

UNIVERSITET

technische universität dortmund

Verification of a class of protocols:

- **Dynamic creation** of processes
 - ▶ **Unique** ID for each process
- Finite number of **registers** per process
 - Used to store the ID of others
- Asynchronous communication

Dynamic Register Automata

Verification of Buffered Dynamic Register Automata

[Bollig et al. 2010, 2013]

- Dynamic Communication Automata
- Asynchronous Communication
- Applications:
 - Leader Election Protocol
 - Peer To Peer Protocol
 - Ad Hoc Networks

[Bollig et al. 2010, 2013]
[Parosh et al. 2014]

- Verification of Dynamic Register Automata
- Rendez-vous Communication
- Sub-Classes for which basic verification properties are decidable

[Bollig et al. 2010, 2013]
[Parosh et al. 2014]
[In This Work]

- Verification of Dynamic Register Automata
- Asynchronous Communication
- Sub-Classes for which basic verification properties are decidable

Formal Model

Operational Semantics

Problem

Approach

Results

7

Process Model

Process Model

Process Model

Process Model

Process Model

Verification of Buffered Dynamic Register Automata

Process Model

12/08

Verification of Buffered Dynamic Register Automata

Process Model

Process Model

Verification of Buffered Dynamic Register Automata

Process Model

25

Verification of Buffered Dynamic Register Automata

Process Model

26

Verification of Buffered Dynamic Register Automata

Process Model

Verification of Buffered Dynamic Register Automata

Process Model

Verification of Buffered Dynamic Register Automata

Process Model

Configuration

Configuration Graph

Verification of Buffered Dynamic Register Automata

Process Model

Configuration

Configuration Graph

Communication Graph

Verification of Buffered Dynamic Register Automata

Process Creation

Verification of Buffered Dynamic Register Automata

Process Creation

Dynamic Register Automata

Verification of Buffered Dynamic Register Automata

Dynamic Register Automata

Verification of Buffered Dynamic Register Automata

Process Creation

Verification of Buffered Dynamic Register Automata

Process Creation

Process Creation

Process Creation

Verification of Buffered Dynamic Register Automata

Process Creation

Process Creation

Process Creation

Process Creation

Process Creation

Pro Message Sending

Message Receiving

49

50

Verification of Buffered Dynamic Register Automata

Pro Message Sending m(5)q4 ql 3 **q4** 5 Ca

Verification of Buffered Dynamic Register Automata

Verification of Buffered Dynamic Register Automata

53

Verification of Buffered Dynamic Register Automata

Pro Message Sending m(5)q4 ql 3 q4 5 Ca

Verification of Buffered Dynamic Register Automata

Pro Message Sending m(5)q4 ql 3 X **q3** 5 Ca

Verification of Buffered Dynamic Register Automata

Pro Message Receiving Message senuing

Verification of Buffered Dynamic Register Automata

Pro Message Receiving Message senuing

58

Verification of Buffered Dynamic Register Automata

Pro Message Receiving Message senuing

Verification of Buffered Dynamic Register Automata

Pro Message Receiving Message senuing

Verification of Buffered Dynamic Register Automata

Pro Message Receiving Message senuing

Verification of Buffered Dynamic Register Automata

Pro Message Receiving Message senuing

62

Verification of Buffered Dynamic Register Automata

Pro Message Receiving Message senuing

63

Verification of Buffered Dynamic Register Automata

Pro Message Receiving Message senuing

Buffered Dynamic Register Automata

Verification of Buffered Dynamic Register Automata

Initial Configuration

67

Verification of Buffered Dynamic Register Automata

Run: Co, C1

State Reachability

Verification of Buffered Dynamic Register Automata

State Reachability

Verification of Buffered Dynamic Register Automata

State Reachability

Verification of Buffered Dynamic Register Automata

Initial Configuration Run: Co, C1, C2, ..., Cn

State Reachability Problem:

Verification of Buffered Dynamic Register Automata

State Reachability Problem:

Given **q**_{BAD}, is there a run starting from an **initial configuration** that reaches **a configuration** where **q**_{BAD} occurs?

Verification of Buffered Dynamic Register Automata

State Reachability Problem:

Given **q**_{BAD}, is there a run starting from an **initial configuration** that reaches **a configuration** where **q**_{BAD} occurs?

Verification of Buffered Dynamic Register Automata

State Reachability Problem:

Undecidable

Verification of Buffered Dynamic Register Automata

State Reachability Problem: Undecidable

Verification of Buffered Dynamic Register Automata

State Reachability Problem: Undecidable

Two counters Minsky Machine

Buffered Dynamic Register Automata

Verification of Buffered Dynamic Register Automata

Buffered Dynamic Register Automata

Verification of Buffered Dynamic Register Automata

Verification of Buffered Dynamic Register Automata

Cycle

Verification of Buffered Dynamic Register Automata

. Cycle .

...

Verification of Buffered Dynamic Register Automata

. Cycle .

Bound the Buffer

Bound Simple Path

Strongly Bound Simple Path

Lossy

Verification of Buffered Dynamic Register Automata

. Cycle .

Bound the Buffer

Bound Simple Path

Strongly Bound Simple Path

Lossy

Verification of Buffered Dynamic Register Automata

. Cycle .

Bound the Buffer

Bound Simple Path

Strongly Bound Simple Path

Lossy

Verification of Buffered Dynamic Register Automata

Verification of Buffered Dynamic Register Automata

. Cycle .

Bound the Buffer

Bound Simple Path

Strongly Bound Simple Path

Lossy

. Cycle .

Bound the Buffer

Bound Simple Path

Strongly Bound Simple Path

Lossy

Verification of Buffered Dynamic Register Automata

Verification of Buffered Dynamic Register Automata

Verification of Buffered Dynamic Register Automata

Verification of Buffered Dynamic Register Automata

Strongly Bound Simple Path

Still: Unbounded Number of Processes

Verification of Buffered Dynamic Register Automata

. Cycle .

Bound the Buffer

Bound Simple Path

Strongly Bound Simple Path

Lossy

Verification of Buffered Dynamic Register Automata

. Cycle .

Bound the Buffer

Bound Simple Path

Strongly Bound Simple Path

Lossy

97

Verification of Buffered Dynamic Register Automata

. Cycle .

Bound the Buffer

Bound Simple Path

Strongly Bound Simple Path

Lossy

10

Verification of Buffered Dynamic Register Automata

Results

Verification of Buffered Dynamic Register Automata

State Reachability

Results

Verification of Buffered Dynamic Register Automata

State Reachability

. Cycles .

State Reachability

. Cycles .

10

Results

Verification of Buffered Dynamic Register Automata

State Reachability

. Cycles .

State Reachability

. Cycles .

Strongly Bound Simple Path

Bound Buffers

10^r

Verification of Buffered Dynamic Register Automata

State Reachability

. Cycles .

Strongly Bound Simple Path

. Cycles .

+

Bound Buffers

Bound Buffers

+

108

Verification of Buffered Dynamic Register Automata

State Reachability

. Cycles .

+ Strongly Bound Simple Path

. Cycles .

+

Bound Buffers

Bound Buffers

+

Strongly Bound Simple Path

.Cycles.

Bound Buffers

|+|

State Reachability

. Cycles .

+ Strongly Bound Simple Path

. Cycles .

+

Bound Buffers

Bound Buffers

+

Strongly Bound Simple Path

.Cycles.

Bound Buffers

Strongly Bound Simple Path

Bound Buffers

State Reachability

. Cycles .

+ Strongly Bound Simple Path

. Cycles .

+

Bound Buffers

Bound Buffers

+

Strongly Bound Simple Path

.Cycles.

Bound Buffers

+ Strongly Bound Simple Path

Lossy

+ Bound Buffers

Cycles .

Strongly Bound Simple Path

Cycles .

Bound Buffers

Bound Buffers

Strongly Bound Simple Path +

Acyclic Bound the Buffer

Strongly Bound Simple Path +

Lossy Bound the Buffer

112

Transduction Problem

Given two finite state machines \mathbf{A} and \mathbf{B} and a transducer \mathbf{T} , is there $\mathbf{i} \in \mathbb{N}$ such that $\mathbf{T}^{\mathbf{i}}(\mathbf{A}) \in L(\mathbf{B})$.

113

Transduction Problem

Given two finite state machines \mathbf{A} and \mathbf{B} and a transducer \mathbf{T} , is there $\mathbf{i} \in \mathbb{N}$ such that $\mathbf{T}^{\mathbf{i}}(\mathbf{A}) \in L(\mathbf{B})$.

115

Verification of Buffered Dynamic Register Automata

Transduction Problem

Given two finite state machines \mathbf{A} and \mathbf{B} and a transducer \mathbf{T} , is there $\mathbf{i} \in \mathbb{N}$ such that $\mathbf{T}^{\mathbf{i}}(\mathbf{A}) \in L(\mathbf{B})$.

Transduction Problem

Given two finite state machines \mathbf{A} and \mathbf{B} and a transducer \mathbf{T} , is there $\mathbf{i} \in \mathbb{N}$ such that $\mathbf{T}^{\mathbf{i}}(\mathbf{A}) \in L(\mathbf{B})$.

116

Transduction Problem

Given two finite state machines \mathbf{A} and \mathbf{B} and a transducer \mathbf{T} , is there $\mathbf{i} \in \mathbb{N}$ such that $\mathbf{T}^{\mathbf{i}}(\mathbf{A}) \in L(\mathbf{B})$.

117

Transduction Problem

Given two finite state machines \mathbf{A} and \mathbf{B} and a transducer \mathbf{T} , is there $\mathbf{i} \in \mathbb{N}$ such that $\mathbf{T}^{\mathbf{i}}(\mathbf{A}) \in L(\mathbf{B})$.

Transduction Problem

Given two finite state machines \mathbf{A} and \mathbf{B} and a transducer \mathbf{T} , is there $\mathbf{i} \in \mathbb{N}$ such that $\mathbf{T}^{\mathbf{i}}(\mathbf{A}) \in L(\mathbf{B})$.

. Cycles .

119

Transduction Problem

Given two finite state machines \mathbf{A} and \mathbf{B} and a transducer \mathbf{T} , is there $\mathbf{i} \in \mathbb{N}$ such that $\mathbf{T}^{\mathbf{i}}(\mathbf{A}) \in L(\mathbf{B})$.

. Cycles .

Bound Simple Path

Verification of Buffered Dynamic Register Automata

Transduction Problem

Given two finite state machines \mathbf{A} and \mathbf{B} and a transducer \mathbf{T} , is there $\mathbf{i} \in \mathbb{N}$ such that $\mathbf{T}^{\mathbf{i}}(\mathbf{A}) \in L(\mathbf{B})$.

. Cycles .

Verification of Buffered Dynamic Register Automata

Transduction Problem

Given two finite state machines \mathbf{A} and \mathbf{B} and a transducer \mathbf{T} , is there $\mathbf{i} \in \mathbb{N}$ such that $\mathbf{T}^{\mathbf{i}}(\mathbf{A}) \in L(\mathbf{B})$.

. Cycles .

Verification of Buffered Dynamic Register Automata

Transduction Problem

Given two finite state machines \mathbf{A} and \mathbf{B} and a transducer \mathbf{T} , is there $\mathbf{i} \in \mathbb{N}$ such that $\mathbf{T}^{\mathbf{i}}(\mathbf{A}) \in L(\mathbf{B})$.

. Cycles .

Bounded Buffers

Verification of Buffered Dynamic Register Automata

Transduction Problem

Given two finite state machines \mathbf{A} and \mathbf{B} and a transducer \mathbf{T} , is there $\mathbf{i} \in \mathbb{N}$ such that $\mathbf{T}^{\mathbf{i}}(\mathbf{A}) \in L(\mathbf{B})$.

. Cycles .

Bounded Buffers

Bound Simple Path

Verification of Buffered Dynamic Register Automata

Transduction Problem

Given two finite state machines \mathbf{A} and \mathbf{B} and a transducer \mathbf{T} , is there $\mathbf{i} \in \mathbb{N}$ such that $\mathbf{T}^{\mathbf{i}}(\mathbf{A}) \in L(\mathbf{B})$.

. Cycles .

Bounded Buffers

Bound Simple Path

Bound Buffers

Verification of Buffered Dynamic Register Automata

Bound Buffers

+ Strongly Bounded Simple Path

Verification of Buffered Dynamic Register Automata

Bound Buffers

+ Strongly Bounded Simple Path

Verification of Buffered Dynamic Register Automata

Bound Buffers

+ Strongly Bounded Simple Path

Verification of Buffered Dynamic Register Automata

Bound Buffers

+ Strongly Bounded Simple Path

Verification of Buffered Dynamic Register Automata

Bound Buffers

+ Strongly Bounded Simple Path

Verification of Buffered Dynamic Register Automata

Bound Buffers

+ Strongly Bounded Simple Path

Verification of Buffered Dynamic Register Automata

Bound Buffers

+ Strongly Bounded Simple Path

Verification of Buffered Dynamic Register Automata

Bound Buffers

+ Strongly Bounded Simple Path

Verification of Buffered Dynamic Register Automata

Bound Buffers

+ Strongly Bounded Simple Path

Verification of Buffered Dynamic Register Automata

Bound Buffers

+ Strongly Bounded Simple Path

Verification of Buffered Dynamic Register Automata

Bound Buffers

+ Strongly Bounded Simple Path

Acyclic + Bound the Buffer + Strongly Bound Simple Path

Verification of Buffered Dynamic Register Automata

Acyclic + Bound the Buffer + Strongly Bound Simple Path

Messages can **not** be sent with process IDs — Otherwise **cycles** would be created.

Verification of Buffered Dynamic Register Automata

Acyclic + Bound the Buffer + Strongly Bound Simple Path

Finite # Registers (Suppose x and y)

Verification of Buffered Dynamic Register Automata

Acyclic + Bound the Buffer + Strongly Bound Simple Path

Verification of Buffered Dynamic Register Automata

Verification of Buffered Dynamic Register Automata

Verification of Buffered Dynamic Register Automata

Lossy + Bound the Buffer + Strongly Bound Simple Path

14

Verification of Buffered Dynamic Register Automata

Lossy

- + Bound the Buffer
- + Strongly Bound Simple Path

Well-Structured Transition Systems

[Abdulla et al. 1996], [Finkel et al. 2001]

Symbolic representation of infinite set of configurations

Verification of Buffered Dynamic Register Automata

Lossy

- + Bound the Buffer
- + Strongly Bound Simple Path

- Define a **Well-Quasi Order** on configurations
- ▶ Prove **Monotonicity** of Transition Relation
- Provide an algorithm to compute the **Pre** of an upward closed set

Verification of Buffered Dynamic Register Automata

Lossy

- + Bound the Buffer
- + Strongly Bound Simple Path

- Define a Well-Quasi Order on configurations
- ▶ Prove **Monotonicity** of Transition Relation
- Provide an algorithm to compute the **Pre** of an upward closed set

th

Verification of Buffered Dynamic Register Automata

Well-Structured Transition Systems

Define a **Well-Quasi Order** on configurations

Ordering: subgraph relation

Well-Structured Transition Systems

Define a **Well-Quasi Order** on configurations

Ordering: induced subgraph relation

Well-Structured Transition Systems

Define a Well-Quasi Order on configurations

Ordering: induced subgraph relation

Verification of Buffered Dynamic Register Automata

Well-Structured Transition Systems

Define a Well-Quasi Order on configurations

Ordering: induced subgraph relation

[Ding, 1992] Subgraphs and Well-Quasi Ordering

(Induced) subgraph relation is a WQO on Strongly-Bounded graphs

Well-Structured Transition Systems

Define a Well-Quasi Order on configurations

Ordering: induced subgraph relation

\t.h

th

Verification of Buffered Dynamic Register Automata

Well-Structured Transition Systems

Define a Well-Quasi Order on configurations

Ordering: induced subgraph relation

Verification of Buffered Dynamic Register Automata

Lossy

- + Bound the Buffer
- + Strongly Bound Simple Path

- Define a Well-Quasi Order on configurations
- ▶ Prove **Monotonicity** of Transition Relation
- Provide an algorithm to compute the **Pre** of an upward closed set

Verification of Buffered Dynamic Register Automata

Lossy

- + Bound the Buffer
- + Strongly Bound Simple Path

- Define a Well-Quasi Order on configurations
- ▶ Prove **Monotonicity** of Transition Relation
- Provide an algorithm to compute the **Pre** of an upward closed set

Strongly Safe DRA

Verification of Dynamic Register Automata

- Define a Well-Quasi Order on configurations
- ▶ Prove **Monotonicity** of Transition Relation
- Provide an algorithm to compute the **Pre** of an upward closed set

Well-Structured Transition Systems

▶ Prove **Monotonicity** of Transition Relation

Ca

 C_1

 C_3

Well-Structured Transition Systems

▶ Prove **Monotonicity** of Transition Relation

Ca C_1 C_3

Well-Structured Transition Systems

▶ Prove **Monotonicity** of Transition Relation

Ca

160

Well-Structured Transition Systems

Well-Structured Transition Systems

Well-Structured Transition Systems

th

Proofs

Verification of Buffered Dynamic Register Automata

Well-Structured Transition Systems

th

Verification of Buffered Dynamic Register Automata

Well-Structured Transition Systems

▶ Prove **Monotonicity** of Transition Relation

Lossy

Well-Structured Transition Systems

▶ Prove **Monotonicity** of Transition Relation

Lossy

Well-Structured Transition Systems

▶ Prove **Monotonicity** of Transition Relation

166

Well-Structured Transition Systems

Well-Structured Transition Systems

▶ Prove **Monotonicity** of Transition Relation

Subgraph relation: Register Mapping & States preserved

Well-Structured Transition Systems

▶ Prove **Monotonicity** of Transition Relation

Subgraph relation: Register Mapping & States preserved

Well-Structured Transition Systems

▶ Prove **Monotonicity** of Transition Relation

Subgraph relation: Register Mapping & States preserved

Lossy + Bound the Buffer + Strongly Bound Simple Path

- Define a Well-Quasi Order on configurations
- ▶ Prove **Monotonicity** of Transition Relation
- Provide an algorithm to compute the **Pre** of an upward closed set

Verification of Buffered Dynamic Register Automata

Lossy + Bound the Buffer + Strongly Bound Simple Path

Well-Structured Transition Systems

- Define a Well-Quasi Order on configurations
- ▶ Prove **Monotonicity** of Transition Relation
- Provide an algorithm to compute the **Pre** of an upward closed set