FORTE'13 | Firenze, Italy

Verification of

Directed Acyclic Ad-Hoc Networks

Othmane Rezine

FORTE'13 | Firenze, Italy

Verification of

Directed Acyclic Ad-Hoc Networks

Parosh Abdulla

Mohammed Faouzi Atig

Othmane

- Model
- Transition System

3

Reachability

- Model
- Transition System

3

▶ Reachability

- Model
- Transition System
- Reachability

- Model
- Transition System
- Reachability

Wireless nodes: laptop

- Model
- Transition System

- Reachability
- Wireless nodes: laptop
- Radio Range

- Model
- Transition System
- Reachability

Wireless nodes: laptop
Radio Range

Links / Topology

- Model
- Transition System
- Reachability

- Wireless nodes: laptop
- Radio Range
 Links / Topology
- Distributed management of the network

- Model
- Transition System
- Reachability

TO VERI 5 7 V

- Wireless nodes: laptop
- Radio Range
 Links / Topology
- Distributed management of the network

- Model
- Transition System
- Reachability

- Wireless nodes: laptop
- Radio Range
 Links / Topology
- Distributed management of the network

Applications

- Home area networks
- No telecom infrastructure

- Model
- Transition System
- Reachability

- Wireless nodes: aptop
- Radio Range
 Links / Topology
- Distributed management of the network

- Model
- Transition System

- Reachability
- Wireless nodes: laptop sensors
- Radio Range
 Links / Topology
- Distributed management of the network

- Model
- Transition System
- Reachability
- Wireless nodes: laptopsensors
- Radio Range
 Links / Topology
- Distributed management of the network

- Model
- Transition System
- Reachability
- Wireless nodes: aptopsensors
- Radio Range
 Links / Topology
- Distributed management of the network

• Model

- Transition System
- ▶ Reachability

- Model
- Transition System
- ▶ Reachability

- Model
- Transition System
- ▶ Reachability

Direc

G. Delzanno, A. Sangnier, G. Zavattaro Parameterized verification of ad-hoc networks CONCUR'10

Model Ad-Hoc Networks Reachability G. Delzanno, A. Sangnier, G. Zavattaro Parameterized verification of ad-hoc networks

Model

Transition System

)irec

CONCUR'10

- Model
- Transition System
- Reachability

Model

Node:

Process

Г

- Model
- Transition System
- Reachability

Model

Node: Process

Topology: Symmetric graph

- Model
- Transition System
- Reachability

Model

Node: Process

Topology: Symmetric graph

Configuration: Graph, state mapping

14

irec.

- Model
- Transition System
- Reachability

- ► Model
- Transition System
- Reachability

- Model
- Transition System

16

Direc

Reachability

Set of configurations
Transition Relation
Trace

- Model
- Transition System
- ▶ Reachability

Set of configurations
Transition Relation
Trace

- Model
- Transition System
- Reachability

Set of configurations
Transition Relation
Trace

Any Symmetric Graph

- Model
- Transition System

19

irec[.]

Reachability

Set of configurations
Transition Relation
Trace

- Any Symmetric Graph
- Unbounded # of nodes

- Model
- Transition System

20

)irec

Reachability

Set of configurations
Transition Relation

Trace

- Model
- Transition System
- Reachability

Direct

Set of configurations
Transition Relation
Trace

Conf

- Model
- Transition System
- Reachability

Set of configurations
Transition Relation
Trace

- Model
- Transition System
- Reachability

Set of configurations
Transition Relation
Trace

Conf

Conf'

irec

Conf"

- Model
- Transition System
- ▶ Reachability

Control State Reachability (COVER)

- Model
- Transition System
- ▶ Reachability

Control State Reachability (COVER)

- Model
- Transition System
- Reachability

Control State Reachability (COVER)

Given

- Model
- Transition System
- Reachability

Control State Reachability (COVER)

- Model
- Transition System
- Reachability

Control State Reachability (COVER)

28

Process PGivenControl State q

- Model
- Transition System
- Reachability

Process

29

)irect

Control State Reachability (COVER)

Process PGivenControl State q

- Model
- Transition System
- Reachability

Process

30

Control State Reachability (COVER)

Given

Process PControl State q

- Model
- Transition System
- Reachability

Control State Reachability (COVER)

Undecidable

Directed Acyclic

33

Directed Acyclic

- Motivation
- Reachability
- Bounded Depth Reachability

Directed Acyclic

- Motivation
- Reachability
- Bounded Depth Reachability

VF

- Motivation
- Reachability
- Bounded Depth Reachability

- Motivation
- Reachability
- Bounded Depth Reachability

- Motivation
- Reachability
- Bounded Depth Reachability

- Motivation
- Reachability
- Bounded Depth Reachability

- Motivation
- Reachability
- Bounded Depth Reachability

- Motivation
- Reachability
- Bounded Depth Reachability

Phases:

- Motivation
- Reachability
- Bounded Depth Reachability

Phases:

Sink → Sensors:
Data request
Software updates

• Sensors \rightarrow Sink: Data collection.

- Motivation
- Reachability
- Bounded Depth Reachability

Phases:

Sink → Sensors:
Data request
Software updates

• Sensors \rightarrow Sink: Data collection.

- Motivation
- Reachability
- Bounded Depth Reachability

Phases:

- Sink → Sensors:
 Data request
 Software updates
- Sensors \rightarrow Sink: Data collection.

- Motivation
- Reachability
- Bounded Depth Reachability

Phases:

- Sink → Sensors:
 Data request
 Software updates
- Sensors \rightarrow Sink: Data collection.

- Motivation
- Reachability
- Bounded Depth Reachability

Phases:

- Sink → Sensors:
 Data request
 Software updates
- Sensors \rightarrow Sink: Data collection.

40

Root Discovery Protocol

- Motivation
- Reachability
- Bounded Depth Reachability

- Motivation
- Reachability
- Bounded Depth Reachability

- Motivation
- Reachability
- Bounded Depth Reachability

42

Control State Reachability (COVER)

- Motivation
- ▶ Reachability
- Bounded Depth Reachability

Control State Reachability (COVER)

Given

Process PControl State q

- Motivation
- Reachability
- Bounded Depth Reachability

Control State Reachability (COVER)

Given

- Motivation
- Reachability
- Bounded Depth Reachability

Control State Reachability (COVER)

Is still Undecidable

- Motivation
- Reachability
- Bounded Depth Reachability

46

Control State Reachability (COVER)

Is still Undecidable

Given A, B and T, is there k $T^{k}(L_{A}) \cap L_{B} \neq \emptyset$

- Motivation
- Reachability
- Bounded Depth Reachability

Control State Reachability (COVER)

Is still Undecidable

Given A, B and T, is there k $T^{k}(L_{A}) \cap L_{B} \neq \emptyset$

- Motivation
- Reachability
- Bounded Depth Reachability

- Motivation
- Reachability
- Bounded Depth Reachability

- Motivation
- Reachability
- Bounded Depth Reachability

Control State Reachability (COVER)

Is still Undecidable

- Motivation
- Reachability
- Bounded Depth Reachability

50

- Motivation
- Reachability
- Bounded Depth Reachability

51

- Motivation
- Reachability
- Bounded Depth Reachability

51

- Motivation
- Reachability
- Bounded Depth Reachability

52

- Motivation
- Reachability
- Bounded Depth Reachability

52

- Motivation
- Reachability
- Bounded Depth Reachability

53

- Motivation
- Reachability
- Bounded Depth Reachability

53

- Motivation
- Reachability
- Bounded Depth Reachability

54

Given

- Motivation
- Reachability
- Bounded Depth Reachability

54

Given

- Motivation
- Reachability
- Bounded Depth Reachability

- Motivation
- Reachability
- Bounded Depth Reachability

55

Control State Reachability

(BOUNDED-COVER)

Given

Process PControl State q

- Motivation
- Reachability
- Bounded Depth Reachability

55

Control State Reachability

(BOUNDED-COVER)

Given

Process PControl State q

Given

- Motivation
- Reachability
- Bounded Depth Reachability

56

Control State Reachability

(BOUNDED-COVER)

Process PControl State q

- Motivation
- Reachability
- Bounded Depth Reachability

57

(BOUNDED-COVER) DECIDABLE

Directed Acyclic

- Motivation
- Reachability
- Bounded Depth Reachability

57

(BOUNDED-COVER) DECIDABLE

Theory of Well Structured Transition Systems

(1)The WSTS framework

(2)Reduce (BOUNDED-COVER) (TREE-BOUNDED-COVER)

- Motivation
- Reachability
- Bounded Depth Reachability

(BOUNDED-COVER) DECIDABLE Theory of Well Structured Transition Systems

(1)The WSTS framework

58

- Motivation
- Reachability
- Bounded Depth Reachability

(BOUNDED-COVER) DECIDABLE Theory of Well Structured Transition Systems

(1)The WSTS framework

Pre-requisites

-) \sqsubseteq is a Well-Quasi Order
- \rightarrow : Monotonic wrt. \sqsubseteq

- Motivation
- Reachability
- Bounded Depth Reachability

(BOUNDED-COVER) DECIDABLE Theory of Well Structured Transition Systems

(1)The WSTS framework

Pre-requisites

 \Box is a Well-Quasi Order

- Motivation
- Reachability
- Bounded Depth Reachability

(BOUNDED-COVER) DECIDABLE Theory of Well Structured Transition Systems

(1)The WSTS framework

Pre-requisites

• \sqsubseteq is a Well-Quasi Order

 $\begin{array}{c} \forall \ (C_i)_{i\geq 0} \\ C_0 \longrightarrow C_1 \longrightarrow \end{array}$

- Motivation
- Reachability
- Bounded Depth Reachability

(BOUNDED-COVER) DECIDABLE Theory of Well Structured Transition Systems

(1)The WSTS framework

Pre-requisites

• \sqsubseteq is a Well-Quasi Order

 \rightarrow : Monotonic wrt. \sqsubseteq

 $\begin{array}{c} \forall \ (C_i)_{i\geq 0} \\ C_0 \longrightarrow C_1 \longrightarrow \end{array} \end{array}$

 $\exists i < j; C_i \sqsubseteq C_j$

- Motivation
- Reachability
- Bounded Depth Reachability

(BOUNDED-COVER) DECIDABLE Theory of Well Structured Transition Systems

(1)The WSTS framework

Pre-requisites

) \sqsubseteq is a Well-Quasi Order

- Motivation
- Reachability
- Bounded Depth Reachability

(BOUNDED-COVER) DECIDABLE Theory of Well Structured Transition Systems

(1)The WSTS framework

Pre-requisites

) \sqsubseteq is a Well-Quasi Order

- Motivation
- Reachability
- Bounded Depth Reachability

(BOUNDED-COVER) DECIDABLE Theory of Well Structured Transition Systems

(1)The WSTS framework

Pre-requisites

) \sqsubseteq is a Well-Quasi Order

- Motivation
- Reachability
- Bounded Depth Reachability

(BOUNDED-COVER) DECIDABLE Theory of Well Structured Transition Systems

(1)The WSTS framework

Pre-requisites

) \sqsubseteq is a Well-Quasi Order

- Motivation
- Reachability
- Bounded Depth Reachability

(BOUNDED-COVER) DECIDABLE Theory of Well Structured Transition Systems

(1)The WSTS framework

Pre-requisites

) \sqsubseteq is a Well-Quasi Order

- Motivation
- Reachability
- Bounded Depth Reachability

(BOUNDED-COVER) DECIDABLE Theory of Well Structured Transition Systems

(1)The WSTS framework

Pre-requisites

-) \Box is a Well-Quasi Order
- \rightarrow : Monotonic wrt. \sqsubseteq

WSTS framework Algorithm:

- Motivation
- Reachability
- Bounded Depth Reachability

(BOUNDED-COVER) DECIDABLE Theory of Well Structured Transition Systems

(1)The WSTS framework

Pre-requisites

-) \Box is a Well-Quasi Order

WSTS framework Algorithm:

Symbolic Representation of Infinite Sets

- Motivation
- Reachability
- Bounded Depth Reachability

(BOUNDED-COVER) DECIDABLE Theory of Well Structured Transition Systems

(1)The WSTS framework

Pre-requisites

-) \Box is a Well-Quasi Order

WSTS framework Algorithm:

Symbolic Representation of Infinite Sets

Backward Analysis

Directed Acyclic

- Motivation
- Reachability
- Bounded Depth Reachability

(BOUNDED-COVER) DECIDABLE

Theory of Well Structured Transition Systems

(1)The WSTS framework

(2)Reduce (BOUNDED-COVER) (TREE-BOUNDED-COVER)

(3)Define an ordering on configurations

65

- Motivation
- Reachability
- Bounded Depth Reachability

(BOUNDED-COVER) DECIDABLE Theory of Well Structured Transition Systems

- Motivation
- Reachability
- Bounded Depth Reachability

(BOUNDED-COVER) DECIDABLE Theory of Well Structured Transition Systems

- Motivation
- Reachability
- Bounded Depth Reachability

(BOUNDED-COVER) DECIDABLE Theory of Well Structured Transition Systems

- Motivation
- Reachability
- Bounded Depth Reachability

(BOUNDED-COVER) DECIDABLE Theory of Well Structured Transition Systems

- Motivation
- Reachability
- Bounded Depth Reachability

(BOUNDED-COVER) DECIDABLE Theory of Well Structured Transition Systems

- Motivation
- Reachability
- Bounded Depth Reachability

6°

(BOUNDED-COVER) DECIDABLE Theory of Well Structured Transition Systems

- Motivation
- Reachability
- Bounded Depth Reachability

(BOUNDED-COVER) DECIDABLE Theory of Well Structured Transition Systems

- Motivation
- Reachability
- Bounded Depth Reachability

(BOUNDED-COVER) DECIDABLE Theory of Well Structured Transition Systems

- Motivation
- Reachability
- Bounded Depth Reachability

(BOUNDED-COVER) DECIDABLE Theory of Well Structured Transition Systems

- Motivation
- Reachability
- Bounded Depth Reachability

(BOUNDED-COVER) DECIDABLE Theory of Well Structured Transition Systems

Directed Acyclic

- Motivation
- Reachability
- Bounded Depth Reachability

(BOUNDED-COVER) DECIDABLE

Theory of Well Structured Transition Systems

(1)The WSTS framework

(2)Reduce (BOUNDED-COVER) (TREE-BOUNDED-COVER)

(3)Define an ordering on configurations

69

- Motivation
- Reachability
- Bounded Depth Reachability

(BOUNDED-COVER) DECIDABLE Theory of Well Structured Transition Systems

- Motivation
- Reachability
- Bounded Depth Reachability

(BOUNDED-COVER) DECIDABLE Theory of Well Structured Transition Systems

- Motivation
- Reachability
- Bounded Depth Reachability

(BOUNDED-COVER) DECIDABLE Theory of Well Structured Transition Systems

- Motivation
- Reachability
- Bounded Depth Reachability

(BOUNDED-COVER) DECIDABLE Theory of Well Structured Transition Systems

- Motivation
- Reachability
- Bounded Depth Reachability

(BOUNDED-COVER) DECIDABLE Theory of Well Structured Transition Systems

- Motivation
- Reachability
- Bounded Depth Reachability

(BOUNDED-COVER) DECIDABLE Theory of Well Structured Transition Systems

- Motivation
- Reachability
- Bounded Depth Reachability

(BOUNDED-COVER) DECIDABLE Theory of Well Structured Transition Systems

- Motivation
- Reachability
- Bounded Depth Reachability

(BOUNDED-COVER) DECIDABLE Theory of Well Structured Transition Systems

Directed Acyclic

- Motivation
- Reachability
- Bounded Depth Reachability

76

Monotonicity (BOUNDED-COVER) DECIDABLE Theory of Well Structured Transition Systems

Directed Acyclic

- Motivation
- Reachability
- Bounded Depth Reachability

76

Monotonicity (BOUNDED-COVER) DECIDABLE Theory of Well Structured Transition Systems

- Motivation
- Reachability
- Bounded Depth Reachability

76

Monotonicity (BOUNDED-COVER) DECIDABLE Theory of Well Structured Transition Systems

(3)Define an ordering on configurations

Broadcast: c -> d

- Motivation
- Reachability
- Bounded Depth Reachability

76

Monotonicity (BOUNDED-COVER) DECIDABLE Theory of Well Structured Transition Systems

- Broadcast: c -> d
- Receive: b -> f

- Motivation
- Reachability
- Bounded Depth Reachability

76

Monotonicity (BOUNDED-COVER) DECIDABLE Theory of Well Structured Transition Systems

- Broadcast: c -> d
- Receive: b -> f

- Motivation
- Reachability
- Bounded Depth Reachability

76

Monotonicity (BOUNDED-COVER) DECIDABLE Theory of Well Structured Transition Systems

- Broadcast: c -> d
- Receive: b -> f
- Local: a -> g

- Motivation
- Reachability
- Bounded Depth Reachability

76

Monotonicity (BOUNDED-COVER) DECIDABLE Theory of Well Structured Transition Systems

- Broadcast: c -> d
- Receive: b -> f
- Local: a -> g

- Model
- Transition System
- Reachability

- Motivation
- Reachability
- Bounded Depth Reachability

FUTURE WORK

- Consider:
 REPEATED-COVER
 Bounded number of Phases
- Dynamic Communicating Automata

► TRANSD proof

► TRANSD proof

Control State Reachability (COVER)

Undecidable

Cover is Undecidable

82

Sketch of the proof:

- TRANSD Problem
- TRANSD Undecidable
- Encode TRANSD into COVER

► TRANSD proof

Undecidable

Sketch of the proof:

- TRANSD Problem
- TRANSD Undecidable
- Encode TRANSD into COVER

► TRANSD proof

Undecidable

Sketch of the proof:

• TRANSD Problem

 TRANSD Undecidable
 Encode TRANSD into COVER

► TRANSD proof

Undecidable

Sketch of the proof:

- TRANSD Problem
- TRANSD Undecidable
 Encode TRANSD into COVER

► TRANSD proof

Undecidable

Sketch of the proof:

- TRANSD Problem
- TRANSD Undecidable
 Encode TRANSD into COVER

► TRANSD proof

Undecidable

Sketch of the proof:

- TRANSD Problem
- TRANSD Undecidable
 Encode TRANSD into COVER

84

Input / Output Language

► TRANSD proof

Undecidable

Sketch of the proof:

- TRANSD Problem
- TRANSD Undecidable
 Encode TRANSD into COVER

► TRANSD proof

Undecidable

Sketch of the proof:

- TRANSD Problem
- TRANSD Undecidable
 Encode TRANSD into COVER

► TRANSD proof

Undecidable

Sketch of the proof:

- TRANSD Problem
- TRANSD Undecidable
 Encode TRANSD into COVER

► TRANSD proof

Undecidable

Sketch of the proof:

- TRANSD Problem
- TRANSD Undecidable
 Encode TRANSD into COVER

► TRANSD proof

Undecidable

Sketch of the proof:

- TRANSD Problem
- TRANSD Undecidable
 Encode TRANSD into COVER

► TRANSD proof

Undecidable

Sketch of the proof:

- TRANSD Problem
- TRANSD Undecidable
 Encode TRANSD into COVER

► TRANSD proof

Undecidable

Sketch of the proof:

• TRANSD Problem

 TRANSD Undecidable
 Encode TRANSD into COVER

► TRANSD proof

Undecidable

Sketch of the proof:

• TRANSD Problem

 TRANSD Undecidable
 Encode TRANSD into COVER

▶ TRANSD proof

88

Undecidable

Sketch of the proof:

- TRANSD Problem
- TRANSD Undecidable
 Encode TRANSD into COVER

 $T^k(L_A)$

► TRANSD proof

Undecidable

Sketch of the proof:

- TRANSD Problem
- TRANSD Undecidable
 Encode TRANSD into COVER

Given A, B and T, is there ${\bf k}$

 $T^k(L_A)$

► TRANSD proof

Undecidable

Sketch of the proof:

- TRANSD Problem
- TRANSD Undecidable
 Encode TRANSD into COVER

Given A, B and T, is there k $T^{k}(L_{A}) \cap L_{B} \neq \emptyset$

▶ TRANSD proof

Undecidable

Sketch of the proof:

• TRANSD Problem

 TRANSD Undecidable
 Encode TRANSD into COVER

► TRANSD proof

Undecidable

Sketch of the proof:

TRANSD Problem TRANSD Undecidable

• Encode TRANSD into COVER

► TRANSD proof

Undecidable

Sketch of the proof:

- TRANSD Problem
 TRANSD Undecidable
- Encode TRANSD into COVER

► TRANSD proof

91

Undecidable

Sketch of the proof:

TRANSD Problem TRANSD Undecidable

• Encode TRANSD into COVER

- Motivation
- Reachability
- Bounded Depth Reachability

92

Monotonicity

Process transitions:

- Motivation
- Reachability
- Bounded Depth Reachability

92

Monotonicity

Process transitions:

Broadcast: c -> d

- Motivation
- Reachability
- Bounded Depth Reachability

92

Monotonicity

Process transitions:

Broadcast: c -> d Receive: b -> f

- Motivation
- Reachability
- Bounded Depth Reachability

92

Monotonicity

Process transitions:

Broadcast: c -> d Receive: b -> f

- Motivation
- Reachability
- Bounded Depth Reachability

92

Monotonicity

Process transitions:

- Broadcast: c -> d Receive: b -> f
- Local: a -> g

- **(BOUNDED-COVER)** DECIDABLE Theory of Well Structured Transition Systems
- (3)Use the WSTS framework
 - ▶ Γ : Inverted Tree Configurations $\gamma | height(\gamma) = q_0$

- (3)Use the WSTS framework
 - ▶ Γ : Inverted Tree Configurations $\gamma | height(\gamma) = q_0$
 - $\Gamma_{init}: \ \gamma \in \Gamma | States(\gamma) = q_0$

(3)Use the WSTS framework

- Γ : Inverted Tree Configurations $\gamma | height(\gamma) = q_0$
- $\Gamma_{init}: \ \gamma \in \Gamma | States(\gamma) = q_0$

 \blacktriangleright \sqsubseteq : Higher Order Multiset Ordering. Computable and is a Well-Quasi Order

(3)Use the WSTS framework

- Γ : Inverted Tree Configurations $\gamma | height(\gamma) = q_0$
- $\Gamma_{init}: \ \gamma \in \Gamma | States(\gamma) = q_0$

 \blacktriangleright \sqsubseteq : Higher Order Multiset Ordering. Computable and is a Well-Quasi Order

 \blacktriangleright \longrightarrow : Monotonic wrt. \sqsubseteq

(3)Use the WSTS framework

- Γ : Inverted Tree Configurations $\gamma | height(\gamma) = q_0$
- $\Gamma_{init}: \ \gamma \in \Gamma | States(\gamma) = q_0$

 \blacktriangleright \sqsubseteq : Higher Order Multiset Ordering. Computable and is a Well-Quasi Order

- \blacktriangleright \longrightarrow : Monotonic wrt. \sqsubseteq
- $\blacktriangleright U$: Upward closed set; minimal element $\{q\}$

► BOUNDED-COVER

94

(BOUNDED-COVER) DECIDABLE Theory of Well Structured Transition Systems

(3)Use the WSTS framework

Reachability is decidable if, for any $\gamma\in\Gamma$

- Definition
- **BOUNDED-COVER**

(3)Use the WSTS framework

Reachability is decidable if, for any $\gamma \in \Gamma$

We can check if $\gamma \in \Gamma_{init}$

(3)Use the WSTS framework

Reachability is decidable if, for any $\gamma \in \Gamma$

- \blacktriangleright We can check if $\gamma\in\Gamma_{init}$
- \blacktriangleright We can compute the minimal set of $Pre(\gamma),$ and it's finite

