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Abstract

We present a residual based artificial viscosity finite element method to solve conservation laws. The Galerkin ap-
proximation is stabilized by only residual based artificial viscosity, without any least-squares, SUPG, or streamline
diffusion terms. We prove convergence of the method, applied to a scalar conservation law in two space dimensions,
toward an unique entropy solution for implicit time stepping schemes.
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1. Introduction

The purpose of this paper is to study the convergence properties of a stabilized finite element method for solving
nonlinear scalar conservation equations. The method is a stripped-down version of the Streamline-Diffusion-Shock-
Capturing (SDSC) method analyzed in [15, 16]. The novelty of the present approach is that the streamline diffusion
part of the method is entirely disregarded; the only stabilizing mechanism present in the algorithm is a residual-based
nonlinear viscous regularization. The main result of the paper is that the method is convergent, i.e. the sequence
of approximate solutions converges to the entropy solution under grid refinement. The analysis is based on the
convergence theory of measure-valued solutions by DiPerna [5]. The three ingredients of the proof are as follows:
(1) uniform boundedness in L∞; (2) weak consistency with every entropy inequalities; (3) strong consistency with
the initial data. That the streamline diffusion method augmented with a residual-based shock-capturing mechanism
is convergent has been known since the groundbreaking work of Szepessy et al. [20, 19, 16, 21]. The novel idea
defended in the present paper is that Streamline Diffusion [13], and more generally linear stabilization, [2, 4, 8], is
not necessary to guaranty convergence to the entropy solution; the residual-based viscous regularization is actually
the key ingredient of the method.

The idea of constructing a residual-based stabilization is not new, see e.g. the early work of Hughes and Tezduyar
[1, 12, 22] and Johnson, Hansbo and Szepessy [13, 15, 11]. These so-called shock-capturing techniques were initially
introduced with the sole purpose of correcting some defects of the streamline diffusion and SUPG methods as it
was observed soon after their introduction that these techniques could not suppress the Gibbs phenomenon. That
shock-capturing techniques do not need linear stabilization to work properly is an idea that has gained momentum
only recently, see e.g. [18]. For instance Guermond et. al. [9, 10] used an entropy residual to construct an artificial
viscosity, and the resulting method has been shown numerically to work properly on nonlinear conservation equations,
including the compressible Euler equations, without invoking any linear stabilization mechanism. It has even been
shown in [6] that some linear stabilization techniques have adverse effects on nonlinear conservation equations with
nonconvex fluxes. More specifically, it is shown in [6] that by adding some linear stabilization to a convergent shock-
capturing technique one can obtain a method that converges to a weak solution that is not the entropy solution, i.e. the
action of linear stabilization is counter-productive.
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The paper is organized as follows. In Section 2 we introduce some definitions, and we give a short description of
scalar conservation equations and entropy inequalities. The discrete scheme under consideration in the present paper
is also introduced in this section. The time stepping is implicit and the space is approximated using continuous finite
elements. Well-posedness of the discrete problem is established by using Brouwer’s fixed point theorem. The main
convergence result of the paper is presented in Section 3. It is proved therein that the finite element approximation
described in Section 2 converges strongly in Lp

loc(Rd×R+), 1 ≤ p < ∞, to the unique solution as the meshsize and time
step tend to zero. This convergence result is established by proving that the sequence of approximations is uniformly
bounded in L∞(Rd×R+), weakly consistent with all entropy inequalities, and strongly consistent with the initial data.
Some concluding remarks are reported in Section 4.

2. Governing equations and the method

2.1. Theory
We consider the following scalar conservation equation

∂tu + ∇· f (u) = 0, (x, t) ∈ Rd × R+

u(x, 0) = u0(x), x ∈ Rd,
(2.1)

where f ∈ C1
b(R,Rd) is a smooth flux with continuous and bounded derivatives. To avoid unnecessary technicalities

due to boundary conditions we assume that the support of the initial data u0 ∈ L∞(Rd) is compact in Rd. As usual we
call entropy solution of (2.1) the unique member of L∞(Rd×R+) that satisfies (2.1) weakly and is entropy admissible,
i.e., the following holds for every φ ∈ C∞0 ([0,+∞)×Rd):∫ +∞

0

∫
Rd

u(∂tφ + f (u)·∇φ) dx dt +

∫
Rd

u0φ(x, 0) dx = 0, (2.2)

and the following holds for every convex entropy η ∈ C1(R;R) and every non-negative test function φ ∈ C∞0 (Rd×R+):∫ +∞

0

∫
Rd

(η(u)∂tφ + qη(u)·∇φ) dx dt ≥ 0, (2.3)

where qη is the entropy flux associated with η, i.e., qη(u) =
∫ u

0 η′(s) f ′(s)ds.
The objective of the present work is to construct a numerical approximation of the entropy solution of (2.1) using

a finite element method. We will regularize the numerical method by an artificial viscosity based on the residual of
the PDE. The key ingredient for proving convergence of the method is the following theorem by DiPerna [5]:

Theorem 1. Let {Uh}h>0 be a sequence of functions in L∞(Rd×R+;R). Assume that the initial condition u0 ∈ L∞(Rd)∩
BV(Rd) is compactly supported. Moreover, assume that the following conditions hold:

1. Uniformly boundedness: There is a constant C such that

‖Uh‖L∞(Rd×R+) ≤ C, ∀h > 0. (2.4)

2. Weak consistency with all entropy inequalities in the distribution sense:

lim sup
h→0

(
∂tη(Uh) + ∇·qη(U

h)
)
≤ 0, (2.5)

for every convex entropy η ∈ C3(R;R).
3. Strong consistency with the initial condition:

lim
t→0+

lim sup
h→0

‖Uh(·, t) − u0‖L1(Rd) = 0. (2.6)

Then, if in addition d = 2, the sequence {Uh}h>0 converges strongly in Lp
loc(Rd×R+), 1 ≤ p < ∞, to the unique solution

u of (2.1) as h→ 0.
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Remark 2.1. Note that the uniform boundedness condition and the weak consistency with all the entropy inequal-
ities imply that the sequence is also consistent with the conservation equation. More precisely upon defining the
smooth convex functions η1(v) and η2(v) so that η1(v) = 2C − v if v ≤ 3

2C and η2(v) = v− 2C if v ≥ − 3
2C, respectively,

we infer that η1(Uh) = 2C−Uh and η2(Uh) = Uh−2C (the exact definitions of the extensions of η1 and η2 in the range
[ 3

2C,+∞) and (−∞,− 3
2C], respectively, are not important for our argumentation). The condition (2.5) implies in turn

that 0 ≤ lim suph→0

(
∂tUh + ∇· f (Uh

)
≤ 0, which proves the sequence {Uh} is an approximation of the conservation

equation.

2.2. Finite element setting in space

Due to u0 being compactly supported, the support of the entropy solution u of (2.1) is compact in Rd × [0,T∞].
This implies that there exists M < +∞ be so that u(x, t) = 0 for all |x| ≥ M and all t ∈ [0,T∞].

Let {Th}h>0 be a shape-regular mesh family of Rd. Each mesh is assumed to be composed of affine simplices. For
every K ∈ T , the diameter of K is denoted hK and we set h := maxK∈Th hK . We then introduce the following finite
element space

Vh = {v ∈ H1(Rd) : v ∈ C0(Rd
n), v|K ∈ P1(K), v(x) = 0 for |x| ≥ 2M},

where P1(K) is the set of d-variate polynomials over K of total degree at most 1.
The Lagrange interpolation operator in Vh is denoted πh. The following standard interpolation estimates are known

to hold:

Lemma 1. There is a uniform constant C, such that the following holds for all w ∈ W s,p(E):

‖w − πw‖Wk,∞(E) ≤ Chs−k |w|W s,∞(E), s = 1, 2, k = 0, 1, (2.7)
‖w − πw‖Hk(E) ≤ Ch2−k |w|H2(E), k = 0, 1, (2.8)

‖w‖L∞(E) ≤ Ch−
d
2 ‖w‖L2(E), (2.9)

‖∇w‖Lp(E) ≤ Ch−1‖w‖Lp(E), 1 ≤ p ≤ ∞, (2.10)

where the domain E can be either Rd or K ∈ Th.

2.3. Residual-based viscosity method

Let T∞ be some finite time and let 0 = t0 < t1 < ... < tN = T∞ be a sequence of discrete time steps with associated
time intervals In = (tn−1, tn] of length τn = tn−tn−1, n = 1, 2, · · · ,N. We assume that the mesh in time is quasi-uniform,
i.e. max τn/min τn is uniformly bounded for all possible time sequences. We define τ := max τn.

Let u0,h be some reasonable approximation of u0; for instance, set u0,h = πhu0 if u0 is continuous, or use the
L2-projection of u0 onto Vh if u0 is not continuous. Then set U0

h = u0,h and consider the following stabilized finite
element approximation of the conservation equation (2.1) with implicit Euler time stepping: for n = 1, 2, · · · ,N find
Uh

n ∈ Vh such that ∫
Rd

Uh
n − Uh

n−1

τn
v dx +

∫
Rd
∇· f (Uh

n)v dx +

∫
Rd
εn(Uh)∇Uh

n ·∇v dx = 0, (2.11)

for all test functions v ∈ Vh. The artificial viscosity εn(Uh) is defined as follows:

εn(Uh)|K = CεhαK |Rn(Uh)|K |, ∀K ∈ Th, (2.12)

Rn(Uh) =
Uh

n − Uh
n−1

τn
+ ∇· f (Uh

n), (2.13)

where Cε > 0 is a user-defined O(1) constant, and α ∈ [ 3
2 , 2).

The key differences between (2.11) and the method studied in [14, 16, 19, 21] is that no linear stabilization
is invoked in (2.11) and the nonlinear viscosity is scaled differently. More precisely, the method in [14, 16, 19,
21] uses time-dependent test functions and a space-time formulation that requires to use a discontinuous Galerkin
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approximation in time. The Galerkin formulation in [14, 19, 21, 16] is augmented with a streamline diffusion as
follows:∫ tn+1

tn

∫
Rd

(
∂tUh + ∇· f (Uh)

) v + τS D

∂tv +

2∑
i=1

f ′i(U
h)∂xi v


 dx dt

+

∫
Rd

(Uh(t+n ) − U(t−n ))v+ dx + nonlinear viscosity = 0. (2.14)

where τS D ∼ h. We show in the present paper that the method still converges toward the entropy solution when the
streamline diffusion terms are disregarded, i.e. τS D = 0. Moreover, the scaling of the nonlinear viscosity in [14, 16]
is such that it requires the exponent α to be less that 1, making the method excessively diffusive. More precisely the
viscosity used in [14, 16] is proportional to hαK |Rn(Uh)|K |/(|∇Uh|K | + ε) where α < 1 and ε is a small regularization
parameter. This scaling is also used in [3] (note in passing that it is remarkable that convergence to the entropy solution
is proved in [3] directly from a priori estimates). Since we do not scale the residual by the gradient of Uh, our scaling
allows the range α ∈ [ 3

2 , 2), which is far less diffusive than that used in [14, 16, 3]. Note that the viscosity used in
[19, 21], being proportional to hαK |Rn(Uh)|K |(1 + | f ′(Uh)|K) with α ∈ [ 3

2 , 2), scales like ours with the exception of the
factor (1 + | f ′(Uh)|K) that makes this viscosity potentially larger than that we propose. In conclusion, the originality
of our formulation and of the analysis presented in the next section is that by removing the linear stabilization and by
greatly reducing the scaling of the non linear viscosity, we still can prove convergence to the entropy solution. This
result is original to the best of our knowledge.

2.4. Well-posedness of the discrete problem

Since the discrete problem (2.11) is nonlinear, due to the implicit time stepping, we must make sure that there is a
unique solution at each time step. This is done by using the following variant of Brouwer’s fixed point theorem (see
eg. [17], [7, p. 279]):

Lemma 2. Let B : Vh → Vh be a continuous mapping where Vh is equipped with the L2-norm. Assume that the
following property: there exists r > 0 such that

(Bu, u) > 0, ∀u ∈ Vh with ‖u‖Vh = r. (2.15)

where (·, ·) denotes the L2-inner product in Vh. Then there exists w ∈ Vh with ‖w‖Vh ≤ r such that Bw ≡ 0.

Let us define the following space:

V = {v ∈ H1(Rd) ∩ L∞(Rd) : v(x) = 0 for all |x| ≥ 2M}. (2.16)

Then, integration by parts of the integral involving the nonlinear term ∇· f (U), with U ∈ V , is handled by using the
following result:

Lemma 3. Assume that the mapping f : R −→ Rd is uniformly Lipschitz, then∫
Rd
∇· f (U) η′(U) dx = 0, ∀η ∈ C1(R;R), ∀U ∈ V. (2.17)

Proof. Upon setting qη(u) =
∫ s

0 f ′(s)η′(s) ds, the following sequence of equalities holds:∫
Rd
∇· f (U) η′(U) dx =

∫
Rd
η′(U) f ′(s)·∇U dx =

∫
Rd

q′η(U)·∇U dx =

∫
Rd
∇·qη(U) dx = 0,

which proves the desired result.

In the following C denotes a generic positive constant that is uniform with respect to the meshsize and the time
step.
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Proposition 1. There exists a unique solution to (2.11) at each time step provided the time step is small enough.

Proof. Let u0 be a member of Vh. Let u ∈ Vh and let us define Bu ∈ Vh by

(Bu, v) =

∫
Rd

u − u0

τ
v dx +

∫
Rd
∇· f (u)v dx +

∫
Rd
ε(u)∇u·∇v dx, (2.18)

where ε(u) = Cεhα
∣∣∣ u−u0

τ
+ ∇· f (u)

∣∣∣. Let us now verify that (2.15) holds. We set u = v in (2.18), and we obtain the
following lower bound owing to Lemma 3:

(Bu, u) =

∫
Rd

u − u0

τ
u dx +

∫
Rd
∇· f (u)u dx +

∫
Rd
ε(u)∇u·∇u dx

≥

∫
Rd

1
2τ

(
|u|2 − |u0|

2 + (u − u0)2
)

dx ≥
1
2τ
‖u‖2L2 −

1
2τ
‖u0‖

2
L2 .

Therefore, (Bu, u) > 0 for all u ∈ Vh with ‖u‖L2 = 2‖u0‖L2 . Note that we used that Vh ⊂ V .
Now, we have to show that B(u) is a continuous operator with respect to the topology induced by the L2-norm in

Vh. Let h = minK∈Th hK and let u, w ∈ Vh. Using standard inverse inequalities, we infer that

‖Bu − Bw‖L2 ≤ τ−1‖u − w‖L2 + Ch−1‖ f ′(w)‖L2‖u − w‖L2 + Ch−1‖u‖L2‖ f ′(u) − f ′(w)‖L2

+ ‖ε(u)‖L∞Ch−2‖u − w‖L2 + Ch−2‖w‖L∞‖ε(u) − ε(w)‖L2 .

We now estimate ‖ε(u)‖L∞ and ‖ε(u) − ε(w)‖L2 . Upon introducing the CFL number λ = τ‖ f ′‖L∞h−1, we have

‖ε(u)‖L∞ ≤Ch−
d
2 τ−1((1 + λ)‖u‖L2 + ‖u0‖L2 ).

Similarly, using the inequality ||a| − |b|| ≤ |a − b|, we control ‖ε(u) − ε(w)‖L2 as follows:

‖ε(u) − ε(w)‖L2 ≤ ‖τ−1(u − w) + ( f ′(u) − f ′(w))·∇w + f ′(u)·∇(u − w)‖L2

≤ ‖τ−1‖u − w‖L2 + Ch−1(‖ f ′(u) − f ′(w)‖L2‖w‖L2 + ‖ f ′‖L∞‖u − w‖L2 ).

Putting together the above estimates we obtain

‖Bu − Bw‖L2 ≤ C(h, τ, ‖u‖L2 , ‖u0‖L2 )(‖u − w‖L2 + ‖ f ′(u) − f ′(w)‖L2 ).

Let u be fixed and consider a sequence wn converging to u in L2(Rd) as n → +∞. Since the L2- and L∞-norms are
equivalent in Vh, up to some h

d
2 constant, the sequence wn converges to u in the L∞-norm. We conclude then that

‖ f ′(u) − f ′(wn)‖L2 goes to zero when ‖u − wn‖L2 owing to f ′ being continuous, i.e. f ∈ C1
b(R;R). It immediately

follows that ‖Bu − Bwn‖L2 converge to zero when n→ ∞, thereby proving that B is continuous in Vh.

3. Convergence analysis

Let us denote Uh ∈ L∞([0,T∞]; Vh) the function with value in Vh that is piecewise constant in time so that
Uh(t)|(tn,tn+1] = Uh

n+1 for all n = 0, . . . ,N. We establish in this section that the sequence {Uh} converges to the unique
entropy solution of (2.1).

3.1. Proof of Uniform boundedness
We start by deriving a standard L2-estimate

Lemma 4 (L2-estimate). There is uniform constant C so that

‖Uh‖2L∞((0,T∞);L2(Rd))+

N∑
n=1

τ2
n‖DτUh

n‖
2
L2(Rd)

+

N∑
n=1

τn

∫
Rd
εn(Uh)|∇Uh

n |
2 dx ≤ ‖u0‖

2
L2(Rd),

(3.1)

where we have defined the approximate derivative DτUh
n = 1

τn
(Uh

n − Uh
n−1).
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Proof. Let us use the test function v = Uh
n in (2.11):

0 =

∫
Rd

Uh
n − Uh

n−1

τn
Uh

n dx+

∫
Rd
∇· f (Uh

n)Uh
n dx +

∫
Rd
εn(Uh)∇Uh

n ·∇Uh
n dx

=

∫
Rd

1
2τn

(
|Uh

n |
2 − |Uh

n−1|
2 + (Uh

n − Uh
n−1)2

)
dx

+

∫
Rd
∇· f (Uh

n)Uh
n dx +

∫
Rd
εn(Uh)|∇Uh

n |
2 dx.

(3.2)

Using Lemma 3 we infer that the second integral vanishes. By summing the above identity from n = 1 to N, we derive
the desired L2-stability estimate.

We shall need the following lemma to prove the uniform boundedness in L∞ of the approximate sequence {Uh
n}n=0,...,N :

Lemma 5 (Szepessy [19]). There is a uniform constant constant C > 0 such that the following holds for all p = 2m,
m = 1, 2, 3, . . . and for all U ∈ Vh:∫

Rd
∇U·∇π(U p−1) dx ≥

C
p2

∑
K∈T

∫
K
|∇U |2U p−2 dx. (3.3)

We are now in measure to establish the uniform boundedness estimate.

Lemma 6. There is a uniform constant C > 0, such that the solution Uh of (2.11) satisfies

‖Uh‖L∞(Rd×(0,T∞)) ≤ (1 + Ch
1
4 (2−α) log(1/h))‖u0‖L∞(Rd) (3.4)

Proof. By taking v = π(Uh
n)p−1 in (2.11) with p = 2m, m = 1, 2, 3, · · · we obtain∫

Rd

Uh
n − Uh

n−1

τn
(Uh

n)p−1 dx +

∫
Rd
εn(Uh)∇Uh

n ·∇π(Uh
n)p−1 dx

−

∫
Rd

R(Uh
n)((Uh

n)p−1 − π(Uh
n)p−1) dx = 0,

(3.5)

where we used
∫
Rd ∇· f (Uh

n)(Uh
n)p−1 dx = 0, owing to Lemma 3. Recall that the residual is computed as follows:

Rn(Uh) = DτUh
n + ∇· f (Uh

n).
We estimate first the term involving the time increment. For this purpose we introduce the function η(z) = 1

p zp

and we use the following Taylor expansion:

η(Uh
n) − η(Uh

n−1) = (Uh
n − Uh

n−1)η′(Uh
n) −

1
2

(Uh
n − Uh

n−1)2η′′(ξ). (3.6)

where ξ ∈ [Uh
n−1,U

h
n]. The convexity of η implies that∫

Rd

Uh
n − Uh

n−1

τn
(Uh

n)p−1 dx ≥
1

pτn

∫
Rd

((Uh
n)p − (Uh

n−1)p) dx (3.7)

We now estimate the term I :=
∣∣∣∫Rd R(Uh

n)((Uh
n)p−1 − π(Uh

n)p−1) dx
∣∣∣. Using standard interpolation estimates from

Lemma 1, we infer that

I ≤Ch2
∑
K∈Th

∫
K

R(Uh
n)‖D2(Uh

n)p−1‖L∞(K) dx

≤Cp2h2
∑
K∈Th

∫
K
|R(Uh

n)|‖∇Uh
n‖

2
L∞(K)‖U

h
n‖

p−3
L∞(K) dx.
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Upon using the definition of the viscosity |εn(Uh)|, the inequality (3.3), and separating the regions where |Uh
n | is larger

or smaller than 1, we deduce that

I ≤CC−1
ε p2h2−α

∑
K∈Th

∫
K∩{|U |>1}

εn(Uh)|∇Uh
n |

2‖Uh
n‖

p−2
L∞(K) dx

+
∑
K∈Th

∫
K∩{|U |≤1}

εn(Uh)|∇Uh
n |

2 dx


≤Cp4h2−α

∫
Rd
εn(Uh)∇Uh

n ·∇π(Uh
n)p−1 dx + C′p2h2−α

∫
Rd
εn(Uh)|∇Uh

n |
2 dx.

Now we collect all terms and we obtain

1
p
‖Uh

n‖
p
Lp + τn(1 −Cp4h2−α)

∫
Rd
εn(Uh)∇Uh

n ·∇π((Uh
n)p−1) dx

≤
1
p
‖Uh

n−1‖
p
Lp + C′τn p2h2−α

∫
Rd
εn(Uh)|∇Uh

n |
2 dx,

(3.8)

After summing the above estimate from n = 1 to N, assuming that p2 ≤ p4 ≤ Chα−2, and using the energy estimates
(3.1), we finally arrive at

‖Uh
N‖

p
Lp(Rd) ≤ ‖u0‖

p
Lp(Rd) + Ch2(2−α)‖u0‖

2
L2(Rd).

which means that there is a uniform constant C0 so that the following holds for h small enough:

‖Uh
N‖Lp(Rd) ≤ 2

1
p ‖u0‖L∞(Rd), p ≤ C0h

1
4 (−2+α), p even.

Let ph be the largest even integer so that ph ≤ C0h
1
4 (−2+α) < ph + 2. There is another constant C1 so that h

1
4 (−2+α) ≤

C1 ph. Then using a standard inverse estimate together with the assumption α < 2, we infer that

‖Uh
N‖L∞(Rd) ≤ (Ch)−

d
ph ‖Uh

N‖
p
Lp(Rd) ≤ (Ch)−

d
ph 2

1
ph ‖u0‖L∞(Rd) ≤ (C′h)−

d
ph ‖u0‖L∞(Rd)

≤ e−
d
ph

log(C′h)
‖u0‖L∞(Rd) ≤ e−dC1h

1
4 (2−α) log(C′h)‖u0‖L∞(Rd)

≤ (1 + C2h
1
4 (2−α) log(1/h))‖u0‖L∞(Rd).

This completes the proof.

3.2. Proof of consistency with all entropy inequalities
The purpose of this section is to prove that the sequence of functions {Uh}h>0 is entropy consistent.

Lemma 7. Let x be a fixed number in (1, α + 1
2 ) and assume that the following condition holds uniformly: hx ≤ τ.

Then the following inequality holds

lim sup
τ, h→0

−

∫
Rd×(0,T∞)

(
η(Uh)∂tϕ + qη(U

h)·∇ϕ
)

dx dt ≤ 0. (3.9)

for every convex entropy η ∈ C3(R;R) (qη being the associated entropy flux) and for all ϕ ∈ C∞0 (Rd×(0,T∞);R+).

Proof. Let η ∈ C3(R;R) be a convex entropy with entropy flux qη, and let ϕ ∈ C∞0 (Rd×(0,T∞);R+) be a smooth
positive test function. Upon setting D := Rd×(0,T∞), using the test function v = π(η′(Uh)ϕ) in (2.11) and integrating
over time, we obtain

N∑
n=1

∫
Rd

DτUh
nη
′(Uh

n) dx
∫ tn

tn−1

ϕ(t) dt +

∫
D
∇· f (Uh))η′(Uh)ϕ dx dt =

−

∫
D
εn(Uh)∇Uh·∇π(η′(Uh)ϕ) dx dt +

∫
D

R(Uh)(η′ϕ − π(η′(Uh)ϕ)) dx dt. (3.10)
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We reorganize the term involving the time increments of Uh by using the Taylor expansion (3.6) as follows:
N∑

n=1

∫
Rd

DτUh
nη
′(Uh

n) dx
∫ tn

tn−1

ϕ(t) dt :=
N∑

n=1

∫
Rd

DτUh
nη
′(Uh

n) dxτnϕ(tn−1) + R0

=

N∑
n=1

∫
Rd

(
η(Uh

n) − η(Uh
n−1) +

1
2

(Uh
n − Uh

n−1)2η′′(ξn)
)
ϕ(tn−1) dx + R0

≥ −

∫
D
η(Uh)∂tϕ(t) dx dt + R0.

Then, we can rewrite (3.10) as follows:

−

∫
D
η(Uh)∂tϕ(t) dx dt −

∫
D

qη(η(Uh))·∇ϕ dx dt ≤ −R0

−

∫
D
εn(Uh)∇Uh·∇π(η′(Uh)ϕ) dx dt +

∫
D

R(Uh)(η′ϕ − π(η′(Uh)ϕ)) dx dt. (3.11)

The rest of the proof consists of bounding from above the three terms in the right-hand of the above inequality that
we denote R0, R1 and R2, respectively.

Bound on R0: Using the L∞ estimate (3.4) together with the fact that ϕ is a smooth function, the remainder R0 is
handled as follows:

−R0 =

N∑
n=1

∫
Rd

DτUh
nη
′(Uh

n)
(
τnϕ(x, tn−1) −

∫ tn

tn−1

ϕ(x, t) dt
)

dx

≤C
N∑

n=1

τ2
n‖DτUh

n‖L1(Rd) ≤ C′
N∑

n=1

τ2
n‖DτUh

n‖L2(Rd).

The energy estimate (3.1) in turn implies that

|R0| ≤ C max
0≤n≤N

τ
1
2
n ≤ Cτ

1
2 . (3.12)

Bound on R1: Let us evaluate the remainder R1 :=
∫

D εn(Uh)∇Uh·∇π(η′(Uh)ϕ) dx dt. Let Pϕ be the L2-projection
of ϕ onto the set of discontinuous functions that are piecewise constant over the meshTh, i.e., Pϕ|K = meas(K)−1

∫
K ϕ dx.

Then, R1 is decomposed as follows:

R1 = −

N∑
n=1

τn

∑
K∈Th

∫
K
ε(Uh

n)∇Uh
n ·∇

(
π(η′(Uh

n)(ϕ − Pϕ))
)

dx

−

N∑
n=1

τn

∑
K∈Th

∫
K
ε(Uh

n)∇Uh
n ·∇π(η′(Uh

n)Pϕ) dx := R11 + R12.

The first component of the residual, R11, is estimated as follows:

|R11| ≤

N∑
n=1

τn

∑
K∈Th

∫
K
εn(Uh)|∇Uh

n | ‖∇(η′(Uh
n)((ϕ − Pϕ))‖L∞(K) dx

≤

N∑
n=1

τn

∑
K∈Th

∫
K
εn(Uh)|∇Uh

n | ‖η
′′(Uh

n)∇Uh(ϕ − Pϕ) + η′(Uh
n)∇(ϕ − Pϕ)‖L∞(K) dx

≤C
N∑

n=1

τn

∑
K∈Th

∫
K
εn(Uh)(h|∇Uh

n |
2 + |∇Uh

n |)‖∇ϕ‖L∞(K) dx

≤Ch + C′
N∑

n=1

τn

∑
K∈Th

ε(Uh
n)|∇Uh

n | dx,
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where we have used that ‖ϕ − Pϕ‖L∞(K) ≤ Ch‖∇ϕ‖L∞(K), ‖η′′‖L∞([−2γ,2γ]), ‖η′‖L∞([−2γ,2γ]), γ = lim suph ‖U
h‖L∞ , are

bounded and the stability estimate (3.1). We consider two possible cases to estimate the second integral of the last
inequality. Let us assume that τ ≥ hx and let us define Γ := h−

α
2 + 1

4 . Then we have

N∑
n=1

τn

∑
{|∇Uh

n |≤Γ}

∫
K
ε(Uh

n)|∇Uh
n | dx =

N∑
n=1

τn

∑
{|∇Uh

n |≤Γ}

∫
K

hα
∣∣∣DτUh

n + ∇· f (Uh
n)

∣∣∣ Γ dx

≤

N∑
n=1

τnhα‖DτUh
n‖L1(Rd)Γ + ChαΓ2 ≤ C

(
τ−

1
2 hαΓ + hαΓ2

)
.

The second case is handled as follows:
N∑

n=1

τn

∑
{|∇Uh

n |>Γ}

∫
K
εn(Uh)|∇Uh

n | dx dt ≤
N∑

n=1

τn

∫
Rd
ε(Uh

n)
|∇Uh

n |
2

Γ
dx ≤ CΓ−1.

By combining the above estimates and given that hx ≤ τ with 1 ≤ x by assumption, we derive the following bound

|R11| ≤ C(h
α−x

2 + 1
4 + h

1
2 ).

We now deal with the term R12. Using the definition of Pϕ, which recall is piece-wise constant, together with
Lemma 8, we infer that

R12 = −

N∑
n=1

τn

∑
K∈Th

∫
K

Pϕεn(Uh)∇Uh
n ·∇π(η′(Uh

n)) dx ≤ 0.

In conclusion we have
R1 ≤ C(h

α−x
2 + 1

4 + h
1
2 ). (3.13)

Bound on R2: We now estimate the third integral in (3.11). Using standard interpolation error estimates we obtain
the following bound:

|R2| =

∣∣∣∣∣∫
D

R(Uh)(η′ϕ − π(η′ϕ) dx dt
∣∣∣∣∣

≤

N∑
n=1

τn

∑
K∈Th

∫
K

Ch2|R(Uh
n)|(|∇Uh

n |
2 + |∇Uh

n | + 1)‖ϕ‖W2,∞(K) dx

≤ Ch2
N∑

n=1

τn

∑
K∈Th

∫
K
|R(Uh

n)|(|∇Uh
n |

2 + 1) dx

≤ Ch2−α
N∑

n=1

τn

∑
K∈Th

∫
K
εn(Uh)|∇Uh

n |
2 dx + Ch2

N∑
n=1

τn

∫
Rd
|R(Uh

n)| dx

We assume that τ ≥ hx and we introduce the quantity Γ := h−
α
3 , which is larger than 1 when h is small enough, and

we proceed as in the estimate of R11 by distinguishing cells where |∇Uh
n | ≤ Γ from those where |∇Uh

n | > Γ.

h2
N∑

n=1

τn

∑
|∇Uh

n |≤Γ

∫
K
|R(Uh

n)| dx ≤ h2
N∑

n=1

τn

∫
Rd

(|DτUh
n | + CΓ) dx ≤ C

(
τ−

1
2 h2 + h2Γ

)
.

h2
N∑

n=1

τn

∑
|∇Uh

n |>Γ

∫
K
|R(Uh

n)| dx ≤ Ch2
N∑

n=1

τn

∑
|∇Uh

n |>Γ

∫
K
|R(Uh

n)|
|∇Uh

n |
2

Γ2 dx

≤Ch2−αΓ−2
N∑

n=1

τn

∫
Rd

hα|R(Uh
n)| |∇Uh

n |
2 dx ≤ Ch2−αΓ−2.
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With the assumption hx ≤ τ, this finally gives

|R2| ≤ C(h2− x
2 + h2− α

3 ) (3.14)

By using the estimates (3.12)-(3.13)-(3.14) we finally infer that

−

∫
Rd×(0,T∞)

(
η(Uh)∂tϕ − qη(U

h)·∇ϕ
)

dx dt ≤C(τ
1
2 + h

α−x
2 + 1

4 + h
1
2 + h2− x

2 + h2− α
3 )

≤C(τ
1
2 + h

α−x
2 + 1

4 + h
1
2 ).

which implies the desired result owing to the assumptions.

Remark 3.1. Whether the condition hx ≤ τ is necessary is not clear. We suspect that it is only a technical difficulty
that could be removed by deriving better a priori estimates. The convergence rate in the entropy inequality is maximal
with this condition, .i.e. h

1
2 , for x = α − 1

2 , which gives x→ 3
2 when α→ 2.

Lemma 8. The following inequality holds
∇V ·∇(π(η′(V))) ≥ 0, (3.15)

for all V ∈ Vh and fall all convex entropy η ∈ C2(R;R).

Proof. See Proposition 5.3 in [19] and Lemma 3.3 in [21].

3.3. Proof of strong consistency with the initial condition
We finish this section by proving strong the consistency with the initial data.

Lemma 9. Provided the assumptions of Lemma 7 hold, The sequence of approximate solutions {Uh} is strongly
consistent with the initial data, i.e.

lim
t→0+

lim sup
h→0

‖Uh(·, t) − u0‖L2(Rd) = 0. (3.16)

Proof. Let us first assume for the time being that the following conditions hold

lim
t→0+

lim sup
h→0

∫
Rd
|Uh(x, t)|2 dx ≤ ‖u0‖

2
L2(Rd). (3.17)

lim
t→0+

lim
h→0

∫
Rd

(Uh(x, t) − u0(x))ϕ(x) dx = 0, ϕ ∈ C∞(Rd×[0,T∞)), (3.18)

Then, we prove the consistency with the initial condition as follows. Let {ϕε}ε>0 be sequence of smooth functions that
converges to u0 strongly in L2(Rd) as ε goes to zero. Then

lim
t→0

lim sup
h→0

∫
Rd

(Uh(·, t) − u0)2 dx

= lim
t→0

lim sup
h→0

∫
Rd

(
(Uh(·, t))2 − u2

0 − 2ϕε(Uh − u0)
)

+ 2(ϕε − u0)(Uh − u0) dx

≤4‖ϕε − u0‖L2(Rd)‖u0‖L2(Rd).

Since the above estimate holds true for all ε > 0, we obtain the desired result by passing to the limit on ε, i.e.,
limt→0+ limh→0 ‖Uh(·, t) − u0‖L2(Rd) = 0.

We now need to verify that (3.17) and (3.18) hold. Clearly (3.17) is a consequence of the estimate (3.4). We need
to work a little bit more to establish (3.18). Let ϕ ∈ C∞b (Rd,R) and let t be some fixed time. Let n be the integer so
that t ∈ (tn−1, tn] where tn =

∑n
i=0 τi. Then Uh(t) = Uh

n by definition and∫
Rd

(Uh
n − Uh

0)ϕ dx =

∫
Rd

(Uh
n − Uh

0)(ϕ − πϕ) dx

−

n−1∑
i=0

τi

∫
Rd

(
∇· f (Uh

i )πϕ + εi(Uh)∇Uh
n ·∇πϕ

)
dx.
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We need to show that the right-hand side goes to zero as h→ 0 and t → 0. The first term does not pose any particular
difficulty. ∣∣∣∣∣∫

Rd
(Uh

n − Uh
0)(ϕ − πϕ) dx

∣∣∣∣∣ ≤ Ch‖u0‖L2(Rd)‖ϕ‖H1(Rd).

For the second term, one integration by parts implies that∣∣∣∣∣∫
Rd
∇· f (Uh

i )πϕ dx
∣∣∣∣∣ =

∣∣∣∣∣∫
Rd

f (Uh
i )∇πϕ dx

∣∣∣∣∣ ≤ C‖Uh
i ‖L∞(Rd)‖ϕ‖W1,∞(Rd).

Then ∣∣∣∣∣∣∣
n−1∑
i=0

τi

∫
Rd
∇· f (Uh

i )πϕ dx

∣∣∣∣∣∣∣ ≤ tnC(ϕ)‖u0‖L∞(Rd).

The last term is handled as follows:∣∣∣∣∣∣∣
n−1∑
i=0

τi

∫
Rd
εi(Uh)∇Uh

n ·∇πϕ dx

∣∣∣∣∣∣∣ ≤ C‖ϕ‖W1,∞(Rd)

∣∣∣∣∣∣∣
n−1∑
i=0

τi

∫
Rd
εi(Uh)|∇Uh

n ·| dx

∣∣∣∣∣∣∣ .
By proceeding as in the derivation of the estimate for R11 in the proof of Lemma 7, we infer that∣∣∣∣∣∣∣

n−1∑
i=0

τi

∫
Rd
εi(Uh)∇Uh

n ·∇πϕ dx

∣∣∣∣∣∣∣ ≤ C(ϕ)(t
1
2
n h

1
4 + h

1
2 ).

The desired result follows readily.

4. Conclusions

We have introduced a stripped-down version of the Streamline-Diffusion-Shock-Capturing (SDSC) method an-
alyzed in [15, 16]. The only stabilizing mechanism present in our algorithm is a residual-based nonlinear viscous
regularization. The main result of the paper is that the method is convergent, i.e. the sequence of approximate solu-
tions converges to the entropy solution under grid refinement. The idea defended in the present paper is that Streamline
Diffusion, and more generally linear stabilization, is not necessary to guaranty convergence to the entropy solution;
the residual-based viscous regularization is actually the key ingredient of the method. In that sense, our conclusion is
similar in spirit to that in [6].

The analysis is done for the implicit Euler time stepping. We are currently extending the methodology presented
in this paper to explicit time stepping of first- and second-order accuracy.
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