UNIVERSITET technische universität dortmund Verification of a class of protocols: - **Dynamic creation** of processes - ▶ **Unique** ID for each process - Finite number of **registers** per process - Used to store the ID of others - Asynchronous communication # Dynamic Register Automata Verification of Buffered Dynamic Register Automata # [Bollig et al. 2010, 2013] - Dynamic Communication Automata - Asynchronous Communication - Applications: - Leader Election Protocol - Peer To Peer Protocol - Ad Hoc Networks [Bollig et al. 2010, 2013] [Parosh et al. 2014] - Verification of Dynamic Register Automata - Rendez-vous Communication - Sub-Classes for which basic verification properties are decidable [Bollig et al. 2010, 2013] [Parosh et al. 2014] [In This Work] - Verification of Dynamic Register Automata - Asynchronous Communication - Sub-Classes for which basic verification properties are decidable Formal Model **Operational Semantics** **Problem** Approach Results 7 #### **Process Model** Verification of Buffered Dynamic Register Automata #### **Process Model** 12/08 Verification of Buffered Dynamic Register Automata #### **Process Model** #### **Process Model** Verification of Buffered Dynamic Register Automata #### **Process Model** 25 Verification of Buffered Dynamic Register Automata #### **Process Model** 26 Verification of Buffered Dynamic Register Automata #### **Process Model** Verification of Buffered Dynamic Register Automata #### **Process Model** Verification of Buffered Dynamic Register Automata **Process Model** Configuration **Configuration Graph** Verification of Buffered Dynamic Register Automata **Process Model** Configuration Configuration Graph Communication Graph Verification of Buffered Dynamic Register Automata #### **Process Creation** Verification of Buffered Dynamic Register Automata #### **Process Creation** # Dynamic Register Automata Verification of Buffered Dynamic Register Automata # Dynamic Register Automata Verification of Buffered Dynamic Register Automata **Process Creation** Verification of Buffered Dynamic Register Automata ## **Process Creation** **Process Creation** ## **Process Creation** Verification of Buffered Dynamic Register Automata ## **Process Creation** **Process Creation** ## **Process Creation** ## **Process Creation** **Process Creation** Pro Message Sending Message Receiving 49 50 Verification of Buffered Dynamic Register Automata # Pro Message Sending m(5)q4 ql 3 **q4** 5 Ca Verification of Buffered Dynamic Register Automata Verification of Buffered Dynamic Register Automata 53 Verification of Buffered Dynamic Register Automata # Pro Message Sending m(5)q4 ql 3 q4 5 Ca Verification of Buffered Dynamic Register Automata # Pro Message Sending m(5)q4 ql 3 X **q3** 5 Ca Verification of Buffered Dynamic Register Automata Pro Message Receiving Message senuing Verification of Buffered Dynamic Register Automata ## Pro Message Receiving Message senuing 58 Verification of Buffered Dynamic Register Automata ## Pro Message Receiving Message senuing Verification of Buffered Dynamic Register Automata ## Pro Message Receiving Message senuing Verification of Buffered Dynamic Register Automata ## Pro Message Receiving Message senuing Verification of Buffered Dynamic Register Automata ## Pro Message Receiving Message senuing 62 Verification of Buffered Dynamic Register Automata ## Pro Message Receiving Message senuing 63 Verification of Buffered Dynamic Register Automata ## Pro Message Receiving Message senuing # Buffered Dynamic Register Automata Verification of Buffered Dynamic Register Automata **Initial Configuration** 67 Verification of Buffered Dynamic Register Automata Run: Co, C1 # State Reachability Verification of Buffered Dynamic Register Automata # State Reachability Verification of Buffered Dynamic Register Automata # State Reachability Verification of Buffered Dynamic Register Automata Initial Configuration Run: Co, C1, C2, ..., Cn State Reachability Problem: Verification of Buffered Dynamic Register Automata #### State Reachability Problem: Given **q**_{BAD}, is there a run starting from an **initial configuration** that reaches **a configuration** where **q**_{BAD} occurs? Verification of Buffered Dynamic Register Automata #### State Reachability Problem: Given **q**_{BAD}, is there a run starting from an **initial configuration** that reaches **a configuration** where **q**_{BAD} occurs? Verification of Buffered Dynamic Register Automata State Reachability Problem: Undecidable Verification of Buffered Dynamic Register Automata State Reachability Problem: Undecidable Verification of Buffered Dynamic Register Automata #### State Reachability Problem: Undecidable Two counters Minsky Machine # Buffered Dynamic Register Automata Verification of Buffered Dynamic Register Automata # **Buffered Dynamic Register Automata** Verification of Buffered Dynamic Register Automata Verification of Buffered Dynamic Register Automata Cycle Verification of Buffered Dynamic Register Automata . Cycle Verification of Buffered Dynamic Register Automata . Cycle . Bound the Buffer Bound Simple Path Strongly Bound Simple Path Lossy Verification of Buffered Dynamic Register Automata . Cycle . Bound the Buffer Bound Simple Path Strongly Bound Simple Path Lossy Verification of Buffered Dynamic Register Automata . Cycle . Bound the Buffer Bound Simple Path Strongly Bound Simple Path Lossy Verification of Buffered Dynamic Register Automata . Cycle . Bound the Buffer Bound Simple Path Strongly Bound Simple Path Lossy . Cycle . Bound the Buffer Bound Simple Path Strongly Bound Simple Path Lossy Verification of Buffered Dynamic Register Automata Strongly Bound Simple Path Still: Unbounded Number of Processes Verification of Buffered Dynamic Register Automata . Cycle . Bound the Buffer Bound Simple Path Strongly Bound Simple Path Lossy Verification of Buffered Dynamic Register Automata . Cycle . Bound the Buffer Bound Simple Path Strongly Bound Simple Path Lossy 97 Verification of Buffered Dynamic Register Automata . Cycle . Bound the Buffer Bound Simple Path Strongly Bound Simple Path Lossy 10 Verification of Buffered Dynamic Register Automata #### Results Verification of Buffered Dynamic Register Automata State Reachability #### Results Verification of Buffered Dynamic Register Automata #### **State Reachability** . Cycles . State Reachability . Cycles . 10 ### Results Verification of Buffered Dynamic Register Automata # State Reachability . Cycles . ### **State Reachability** . Cycles . Strongly Bound Simple Path Bound Buffers 10^r Verification of Buffered Dynamic Register Automata # State Reachability . Cycles . Strongly Bound Simple Path . Cycles . + **Bound Buffers** **Bound Buffers** + 108 Verification of Buffered Dynamic Register Automata ### State Reachability . Cycles . + Strongly Bound Simple Path . Cycles . + **Bound Buffers** **Bound Buffers** + Strongly Bound Simple Path .Cycles. **Bound Buffers** |+| ## State Reachability . Cycles . + Strongly Bound Simple Path . Cycles . + **Bound Buffers** **Bound Buffers** + Strongly Bound Simple Path .Cycles. **Bound Buffers** Strongly Bound Simple Path **Bound Buffers** ## State Reachability . Cycles . + Strongly Bound Simple Path . Cycles . + **Bound Buffers** **Bound Buffers** + Strongly Bound Simple Path .Cycles. **Bound Buffers** + Strongly Bound Simple Path Lossy + Bound Buffers Cycles . Strongly Bound Simple Path Cycles . **Bound Buffers** **Bound Buffers** Strongly Bound Simple Path + Acyclic Bound the Buffer Strongly Bound Simple Path + Lossy Bound the Buffer 112 #### Transduction Problem Given two finite state machines \mathbf{A} and \mathbf{B} and a transducer \mathbf{T} , is there $\mathbf{i} \in \mathbb{N}$ such that $\mathbf{T}^{\mathbf{i}}(\mathbf{A}) \in L(\mathbf{B})$. 113 #### Transduction Problem Given two finite state machines \mathbf{A} and \mathbf{B} and a transducer \mathbf{T} , is there $\mathbf{i} \in \mathbb{N}$ such that $\mathbf{T}^{\mathbf{i}}(\mathbf{A}) \in L(\mathbf{B})$. 115 Verification of Buffered Dynamic Register Automata #### Transduction Problem Given two finite state machines \mathbf{A} and \mathbf{B} and a transducer \mathbf{T} , is there $\mathbf{i} \in \mathbb{N}$ such that $\mathbf{T}^{\mathbf{i}}(\mathbf{A}) \in L(\mathbf{B})$. #### Transduction Problem Given two finite state machines \mathbf{A} and \mathbf{B} and a transducer \mathbf{T} , is there $\mathbf{i} \in \mathbb{N}$ such that $\mathbf{T}^{\mathbf{i}}(\mathbf{A}) \in L(\mathbf{B})$. 116 #### Transduction Problem Given two finite state machines \mathbf{A} and \mathbf{B} and a transducer \mathbf{T} , is there $\mathbf{i} \in \mathbb{N}$ such that $\mathbf{T}^{\mathbf{i}}(\mathbf{A}) \in L(\mathbf{B})$. 117 #### Transduction Problem Given two finite state machines \mathbf{A} and \mathbf{B} and a transducer \mathbf{T} , is there $\mathbf{i} \in \mathbb{N}$ such that $\mathbf{T}^{\mathbf{i}}(\mathbf{A}) \in L(\mathbf{B})$. #### Transduction Problem Given two finite state machines \mathbf{A} and \mathbf{B} and a transducer \mathbf{T} , is there $\mathbf{i} \in \mathbb{N}$ such that $\mathbf{T}^{\mathbf{i}}(\mathbf{A}) \in L(\mathbf{B})$. . Cycles . 119 #### Transduction Problem Given two finite state machines \mathbf{A} and \mathbf{B} and a transducer \mathbf{T} , is there $\mathbf{i} \in \mathbb{N}$ such that $\mathbf{T}^{\mathbf{i}}(\mathbf{A}) \in L(\mathbf{B})$. . Cycles . Bound Simple Path Verification of Buffered Dynamic Register Automata #### Transduction Problem Given two finite state machines \mathbf{A} and \mathbf{B} and a transducer \mathbf{T} , is there $\mathbf{i} \in \mathbb{N}$ such that $\mathbf{T}^{\mathbf{i}}(\mathbf{A}) \in L(\mathbf{B})$. . Cycles . Verification of Buffered Dynamic Register Automata #### Transduction Problem Given two finite state machines \mathbf{A} and \mathbf{B} and a transducer \mathbf{T} , is there $\mathbf{i} \in \mathbb{N}$ such that $\mathbf{T}^{\mathbf{i}}(\mathbf{A}) \in L(\mathbf{B})$. . Cycles . Verification of Buffered Dynamic Register Automata #### Transduction Problem Given two finite state machines \mathbf{A} and \mathbf{B} and a transducer \mathbf{T} , is there $\mathbf{i} \in \mathbb{N}$ such that $\mathbf{T}^{\mathbf{i}}(\mathbf{A}) \in L(\mathbf{B})$. . Cycles . **Bounded Buffers** Verification of Buffered Dynamic Register Automata #### Transduction Problem Given two finite state machines \mathbf{A} and \mathbf{B} and a transducer \mathbf{T} , is there $\mathbf{i} \in \mathbb{N}$ such that $\mathbf{T}^{\mathbf{i}}(\mathbf{A}) \in L(\mathbf{B})$. . Cycles . **Bounded Buffers** Bound Simple Path Verification of Buffered Dynamic Register Automata #### Transduction Problem Given two finite state machines \mathbf{A} and \mathbf{B} and a transducer \mathbf{T} , is there $\mathbf{i} \in \mathbb{N}$ such that $\mathbf{T}^{\mathbf{i}}(\mathbf{A}) \in L(\mathbf{B})$. . Cycles . **Bounded Buffers** Bound Simple Path **Bound Buffers** Verification of Buffered Dynamic Register Automata **Bound Buffers** + Strongly Bounded Simple Path Verification of Buffered Dynamic Register Automata **Bound Buffers** + Strongly Bounded Simple Path Verification of Buffered Dynamic Register Automata **Bound Buffers** + Strongly Bounded Simple Path Verification of Buffered Dynamic Register Automata **Bound Buffers** + Strongly Bounded Simple Path Verification of Buffered Dynamic Register Automata **Bound Buffers** + Strongly Bounded Simple Path Verification of Buffered Dynamic Register Automata **Bound Buffers** + Strongly Bounded Simple Path Verification of Buffered Dynamic Register Automata **Bound Buffers** + Strongly Bounded Simple Path Verification of Buffered Dynamic Register Automata **Bound Buffers** + Strongly Bounded Simple Path Verification of Buffered Dynamic Register Automata **Bound Buffers** + Strongly Bounded Simple Path Verification of Buffered Dynamic Register Automata **Bound Buffers** + Strongly Bounded Simple Path Verification of Buffered Dynamic Register Automata **Bound Buffers** + Strongly Bounded Simple Path Acyclic + Bound the Buffer + Strongly Bound Simple Path Verification of Buffered Dynamic Register Automata Acyclic + Bound the Buffer + Strongly Bound Simple Path Messages can **not** be sent with process IDs — Otherwise **cycles** would be created. Verification of Buffered Dynamic Register Automata Acyclic + Bound the Buffer + Strongly Bound Simple Path Finite # Registers (Suppose x and y) Verification of Buffered Dynamic Register Automata Acyclic + Bound the Buffer + Strongly Bound Simple Path Verification of Buffered Dynamic Register Automata Verification of Buffered Dynamic Register Automata Verification of Buffered Dynamic Register Automata Lossy + Bound the Buffer + Strongly Bound Simple Path 14 Verification of Buffered Dynamic Register Automata Lossy - + Bound the Buffer - + Strongly Bound Simple Path ### Well-Structured Transition Systems [Abdulla et al. 1996], [Finkel et al. 2001] Symbolic representation of infinite set of configurations Verification of Buffered Dynamic Register Automata Lossy - + Bound the Buffer - + Strongly Bound Simple Path - Define a **Well-Quasi Order** on configurations - ▶ Prove **Monotonicity** of Transition Relation - Provide an algorithm to compute the **Pre** of an upward closed set Verification of Buffered Dynamic Register Automata Lossy - + Bound the Buffer - + Strongly Bound Simple Path - Define a Well-Quasi Order on configurations - ▶ Prove **Monotonicity** of Transition Relation - Provide an algorithm to compute the **Pre** of an upward closed set th Verification of Buffered Dynamic Register Automata ## Well-Structured Transition Systems Define a **Well-Quasi Order** on configurations ### Ordering: subgraph relation ## Well-Structured Transition Systems Define a **Well-Quasi Order** on configurations ### Ordering: induced subgraph relation ## Well-Structured Transition Systems Define a Well-Quasi Order on configurations ## Ordering: induced subgraph relation Verification of Buffered Dynamic Register Automata ### Well-Structured Transition Systems Define a Well-Quasi Order on configurations Ordering: induced subgraph relation [Ding, 1992] Subgraphs and Well-Quasi Ordering (Induced) subgraph relation is a WQO on Strongly-Bounded graphs ## Well-Structured Transition Systems Define a Well-Quasi Order on configurations ### Ordering: induced subgraph relation \t.h th Verification of Buffered Dynamic Register Automata ### Well-Structured Transition Systems Define a Well-Quasi Order on configurations ### Ordering: induced subgraph relation Verification of Buffered Dynamic Register Automata Lossy - + Bound the Buffer - + Strongly Bound Simple Path - Define a Well-Quasi Order on configurations - ▶ Prove **Monotonicity** of Transition Relation - Provide an algorithm to compute the **Pre** of an upward closed set Verification of Buffered Dynamic Register Automata Lossy - + Bound the Buffer - + Strongly Bound Simple Path - Define a Well-Quasi Order on configurations - ▶ Prove **Monotonicity** of Transition Relation - Provide an algorithm to compute the **Pre** of an upward closed set # Strongly Safe DRA Verification of Dynamic Register Automata - Define a Well-Quasi Order on configurations - ▶ Prove **Monotonicity** of Transition Relation - Provide an algorithm to compute the **Pre** of an upward closed set ## **Well-Structured Transition Systems** ▶ Prove **Monotonicity** of Transition Relation Ca C_1 C_3 ## **Well-Structured Transition Systems** ▶ Prove **Monotonicity** of Transition Relation Ca C_1 C_3 ### **Well-Structured Transition Systems** ▶ Prove **Monotonicity** of Transition Relation Ca 160 ## **Well-Structured Transition Systems** ## Well-Structured Transition Systems ## Well-Structured Transition Systems th # **Proofs** Verification of Buffered Dynamic Register Automata ### Well-Structured Transition Systems th Verification of Buffered Dynamic Register Automata ## Well-Structured Transition Systems ▶ Prove **Monotonicity** of Transition Relation ### Lossy ## Well-Structured Transition Systems ▶ Prove **Monotonicity** of Transition Relation ### Lossy ## Well-Structured Transition Systems ▶ Prove **Monotonicity** of Transition Relation 166 ## Well-Structured Transition Systems ### Well-Structured Transition Systems ▶ Prove **Monotonicity** of Transition Relation ### Subgraph relation: Register Mapping & States preserved ### Well-Structured Transition Systems ▶ Prove **Monotonicity** of Transition Relation ### Subgraph relation: Register Mapping & States preserved ### Well-Structured Transition Systems ▶ Prove **Monotonicity** of Transition Relation ### Subgraph relation: Register Mapping & States preserved Lossy + Bound the Buffer + Strongly Bound Simple Path - Define a Well-Quasi Order on configurations - ▶ Prove **Monotonicity** of Transition Relation - Provide an algorithm to compute the **Pre** of an upward closed set Verification of Buffered Dynamic Register Automata Lossy + Bound the Buffer + Strongly Bound Simple Path Well-Structured Transition Systems - Define a Well-Quasi Order on configurations - ▶ Prove **Monotonicity** of Transition Relation - Provide an algorithm to compute the **Pre** of an upward closed set