes the content of x otherwise.

(v) disconnect which disconnects the process from the network by disabling any
possible future communication with any other process. This is done by (1) reseting
(to ⊥) all registers belonging to the disconnecting process or containing its ID,
(2) emptying the buffer of the process, and (3) resetting the ID field in all the
messages containing the ID of the process to undefined.

A BDRA D is said to be lossy if for every state q ∈ Q the transition
〈q,disconnect〈x〉 ,q〉 is contained in δ (i.e. any process can be disconnected from the
network at any time). Given a BDRA D = 〈Q,q0,M,X ,δ〉, we define its lossy counter-
part Lossy(D) as the tuple 〈Q,q0,M,X ,δ′〉 with δ′ = δ∪{〈q,disconnect,q〉 |q ∈Q}.

Configuration. We use P to denote the domain of all possible process IDS. In the
following, we sometimes refer to a process by its ID. We define a configuration c of a
BDRA D = 〈Q,q0,M,X ,δ〉 as a tuple 〈procs,s,r,ch〉, where procs⊆ P is a finite set
of processes, s : P ⇀Q is a partial function that associates each process p∈ procs with
its current state, r : P ⇀ {X ⇀ procs} is a partial function that maps every process p∈
procs to its register contents and ch : P ⇀ (M× (P ∪{⊥}))∗ maps each process p ∈
procs to the content of its channel. We use msg(m(id)) =m (respectively Id(m(id)) =
id) to denote the message part (respectively the ID part) of a message tuple m(id). For
two processes p1, p2 ∈ procs and x ∈ X , r(p1)(x) = p2 means that register x of p1
contains the ID of p2. If r(p1)(x) is not defined then register x of p1 is empty. We
use q ∈ c to denote that there is a process p ∈ procs such that s(p) = q. The set of all
possible configurations of D is denoted by C(D). A configuration c= 〈procs,s,r,ch〉 ∈
C(D) is said to be initial if it contains exactly one process (i.e., procs= {p} for some
p∈ P ) in the initial state (s(p) = q0), whose registers are empty (r(p)(x) =⊥,∀x∈ X)
and whose mailbox is empty (ch(p) = ε). The set of initial configurations is denoted
by Cinit(D).

Graph Representation. Let c = 〈procs,s,r,ch〉 be a configuration. We propose a
graph encoding for c in order to show the communication possibilities between pro-
cesses. In this encoding, every process is represented by a vertex labeled with its state.
Moreover, if register x ∈ X of a process p1 contains the ID of another process p2, then
there is an edge from the vertex representing p1 to the vertex representing p2 and the
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edge is labeled with x. Furthermore, we add edges that represent the potential con-
nectivity between processes that comes from the message-ID tuples contained in the
process mailboxes, and we label them with the symbol −. Formally, the encoding of
the configuration c is defined as the graph enc(c) := 〈procs,Q,X ∪{−} ,s,E〉 with
E = {〈p,x, p′〉| r(p)(x) = p′ 6=⊥}∪{〈p,−, p′〉| m(p′) ∈ ch(p) and p′ 6=⊥}.

Operational Semantics. We define a transition relation −→D on the set of configu-
rations C (D) of D. Let c = 〈procs,s,r,ch〉 ,c′ = 〈procs′,s′,r′,ch′〉 ∈ C (D) be two
configurations. We have c−→D c′ if one of the following conditions holds:

Local: There is a transition 〈q1,τ,q2〉 ∈ δ and a process p ∈ procs such that
i) s(p) = q1, ii) s’= s[p← q2], and iii) procs’= procs, r’= r and ch’= ch, i.e.
processes, registers and mailboxes are left unchanged. A local transition changes
the state of at most one process.

Process Creation: There is a transition 〈q1,x� create(q),q2〉 ∈ δ and a pro-
cess p ∈ procs such that: i) s(p) = q1, ii) procs’ = procs∪{p′} for some pro-
cess p′ /∈ procs, i.e. a new process p′ is created, iii) s’ = s[p ← q2][p′ ← q],
i.e. process p′ is spawned in state q, while the new state of process p is q2,
iv) r’ = r[p← r(p)[x← p′]], i.e. register x of process p is assigned the ID of the
new process p′, and v) ch’[p′← ε], i.e. the new process p′ gets an empty buffer.

Message Sending: There are two distinct processes p, p′ ∈ procs and a transition
〈q1,m(v) !y,q2〉 ∈ δ such that: (i) s(p) = q1 and s’= s[p← q2], (ii) r(p)(y) = p′,
i.e. register y of p contains the ID of p′, (iii) procs’ = procs and r’ = r, and
(iv) ch’= ch[p′← ch(p′) ·m(id)], where id = r(p)(v) if v∈ X , id = p if v = self
and id =⊥ otherwise. Observe that this transition can not be performed when y is
undefined since there is no process p′ ∈ procs such that r(p)(y) = p′.

Message Receiving: There is a process p∈ procs and a transition 〈q1,m?x,q2〉 ∈
δ such that: (i) s(p) = q1 and s’= s[p← q2], (ii) ch= ch’[p← m(id) ·ch’(p)],
i.e. channel ch(p) of process p in configuration c contains a message of the form
m(id) that will be read, (iii) r’ = r[p← r(p)[x← id]], and (iv) procs’ = procs.
Note that id can be empty (id =⊥) or contain the ID of another process p′′ ∈ procs.

Process Disconnection: There is a transition 〈q1,disconnect,q2〉 ∈ δ and a
process p ∈ procs such that: (i) s(p) = q1 and s’ = s[p← q2], (ii) procs’ =
procs, (iii) r’(p) =⊥X i.e. all registers of process p are reset, (iv) for every other
process p′ ∈ procs we have, for every register x ∈ X , either r(p′)(x) 6= p and the
value of the register is preserved (r’(p′)(x) = r(p′)(x)), or r’(p′)(x) = p and the
register is reset (r’(p′)(x) = ⊥), (v) ch’(p) = ε, i.e. the channel of process p is
emptied, and (vi) for every other process p′ ∈ procs, every message of the form
m(p) in ch(p′) is replaced by m(⊥).

For c,c′ ∈C (D), we use c action−−−−−→ c′ to denote that c′ can be obtained from c by
the execution of a transition 〈q1,action,q2〉 ∈ δD.

State Reachability. We use T (D) to denote the transition system defined by the
triple 〈C (D) ,Cinit (D) ,−→D〉. We say that a state target ∈ Q is reachable in T (D)
if there exists a reachable configuration c = 〈procs,s,r,ch〉 with p ∈ procs and
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s(p) = target. The problem of checking whether the state target is reachable or
not is the state reachability problem. We use Reach(D,target) to denote the state
reachability of target in D.

Any lossy BDRA is an over-approximation of its non-lossy counterparts in terms
of reachable states. Lemma 1 states that this approximation is exact.

Lemma 1. Let D be a BDRA. Then, D and Lossy(D) reach the same set of control
states.

The idea of the proof is that a buffered BDRA D can simulate any run of its lossy
counterpart Lossy(D) by ignoring any of its disconnecting processes. More precisely,
the simulation is done by letting the network of D follow each step of the run of the
Lossy(D) besides the process disconnecting transitions that are not present in D.

4 BDRA State Reachability is Undecidable

We give in this section a proof to the following theorem:

Theorem 1. Given a (lossy) BDRA D= 〈Q,q0,M,X ,δ〉 and a control state target∈
Q, the problem Reach(D,target) is undecidable.

Observe that the reduction used in this proof generates configurations of which
graph encodings contain at most one edge.

Proof sketch. The proof is carried out by a reduction from the TRANSD problem in-
troduced in Section 2 which has been proven to be undecidable in [1]. Given two finite
state automata A and B and a transducer T , we first define a BDRA D that we use
in order to build a transduction chain. A transduction chain is a chain of processes
p0, p1, . . . , pm, m ≥ 1, where the first process p0 simulates automaton A, the last pro-
cess pm simulates automaton B and all processes in between (i.e. p2, . . . , pm−1) simulate
transducer T . Note that the length of the chain should be as big as desired. We show in
the rest of this section how to reduce TRANSD problem to Reach(D,target) for some
control state target that we will define. Note that the graph representations of the con-
figurations generated by D contain no cycles and that their simple paths are bounded by
1 (Figure 1 shows the configurations used during the simulation).

Reduction. Let A =
〈
QA,q0

A,δA,FA
〉

and B =
〈
QB,q0

B,δB,FB
〉

be two finite state au-
tomaton and T =

〈
QT ,q0

T ,δT ,FT
〉

be a transducer, all over the same alphabet Σ.
We construct the BDRA D = 〈Q,q0,M,X ,δ〉 as follows. Process p0 of the initial
configuration (c0 in Fig. 1) is in the initial state q0. Process p0 starts the simula-
tion by creating a new process p1 and moves to a state q0

A. The new process p1
is spawned in state q0

temp and its ID is saved into register x of p0 (c1 in Fig. 1).
Simulation of automaton A by process p0 can now start: p0 sends all letters gener-
ated by the traversal of automaton A to the channel of the created process p1 (c2
in Fig. 1). If p0 reaches an accepting state of A, it chooses non-deterministically
to either send an accepting symbol to p1 or to keep traversing A. If p0 decides to
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send the accepting symbol, then it stops traversing A and disconnects itself from
the rest of the network (c3 and then c4 in Fig. 1). In state q0

temp, the spawned pro-
cess p1 makes the non-deterministic choice of either simulating automaton B or
simulating transducer T . It does so by moving either to state q0

B or to state q0
T .

q0

c0

q0
A q0

temp

c1
x

qA q0
temp

|a1(⊥)|a0(⊥)|

c2 x

a2(⊥) !x

qF
A q0

temp

|a3(⊥)|a2(⊥)|a1(⊥)|a0(⊥)|

c3 x

αaccept(⊥) !x

qidle qT

|αaccept(⊥)|a3(⊥)|

q0
temp

|b0(⊥)|

c4 x

a2?y b1(⊥)!x

qidle qidle q0
B

|αaccept |b3(⊥)|

c5

b2?y

Fig. 1. TRANSD encoding into BDRA.

If it moves to state q0
B

(c5 in Fig. 1), it will
simulate automaton
B by reading from
its channel the word
sent by p0 and simul-
taneously traversing
automaton B. When
reading the acceptance
symbol, process p1
checks if it reached
an accepting state of
B. If it is the case,
the process moves to
state target. If not, it
moves to an error state
qerror. If instead pro-
cess p1 made the initial
choice of simulating
transducer T (c4 in
Fig. 1), then it creates a new process p2 and moves to state q0

T . From state q0
T , process

p1 will simulate transducer T by reading the input letters from its channel, traversing T
and sending the output letters to the channel of the next process, here p2. When reading
the acceptance symbol from its channel, process p1 checks if it reached an accepting
state in T . If it is the case, it sends the acceptance symbol to the next process p2, stops
simulating T and disconnects itself from the rest of the network. If not, it moves to an
error state qerror. The newly created process p2 is spawned in state q0

temp from which,
again, the choice between simulating B or T will be non-deterministically made.

5 Bounded Buffer BDRA

We saw in the previous section that the undecidability result holds for configurations of
which the graph encodings contain at most one single edge. This means that bounding
the simple paths in the graph representation of the configurations or not allowing cycles
will not bring decidability to the reachability problem. We consider therefor a rather
different direction: bounding the channels, i.e. we only consider runs of the BDRA
where the communication buffers are under a certain bound l ∈N. In the following, we
first formally define the state reachability problem with this new restriction. Then we
show that the problem is still undecidable even if buffers are bounded by 1.

Bounded Buffer State Reachability. Let l ≥ 1, D be a BDRA and T (D) =
〈C (D) ,Cinit (D) ,−→D〉 be its corresponding transition system. We define the l-
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bounded buffer transition system associated with D as the tuple T buf≤l (D) =〈
Cbuf≤l (D) ,Cbuf≤l

init (D) ,−→buf≤l
D

〉
where i) Cbuf≤l (D) ⊆C (D) is the set of all pos-

sible configurations c = 〈procs,s,r,ch〉 of which channels are bounded by l (i.e.
|ch(p) | ≤ l for every p ∈ procs), ii) Cbuf≤l

init (D) =Cinit (D) is the set of initial configu-
rations, and finally iii)−→buf≤l

D ⊆−→D ∩
(
Cbuf≤l (D)×Cbuf≤l (D)

)
is the transition re-

lation. We say that a state target ∈Q is reachable in T buf≤l (D) if there is a reachable
configuration c = 〈procs,s,r,ch〉 in T buf≤l (D) and a process p ∈ procs with s(p) =
target. Checking whether target is reachable or not in T buf≤l (D) is the l-bounded
buffer state reachability problem that we denote hereafter by BufReach(D,target, l).

Theorem 2. Given a BDRA D and a state target ∈ Q, the 1-bounded buffer state
reachability problem BufReach(D,target,1) is undecidable.

This result holds even if we forbid cycles and if we impose a bound on the length
of the simple paths in the graph encoding of the configurations.

p0

p0
r

p1

p1
r

p2

p2
r

y x y x y

Fig. 2. Transduction chain (p0, p1, p2, . . .).

Proof sketch. The proof is car-
ried out by a reduction from the
TRANSD problem. More pre-
cisely, given two finite state au-
tomata A and B and a transducer
T , we define a 1-bounded buffer
BDRA D that we use in or-
der to build a transduction chain
p0, p1, . . . , pm of arbitrary length m+1. Since we dispose of channels of bounded size,
we cannot transmit a word in one chunk and then transmit its transduction. Instead, we
adopt a continuous communication flow, i.e. words are transmitted symbol by symbol
and the transduction operates at the level of a symbol. One simple way to build the
transduction chain consists in letting process p0 of the initial configuration create a new
process p1, then letting p1 create the next process p2, and so on until some process pm
decides non deterministically to stop the chain construction. We obtain then a chain of
length m+ 1. Although this approach fulfils our goal of building a transduction chain,
configurations corresponding to these chains do not have a bound on the simple paths of
their graph encoding. We consider therefor a more intricate chain building method that
generates configurations for which the simple paths of their graph encoding is bounded
(by two). The shape of the generated chain is shown in figure 2. Building such a trans-
duction chain represents the first part of the proof. The second part of the proof consists
in showing how the communication is carried through the chain. The idea here is to
let processes pi

r, 0 ≤ i ≤ m, play the role of relays between each pair of consecutive
processes (pi, pi+1) of the chain. They do so by by making use of the boundedness of
the buffer and ensuring that messages they receive from pi and pi+1 match.

6 Strongly Bounded BDRA with Bounded Buffer

Attempts to get decidability for the state reachability problem by bounding the size
of the channels or by bounding the simple paths of the graph encoding of the config-
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urations were vain. We consider therefor another direction, which consists, together
with bounding the channels, in bounding the simple paths of the underlying undirected
graph of the encoding of the configurations. By underlying undirected graph, we mean
the undirected graph that we obtain after removing the direction and the labels from the
edges. Formally, we define an undirected graph as a tuple 〈V,Lv, l,E〉, where V is a finite
set of vertices, Lv is a set of vertex labels, l : V 7→ Lv is a vertex labeling function and
E ⊆ {{v,u}| v,u ∈V} is a set of edges. Let G = 〈V,Lv,Le, l,E〉 be a labeled directed
graph. We use closure(G) := 〈V,Lv, l,F〉 to denote its underlying undirected graph
with F := {{u,v}| 〈u,e,v〉 ∈ E}. We extend in a straightforward manner the definition
of diameter to undirected graphs.

In the following, we first define the transition system where only configurations that
are bounded in their buffer size and in their undirected graph are allowed. Then, we
give the undecidability result for this subclass.

Strongly Bounded State Reachability with Bounded Buffer. Let k ≥ 1 and
l ≥ 1, D =

〈
QD,q0

D,δD,FD
〉

be a BDRA and T (D) = 〈C (D) ,Cinit (D) ,−→D〉
its corresponding transition system. We define the l-bounded buffer, k-strongly
bounded (l,k-strong) transition system associated to D as the tuple T (l,k) (D) =〈

C(l,k) (D) ,C(l,k)
init (D) ,−→(l,k)

D

〉
composed of the set of (l,k)-strong configurations

C(l,k) (D) := Cbuf≤l (D) ∩ {c ∈C (D)|�(closure(enc(c)))≤ k}, the set of ini-
tial configurations C(l,k)

init (D) := Cinit (D) and the transition relation −→(l,k)
D :=−→D

∩
(

C(l,k) (D)×C(l,k) (D)
)

. Given a control state target ∈ QD, checking whether there

is a reachable configuration c= 〈procs,s,r,ch〉 in the transition system T (l,k) (D) such
that there is a process p ∈ procs with s(p) = target is the (l,k)-strong state reacha-
bility problem and is denoted by StrongReach(D,target,k, l).

Theorem 3. Given l ≥ 1, k ≥ 4, a BDRA D =
〈
QD,q0

D,δD,FD
〉

and a control state
target ∈ QD, StrongReach(D,target, l,k) is undecidable.

Proof Idea. The proof proceeds by a reduction from Minsky’s two counter machines
to the (1,4)-strong state reachability problem. A counter is simulated by a process to
which a set of processes are attached. The value of the counter is defined by the number
of such processes. In order to test if a counter is equal to zero, we make use of the fact
that configurations are strongly bounded, i.e. transition to a configuration for which a
simple path is over the bound is forbidden.

7 Lossy Strongly Bounded BDRA with Bounded Buffer

In this section, we show that the bounded buffer, strongly bounded state reachability
problem becomes decidable if we consider lossy BDRA. To that purpose, we start
by providing a more precise graph encoding of configurations where mailboxes are
bounded by some l ∈ N. Then, we state our result and dedicate the rest of this section
to prove it.
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Graph Representations for Bounded Buffered Configurations. Let l ≥ 1 be nat-
ural number and c = 〈procs,s,r,ch〉 be a configuration with l-bounded buffers, i.e.
|ch(p) | ≤ l for every process p∈ procs. We propose a new graph encoding extenc(c)
of configuration c in the form of an extension of the previous encoding enc(p). The new
encoding takes into account the presence (and absence) of every message contained
in the mailboxes. Besides representing processes as vertices and register contents as
edges, we encode mailboxes as follows. Let p ∈ procs be a process. Each message
m(id) ∈ ch(p) of index j, 1≤ j ≤ |ch(p) | ≤ l, is encoded with i) a vertex v j

p labeled
with (m, j), ii) an edge going from the vertex representing p to v j

p and iii) an edge going
from v j

p to the vertex representing process p′, if id = p′ 6= ⊥. Furthermore, we encode
every empty message place holder of index j, |ch(p) |< j≤ l with i) a vertex v j

p labeled
by (ε, j) and ii) an edge going from the vertex representing p to v j

p. Formally, the ex-

tended encoding is defined by extenc(c) := 〈procs∪
{

v j
p| p ∈ procs,1≤ j ≤ l

}
,Q∪

{(m, j)| m ∈ (M∪{ε}) ,1≤ j ≤ l} ,X∪{−} ,Lc,Ec〉where the vertex labeling function
is given by, Lc(p) = s(p) for every process p ∈ procs, Lc(v

j
p) = (msg(ch(p)( j)) , j)

for every j : 1 ≤ j ≤ |ch(p) | and Lc(v
j
p) = (ε, j) for every j : |ch(p) | < j ≤ l,

and the set of edges is given by Ec = {〈p,x, p′〉| r(p)(x) = p′} ∪
{〈

p,−,v j
p

〉}
∪{〈

v j
p,−, p′

〉
| ∃m ∈M,ch(p)( j) = m(p′)

}
.

Observe that if the diameter of the closure of the graph encoding of some bounded
buffer configuration is bounded by k, i.e. �(closure(enc(c)))≤ k), then the diameter
of the closure of the extended graph encoding of the same configuration is bounded by
at most 2∗ k, i.e. �(closure(extenc(c)))≤ 2∗ k.

The rest of this section is devoted to the proof of the following theorem.

Theorem 4. The strongly bounded state reachability problem for lossy BDRA with
bounded buffers is decidable.

We show the decidability of the strongly bounded state reachability problem for
lossy BDRA with bounded buffers by a non-trivial instantiation of the framework of
Well-Structured Transition Systems (WSTS) [2, 11]. We proceed to that end in several
steps. First, we list the three main ingredients required in order to instantiate the WSTS
framework on any transition system T = 〈C,Cinit ,−→〉. Then, we introduce the notion
of coverability and show how to reduce the state reachability problem to it. Finally, we
show the applicability of the main ingredients to our problem.

Ordering, Predecessors and Monotonicity. We present in this paragraph the three main
components required for the instantiation of the WSTS framework.

Well-Quasi Ordering: First, we need to define a Well-Quasi Ordering (WQO) over the
set of configurations C, i.e. a reflexive and transitive binary relation � over C such
that, for every infinite sequence of configurations (ck)k≥0, there exist i, j ∈ N such
that i < j and ci � c j. Let U ⊆ C be a set of configurations. Using the notion of
well-quasi ordering, we can define the following notions:
• The upward closure of U is the set U↑:= {c ∈C| ∃c′ ∈U with c′ � c}.
• U is upward closed if U =U↑.
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It has been shown that every upward closed set U can be characterised by a finite
minor set M ⊆U such that i) for every c′ ∈U there is c ∈M with c� c′, and ii) if
c,c′ ∈ M and c � c′ then c = c′. We use min to denote the function which for a
given upward closed set U returns one minor set of U .

Computing the minpre: We use Pre(U) := {c| ∃c1 ∈U,c−→ c1} to denote the set
of predecessors of U . Given a configuration c, we denote by minpre(c) the set
min(Pre({c}↑)∪{c}↑). Providing an algorithm that computes a finite minpre(c)
represents the second ingredient.

Monotonicity: The third ingredient consists in showing that the transition relation −→
is monotonic with regard to the ordering �, i.e. for every three configurations
c1,c2,c3 ∈C such that c1 � c2 and c1 −→ c3 there should be a configuration c4 ∈C
such that c3 � c4 and c2 −→ c4.

Coverability. Given a configuration ctarget ∈C, the coverability problem asks whether
there is a configuration c′ < ctarget reachable in T . Given that the three ingredients
are provided, the following conditions are sufficient for the decidability of this prob-
lem: i) For every c ∈ C, we can check whether {c}↑ ∩Cinit 6= /0, and ii) for every
two configurations c1 and c2, it is decidable whether c1 � c2. The solution for the
coverability problem of WSTS suggested in [2, 11] is based on a backward analysis
approach. It is shown that starting from U0 := {ctarget}, the sequence (Ui)i≥0 with
Ui+1 := min(Pre(Ui)↑ ∪Ui↑), for i≥ 0 reaches a fix-point and is computable.

In the following, we instantiate the framework of WSTS to show the decidability of
the state reachability problem for strongly bounded lossy BDRA with bounded buffer,
but first we need to introduce some notations.

Let l and k be two natural numbers, D= 〈Q,q0,M,X ,δ〉 a lossy BDRA, target∈Q
a target state and C = C(l,k) (D). We introduce the disconnect prefix transition relation
99K:= disconnect−−−−−−−→

∗
D ◦ −→

(l,k)
D . Note that the reflexive transitive closures of 99K and

−→(l,k)
D are identical. Thus, the state reachability of target in

〈
C,Cinit ,−→

(l,k)
D

〉
is

equivalent to its corresponding problem in 〈C,Cinit ,99K〉. Next, we will prove the de-
cidability of the latter problem.

We will show that 〈C,Cinit ,99K〉 is a well-structured transition system. Let Ctarget

denote the set of all configurations of the form 〈{p} ,s,r,ch〉, composed of a single
process in state target (s(p) = target), whose registers are empty, and whose chan-
nel contains any (finitely many) possible word w ∈ (M×{⊥})∗ of length |w| ≤ l. We
will define the well-quasi ordering on C in such a way that the upward closure of Ctarget
consists of all configurations c ∈ C with target ∈ c. It becomes then clear that the
coverability of any configuration c ∈Ctarget in 〈C,Cinit ,99K〉 is equivalent to the reach-
ability of target in the same transition system. We define in the next paragraph an
ordering on the set of configurations C and show that it is a well-quasi ordering.

A well-quasi order on configurations. We define in this paragraph a well-quasi or-
dering on the set of configurations C. The ordering is defined by using the notion
of induced sub-graph embedding vind on directed graphs defined as follows. Let
G1 = 〈V1,Lv,Le, l1,E1〉 and G2 = 〈V2,Lv,Le, l2,E2〉 be two directed graphs. We say that
G1 is an induced sub-graph of G2, and we write G1 vind G2, if there is an injective



13

mapping t : V1→V2 such that i) for all v ∈V1 we have l1 (v) = l2 (t (v)), and ii) for all
v,u∈V1 and a∈ Le we have 〈v,a,u〉 ∈ E1⇔〈t (v) ,a, t (u)〉 ∈ E2. The induced sub graph
relation on undirected graphs is defined in a similar manner.

Let c1 = 〈procs1,s1,r1,ch1〉 and c2 = 〈procs2,s2,r2,ch2〉 be two configurations
from C. We define the ordering � on configurations by c1 � c2 if extenc(c1) vind
extenc(c2). We can show that, if c1 � c2, then there should be an injective map-
ping t : procs1 7→ procs2 such that i) s2 (t (p)) = s1 (p) for every p ∈ procs1,
ii) r2 (t (p))(x) = t (p′)⇔ r1 (p)(x) = p′ for every p, p′ ∈ procs1 and every x ∈ X ,
and iii) for every p ∈ procs1 with ch1(p) = m1(id1) . . .mn(idn) for some n we have
ch2(t (p)) = m1(id′1) . . .mn(id′n) and for every i : 1 ≤ i ≤ n, if idi = pi ∈ procs1 then
id′i = t (pi), otherwise idi = id′i =⊥.

Based on a result by Ding in [9] and using the fact that the underlying undirected
graph of the configuration encoding is bounded, we can show the following lemma:

Lemma 2. The relation � is a well-quasi ordering on C.

Monotonicity. Let c1,c2,c3 ∈C be three configurations such that: c1� c2 and c1 99K c3.
The goal here is to find a fourth configuration c4 ∈C such that c3 � c4 and c2 99K c4.
This can be achieved by disconnecting as many processes as necessary in c2 in order
to obtain a configuration csub equal to c1 modulo disconnected processes. From there,
we let csub take the same transition as the one taken by c1 to get to c3 and we obtain a
configuration c4 such that c3 � c4, c2

disconnect−−−−−−−→
∗
D csub and csub 99K c4, thus c2 99K c4.

Lemma 3. The transition relation 99K is monotonic w.r.t. � .

Summary of the WSTS Instantiation. The first sufficient condition for the decidability
of the coverability problem, namely checking whether the upward closed set {c}↑ of
some configuration c contains an initial configuration, is trivial (we check that c contains
one process only, that the process is in state qinit and that its registers and channels are
empty). The second sufficient condition is also trivial (checking whether c1� c2 amount
to checking graph embedding, which is decidable). The first ingredient needed in order
to use the WSTS transition system has been provided with Lemma 2, which states that
the induced sub-graph relation on the extended graph encoding of the configurations is
a well-quasi ordering. The second ingredient, i.e. computability of the minpre, is given
by the following lemma.

Lemma 4. Given a configuration c ∈C, we can effectively compute minpre(c).

The third ingredient, i.e. the monotonicity of the ordering wrt. the transition relation, is
given by lemma 3.

Thus, Lemma 4, Lemma 2 and Lemma 3 show that the coverability of the finite set
Ctarget is decidable. Hence, the state reachability problem for strongly bounded lossy
BDRA with bounded buffers is decidable. ut

8 Acyclic Strongly Bounded BDRA with Bounded Buffer

In the following we show the decidability of the reachability problem for strongly
bounded BDRA when the underlying undirected graph of configurations is acyclic.
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Acyclic Strongly Bounded State Reachability with Bounded Buffer. Let k, l ≥ 1,
D =

〈
QD,q0

D,δD,FD
〉

be a BDRA and T (D) = 〈C (D) ,Cinit (D) ,−→D〉 its correspond-
ing transition system. We define the l-bounded buffer, k-strongly bounded acyclic
((l,k)-strong acyclic) transition system associated to D as the tuple T a(l,k) (D) =〈

Ca(l,k) (D) ,Ca(l,k)
init (D) ,−→a(l,k)

D

〉
composed of the set of (l,k)-strong acyclic con-

figurations Ca(l,k) (D) :=
{

c ∈C(l,k)| closure(enc(c)) is acyclic
}

, the set of ini-

tial configurations Ca(l,k)
init (D) := Cinit (D) and the transition relation −→a(l,k)

D :=−→D

∩
(

Ca(l,k) (D)×Ca(l,k) (D)
)

. Let target ∈ QD be a control state. Checking whether

there is reachable configuration c = 〈procs,s,r,ch〉 in the transition system T a(l,k) (D)
such that there is a process p ∈ procs with s(p) = target is the (l,k)-strong acyclic
state reachability problem and is denoted by AStrongReach(D,target, l,k).

Theorem 5. Given l ≥ 1, k ≥ 1, a buffered DRA D =
〈
QD,q0

D,δD,FD
〉

and a control
state target ∈ QD, AStrongReach(D,target, l,k) is decidable.

Proof sketch. The proof of Theorem 5 is based on the simple observation that the
processes cannot exchange IDS, otherwise there will be a creation of a cycle in the
underlying undirected graph configuration encodings. Hence, each process can only re-
ceive plain messages (without an ID) from its creator. Furthermore, at any time each
process can send plain messages to a finite number of other processes (i.e. bounded by
the number of registers). Since simple paths are also bounded, we have that the graph
representation of any reachable configuration is a disjoint union of finite trees. Further-
more, any two processes in two different disjoint trees can never communicate with
each other. This implies that the acyclic strongly bounded state reachability problem
with bounded buffer can be reduced to the standard reachability problem for finite-state
systems. Such a finite-state system keeps track of at most one tree in which each node
corresponds to a process and its channel. When a tree is split into a finite number of
subtrees due to the creation of new processes or disconnect operations, the finite-state
system can decide in non-deterministic manner, to follow one of these sub-trees.

9 Conclusion

In this paper, we studied the state reachability problem for the class of buffered DRA.
This work is a continuation of [3] where the analysis was carried for DRA with rendez-
vous communication. The problem is undecidable even if we bound the simple paths
and even if we forbid cycles in the communication graph of the network. Our goal was
to investigate sub-classes where state reachability becomes decidable. To that end, we
considered different directions including bounding the size of the buffers, bounding the
simple paths of the underlying (un)directed communication graph of the network and /
or disallowing cycles in the network. It turned out that many of these restrictions, even
combined, were not sufficient. However, we proved that the problem becomes decid-
able in two particular and interesting cases. In the first one, we considered the class of
lossy buffered DRA, in which processes are allowed to disconnect themselves from the



15

network in a non-deterministic fashion, where we bounded both the size of the buffers
and the simple paths of the undirected communication graph. The proof was obtained
through a non-trivial instantiation of well-structured transition systems. In the second
case, we showed that the number of possible shapes of the network is finite if we bound
the size of the buffers, disallow cycles and bound the simple paths in the communica-
tion graph. As future work, we think that it is worth checking whether decidability can
be obtained for more general classes by considering other channel semantics, such as
the unordered and the lossy ones. We also think that an important line of work would
be to study the link between register automata and π-calculus and to study the relation
between our results using the DRA formalism and the work of Meyer [16] in which
π-calculus has been used.
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