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Node *insert(Node *root, Data d){
Node™ newNode = calloc(sizeof(Node));
it ('lnewNode) return NULL;
newNode—data = d;
if (froot) return newNode;
Node *x = root;
Heap while (x—data != newNode—data)
: : if (x—data < newNode—data)
Mmanli pu |at| ﬂg if (x—right) x = x—right;
else x—=right = newNode;
p Fogl”am else
i (x—left) x = x—left;
else x—left = newNode;
it (x != newNode)
free(newNode);
return root;

Unbounded heaps Data dependence Multiply selectors
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Program analysis

Node *insert(Node *root, Data d){
Node* newNode = calloc(sizeof(Node));
't ('lnewNode) return NULL;
newNode—data = d;
it (froot) return newNode;

Node *x = root;
while (x—data != newNode—data)
if (x—*data < newNode—data)
it (x—right) x = x—right;
else x—right = newNode;
else
if (x—left) x = x—left;
else x—left = newNode;
it (x != newNode)
free(newNode);
return root;
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With data

Data value of root node of any tree accepted at §
3 ql is smaller than data value of root node of tree ;
§ accepted at the next ql of the cycle 1
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EXPERIMENTS
Samsles S aples Time (in s)

SLL st - BST insert 6.87
SLL delete 0.08

SLL reverse 0.07

SLL bubblesort 0.13
SLL insert-sort 0.10 BST right rotate 6.25

Singly linked list(SLL) Binary search tree(BST)

Examples Examples Time (in s)

DLL insert O.14 SL2 insert 9.65
DLL delete 0.38

DLL reverse 0.16
DLL bubblesort 0.39

DLL insert-sort 043 SL3 delete 57.35
Double linked list(DLL) Skiplist with 2 & 3 levels(SL2 & SL3)

BST delete |5.8
BST left rotate /.35

SL2 delete 10.14
SL3 insert 56.99
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SUMMARY

» Verity heap manipulating programs with
»  Data dependence

»  Unbounded heaps

R Hlltpleselectors

» We can verify both memory safety and data-dependent
properties




U TURE WORKS

» Fine-grained locking programs
» Concurrent heap manipulating programs

» Recursive heap manipulating programs




Thank you for attention!




