NETYS’15 | Agadir, Morocco

Dynamic Register Automata

Parosh Aziz Mohammed Faouzi
Abdulla Atig

technische universitat
dortmund



Communication Protocols Analysis

Verification of a class of protocols:

~>Dynamic creation of processes

» Unique ID for each process

2> Finite number of registers per process
» Used to store the ID of others

2> Asynchronous communication



Dynamic Communication Automata,

Asynchronous Communication

Applications:

e [L,eader Election Protocol
e Peer To Peer Protocol
e Ad Hoc Networks



[Bollig et al. 2010, 2013]
[Parosh et al. 2014 ]

Verification of Dynamic Register Automata,

Rendez-vous Communication

Sub-Classes for which basic verification

properties are decidable



[Bollig et al. 2010, 2013]
[Parosh et al. 2014 ]

[In This Work]

Verification of Dynamic Register Automata

AsynchronousCommunication

Sub-Classes for which basic verification

properties are decidable



Buifered Automaga

Formal Model

Operational Semantics

% Problem

Approach A




Process Model

X «< create(q3)




Process Model

X «< create(q3d)




Process Model

X «< create(q3d)




Process Model

X «< create(q3d)

disconnect

m’(self) ! x

1C



Process Model

disconnect

X «< create(q3)

11



Process Model

- X «<create(qg3)

% i
% i v
. i’
o 3 g
4 4
3
3 Y 3
\
p

12



13



14



disconnect

18



‘ Process Model

e — —

16



Process Model Configuration

17



Process Model Configuration

18



Process Model Configuration

19



Process Model Configuration

C



Process Model Configuration

1l



Process Model Configuration

R&



Process Model Configuration




Process Model Configuration

4



Process Model Configuration




Process Model Configuration

€



Process Model Configuration

Q'



Process Model Configuration

8



Process Model Configuration Configuration Graph




FormalModel ==

Process Model Configuration Configuration Graph
Communication Graph <«




Automata

Formal Model

Process Model

Configuration

anﬁguration Graph

Operational Semantics N—
9_ >




Operational Semantics

3l



Operational Semantics

3K



Operational Semantics

Process Creation Process Disconnection

Message Sending Message Receiving

ST e D SR T




Operational Semantics

Process Creation

. X «<create(q3)

9 & W\
‘ 4
.‘ &
: )
y

34



Operational Semantics

Process Creation

7 TN X «<create(q3) __

34



Process Creation




Process Creation




Process Creation

—

| 7 N X «<create(q3) _

m’ (self) ! X N

disgonnect




Process Creation




Process Creation




Operational Semantics

Process Creation Message Sending

—. X “«< create s __

4C



Operational Semantics g

Process Creation Message Sending

C,




Operational Semantics A&

Process Creation Message Sending

C:




Operational Semantics A«

Process Creation Message Sending

C:




Operational Semantics g

Process Creation Message Sending

C,




Operational Semantics A«

Process Creation Message Sending

C:




Operational Semantics ‘

Process Creation Message Sending




Operational Semantics A&

Process Creation Message Sending




Operational Semantics ‘

Process Creation Message Sending




Operational Semantics

o 2 a s

Proc_

ro Messa ge Sending Message Recelving

~. X «<(create(q3) ___

m’ (self) | X S
disgonnect



Operational Semantics .

o 2 a s

Proc_

ro Messa ge Sending Message Recelving




Operational Semantics g

-~ 2 2 a S

PI:?-(Message Sending

Message Receiving




Operational Semantics

-~ 2 2 a S

PI:P--(Message Sending

Message Receiving




Operational Semantics

-~ 2 2 a S

PI:P--(Message Sending

Message Receiving




Operational Semantics -

-~ 2 2 a S

PI:?-(Message Sending

Message Receiving




Operational Semantics

-~ 2= 2 a S

Proc_

' Message Sending Message Receiving




Operational Semantics

Prorlﬁ'e"s' Message Receiving Process Disconnection
o — Sage ociiulily f

-, X «<create(q3) ___

disconnect

316



Operational Semantics A&

disconnect




Operational Semantics .

disconnect




Operational Semantics &

disconnect




Operational Semantics “

disconnect




Operational Semantics g

disconnect




Operational Semantics &

Process Disconnection

disconnect




Operational Semantics &

Process Disconnection

disconnect




Automata

Formal Model >
Operational Semantics

Process Creation
~ Message Sending

Message Receiving
Process Disconnection

—




Automata ¢

Formal Model >
Operational Semantics

Process Creation
~ Message Sending

Message Receiving
Process Disconnection

State Reachability




Initial Configuration

6C



Initial Configuration

67



68



TTnitial l

Configuration




Initial Configuration Run: Co, C,, Cz, ..., Cy

State Reachability Problem:

7C



State Reachability Problem:

Given gsap, is there a run starting from an
that reaches a configuration where gsap occurs?




StateReacalht L 7

Vemﬁoatlon of Buffered Dynamlc Reglster Automata

Given dgsap, is t!ere a run starting !Irom an initial

configuration that reaches a configuration where gqsap occurs?




State Reachability Problem:

7&



State Reachability

Vemﬁca,tlon of Buffered Dyna,mlc Reglster Automata

7E



State Reachability

Verlﬁca,tlon of Buffered Dyna,mlc Reglster Automata

Two counters Minsky Machine

74



Buffered Automata ¢

Formal Model
Operational Semantics

SR TEETd BN dIbin T Undecidable —




Buffered Automata

Formal Model
Operational Semantics

S1: iR CETA BN il Al Undecidable

Approach 9. .- >




Define sub-classes of the system for which state
reachability is

el



[ Cycle j

Define sub-classes of the system for which state
reachability is

7E



==

Define sub-classes of the system for which state
reachability is

7E



(o) ()

)

Define sub-classes of the system for which state
reachability is




[ —Cyelo— j [ Bound the Buffer j

[ Bound Simple Path j [Strongly Bound Simple Pa,th]

[ LoSSy j

Define sub-classes of the system for which state
reachability is

8C



(o) (o)

[ Bound Simple Path j [Strongly Bound Simple Pa,thj

[ LoSSy j

Define sub-classes of the system for which state
reachability is

81



[ —Cyelo— j [ Bound the Buffer j

Bound Simple Path [Strongly Bound Simple Pa,thj

[ LoSSy j

Define sub-classes of the system for which state
reachability is

8%



Bound Simple Path




Bound Simple Path

84



Bound Simple Path




Bound Simple Path

(1] o, k=1

X X X X X X

X

R | k=1
X

. \gs)

8€



[ —Cyelo— j [ Bound the Buffer j

Bound Simple Path [Strongly Bound Simple Pa,thj

[ LoSSy j

Define sub-classes of the system for which state
reachability is

87



[ —Cyelo— j [ Bound the Buffer j

[ Bound Simple Path j Strongly Bound Simple Path

[ LoSSy j

Define sub-classes of the system for which state
reachability is

88



Strongly Bound Simple Path

qZkl

....)




Strongly Bound Simple Path

a2 | k=1

\

JESUED 2

9C



Strongly Bound Simple Path

a2 | B

\

JESUED 2

01



Strongly Bound Simple Path

k=6
< >

9%



Strongly Bound Simple Path




Strongly Bound Simple Path

(Still: Unbounded Number of Processes)

94



[ —Cyelo— j [ Bound the Buffer j

[ Bound Simple Path j Strongly Bound Simple Path

[ LoSSy j

Define sub-classes of the system for which state
reachability is




[ —Cyelo— j [ Bound the Buffer j

[ Bound Simple Path j [Strongly Bound Simple Pa,thj

Define sub-classes of the system for which state
reachability is

9¢€



X «< create(q3)

97



disconnect ¥ VvV

disconnect

X «< create(q3)

908



[ —Cyelo— j [ Bound the Buffer j

[ Bound Simple Path j [Strongly Bound Simple Pa,th]

[ LoSSy j

Define sub-classes of the system for which state
reachability is




Buffered Automata ¢

Formal Model
Operational Semantics

IR GETA B/ Undecidable
Approach -




Buffered Automata *(e

— Formal Model 9 (m) y
Operational Semantics e I )

Approach
> >



State Reachability

10:



State Reachability

==

10:



State Reachability

=

10:-



State Reachabilit

=

[ Strongly Bound Simple Path J

10!



Reswlts

State Reachability

[ —Gyeles— ) [ Strongly Bound Simple Path ) (Bound Buffersj




State Reachability

[ —Gyreles— j [ Strongly Bound Simple Path )

[ —Gyeles— J[ Bound Buffers ]

[ Bound Buffers J[ otrongly Bound Simple Path ]




State Reachability

[ —Gyreles— j [ Strongly Bound Simple Path j

[ —Gyeles— ]( Bound Buffers j

[ Bound Buffers j[ otrongly Bound Simple Path ]

[ -Cyreles: H Bound Buffers H Strongly Bound Simple Pa.th)




State Reachability

[ —Gyreles— j [ Strongly Bound Simple Path j

[ —Gyeles— ][ Bound Buffers j

[ Bound Buffers j[ otrongly Bound Simple Path ]

[ -Cyreles: H Bound Buffers H Strongly Bound Simple Pa,th]

[ Bound Buffers j [Strongly Bound Simple Pathj




State Reachability

[ —Gyreles— j [ Strongly Bound Simple Path j
[ —Gyeles— ][ Bound Buffers j

[ Bound Buffers j[ otrongly Bound Simple Path ]

[ -Cyreles: H Bound Buffers H Strongly Bound Simple Pa,th]

[ Lossy H Bound Buffers H Strongly Bound Simple Pathj




xﬁ J'X'(v &o

e
MVZ8S

R VYERITAS K

>
N

€a3CH




[ —Gyreles— ] [ otrongly Bound Simple Path ]

[ —Gyeles— ][ Bound Buffers j

[ Bound Buffers j[ otrongly Bound Simple Path ]

Acyclic + Bound the Buffer + Strongly Bound Simple Path
~— \—/

Lossy + Bound the Buffer + Strongly Bound Simple Path



[ Strongly Bound Simple Path |

=

Bound Buffers j




= . [ Strongly Bound Simple Path j
=3

1\ . l Bound Buffers j

Transduction Problem

Given two finite state machines A and B and a
transducer T, is there i € N such that T'(A) € L(B).




Transduction Problem

Given two finite state machines A and B and a
transducer T, is there i € N such that T'(A) € L(B).




Transduction Problem

Given two finite state machines A and B and a
transducer T, is there i € N such that T'(A) € L(B).




Transduction Problem

Given two finite state machines A and B and a
transducer T, is there i € N such that T'(A) € L(B).




Transduction Problem

Given two finite state machines A and B and a
transducer T, is there i € N such that T'(A) € L(B).




Transduction Problem

Given two finite state machines A and B and a
transducer T, is there i € N such that T'(A) € L(B).




Transduction Problem

Given two finite state machines A and B and a
transducer T, is there i € N such that T'(A) € L(B).




Transduction Problem

Given two finite state machines A and B and a
transducer T, is there i € N such that T'(A) € L(B).

[ —Gyeles— j[ Bound Simple Path j




Transduction Problem

Given two finite state machines A and B and a
transducer T, is there i € N such that T'(A) € L(B).

[ —Gyeles— j [ Strongly Bound Simple Path j




Tra,nsduotion Problem

Given two finite state machines A and B and a
transducer T, is there i € N such that T'(A) € L(B).




Tra,nsduotion Problem

Given two finite state machines A and B and a
transducer T, is there i € N such that T'(A) € L(B).

[ —Gyeles— j[ Bounded Buffers j




Transduction Problem

Given two finite state machines A and B and a
transducer T, is there i € N such that T'(A) € L(B).

[ —Gyeles— j[ Bounded Buffers j[ Bound Simple Path j




Transduction Problem

Given two finite state machines A and B and a
transducer T, is there i € N such that T'(A) € L(B).

[ —Gyreles— j[ Bounded Buffers j[ Bound Simple Path ]




[ Bound Buffers Strongly Bounded Simple Pa,th]

12¢



[ Bound Buffers Strongly Bounded Simple Pa,th]

Two counters Minsky Machine to 4-bounded reachability

OO

12’



[ Bound Buffers Strongly Bounded Simple Path]

Two counters Minsky Machine to 4-bounded reachability

12



[ Bound Buffers Strongly Bounded Simple Pa,th]

Two counters Minsky Machine to 4-bounded reachability




[ Bound Buffers Strongly Bounded Simple Pa,th]

Two counters Minsky Machine to 4-bounded reachability

:
I

cl++ , cR--

OO




[ Bound Buffers Strongly Bounded Simple Pa,th]

Two counters Minsky Machine to 4-bounded reachability

I
=

f \ zerotest(cZ))
Y

13.



[ Bound Buffers Strongly Bounded Simple Pa,th]

Two counters Minsky Machine to 4-bounded reachability

I
=

f \ zerotest(cZ))
Y




[ Bound Buffers Strongly Bounded Simple Pa,th]

Two counters Minsky Machine to 4-bounded reachability

I
:

f \ zerotest(cZ))
Y




[ Bound Buffers Strongly Bounded Simple Path]

Two counters Minsky Machine to 4-bounded reachability

I
=
f \ zerotest(cZ))

1 3¢



[ Bound Buffers Strongly Bounded Simple Pa,th]

Two counters Minsky Machine to 4-bounded reachability

I
=




[ Bound Buffers Strongly Bounded Simple Pa,th]

Two counters Minsky Machine to 4-bounded reachability

I
=




[ Bound Buffers Strongly Bounded Simple Pathj

Two counters Minsky Machine to 4-bounded reachability

f zerotest(cz 2

forbidden

C




Acyclic + Bound the Buffer + Strongly Bound Simple Path

1 3¢



Acyclic + Bound the Buffer + Strongly Bound Simple Path |

Messages can not be sent with process IDs —
Otherwise cycles would be created.




Acyclic '+ Bound the Buffer + Strongly Bound Simple Path

Finite # Registers (Suppose x and y)




Acyclic + Bound the Buffer + Strongly Bound Simple Path ‘

14



Acyclic + Bound the Buffer + Strongly Bound Simple Path |




Acyclic + Bound the Buffer + Strongly Bound Simple Path




Acyclic + Bound the Buffer + Strongly Bound Simple Path

2-Bounded

—

Finite # of Possible configurations

14



Lossy + Bound the Buffer + Strongly Bound Simple Path

14



Lossy : Bound the Buffer + Strongly Bound Simple Path

Well-Structured Transition Systems

Symbolic representation of infinite set of configurations



Lossy + Bound the Buffer + Strongly Bound Simple Path

Well-Structured Transition Systems

» Define a Well-Quasi Order on configurations
| » Prove Monotonicity of Transition Relation

» Provide an algorithm to compute the Pre of an
upward closed set



Lossy : Bound the Buffer + Strongly Bound Simple Path

Well-Structured Transition Systems

» Define a Well-Quasi Order on configurations
» Prove Monotonicity of Transition Relation

» Provide an algorithm to compute the Pre of an
upward closed set



— Well-Structured Transition Systems

Lir—

14

—=-"ath

\ » Define a Well-Quasi Order on configurations

Ordering: subgraph relation




— Well-Structured Transition Systems

L '~ T1th
\ » Define a Well-Quasi Order on configurations |

Ordering: induced subgraph relation




— Well-Structured Transition Systems

Lo ~'- Tagh
L » Define a, Well-Quasi Order on configurations y.

Ordering: induced subgraph relation




— Well-Structured Transition Systems

I
‘ 4

e hﬁ,th

Define a Well-Quasi Order on configurations

Ordering: induced subgraph relation

Subgraphs and Well-Quasi Ordemng

(Induced) subgraph relation is a WQO on Strongly-

Bounded graphs



— Well-Structured Transition Systems

Lir—

P T\ﬁ‘th

\ » Define a Well-Quasi Order on configurations

Ordering: induced subgraph relation

T =

15«



— Well-Structured Transition Systems

L~
\ » Define a Well-Quasi Order on configurations

Ordering: induced subgraph relation

E——

4

1 5¢

o



Lossy : Bound the Buffer + Strongly Bound Simple Path

Well-Structured Transition Systems

» Define a Well-Quasi Order on configurations
| » Prove Monotonicity of Transition Relation

» Provide an algorithm to compute the Pre of an
upward closed set



Lossy : Bound the Buffer + Strongly Bound Simple Path

Well-Structured Transition Systems

» Define a Well-Quasi Order on configurations
» Prove Monotonicity of Transition Relation

» Provide an algorithm to compute the Pre of an
upward closed set



Well-Structured Transition Systems

| » Define a Well-Quasi Order on configurations
| » Prove Monotonicity of Transition Relation

» Provide an algorithm to compute the Pre of an
upward closed set



— Well-Structured Transition Systems
Le-— ~'- Tath
| » Prove Monotonicity of Transition Relation |

1 5¢



— Well-Structured Transition Systems

SRS R T\,"th
» Prove Monotonicity of Transition Relation |

Ca
LI
C1 Csz

15¢



— Well-Structured Transition Systems
Le-— ~'- Tath
| » Prove Monotonicity of Transition Relation |




— Well-Structured Transition Systems

SRS R T\,"th
» Prove Monotonicity of Transition Relation |

16.



— Well-Structured Transition Systems
Le-— ~'- Tath
| » Prove Monotonicity of Transition Relation |

16:



— Well-Structured Transition Systems

SRS R T\,"th
» Prove Monotonicity of Transition Relation |

16



— Well-Structured Transition Systems

L ot magh
\ » Prove Monotonicity of Transition Relation

4




— Well-Structured Transition Systems

Lr-— == magh
\ » Prove Monotonicity of Transition Relation |

Lossy




— Well-Structured Transition Systems

I,r '~ Tath
\ » Prove Monotonicity of Transition Relation |

Lossy




— Well-Structured Transition Systems
Le-— ~'- Tagh
» Prove Monotonicity of Transition Relation |

\




— Well-Structured Transition Systems
Le-— ~'- Tagh
» Prove Monotonicity of Transition Relation |

\




— Well-Structured Transition Systems

I == Tagh

» Prove Monotonicity of Transition Relation

Subgraph relation: Register Mapping & States preserved

X X
0

ql
L
ol | cg




16!

— Well-Structured Transition Systems

I == Tagh

» Prove Monotonicity of Transition Relation

Subgraph relation: Register Mapping & States preserved

X X
6

qd
. 04




16!

— Well-Structured Transition Systems

I == Tagh

» Prove Monotonicity of Transition Relation

Subgraph relation: Register Mapping & States preserved

X X
6

qd
L
C | 04




Lossy : Bound the Buffer + Strongly Bound Simple Path
Well-Structured Transition Systems

» Define a Well-Quasi Order on configurations
» Prove Monotonicity of Transition Relation

» Provide an algorithm to compute the Pre of an
upward closed set



Lossy : Bound the Buffer + Strongly Bound Simple Path
Well-Structured Transition Systems

» Define a Well-Quasi Order on configurations
| » Prove Monotonicity of Transition Relation

» Provide an algorithm to compute the Pre of an
upward closed set



