Atig

Communication Protocols Analysis

Verification of Dynamic Register Automata

Verification of a class of protocols:

- Dynamic creation of processes
 - ▶ **Unique** ID for each process
- Finite number of **registers** per process
 - Used to store the ID of others
- Point-to-point communication
- **Rendez-vous** communication

Verification of Dynamic Register Automata

[Bollig et al. 2010, 2013]

Verification of Dynamic Register Automata

Applications

- Leader Election Protocol
- Peer To Peer Protocol
- Ad-Hoc Networks

Verification of Dynamic Register Automata

Applications

Formal Model

Verification of Dynamic Register Automata

Formal Model

Verification of Dynamic Register Automata

Formal Model

Verification of Dynamic Register Automata

Formal Model

Process Model

Finite number of States

Finite number of Registers

Verification of Dynamic Register Automata

Formal Model

Process Model

Finite number of States

Finite number of Registers

Finite message alphabet

Verification of Dynamic Register Automata

Formal Model

Process Model

Finite number of States

Finite number of Registers

Finite message alphabet

Transitions:

Create Process

Verification of Dynamic Register Automata

Formal Model

Process Model

Finite number of States

Finite number of Registers

Finite message alphabet

Transitions:

Create Process

Send Message

Verification of Dynamic Register Automata

Formal Model

Process Model

Finite number of States

Finite number of Registers

Finite message alphabet

Transitions:

Create Process

Send Message

Receive Message

Verification of Dynamic Register Automata

Formal Model

Process Model

Finite number of States

Finite number of Registers

Finite message alphabet

Transitions:

Create Process

Send ID

Verification of Dynamic Register Automata

Formal Model

Process Model

Finite number of States

Finite number of Registers

Finite message alphabet

Transitions:

Create Process

Send ID

Receive ID

Verification of Dynamic Register Automata

Formal Model

Process Model

Finite number of States

Finite number of Registers

Finite message alphabet

Transitions:

Create Process

Send Msg / ID

Receive Msg / ID

Register Reset

Verification of Dynamic Register Automata

Formal Model

Process Model

Finite number of States

Finite number of Registers

Finite message alphabet

Transitions:

Create Process

Send Msg / ID

Receive Msg / ID

Register Reset

Verification of Dynamic Register Automata

Formal Model

Verification of Dynamic Register Automata

Formal Model

Finite State System

Verification of Dynamic Register Automata

Formal Model

Configuration

Network of Processes

Process Model

Finite State System

20

Formal Model

Verification of Dynamic Register Automata

Configuration

Network of Processes

Process Model

Finite State System

Formal Model

Verification of Dynamic Register Automata

22

Formal Model

Verification of Dynamic Register Automata

23

Formal Model

Verification of Dynamic Register Automata

Formal Model

Verification of Dynamic Register Automata

Formal Model

Verification of Dynamic Register Automata

Formal Model

Verification of Dynamic Register Automata

Configuration

Communication graph

Formal Model

Verification of Dynamic Register Automata

Communication graph

12/05

Formal Model

Verification of Dynamic Register Automata

Communication graph

29

Formal Model

Verification of Dynamic Register Automata

Communication graph

30

Formal Model

Verification of Dynamic Register Automata

Formal Model

Verification of Dynamic Register Automata

Formal Model

Verification of Dynamic Register Automata

Formal Model

Verification of Dynamic Register Automata

Configuration

Communication graph

Formal Model

Verification of Dynamic Register Automata

Configuration

Transition Relation

3

Formal Model

Verification of Dynamic Register Automata

Configuration
Transition Relation

Process Model

Process Creation

Formal Model

Verification of Dynamic Register Automata

Configuration
Transition Relation

Process Model

Process Creation

Formal Model

Verification of Dynamic Register Automata

Configuration
Transition Relation

Process Model

38

Formal Model

Verification of Dynamic Register Automata

Configuration
Transition Relation

Created Process

Creating Process

Process Model

38

Formal Model

Verification of Dynamic Register Automata

Configuration
Transition Relation

Created Process

Creating Process

Process Model

Formal Model

Verification of Dynamic Register Automata

Configuration
Transition Relation

Created Process

Creating Process

Process Model

Formal Model

Verification of Dynamic Register Automata

Configuration Transition Relation

Process Model

42

Formal Model

Verification of Dynamic Register Automata

Configuration

Process Model

Transition Relation

Formal Model

Verification of Dynamic Register Automata

Configuration

Process Model

Transition Relation

Process Creation

Formal Model

Verification of Dynamic Register Automata

Configuration
Transition Relation

Process Model

Formal Model

Verification of Dynamic Register Automata

Configuration
Transition Relation

Process Model

Formal Model

Verification of Dynamic Register Automata

Configuration
Transition Relation

Process Model

Formal Model

Verification of Dynamic Register Automata

Configuration
Transition Relation

Process Model

Formal Model

Verification of Dynamic Register Automata

Configuration
Transition Relation

Process Model

Formal Model

Verification of Dynamic Register Automata

Configuration
Transition Relation

Process Model

50

Formal Model

Verification of Dynamic Register Automata

Configuration
Transition Relation

Process Model

Formal Model

Verification of Dynamic Register Automata

Configuration

Transition Relation

Process Model

Send & Receive ID

Point-To-Point, Rendez-Vous communication

Formal Model

Verification of Dynamic Register Automata

Configuration
Transition Relation

Process Model

Formal Model

Verification of Dynamic Register Automata

Configuration
Transition Relation

Process Model

Formal Model

Verification of Dynamic Register Automata

Configuration
Transition Relation

Process Model

55

Formal Model

Verification of Dynamic Register Automata

Process Model

Formal Model

Verification of Dynamic Register Automata

Configuration

Process Model

Transition Relation

Process Creation

Formal Model

Verification of Dynamic Register Automata

Configuration

Process Model

Transition Relation

Process Creation

58

Formal Model

Verification of Dynamic Register Automata

Configuration

Process Model

Transition Relation

Process Creation

Send & Receive ID

Selective Receive

Formal Model

Verification of Dynamic Register Automata

Configuration

Process Model

Transition Relation

Process Creation

Send & Receive ID

Non Selective Receive

UUIIIAUA

Formal Model

Verification of Dynamic Register Automata

Configuration

Process Model

Transition Relation

Process Creation

Formal Model

Verification of Dynamic Register Automata

Configuration

Process Model

Transition Relation

Process Creation

Send & Receive ID

Formal Model

Verification of Dynamic Register Automata

Configuration
Transition Relation

Process Model

Formal Model

Verification of Dynamic Register Automata

Configuration
Transition Relation

Process Model

Formal Model

Verification of Dynamic Register Automata

Configuration
Transition Relation

Process Model

Register Reset

Which register

Formal Model

Verification of Dynamic Register Automata

Configuration
Transition Relation

Process Model

Formal Model

Verification of Dynamic Register Automata

Configuration Transition Relation

Process Model

Formal Model

Verification of Dynamic Register Automata

Configuration

Process Model

Transition Relation

Process Creation

Send & Receive ID

Verification of Dynamic Register Automata

Applications

Formal Model

Process Model

Configuration

Transition Relation

Verification of Dynamic Register Automata

Applications

Formal Model

State Reachability

State Reachability

Verification of Dynamic Register Automata

Initial Configuration

State Reachability
Initial Configuration

Verification of Dynamic Register Automata

Run: Co

State Reachability
Initial Configuration

Verification of Dynamic Register Automata

Run: C_0 , C_1

State Reachability
Initial Configuration

Verification of Dynamic Register Automata

Ca C_1 ql ql X Co X ql q3 **q4** q3

Run: C₀, C₁, C₂

74

State Reachability
Initial Configuration

Verification of Dynamic Register Automata

Run: C_0 , C_1 , C_2 , ...

State Reachability
Initial Configuration

Verification of Dynamic Register Automata

Run: $C_0, C_1, C_2, ..., C_n$

State Reachability

Initial Configuration

Run: $C_0, C_1, C_2, ..., C_n$

Verification of Dynamic Register Automata

State Reachability Problem:

State Reachability
Initial Configuration

Run: Co, C1, C2, ..., Cn

Verification of Dynamic Register Automata

State Reachability Problem:

Given a control state $\mathbf{q_{BAD}}$, is there a run starting from the initial configuration that reaches a configuration where $\mathbf{q_{BAD}}$ occurs.

State Reachability

Initial Configuration

Run: C_0 , C_1 , C_2 , ..., C_n

Verification of Dynamic Register Automata

State Reachability Problem:

Given a control state q_{BAD} , is there a run starting from the initial configuration that reaches a configuration where **q_{BAD}** occurs.

State Reachability

Verification of Dynamic Register Automata

Initial Configuration

Run: C_0 , C_1 , C_2 , ..., C_n

State Reachability Problem:

Given a control state $\mathbf{q_{BAD}}$, is there a run starting from the initial configuration that reaches a configuration where $\mathbf{q_{BAD}}$ occurs.

Verification of Dynamic Register Automata

Applications

Formal Model

State Reachability

Undecidable

State Reachability

Study of the decidability and complexity for different sub-classes of the problem

80

State Reachability

Study of the decidability and complexity for different sub-classes of the problem

Bounded DRA

Undecidable

80

Verification of Dynamic Register Automata

State Reachability

Study of the decidability and complexity for different sub-classes of the problem

Bounded DRA

Undecidable

Strongly Bounded DRA

Undecidable

State Reachability

Study of the decidability and complexity for different sub-classes of the problem

Bounded DRA

Undecidable

Strongly Bounded DRA

Undecidable

Strongly Safe DRA

Decidable

Non-Primitive Recursive

80

Verification of Dynamic Register Automata

State Reachability

Study of the decidability and complexity for different sub-classes of the problem

Bounded DRA

Undecidable

Strongly Bounded DRA

Undecidable

Strongly Safe DRA

Decidable

Non-Primitive Recursive

\\&\

Verification of Dynamic Register Automata

Verification of Dynamic Register Automata

Verification of Dynamic Register Automata

Verification of Dynamic Register Automata

Verification of Dynamic Register Automata

Verification of Dynamic Register Automata

Verification of Dynamic Register Automata

Verification of Dynamic Register Automata

Bound the Simple Path Length of the configuration graph

Using Rendez-Vous Communication

Verification of Dynamic Register Automata

Bound the Simple Path Length of the configuration graph

Using Rendez-Vous Communication

Bound the Simple Path Length of the configuration graph

Using Rendez-Vous Communication

Verification of Dynamic Register Automata

Bound the Simple Path Length of the configuration graph

Undecidable

Contribution

Verification of Dynamic Register Automata

State Reachability

Bounded DRA

Undecidable

Strongly Bounded DRA

Undecidable

Strongly Safe DRA

Decidable

Non-Primitive Recursive

Contribution

Verification of Dynamic Register Automata

State Reachability

Bounded DRA

Undecidable

Strongly Bounded DRA

Undecidable

Strongly Safe DRA

Decidable

Non-Primitive Recursive

Strongly Bounded DRA

Verification of Dynamic Register Automata

Strongly Bounded DRA

Verification of Dynamic Register Automata

Bound the Simple Path Length of the underlying undirected configuration graph

Still: Unbounded Number of Processes

Bound the Simple Path Length of the underlying undirected configuration graph

Undecidable

Bound the Simple Path Length of the underlying undirected configuration graph Undecidable

Two counters Minsky Machine

100

10

Verification of Dynamic Register Automata

Bound the Simple Path Length of the underlying undirected configuration graph Undecidable

Two counters Minsky Machine

Strongly-Bounded Reachability

Strongly Bounded DRA

Verification of Dynamic Register Automata

Bound the Simple Path Length of the underlying undirected configuration graph Undecidable

Two counters Minsky Machine

k = 4 Strongly-Bounded Reachability

Bound the Simple Path Length of the underlying undirected configuration graph Undecidable

Two counters Minsky Machine

Strongly Bounded DRA

Verification of Dynamic Register Automata

Verification of Dynamic Register Automata

100

Verification of Dynamic Register Automata

Strongly Bounded DRA

Verification of Dynamic Register Automata

Verification of Dynamic Register Automata

Bound the Simple Path Length of the underlying undirected configuration graph Undecidable

Two counters Minsky Machine

Strongly Bounded DRA

Verification of Dynamic Register Automata

Verification of Dynamic Register Automata

State Reachability

Bounded DRA

Undecidable

Strongly Bounded DRA

Undecidable

Strongly Safe DRA

Decidable

Verification of Dynamic Register Automata

State Reachability

Bounded DRA

Undecidable

Strongly Bounded DRA

Undecidable

Strongly Safe DRA

Decidable

Verification of Dynamic Register Automata

State Reachability

Bounded DRA

Undecidable

Strongly Bounded DRA

Undecidable

Strongly Safe DRA

Degenerative DRA

Decidable

Verification of Dynamic Register Automata

Verification of Dynamic Register Automata

Verification of Dynamic Register Automata

State Reachability

Bounded DRA

Undecidable

Strongly Bounded DRA

Undecidable

Strongly Safe DRA

Degenerative DRA

Decidable

Verification of Dynamic Register Automata

DRA is degenerative

Verification of Dynamic Register Automata

DRA is degenerative

Bound the Simple Path Length of the underlying undirected configuration graph

Well-Structured Transition Systems

[Abdulla et al. 1996], [Finkel et al. 2001]

Symbolic representation of infinite set of configurations

Verification of Dynamic Register Automata

Well-Structured Transition Systems

- Define a Well-Quasi Order on configurations
- ▶ Prove **Monotonicity** of Transition Relation
- Provide an algorithm to compute the **Pre** of an upward closed set

Verification of Dynamic Register Automata

Well-Structured Transition Systems

- Define a Well-Quasi Order on configurations
- ▶ Prove **Monotonicity** of Transition Relation
- Provide an algorithm to compute the **Pre** of an upward closed set

Verification of Dynamic Register Automata

Well-Structured Transition Systems

Define a Well-Quasi Order on configurations

Ordering: subgraph relation

Verification of Dynamic Register Automata

Well-Structured Transition Systems

Define a Well-Quasi Order on configurations

Ordering: subgraph relation

Verification of Dynamic Register Automata

Well-Structured Transition Systems

Define a Well-Quasi Order on configurations

Ordering: subgraph relation

[Ding, 1992] Subgraphs and Well-Quasi Ordering

(Induced) subgraph relation is a WQO on Strongly-Bounded graphs

Verification of Dynamic Register Automata

Well-Structured Transition Systems

Define a Well-Quasi Order on configurations

Ordering: subgraph relation

Verification of Dynamic Register Automata

Well-Structured Transition Systems

Define a Well-Quasi Order on configurations

Ordering: subgraph relation

Verification of Dynamic Register Automata

Well-Structured Transition Systems

- Define a Well-Quasi Order on configurations
- ▶ Prove **Monotonicity** of Transition Relation
- Provide an algorithm to compute the **Pre** of an upward closed set

Verification of Dynamic Register Automata

Well-Structured Transition Systems

- Define a Well-Quasi Order on configurations
- ▶ Prove **Monotonicity** of Transition Relation
- Provide an algorithm to compute the **Pre** of an upward closed set

Verification of Dynamic Register Automata

Well-Structured Transition Systems

▶ Prove **Monotonicity** of Transition Relation

 C_2 C_1 C_3 Verification of Dynamic Register Automata

Well-Structured Transition Systems

▶ Prove **Monotonicity** of Transition Relation

Ca C_1 C_3 128

Verification of Dynamic Register Automata

Well-Structured Transition Systems

Verification of Dynamic Register Automata

Well-Structured Transition Systems

Verification of Dynamic Register Automata

Well-Structured Transition Systems

Verification of Dynamic Register Automata

Well-Structured Transition Systems

Verification of Dynamic Register Automata

Well-Structured Transition Systems

Verification of Dynamic Register Automata

Well-Structured Transition Systems

▶ Prove **Monotonicity** of Transition Relation

Degenerative

Verification of Dynamic Register Automata

Well-Structured Transition Systems

▶ Prove **Monotonicity** of Transition Relation

Degenerative

Verification of Dynamic Register Automata

Well-Structured Transition Systems

Verification of Dynamic Register Automata

Well-Structured Transition Systems

▶ Prove **Monotonicity** of Transition Relation

Subgraph relation: Register Mapping & States preserved

Verification of Dynamic Register Automata

Well-Structured Transition Systems

▶ Prove **Monotonicity** of Transition Relation

Subgraph relation: Register Mapping & States preserved

Verification of Dynamic Register Automata

Well-Structured Transition Systems

▶ Prove **Monotonicity** of Transition Relation

Subgraph relation: Register Mapping & States preserved

Verification of Dynamic Register Automata

Well-Structured Transition Systems

- Define a Well-Quasi Order on configurations
- ▶ Prove **Monotonicity** of Transition Relation
- Provide an algorithm to compute the **Pre** of an upward closed set

Verification of Dynamic Register Automata

Well-Structured Transition Systems

- Define a Well-Quasi Order on configurations
- ▶ Prove **Monotonicity** of Transition Relation
- Provide an algorithm to compute the **Pre** of an upward closed set

14

Verification of Dynamic Register Automata

State Reachability

Bounded DRA

Undecidable

Strongly Bounded DRA

Undecidable

Strongly Safe DRA

Degenerative DRA

Decidable

Conclusion

Verification of Dynamic Register Automata

Dynamic Register Automata

Dynamic Creation of Processes

Register Mapping

Point-to-Point Comm.

Rendez-Vous Comm.

State Reachability

Bounded DRA

Strongly Bounded DRA

Strongly Safe DRA

Undecidable

Undecidable

Decidable

