Verification of Heap Manipulating with
Ordered Data Extended Forest Automata

BRNO
UNIVERSITY

(7)) OF TECGNOIOGY

= 2L
:ﬂ[\ UPPSALA
UNIVERSITET

FACULTY
OF INFORMATION
TECHNOLOGY

| ukas Holik Parosh Aziz Abdulla

Ondrej Lengal Bengt Jonsson
Tomas Vojnar Cong Quy Trinh

Heap
manipulating
program

Forester

Node *insert(Node *root, Data d){
Node™ newNode = calloc(sizeof(Node));
it ('lnewNode) return NULL;
newNode—data = d;
if (froot) return newNode;
Node *x = root;
Heap while (x—data != newNode—data)
: : if (x—data < newNode—data)
Mmanli pu |at| ﬂg if (x—right) x = x—right;
else x—=right = newNode;
p Fogl”am else
i (x—left) x = x—left;
else x—left = newNode;
it (x != newNode)
free(newNode);
return root;

Unbounded heaps Data dependence Multiply selectors

Node *insert(Node *root, Data d){
Node™ newNode = calloc(sizeof(Node));
it ('lnewNode) return NULL;
newNode—data = d;
if (froot) return newNode;
Node x = root;
H eap whild (x—data != fewNode— data)
X=Fdata < newNode—data)

manipulating I 7 (xmoright) x = x—sright

{i clse x—=right = newNode;
program
i T (x—left) x = x—left;
else x—left = newNode;
#!= newNode)
rce(newNode);
ret§rn root;

Unbounded heaps Data dependence Multiply selectors

Node *insert(Node *root, Data d){
Node™ newNode = calloc(sizeof(Node));
it ('lnewNode) return NULL;
newNode—data = d;
if (froot) return newNode;
Node *X = root;
Heap whild (x-'data 1= ewNode—'data)
X=rgata < newNode—data)

manipulating V;" o b= right

fi clsEXTIghy = newNode;
program
if§ (x—'left)

i clsEXTIeNG
it (4= newNode)

rce(newNode);
ret§rn root;

Unbounded heaps Data dependence Multipl Se[CElEe

Heap
manipulating
program

B —h N

Singly linked lists

Heap
manipulating
program

B —h N

Singly linked lists

)) lomnst s

Doubly linked lists

Heap
manipulating
program

Heap
manipulating
program

B —h N

Singly linked lists

)) lomnst s

Doubly linked lists

PN

Binary Search Trees

Heap
manipulating
program

B —h N

Singly linked lists

)) lomnst s

Doubly linked lists

Binary Search Trees

Skip-lists

Forester

How does 1t work!?

Program analysis

Node *insert(Node *root, Data d){
Node* newNode = calloc(sizeof(Node));
't ('lnewNode) return NULL;
newNode—data = d;
it (froot) return newNode;

Node *x = root;
while (x—data != newNode—data)
if (x—*data < newNode—data)
it (x—right) x = x—right;
else x—right = newNode;
else
if (x—left) x = x—left;
else x—left = newNode;
it (x != newNode)
free(newNode);
return root;

Program analysis

Node *insert(Node *root, Data d){
Node* newNode = calloc(sizeof(Node));
't ('lnewNode) return NULL;
newNode—data = d;
it (froot) return newNode;

Node *x = root;
while (x—data != newNode—data)
if (x—*data < newNode—data)
it (x—right) x = x—right;
else x—right = newNode;
else
if (x—left) x = x—left; @
else x—left = newNode;
it (x != newNode)
free(newNode);
return root;

program’ point

Program analysis

All possible heaps
Node *insert(Node *root, Data d){ ted b t of f ¢
Node* newNode = calloc(sizeof(Node)); represented Dy set ot fores
'f (‘newNode) return NULL; N\ automata
newNode—data = d; :
it (froot) return newNode;
Node *x = root;
while (x—data != newNode—data)
if (x—data < newNode—data)
it (x—right) x = x—right;
else x—right = newNode;
else
i (x—left) x = x—left;
else x—left = newNod§;
it (x != newNode)
free(newNode);
return root;

program’ point

Program analysis

All possible heaps
Node *insert(Node *root, Data d){ ted b t of f ¢
Node* newNode = calloc(sizeof(Node)); represented Dy set ot fores
'f (‘newNode) return NULL; N\ automata
newNode—data = d; :
it (froot) return newNode;
Node *x = root;
while (x—data != newNode—data) @
if (x—data < newNode—data)
it (x—right) x = x—right;
else x—right = newNode;
else
i (x—left) x = x—left;
else x—left = newNod§;
it (x != newNode)
free(newNode);
return root;

pr'ogram’ point

Program

Node *insert(Node *root, Data d){
Node* newNode = calloc(sizeof(Node));
(‘newNode) return NULL;
newNode—data = d;
(‘root) return newNode;
Node *x = root;
(x—data != newNode—data) @
(x—data < newNode—data)
(x—right) x = x—right;
x—right = newNode;

(x—left) x = x—left;
x—left = newNod§;
(x !'= newNode) '
(newNode);
root;

pr'ogram’ point

analysis

All possible heaps
represented by set of forest
automata

Abstract transformer

All possible heaps
represented by set of forest
automata

Program

Node *insert(Node *root, Data d){
Node* newNode = calloc(sizeof(Node));
(‘newNode) return NULL;
newNode—data = d;
(‘root) return newNode;
Node *x = root;
(x—data != newNode—data)
(x—data < newNode—data)
(x—right) x = x—right;
x—right = newNode;

(x—left) x = x—left;
x—left = newNod§;
(x !'= newNode) '
(newNode);
root;

pr'ogram’ point

analysis

===

a— - . \\

S

All possible heaps
represented by set of forest
automata

Abstract transformer

Y

——

-) . s N

S

\\

All possible heaps
represented by set of forest
automata

Program analysis

===

a— - . \\

S

All possible heaps
Node *insert(Node *root, Data d){ db £ 5
Node* newNode = calloc(sizeof(Node)); \ [EpUTEEEIEE By Sl O HEITE
(‘newNode) return NULL; N automata
newNode—data = d; :
(‘root) return newNode;
Node *x = root;
(x—data != newNode—data)
(x—data < newNode—data) @ Abstract transformer
(x—right) x = x—right;
x—right = newNode;

Y

——

-) . s N

S

\\

(x—left) x = x—left; - .
x—left = newNoa; All possible heaps

(x != newNode) | \ represented by set of forest

(ne.wNode); automata
root,

pr'ogram’ point

Program analysis

——

\\\\ 5

\\\

All possible heaps
Node *insert(Node *root, Data d){ db £ 5
Node™ newNode = calloc(sizeof(Node)); \ [EpUTEEEIEE By Sl O HEITE
' ('newNode) return NULL; N automata
newNode—data = d;
it (froot) return newNode;
Node *x = root;
while (x—data != newNode—data)
f (x—data < newNode— data) @ Abstract transformer
it (x—right) x = x—right;
else x—right = newNode;
else e
i (x—left) x = x—left; -
else x—left = newNs®R: All possible heaps

f (x != newNode) _ \ represented by set of forest

free(newNode); automata
return root;

=
S

\\

S

"\7 e

Entailment checking

program’ point 0

Program analysis

——

\\\\ i

N

All possible heaps
Node *insert(Node *root, Data d){ db £ 5
Node™ newNode = calloc(sizeof(Node)); \ [EpUTEEEIEE By Sl O HEITE
' ('newNode) return NULL; N automata
newNode—data = d;
it (froot) return newNode;
Node *x = root;
while (x—data != newNode—data)
f (x—data < newNode— data) @ Abstract transformer
it (x—right) x = x—right;
else x—right = newNode;
else e
i (x—left) x = x—left; -
else x—left = newNs®R: All possible heaps

f (x != newNode) _ \ represented by set of forest

free(newNode); automata
return root;

=
S

\\

==

"\7 S

Entailment checking

/ No
program point 0——> computation

Program

Node *insert(Node *root, Data d){
Node* newNode = calloc(sizeof(Node));
(‘newNode) return NULL;
newNode—data = d;
(‘root) return newNode;
Node *x = root;
(x—data != newNode—data)
(x—data < newNode—data) @
(x—right) x = x—right;
x—right = newNode;

(x—left) x = x—left;
x—left = newNod§;
(x !'= newNode) '
(newNode);

{point All possible heaps
represented by set of forest
automata

analysis

===

= - : \\

S

All possible heaps
represented by set of forest
automata

Abstract transformer

Y

——

-) . s N

S

\\

All possible heaps
represented by set of forest
automata

=
=

Entailment checking

Abstract transformer '

No
computation

Program

Node *insert(Node *root, Data d){
Node* newNode = calloc(sizeof(Node));
(‘newNode) return NULL;
newNode—data = d;
(‘root) return newNode;
Node *x = root;
(x—data != newNode—data)
(x—data < newNode—data) @
(x—right) x = x—right;
x—right = newNode;

(x—left) x = x—»left;./

x— left = newNodg;
(x !'= newNode) '
(newNode);

{point All possible heaps
represented by set of forest
automata

analysis

——

= -) \\

S

\\\

All possible heaps
represented by set of forest
automata

Abstract transformer

S

\\

All possible heaps
represented by set of forest
automata

==

"", - ——

Entailment checking

Abstract transformer '

No
computation

Program analysis

——

\\\\ i

\\\

All possible heaps

Node *insert(Node *root, Data d){ db £ 5

Node* newNode = calloc(sizeof(Node)); Vs Epresentecib)iSetiolfiorest

'f (‘newNode) return NULL; , N automata

newNode—data = d; :

it (froot) return newNode;

Node *x = root;

while (x—data != newNode—data)

f (x—data < newNode—data) @ Abstract transformer
it (x—right) x = x—right;
else x—right = newNode;

else ——
i (x—left) x = x—'left;./
else x—left = newN&T8: All possible heaps

* (x 1= newNode) | \ represented by set of forest

free(newNode); automata
return root;

=

\\

==

S —

Entailment checking

-~ . - oS N\ No
A point All possible heaps 0__, computation
\ represented by set of forest INcE e s

automata

Forest automata representation

|. Heap representation 2. Decompose heaps into forests 3. Represent forests by forest automata

* Set of heaps

e | ist |,2,3 are sorted and data of all cells in 3 are
bigger than data of all cellsin | and 2

ntation§ 2. Decompose heaps into forests 3. Represent forests by forest automata

|. Heap represe

sorted

* Set of heaps

e | ist |,2,3 are sorted and data of all cells in 3 are
bigger than data of all cells in | and 2

ntation§ 2. Decompose heaps into forests 3. Represent forests by forest automata

|. Heap represe

sorted

* Set of heaps

e | ist |,2,3 are sorted and data of all cells in 3 are
bigger than data of all cells in | and 2

ntation§ 2. Decompose heaps into forests 3. Represent forests by forest automata

|. Heap represe

sorted

=

sorted

* Set of heaps

e | ist |,2,3 are sorted and data of all cells in 3 are
bigger than data of all cells in | and 2

ntation§ 2. Decompose heaps into forests 3. Represent forests by forest automata

|. Heap represe

sorted

* Set of heaps

e | ist |,2,3 are sorted and data of all cells in 3 are
bigger than data of all cells in | and 2

|. Heap representation | L 3. Represent forests by forest automata

|. Heap representation _ 2. Decompose heaps into forests ' 3. Represent forests by forest automata

Determine cut-points:
- Nodes pointed by variables
- Nodes with more incoming pointers

|. Heap representation | L 3. Represent forests by forest automata

Determine cut-points:
- Nodes pointed by variables
- Nodes with more incoming pointers

|. Heap representation | L 3. Represent forests by forest automata

Determine cut-points:
- Nodes pointed by variables
- Nodes with more incoming pointers

|. Heap representation | L 3. Represent forests by forest automata

Determine cut-points:
- Nodes pointed by variables
- Nodes with more incoming pointers

|. Heap representation _ 2. Decompose heaps into forests ' 3. Represent forests by forest automata

Determine cut-points:
- Nodes pointed by variables
- Nodes with more incoming pointers

|. Heap representation _ 2. Decompose heaps into forests ' 3. Represent forests by forest automata

Forest presentation of the set of heaps

|. Heap representation '_ 2. Decompose heaps into forests ' 3. Represent forests by forest automata

Root reference

Forest presentation of the set of heaps

|. Heap representation 2. Decompose heaps into forests 3. Represent forests by forest automata

Forest presentation of the set of heaps

|. Heap representation 2. Decompose heaps into forests 3. Represent forests by forest automata

Without data

Forest presentation of the set of heaps

|. Heap representation 2. Decompose heaps into forests & 3. Represent forests by forest automata

Without data

Forest presentation of the set of heaps

|. Heap representation 2. Decompose heaps into forests |

|. Heap representation 2. Decompose heaps into forests |

Without data

|. Heap representation 2. Decompose heaps into forests |

With data

|. Heap representation 2. Decompose heaps into forests |

With data

|. Heap representation 2. Decompose heaps into forests |

With data

Add data constraints

|. Heap representation 2. Decompose heaps into forests |

With data

Add data constraints

|. Heap representation 2. Decompose heaps into forests 3. Represent forests by forest automata

With data

Data value of root node of any tree accepted at §
3 ql is smaller than data value of root node of tree ;
§ accepted at the next ql of the cycle 1

|. Heap representation 2. Decompose heaps into forests |

With data

|. Heap representation 2. Decompose heaps into forests |

With data

|. Heap representation 2. Decompose heaps into forests |

With data

|. Heap representation 2. Decompose heaps into forests 3. Represent forests by forest automata

With data

|. Heap representation 2. Decompose heaps into forests |

With data

|. Heap representation 2. Decompose heaps into forests |

With data

|. Heap representation 2. Decompose heaps into forests |

With data

|. Heap representation 2. Decompose heaps into forests |

With data

Program analysis

——

\\\\ i

\\\

All possible heaps

Node *insert(Node *root, Data d){ db £ 5

Node* newNode = calloc(sizeof(Node)); Vs Epresentecib)iSetiolfiorest

'f (‘newNode) return NULL; , N automata

newNode—data = d; :

it (froot) return newNode;

Node *x = root;

while (x—data != newNode—data)

f (x—data < newNode—data) @ Abstract transformer
it (x—right) x = x—right;
else x—right = newNode;

else ——
i (x—left) x = x—'left;./
else x—left = newN&T8: All possible heaps

* (x 1= newNode) | \ represented by set of forest

free(newNode); automata
return root;

=

\\

==

S —

Entailment checking

-~ . - oS N\ No
A point All possible heaps 0__, computation
\ represented by set of forest INcE e s

automata

Program analysis

——

\\\\ i

N

All possible heaps
Node *insert(Node *root, Data d){ db £
Node* newNode = calloc(sizeof(Node)); \ [EpUTEEEIEE By Sl O HEITE
'f (‘newNode) return NULL; N automata
newNode—data = d; :
it (froot) return newNode;
Node *x = root;
while (x—data != newNode—data) \
if (x—data < newNode—data) @ b Abstract transformer
it (x—right) x = x—right; b
else x—right = newNode;
else —
if (x—left) x = x—'left;./
else x—left = newNs®R: All possible heaps
' (x 1= newNode) | \ represented by set of forest

free(newNode); automata
return root;

=

\\

==

S —

Entailment checking

-~ . - oS N\ No
A point All possible heaps 0__, computation
\ represented by set of forest INcE e s

automata

Effect of Z = X.next on a concrete forest

Effect of Z = X.next on a concrete forest

Vv Access to X.next
v’ Split the tree | at
this node

Effect of Z = X.next on a concrete forest

Vv Access to X.next
v’ Split the tree | at
this node

Effect of Z = X.next on a concrete forest

Vv Access to X.next
v’ Split the tree | at
this node

Effect of Z = X.next on a concrete forest

Vv Access to X.next
v’ Split the tree | at
this node

Effect of Z = X.next on a concrete forest

Vv Access to X.next
v’ Split the tree | at
this node

Effect of Z = X.next on a concrete forest

Vv Access to X.next
v’ Split the tree | at
this node

v Access to x.next by
expanding cycle at q

v’ Split the TAI at the
accessed state

Effect of Z = X.next on a concrete forest

Vv Access to X.next
v’ Split the tree | at
this node

v Access to x.next by
expanding cycle at q

v’ Split the TAI at the
accessed state

Effect of Z = X.next on a concrete forest

Vv Access to X.next
v’ Split the tree | at
this node

v Access to x.next by
expanding cycle at q

v’ Split the TAI at the
accessed state

Effect of Z = X.next on a concrete forest

Vv Access to X.next
v’ Split the tree | at
this node

v Access to x.next by
expanding cycle at q

v’ Split the TAI at the
accessed state

X.hext

ref |b

ref 3

Effect of Z = X.next on a concrete forest

Vv Access to X.next
v’ Split the tree | at
this node

v Access to x.next by
expanding cycle at q

v’ Split the TAI at the
accessed state

Effect of Z = X.next on a concrete forest

Vv Access to X.next
v’ Split the tree | at
this node

Effect of Z = X.next on a concrete forest

Vv Access to X.next
v’ Split the tree | at
this node

Effect of Z = X.next on a concrete forest

Vv Access to X.next
v’ Split the tree | at
this node

Vv Access to X.next
directly at q2

v Assign variable Z to the
root of the TA 3

X

X.hext

1
>
ref

rr

3

<I'I'

Effect of Z = X.next on a concrete forest

Vv Access to X.next
v’ Split the tree | at
this node

Vv Access to X.next
directly at q2

v Assign variable Z to the
root of the TA 3

X

X.hext

1
>
ref

rr

3

<I'I'

Effect of Z = X.next on a concrete forest

Vv Access to X.next
v’ Split the tree | at
this node

Vv Access to X.next
directly at q2

v Assign variable Z to the
root of the TA 3

Program analysis

——

\\\

\\\

All possible heaps
Node *insert(Node *root, Data d){ ted b t of f ¢
Node* newNode = calloc(sizeof(Node)); represented Dy Set of Tores
' ('newNode) return NULL; N\ automata
newNode—data = d;
it (froot) return newNode;
Node *x = root;
while (x—data != newNode—data)
if (x—data < newNode—data) @
it (x—right) x = x—right;
else x—right = newNode;
else —
i (x—left) x = x—»left;./ ~
else x—left = newNs®R: All possible heaps
' (x 1= newNode) | \ represented by set of forest

free(newNode);
return root; automarta

=
~g

\\

S

"\7 e

Entailment checking

g . \ No
A point All possible heaps 0__> computation
\ represented by set of forest N s

automata

Program analysis

——

\\\\ 5

\\\

All possible heaps

Node *insert(Node *root, Data d){ db £ 5

Node* newNode = calloc(sizeof(Node)); \ [EpUTEEEIEE By Sl O HEITE

' ('newNode) return NULL; N automata

newNode—data = d;

it (froot) return newNode;

Node *x = root;

while (x—data != newNode—data)

f (x—data < newNode—data) @ Abstract transformer
it (x—right) x = x—right;
else x—right = newNode;

else e
i (x—left) x = x—'left;./ ~
else x—left = newN&T8: All possible heaps

* (x 1= newNode) | \ represented by set of forest

free(newNode); automata
return root;

=
S

\\

A point All possible heaps 0 ol
\ represented by set of forest P s

automata

Entailment checking

Widening technique

Language Inclusion

EXPERIMENTS
Samsles S aples Time (in s)

SLL st - BST insert 6.87
SLL delete 0.08

SLL reverse 0.07

SLL bubblesort 0.13
SLL insert-sort 0.10 BST right rotate 6.25

Singly linked list(SLL) Binary search tree(BST)

Examples Examples Time (in s)

DLL insert O.14 SL2 insert 9.65
DLL delete 0.38

DLL reverse 0.16
DLL bubblesort 0.39

DLL insert-sort 043 SL3 delete 57.35
Double linked list(DLL) Skiplist with 2 & 3 levels(SL2 & SL3)

BST delete |5.8
BST left rotate /.35

SL2 delete 10.14
SL3 insert 56.99

EXPERIMENTS
Samsles S aples Time (in s)

SLL st - BST insert 6.87
SLL delete 0.08

SLL reverse 0.07
SLL bubblesort 0.13
SLL insert-sort 0.10 ' BST right rotate 6.25

Singly linked list(SLL) 2 Rinary search tree(BST)

Examples Examples Time (in s)

DLL insert O.14 SL2 insert 9.65
DLL delete 0.38

DLL reverse 0.16
DLL bubblesort 0.39

DLL insert-sort 043 SL3 delete 57.35
Double linked list(DLL) Skiplist with 2 & 3 levels(SL2 & SL3)

BST delete |5.8
BST left rotate /.35

SL2 delete 10.14
SL3 insert 56.99

EXPERIMENTS
Examples Examples

SLL st - BST insert 6.87
SLL delete 0.08

SLL reverse 0.07
SLL bubblesort 0.13
SLL insert-sort 0.10 ' BST right rotate 6.25

Singly linked list(SLL) 2 Rinary search tree(BST)

Examples : | Examples Time (in's)

DLL insert O.14 SL2 insert 9.65
DLL delete 0.38

DLL reverse 0.16
DLL bubblesort 0.39
DL lrseriesart 043 SL3 delete 57.35

Double linked list(DLL) Skiplist with 2 & 3 levels(SL2 & SL3)

BST delete |5.8
BST left rotate /.35

SL2 delete 10.14
SL3 insert 56.99

EXPERIMENTS
Examples Examples

SLL st - BST insert 6.87
SLL delete 0.08

SLL reverse 0.07
SLL bubblesort 0.13
SLL insert-sort 0.10 ' BST right rotate 6.25

Singly linked list(SLL) e, Binary search tree(BST)

Examples : | Examples Time (in's)

DLL insert O.14 SL2 insert 9.65
DLL delete 0.38

DLL reverse 0.16
DLL bubblesort 0.39
DLL insert-sort 043 SL3 delete 5735

Double linked list(DLL) Skiplist with 2 & 3 levels(SL2 & SL3)

BST delete |5.8
BST left rotate /.35

SL2 delete 10.14
SL3 insert 56.99

SUMMARY

» Verity heap manipulating programs with
» Data dependence

» Unbounded heaps

R Hlltpleselectors

» We can verify both memory safety and data-dependent
properties

U TURE WORKS

» Fine-grained locking programs
» Concurrent heap manipulating programs

» Recursive heap manipulating programs

Thank you for attention!

