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Abstract

The modeling and simulation of the dendritic growth during solidification process of a pure material
in two and three dimensional spaces are of a great interest in this thesis, as well as the fluid effect
to the dendrite on the growth in two dimensional space.

For this reason the phase field model is used. To avoid some difficulties in the model, the semisharp
phase field model is introduced. The inclusion of anisotropic surface energy is studied in both lands
dimensions.

Furthermore, a convection effect of the fluid flow to the dendrite growth was studied. The Navier-
Stokes equations are applied to solve velocity and pressure.

The obtained partial differential equations are solved numerically using an adaptive finite element
method for unstructured triangular domain. The symbolic computational tool, FemLego is used
for the calculations as it is easy to input the approximation form of the equations into a Maple
input file. It is also easy to make an adaptive error control in finite elements of the problem in
FemLego. In order to understand the shape of the resulting dendrites some figures are showed and
discussed.

Keywords: Phase field model, semisharp, dendritic growth, adaptive finite element method,
Navier-Stokes.
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Chapter 1

Introduction

An example of evolution microstructure can be solidification, welding, melting, etc. This is a
challenging area of research and also a subject of many articles published during the last decade.
Studying and understanding the way in which dendrites grow will make the material engineers
able to reach the desired properties of the manufactured materials in the future.

Many models have been developed to investigate the problem. Those models have good realistic
results and can be applied to other phase transitions. In models of solidification, the interface of
liquid/solid represents considerable difficulties for a numerical scheme. The position of interface has
a complicated geometry. This position must be determined as a part of the solution procedure. The
procedure makes the governing nonlinear problem formulations more difficult. The interface gives
discontinuity to variables in the equations described by jump condition. Therefore, it is difficult
to implement numerical schemes that are based on tracking the interface location explicitly.

Introducing an additional phase field variable is an alternative formulation for solidification prob-
lems. Many problems described above can be avoided in this case. The phase field variable is a
smooth approximation to a characteristic function that assumes distinct constant value in each
phase. The assumption is that φ = −1 in liquid part and φ = 1 in solid part. The tight transition
regions are identified with the solid-liquid interface. Within these regions the phase field variable
changes smoothly from −1 to 1. The interface is a diffuse, while it is considered sharp in other
models. Therefore, other variables also change smoothly rather than discontinuously. The location
of the interface is associated with the level lines of the phase field variable. However, the interface
tracking is not required.

The governing equation is modified to include an additional evolution equation for the phase field.
Assume the interface thickness tends to zero. Then the appropriate jump conditions across the
sharp-interface limit are recovered.

Another phase field method, the semisharp phase field method is used in this thesis. The method
is proposed by Gustav Amberg, [6]. The governing equations in the method are based on standard
phase field model. Moreover, some modifications are done on this type of model. The interface to
be identified with a phase field contour where changes in sharp and energy take place. Thus, the
interface is ”sharp” in some sense.

This master thesis applies the phase field model from the works of Gustav Amberg [6], and Robert
Tönhardt [7]. The thesis consists of four chapters. The phase field and semisharp methods, some
property of the models, numerical simulation for two and three dimensions, stability of numerical
scheme for 2D and the computation results are discussed.

Chapter 2 gives a brief overview about mathematical model and numerical methods. The difficulties
during numerical computations as well as the ways of solving them are outlined. First, the dendritic
growth of crystal is studied. Moreover, the numerical difficulties, stability analysis, modification
in semisharp, extending 2D problem to three dimensions for anisotropy formulation and some
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CHAPTER 1. INTRODUCTION

numerical applications are studied. A consistent part of the chapter is the fluid flow in the melt
part of dendrite and effects of the flow during its growth.

Other chapters include the obtained results in different cases and parameters, figures from simu-
lations both in 2D and 3D cases with and without fluid flow as well as conclusions and discussion.

Figure 1.1: Three dimensional dendrite
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Chapter 2

Mathematical model and

numerical method

2.1 The Phase field model

A Stefan problem is a classical way of describing the solidification problem mathematically. In
this problem the diffusion equations describe the transport of heat between the phases, solid and
liquid, and boundary conditions specified in moving interface. Finding the analytical solution for
the Stefan problem is difficult, since the shape of phases changes in time. Therefore, the numerical
algorithm is developing since the last decades. [1]

The crystal shape using front tracking technique is considered. The idea is marking a finite set
of points in interface. These points can be connected by interpolating polynomials to obtain the
interface. Then the time-dependent heat equation in solid/liquid parts can be solved. The points
in interface should be connected, deleted or refined, because of complicated shape of interface.
This approach will be significantly more difficult if the spatial dimension increases.

Another approach is phase field, in which a sharp interface is replaced by continuous variations,
which are measured by the phase field variables. The interface is determined by the value of
phase field variables, the interface location does not need to be tracked explicitly. Consequently,
the phase-field models are easier to implement computationally than the sharp-interface models,
especially when complex interface morphologies are present. [2]

The phase field variable is defined as follows:

φ(x, t) =

{

−1, x ∈ Ω−(t),
1, x ∈ Ω+(t).

where −1 denotes liquid phase and 1 solid phase. The sharp interface of width zero is replaced
by a diffuse interface with width W in which the phase variable smoothly changes value from −1
to 1, Figure 2.1. The interface is defined as the level set of points satisfying φ(x̄, t) = Ci, where
−1 < Ci < 1.

The non-dimensional phase field method developed by Wheeler [3] is used in this thesis. This
method is thermodynamically consistent and captures the sharp interface model with width of the
interface goes to zero. The following equation is a modified heat equation in Stefan problem:

∂θ

∂t
+

30g(φ)

∆c

∂φ

∂t
= ∇2θ, (2.1)

where φ corresponds to the latent heat and g(φ) = φ2(1 − φ)2. The Stefan-condition is used
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CHAPTER 2. MATHEMATICAL MODEL AND NUMERICAL METHOD

Figure 2.1: Schematic of an interface of phase field in 1D. The liquid phase has a value of φ = −1,
a smooth transition through the interface and a value of the solid φ = 1.

as a boundary condition, in which the velocity of the solid/liquid interface is defined as Vn =

∆c

(

∂θ
∂n

)solid

liquid
. Here n is the normal of the interface into liquid, Vn is dimensionless normal velocity

of the interface into liquid and ∆c = c∆T/L is dimensionless undercooling, or Stefan number. We
have an extra transport equation, which is a modified Gibbs-Thomson condition:

ε2

m

∂φ

∂t
= ε2∇2

aφ + 30A∆cεθg − 1

4
ġ (2.2)

The following parameters are used in the equations above:

ε = δ/W - the dimensionless width of the interface;

∇2
aφ - the Laplacian;

A =
√

2W
12d0

- the width of interface divided by capillary length;

m = µd0Tm

α
- a parameter, which depends on the kinetic coefficient, µ;

2.1.1 Anisotropy term

In isotropic formulation the surface energy is independent of local interface orientation. Then the
term, ∇2

a, in equation (2.2) is a simple Laplacian. However, for many materials the surface energy
depends on the local interface orientation. Metals are example of this kind of materials. In this
case we represent an anisotropic surface energy by the following formula:

σ = σ0η(−→n ), (2.3)

here the term η(−→n ) describes the dependence of the surface energy on the local interface orientation
trough the vector −→n . [4].

In two dimensional space the surface energy can be found as follows:

η(−→n ) = 1 + γ cos(4β), (2.4)

where β = arctan
(

∂φ
∂y

/∂φ
∂x

)

an angle between the interface and orientation of the contours, γ is

the strength of anisotropy.
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2.1. THE PHASE FIELD MODEL

The 2D Laplacian, ∇2
aφ, in equation (2.2) has been modified as:

∇2
aφ = ∇ ·

(

η2∇φ
)

− ∂

∂x

(

ηη̇
∂φ

∂y

)

+
∂

∂y

(

ηη̇
∂φ

∂x

)

, (2.5)

where η̇ = dη
dβ

- differentiation with respect to β. Then, for anisotropic case the equation (2.2) can
be written as follows:

ε2

m

∂φ

∂t
= ε2∇ ·

(

η2∇φ
)

− ε2
∂

∂x

(

ηη̇
∂φ

∂y

)

+ ε2
∂

∂y

(

ηη̇
∂φ

∂x

)

+ 30A∆cεθg − 1

4
ġ. (2.6)

The three dimensional phase field model is simulated in this thesis work, as well. We are interested
to study both isotropic and anisotropic cases. In isotropic case the phase field equations in 3D
have the same definition as equations (2.1) and (2.2). The anisotropy term in 3D can be expressed
as the following formula [5]:

η(φx, φy, φz) = (1 − 3γ)

(

1 +
4γ

1 − 3γ

φ4
x + φ4

y + φ4
z

|∇φ|4

)

. (2.7)

Then the Laplacian in three dimensions should be replaced with the following anisotropy Laplacian

∇2
aφ =

∂

∂φx

(

|∇φ|2η ∂η

∂φx

)

+
∂

∂φy

(

|∇φ|2η ∂η

∂φy

)

+
∂

∂φz

(

|∇φ|2η ∂η

∂φz

)

+ ∇ ·
(

η2∇φ
)

(2.8)

2.1.2 Semisharp Phase field method

In the standard sharp interface method the interface between two phases is represented by a
surface with no internal structures or width. The standard phase field model requires an asymptotic
analysis for vanishing interface. In order to have the result proper to interface kinetics, the interface
width should be smaller then the capillary length, which is in order of nanometers. Therefore,
modification of the model should be done for developing and extending this analysis.

The semisharp phase field method was proposed by Amberg [6], in which some modifications
are made in model equations. The purpose of modifications is to solve the modified equation
analytically.

To clarify the idea, the following single isotropic model is studied. For simplicity, the thermal
solidification of pure material is assumed. The Gibbs-Thomson kinetics at the interface is defined
as −θi = V/µ + d0/R, where V is the normal speed of interface, d0 is the capillary length.
The nondenominational temperature is assumed according to θ = c(T − Tm)/L, length with an
arbitrary reference length H , time with H2/κ. Here, c is a specific heat, Tm is a temperature of a
flat interface, L is a latent heat, and κ is a heat diffusivity.

Then, the phase field model is written as following equations:

τ
∂φ

∂t
= W 2∇2φ − f ′(φ) − g′δ(φ)h(λθ), (2.9)

∂θ

∂t
= ∇2θ +

∂gδ(φ)

∂t
. (2.10)

Here the φ is a phase variable defined as above, W is the interface width, τ is linked to kinetic
undercooling. In the standard method, (2.2), the functions f(φ) and gδ(φ) are defined as follows:

f(φ) = (1 − φ)2(1 + φ)2,

gδ(φ) =
15

16

(

φ5

5
− 2

φ3

3
+ φ

)

+
1

2
.
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CHAPTER 2. MATHEMATICAL MODEL AND NUMERICAL METHOD

As we can see the function f(φ) has minimum at the points φ = ±1 and gδ(φ) increases from 0 to
1 when φ changes the value from −1 to 1. The function h(λθ) is chosen as h(λθ) = λθ.

Then some important modifications were used for standard phase field model. The function gδ(φ)
is chosen as a smoothed step function, which jumps from 0 to 1 over the interval with width δ,
Figure 2.3. The semisharp model is obtained when δ = 0. We choose the function f(φ) simpler,
in order to evaluate the kinetics of the model exactly:

f(φ) =

{

(φ − 1)2, forφ > 0,
(φ + 1)2, forφ < 0.

gδ(φ) =
φ

√

φ2 + δ2
;

Then an explicit choice of the function h(λθ) is made using these functions. In [6], these functions
are found analytically, which are h(λθ) = λθ

−1 −0.5 0 0.5 1
0

0.5

1
f(φ)

−1 −0.5 0 0.5 1
0

0.5

1
gδ(φ)

Figure 2.2: The choice of functions f(φ) and gδ(φ) in standard phase field method.

−1 −0.5 0 0.5 1
0

0.5

1
f(φ)

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1
gδ(φ)

Figure 2.3: The choice of functions f(φ) and gδ(φ) in semisharp phase field method.

The interface is studied when φ = 0, so interface is sharp in this sense. It has been showed that this
model gives Gibbs-Thomson kinetics with the temperature precisely at interface, φ = 0. This thesis
also studies the isotropic equation (2.9), (2.10). The simulation is done for different parameters.
Then the anisotropic case is studied.

2.2 Navier-Stokes equations

The Navier-Stokes equations are:

∂ui

∂t
+ uj

∂ui

∂xj

= −1

ρ

∂p

∂xi

+ ν
∂2ui

∂xj∂xj

, (2.11)

∂ui

∂xi

= 0, (2.12)

where, ρ is the density, ν is the kinematic viscosity. We are interested in non-dimensional form
of Navier-Stokes equations, because it is convenient for our simulation. We use the following
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2.3. FLOW AROUND THE DENDRITE

non-dimensional variables and scales:

x∗
i =

xi

L
, t∗ =

t

T0

, u∗
i =

ui

U0

, p∗ =
p

p0

,
∂

∂xi

=
1

L

∂

∂x∗
i

,
∂

∂t
=

1

T0

∂

∂t∗i
,

where ∗ denotes the non-dimensional variable. We introduce the non-dimensional variables into
Navier-Stokes equation (2.11) and obtain:

U0

T0

∂u∗
i

∂t∗
+

U2
0

L
u∗

j

∂u∗
i

∂x∗
j

= − p0

ρL

∂p∗

∂x∗
i

+ ν
U2

0

L2

∂2u∗
i

∂x∗
j∂x∗

j

, (2.13)

U0

L

∂u∗
i

∂x∗
i

= 0. (2.14)

We simplify these equations and drop the sign of non-dimensional variables, we find:

∂ui

∂t
+

U0T0

L
uj

∂ui

∂xj

= −1

ρ

∂p

∂xi

+ ν
T0

L2

∂2ui

∂xj∂xj

, (2.15)

∂ui

∂xi

= 0. (2.16)

Now, we introduce some new parameters:

α =
L2

T0

, T0 =
L

U0

, P e =
U0L

α
, Pr =

ν

α
, ⇒

U0T0

L
=

U0LT0

L2
=

U0L

α
= Pe,

νT0

L0

=
ν

α
= Pr,

here, α is the kinematic viscosity or the momentum diffusivity. Also, the pressure is scaled as
p = p

p0

L
ρU0α

= T0

ρU0L
. Then, we obtain the non-dimensional Navier-Stokes equations:

∂ui

∂t
+ Peuj

∂ui

∂xj

= − ∂p

∂xi

+ Pr
∂2ui

∂xj∂xj

, (2.17)

∂ui

∂xi

= 0. (2.18)

2.3 Flow around the dendrite

The convection due to the melt flow in solidification is unavoidable, and the effects of convection
on the micro/macro-structures and various properties of the solidified metal and alloys can be sig-
nificant. Melt flow in solidification can be categorized into natural (or free) and forced convection.
The natural convection can be seen in a case when the densities of the solid and liquid are different
regardless of the presence of the gravitational force. Forced convection is induced by electromag-
netic stirring, rotation, pouring of the melt, an anti-parallel flow to the direction of motion of the
tip, etc., some of which intentionally applied to cause convection to enhance solute transport from
the solid-liquid interface in order to reduce macro and micro segregation. If the natural convection
is strong enough, then the micro-structure is affected and the properties of the solidified material
changes.

In practice and in experiments it is difficult to avoid convection. Convection in the melt modifies
the diffusion fields, the kinetics of the interface and the amount of defects in the solid. Therefore,
it is important to study various types of flows that are present during solidification.

The simulation of the convection during the solidification in this thesis is based on the works of
Tönhardt and Amberg [9, 10]. Their results show that the evolution of the dendrite shape was
altered by the flow, and the growth of the side branches was promoted on the upstream side and
inhibited on the downstream side as expected.

7



CHAPTER 2. MATHEMATICAL MODEL AND NUMERICAL METHOD

We assume anti-parallel fluid flow to the direction of motion of the tip in dendrite. The only
changes should be done in temperature equation, (2.10), and momentum equations, (2.17).

That is, the temperature equation with convective term can be changed as:

∂θ

∂t
+ Peū · ∇θ = ∇2θ +

∂gδ(φ)

∂t
, (2.19)

where, Pe = UW/α is the Peclet number defined from above, u is a non-dimensional velocity in
the domain, where dendrite grows. The convective term is present in the liquid phase only.

The dynamic viscosity, ν, is replaced with the following expression:

ν = ν0(1 + fν), (2.20)

where, ν0 is the tabulated viscosity of the melt, and the function fν depends on the phase field
variable φ and its purpose is to increase viscosity for the solid part. In our simulations we use the
following definition of function fν

fν(φ) =

{

1 for φ < 0,
1 + (φ + 1) · 1000 for φ ≥ 0.

(2.21)

We assume the melt is incompressible. The governing Navier-Stokes equations for flow around the
dendrite in the melt are written as:

∂ui

∂t
+ Peuj

∂ui

∂xj

= − ∂p

∂xi

+ Pr
∂

∂xj

(

fν

[

∂ui

∂xj

+

(

∂ui

∂xj

)∗])

, (2.22)

∂ui

∂xi

= 0. (2.23)

where, Pr is Prandt number and ∗ means the transpose of the operator.

2.4 Numerical treatments

As mentioned above, all equations in this thesis are simulated using toolbox FemLego. This toolbox
was written by Gustav Amberg and being developing during the several years in the Department
of Mechanics, KTH. [7], [8]. The toolbox consists of two parts: Maple procedures; FORTRAN and
C routines.

The model, initial and boundary conditions are entered into Maple. Then, Maple generates the
FORTRAN and C routines according to adapting Finite Element Methods for unstructured grids.
The toolbox can be used in 1, 2 and 3 dimensions problems.

2.4.1 Stability analysis for phase field model

All our simulations are done using the finite element method for unstructured grid. Prior to
numerical simulation we are interested in the stability condition of the model (2.9) and (2.10).
In this respect, the obtained stability condition for finite difference method is valid for the finite
element method, also. The Von-Neumann stability analysis is used to find the restriction for time-
dependent problem above. Usually, the expression in right hand side in (2.9) and (2.10) is very
nonlinear. Therefore, the linearization of the equation is necessary.

The equations (2.9) and (2.10) with the given functions f(φ) and gδ(φ) can be written as:

τ
∂φ

∂t
= W 2∇2φ + 4φ(1 − φ)(1 + φ) − 15

16
(φ4 − 2φ2 + 1)λθ,

∂θ

∂t
= ∇2θ +

15

16
(φ4 − 2φ2 + 1)

∂φ

∂t
.

(2.24)
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2.4. NUMERICAL TREATMENTS

We introduce the small perturbations φ̃, θ̃ around points φ0 and θ0. The interesting task is to
investigate the local stability analysis when φ0 = 0 and θ0 = 0. Since, the perturbation is too
small the terms φ̃ · θ̃, φ̃n, θ̃n will be vanish. Hence, we obtain the following system of equations:

τ
∂φ̃

∂t
= W 2∇2φ̃ − 15

16
λθ̃,

∂θ̃

∂t
= ∇2θ̃ +

15

16

∂φ̃

∂t
.

(2.25)

We assume φ = φ̃, θ = θ̃ and using the central difference for space and forward difference approx-
imation for time we obtain:

τ
Φn+1

ij − Φn
ij

∆t
= W 2 1

∆x2

(

Φn
i+1,j − 2Φn

i,j + Φn
i−1,j

)

+

+ W 2 1

∆y2

(

Φn
i,j+1 − 2Φn

i,j + Φn
i,j−1

)

− 15

16
λΘn

i,j ,

Θn+1
ij − Θn

ij

∆t
= W 2 1

∆x2

(

Θn
i+1,j − 2Θn

i,j + Θn
i−1,j

)

+

+ W 2 1

∆y2

(

Θn
i,j+1 − 2Θn

i,j + Θn
i,j−1

)

+
15

16

1

∆t

(

Φn+1
i,j − Φn

i,j

)

.

(2.26)

Where, ∆x and ∆y are distance between the grid-points along x and y axis, respectively, and Φn
ij

is the numerical approximation of the solution φ(xi, yj) at the time t = tn.

Now, we make the following ansatz:

Φn
ij = Anφ̂eIkxi∆x · eIkyj∆y,

Θn
ij = Anθ̂eIkxi∆x · eIkyj∆y ,

(2.27)

Here, I =
√
−1 is the imaginary unit, A = |A|e−Iω∆t where ω is frequency, kx and ky are the wave

numbers. Assuming α = kx∆x , β = ky∆y, insert the ansatz (2.27) into finite difference equations
(2.26), divide the obtained equations to the similar term AneIkxi∆x · eIkyj∆y , and obtain:

τ

∆t
(A − 1)φ̂ = W 2 2

∆x2
(cosα − 1)φ̂ − W 2 2

∆y2
(cosβ − 1)φ̂ − 15

16
λθ̂,

1

∆t
(A − 1)θ̂ = W 2 2

∆x2
(cosα − 1)θ̂ − W 2 2

∆y2
(cosβ − 1)θ̂ +

15

16

1

∆t
(A − 1)φ̂,

(2.28)

Then, the last system of linear equation should be solved. We are interested in nontrivial case,
i.e. we strive for finding a value for A, in which the determinant of (2.28) is zero. Therefore,
we solved the obtained quadratic equation for variable A. The Von-Neumann stability analysis
requires |A| ≤ 1 for a stable solution. Finally, we found that the explicit scheme (2.26) is stable if

∆t ≤ C
1

1

∆x2 + 1

∆y2

Where C is a constant, which can be calculated from the parameters of the system.

The same discussion is used for implicit scheme in finite difference, and we found that in stability
there is no any restriction for ∆t. The implicit scheme is always stable.

2.4.2 Discontinuity integrals in 2D and 3D

The interface contour between solid/liquid in semisharp mode is defined when φ = 0. In [6] it is
shown, that the jump in function gδ generates a jump in the gradient of φ, and can be represented

9



CHAPTER 2. MATHEMATICAL MODEL AND NUMERICAL METHOD

as a following expression:

W 2

2

[

(

dφ+

dz

)2

−
(

dφ−

dz

)2
]

= h(λθi), (2.29)

where, θi is the value of the temperature at the interface, and the z axis is chosen with origin at
the interface.

This jump can be implemented in finite elements by adding a line integral of Wλθ along the
interface in two dimensional case. In 3D the line integral is replaced into integration over a surface
along the interface, Figure 2.4. It can be done easily by adding some modification in code. The
possible cases in 3D are integration over a triangle and quadrangular, Figure 2.5 and Figure 2.6.

Figure 2.4: The points where φ = 0 is found in the unit coordinate system, if φ1 · φ2 · φ3 <

0. The integration over the triangle ∆φ1φ2φ3 is changed to integration over the line
(ξ1, η1), (ξ2, η2).

The idea is to find the triangular (tetrahedral) elements, which are on the interface. In these
elements, there are some points, in which φ = 0, i.e. the interface contour goes through the
element. Then, corresponding coordinates for these points, (ξ1, η1), (ξ2, η2), in unit coordinate
system (ξ, η) should be found. After that, instead of calculating the integration over the element
in finite elements, an integration over the line (ξ1, η1), (ξ2, η2) is computed. The same discussion
is done for 3D case.

Figure 2.5: The points where φ = 0 is found in the unit coordinate system, if φ1 · φ2 · φ3 ·

φ4 < 0. In this case, the integration is done over the triangle with corners
(ξ1, η1, ζ1), (ξ2, η2, ζ2), (ξ3, η3, ζ3).

10
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Figure 2.6: This figure describes the points, where φ = 0 in the unit coordinate system, if two
values of φi, i = 1, 2, 3, 4 are positive and two others are negative. The integration is
done over the quadrature with corners (ξ1, η1, ζ1), (ξ2, η2, ζ2), (ξ3, η3, ζ3), (ξ4, η4, ζ4).

This modification is added using C functions to FemLego, and some changes are made in Maple
procedure. The expression

ElementInt(DiscInt (φ(x, y, z), (test(x, y, z) · W · λθ(x, y, z)))

is added to the phase field equation.

2.4.3 Numerical methods

The same technique of numerical method in [9] for solving equations (2.2), (2.19), (2.22), (2.23) is
used in our simulations.

The above-mentioned equation is transformed to the discrete formulation using Galerkin formu-
lation of finite element method. The basis functions are chosen linearly: triangles in 2D and
tetrahedrons in 3D. The basis and test function are chosen from the same functional space.

The Navier-Stokes equations are solved using a fractional-step projection method proposed by
J.L. Guermond and L. Quartapelle. It replaces the continuity equation into Poisson equation for
pressure. The first step is viscous convection-diffusion step and the following FEM variational
formulation is entered into the Maple input file:

∫

Ω

ū∗ − ū0

∆t
vdΩ + Pe

∫

Ω

v∇ū∗dΩ =

∫

Ω

∇v(2P0 − P00)dΩ − Pr

∫

Ω

∇v∇ū∗fν(φ0)dΩ. (2.30)

Then the pressure is updated using the following equation:

∫

Ω

∇(2P − P0)∇vdΩ = − 1

∆t

∫

Ω

v∇ū∗dΩ −
∫

Ω

εp∇P∇vdΩ. (2.31)

The convection step is a last part of the fractional-step projection method, and determines the
divergence free end-of-step velocities:

∫

Ω

ūvdΩ =

∫

Ω

ū∗vdΩ − ∆t

∫

Ω

(∇(P − P0)v + εp∇Pv)dΩ. (2.32)

In above formulation, v is the test function used in FEM variational formulation. As we can notice,
the convection and diffusion terms are implicit and the time derivatives are descritized using the
first order approximation. In each timestep, the descritized equations are solved using the GMRES
(General Minimal Residual) or the ICCG (Incomplete Cholesky Conjugate Gradient) methods.
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The variational form for the equation (2.2), (2.19) are written as the following equations:

τ

∫

Ω

v(φ − φ0)

∆t
dΩ = −0.5W 2

[
∫

Ω

v∇2
aφ0dΩ +

+

∫

Ω

v [(φ0 − 1)(1 + sign(φ0)) + (φ0 + 1)(1 − sign(φ0))] dΩ

+

∫

Ω

DiscInt(φ0, Wλθ)dΩ

]

.

(2.33)

The function sign(φ0) is used to define the sign of φ0. The ∇2
aφ is anisotropy Laplacian from

above, and it is a simple Laplasian for isotropic case. In anisotropic dendritic growth this term
can be derived as the following formula in variation formulation, in 2D:

∫

Ω

v∇2
aφ0dΩ =

∫

Ω

ηη̇

(

∂φ0

∂y

∂v

∂x
− ∂φ0

∂x

∂v

∂y

)

dΩ +

∫

Ω

η2 · ∇v · ∇φ0dΩ, (2.34)

and for 3D case:
∫

Ω

v∇2
aφ0dΩ =

∫

Ω

|∇φ0|2η
(

∂η

∂φ0
x

∂v

∂x
+

∂η

∂φ0
y

∂v

∂y
+

∂η

∂φ0
z

∂v

∂z

)

dΩ+

+

∫

Ω

η2 · ∇v · ∇φ0dΩ.

(2.35)

Here, φ0
xi

= ∂φ0

∂xi
, xi = x, y, z.

The variational form for the temperature equation is derived as the follows:

∫

Ω

v(θ − θ0)

∆t
dΩ = −

∫

Ω

κ∇v · ∇ (θ + (1 − CNα)θ0) dΩ − Pe

∫

Ω

vūc · ∇θdΩ+

+

∫

Ω

v
g(φ) − g(φ0)

∆t
dΩ +

∫

∂Ω

v · qBCvaldS,

(2.36)

where ūc is the correction velocity from (2.32), CNα the Courant number, κ - is the scaled interface
curvature, qBCval is read from the mesh and can give different values on different parts of the
boundary and can be used in the boundary integrals in variational form.

As mentioned above, the width of interface is much smaller then other length scales. Therefore,
using adaptive unstructured mesh in our calculation will be efficient. Initially, the computational
domain is descretized with large triangular elements in 2D, and tetrahedrons in 3D, and then the
interface region gets the highest resolution. As the interface evolves during the calculation, the
mesh is adaptively changes by splitting or merging the elements according to an error function:

ErrCrit =

∫

Ω

(ErrFact|∇φ|2 + ErrFact2 |∇θ|2)dΩ, (2.37)

where, ErrFact and ErrFact2 are the parameters in order ∼ 1

W 2 and ∼ 1

100W 2 , respectively. W is
an interface width.

2.4.4 Computational domain

The computational domain in our simulation is the following figure:
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Figure 2.7: Computational domain

The initial value for dendrite is chosen as a small circle with radius r = 0.03573. The size of the
domain is −4 ≤ x ≤ 4, 0 ≤ y ≤ 4, but in some simulations the bigger domain size is used, also.

The following boundary condition is used in our computation:

1. For phase variable φ and temperature, the Neumann boundary condition is put for all bound-
aries:

∂φ

∂n
= 0,

∂θ

∂n
= 0 (2.38)

2. The following is set for velocity profile and pressure:

Inflow and outflow boundaries :
∂u1

∂y
= 0,

∂u2

∂y
= 0, p = 0 (2.39)

Solid wall, y = 0: u1 = 0, u2 = 0,
∂p

∂x
= 0 (2.40)

Top boundary, y = 4: u1 = 1,
∂u2

∂y
= 0, p = 0. (2.41)
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Chapter 3

Results and discussion

3.1 Dendritic growth without convection in 2D

As a starting point we are interested in the two dimensional dendritic growth of the crystal without
convection. Both isotropic and anisotropic cases are simulated. The computational domain is 2D
box (−4 ≤ x ≤ 4) × (0 ≤ y ≤ 4). The equations (2.1) and (2.2) is simulated with the following
initial parameters: the sharp interface parameters is taken as µ = 117.5, anisotropy parameter was
ε = 0.005 and d0 = 0.001191, the typical case of undercooling is assumed, θ∞ = −0.5.

As mentioned above, the Gibbs-Thomson kinetics at the interface is −θi = V/µ+d0/R, where R is
the local radius of curvature and V is the normal speed of the interface. In [6], it has been shown
that by solving equations (2.24), (2.25) and using jump condition, (2.29), the following formula
can be obtained:

−θi =
τV

Wλ
+

1

R

W

λ
, (3.1)

Using this relation and specification of a desired interface width, the phase field parameters λ, τ
and W are determined: the interface thickness W = 0.02, capillary length λ = 16.792, kinetic
undercooling τ = 0.002858, also, ∆c = 0.5, κ = 1, ErrFact = 3, ErrFact2 = 4. The initial value is
chosen as a circle with radius r = 0.03573 at the origin.

Figure 3.1: Isotherms around the tip

The discontinuity integrals occurring in the interface are computed as the formulation from previous
chapter. Simulation is done for times from 0 to 0.75, the shape evolves into typical needle crystal,
where the tip attains a nearly parabolic shape and a constant speed. The Figure 3.1 shows a
close-up view of the tip region at the time t = 0.75. The temperature is quite smooth, and the
jump in temperature is very well defined.
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The temperature gradient changes over 1-2 elements at the interface and the region where the
phase field varies is much wider then this.

The following figures describe the isotropic dendritic growth of the crystal in 2D, Figure 3.2.

(a) (b)

(c) (d)

Figure 3.2: The phase field interface and mesh in different time: a) initial value, t = 0; b) t = 0.5;
c) t = 0.75, d) t = 1.6

For anisotropic case, the modified 2D Laplacian (2.5) is included to the model and with the same
parameters we obtain the results as the following figures, Figure 3.3.

(a) (b)

(c) (d)

Figure 3.3: The phase field interface and mesh in different time: a) initial value, t = 0; b) t = 0.25;
c) t = 0.50, d) t = 0.75
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The simulation is done with different values of parameters. Our attention was focused in the
shape of interface when different parameters are used. Obtained results showed that the shapes
are almost the same and the entire history leading to this is the same, and does not depend on
width parameter.

3.2 Convection effect to the 2D dendritic growth

Using the model constructed in chapter 1 we have done the simulations of the fluid flow around
the dendrite with different values of Peclet and Prandtl numbers. Each simulation took a several
hours in the computers AMD Athlon 1.667 MHz with Debian Linux in Department of Mechanics.
For instance, the result described in figure 3.4 is computed almost is 24-28 hours. Also, speed of
the program depends on selection of the smallest size of element in finite element refinements.

We say the upstream part of crystal positioned to the left of the tip of the vertical main stem, and
another part of crystal is the downstream part.

The parameters used in our all simulations are: τ = 0.002858, εp = 0.01, W = 0.02, λ = 16.792,
∆c = 0.5, γ = 0.05, Errfact = 3, Errfact2 = 4.

Figure 3.4: The solid/liquid interface at t = 0.8.. The parameters are: ∆c = 0.5, Pe = 0.5 and
Pr = 0.03.

Figure 3.4 shows the solid/liquid interface and the isotherms for Pr = 0.003 and Pe = 0.5 at t = 1.
The small asymmetry in the thermal field shows the convection affect. Since, Pectel number is
small, the corresponding Reynolds number is also small. Therefore, the flow follows the interface
without any effect to the main stem directions, but the sidebranches of the vertical main stem are
promoted to grow on the upstream and downstream. When the Pe = 0 the sidebranches do not
loose their symmetry, but with Pe = 0.5 the sidebranches have lost their symmetry even though
the main stem evolves in the same way.

The following firgure 3.5 shows the case of Pr = 0.03 and Pr = 3 at time t = 0.8. Here it is
obvious that the morphology of the crystal is quite different as the above figure. The corresponding
Reynolds number is high enough to create a small separated vortex in the bulk. The vertical main
stem starts to tilt towards the upstream direction. In the upstream, the direction of sidebranches
of the main stem is rapid and also starts very close to the tip.
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(a) (b)

(c) (d)

Figure 3.5: The solid/liquid interface in different times: a) t = 0.4; b) t = 0.6; c) t = 0.8, d)
t = 1. Innermost contour is solid/liquid interface and the other contours are isotherms
for θ = −0.35,−0.3,−0.25,−0.2,−0.15,−0.1,−0.05. The parameters are: ∆c = 0.5,
Pe = 3 and Pr = 0.03.

The velocity is shown in the following figures, Firgure 3.6 and Firgure 3.7. It is easy to notice that
there is a strong vortex behind the vertical tip. With higher Peclet number, the flow effects more
the crystal. This can be seen in these two figures at the same time with different Pectel numbers:

Figure 3.6: Velocity at t = 0.7 for Pe = 3
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3.2. CONVECTION EFFECT TO THE 2D DENDRITIC GROWTH

Figure 3.7: Velocity at t = 0.7 for Pe = 5

The simulations above show that for low Peclet number the growth is mainly controlled by the
thermal diffusion. If the Peclet number increases, the sidebranches get controlled by the convection,
the competitive growth and isothermal coarsening, and the vertical main stem start to tilt.

The simulation above is done with a low Prandtl number, because most of metals have Pr < 0.1.
However many experiments are done with organic materials (SCN, PVA) and these have higher
Prandtl number. Therefore, we are also interested in that and used higher Prandtl number in our
simulation.

First, the program was run with Pr = 23 (SCN has the same Prandtl number) and Pe = 2.5.
The small change occurs in morphology of the crystal and this is similar to the results of our first
simulation, Figure 3.4.

Figure 3.8: The solid/liquid interface at t = 0.8. The parameters are: ∆c = 0.5, Pe = 2.5 and
Pr = 23.

Then, the Peclet number is increased to Pe = 10, Figure 3.9:
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Figure 3.9: The solid/liquid interface at t = 0.8. The parameters are: ∆c = 0.5, Pe = 10 and
Pr = 23.

The above simulations allow to conclude some important factors. The growth of the dendrite is
controlled by heat transfer at the solid/liquid interface. When the forced flow is increased, the
vertical main stem tilts increasingly towards the upstream direction. Also, the saidebranches on
the vertical main stem are highly affected by the flow. The sidebranches at the upstream increase
toward the flow, and the sidebranches on the downstream side are inhibited by the flow. At
sufficient Pectel number the tip of the vertical main stem starts to split and this probably will
finally resemble isotropic growth.

3.3 Three dimensional dendritic growth

The semisharp method in two dimensional case is simulated with and without convection. The
results obtained in the above simulations are almost the same as results of standard phase field
method. The same parameters as a [9] are used in the simulations, and the same influence of the
convection is obtained.

Now, we are interested in three dimensional dendrite growth of the crystal. The three dimensional
simulation without convection was studied by Irina Loginova [10], Karma [11], and with convection
effect by Yili Lu, C. Beckermann and A. Karma [11], Jun-Ho Jeong, Nigel Goldenfeld and Jonatham
A. Dantzig [12], using standard phase field model.

Irina Loginova [10] and A. Karma (and others) [11] studied the three dimensional dendritic growth
by an adaptive finite difference method. The adaptive finite element method for standard phase
field model is used in [12].

The interesting task is developing the semisharp phase field method into three dimensions. The
discontinuity of temperature gradient at the interface is avoided by computing an integration over
the surface. That helps us to know a solution of the model precisely at the interface. Thus, the
interface thickness can be chosen a bit thicker.

As a test of written integration over the surface for discontinuity of gradient at the interface, we
introduce the following Laplacian with a simple plane equation at three dimensional box (−4 ≤
x ≤ 4) × (−4 ≤ y ≤ 4) × (0 ≤ z ≤ 4):

∇2u1(x, y, z) = 0,

u2 = x.
(3.2)
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The variation form for finite elements method including discontinuity integration is written as:

∫

Ω

∇v(x, y, z) · ∇u1(x, y, z)dΩ −
∫

Ω

(DiscInt(u2(x, y, z), 1 · v(x, y, z)))dΩ = 0,

∫

Ω

v(x, y, z)u2(x, y, z)dΩ =

∫

Ω

v(x, y, z) · xdΩ,

(3.3)

where v(x, y, z) is the test function. The following figure obtained as a result, Figure 3.10.

Figure 3.10: 3D solution to the equation (3.2)

The discontinuity integration is tested at the point x = 0. The result shows thatthe solution grows
until this point, then stays constant.

The implementation of integration over the surface in Maple can be found from Appendix 3. The
programming language C is used to derive the functions.

Then, the dendritic growth of the crystal is solved using semisharp phase field method is three
dimensions. The tested above modification implemented into the model.

The sphere with radius r = 0.03573 is used as an initial value at the origin. An interface width and
other parameters obtained from the relation (3.1) are chosen as the same value in two dimensions:
W = 0.02, λ = 16.792, τ = 0.002858. Other parameters used in adaptivity error control and
anisotropy term are: Errfact = 3, Errfact2 = 200 and γ = 0.05. According to the stability,
the time-step was ∆t = 0.000005 initially, and it increases by one percent in each step until
∆t = 0.0005. This speeds up the computations.

Both cases, isotropic and anisotropic dendritic growth are simulated. All calculations were made by
computer Dexter in Department of Mechanics. Dexter is an AMD Opteron 144 1.8 GHz computer
with 2 Gb memory that runs Debian Linux. The calculation of 3D isotropic dendritic growth took
almost 50 hours. The computational domain is the box with size of(0 ≤ x ≤ 2)×(0 ≤ y ≤ 2)×(0 ≤
z ≤ 2). The domain has initially 48000 elements (tetrahedrons) and 9261 nodes for isotropic case.
These increase by adapting refinement on each time-step and at t = 0.09 mesh has 718246 elements
and 128811 nodes.

The following figures are the results of isotropic dendritic growth using semisharp phase field
method:
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(a) (b)

(c) (d)

(e) (f)

Figure 3.11: The solid/liquid interface on a 2 × 2 × 2 cubic lattice in different times: a) t = 0; b)
t = 0.03; c) t = 0.045, d) t = 0.06, e) t = 0.075, f) t = 0.09.
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The simulation was performed in the first octant (x, y, z ≥ 0) with a spherical nucleus centered at
the origin as an initial condition. The solid/liquid boundary shown here corresponds to the φ = 0
surface reconstructed by the reflection about the x = y = z = 0 planes.

Then, the anisotropy dendritic growth is simulated. The initial condition is the same as isotropic
case. Here, the 3D domain is refined into 162000 elements and 29791 nodes initially, and at time
t = 0.083 it has 1115838 elements and 207416 nodes. The Figure 3.12 is the results of the simulation
in different times. Compare with previous simulations, when using a standard phase field method,
can say that the obtained results are almost the same.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.12: The solid/liquid interface on a 2 × 2 × 2 cubic lattice in different times: a) t = 0; b)
t = 0.03; c) t = 0.045, d) t = 0.06, e) t = 0.075, f) t = 0.09. The structure is seen from
an angle where all six directions are visible.
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Conclusions

In this thesis the semisharp phase field method is studied for solving solidification problems in two
and three dimensions.

First, the two dimensional dendritic growth of the crystal is studied without convection effects.
The perfect results proved that the method can be used to study such problems. An important
improvement is that the interface width is not so important for the solution of solid/liquid interface.
This means, solution can be calculated exactly at the interface using techniques as of integration
over the element in finite elements method. In standard phase field method, solution at the
interface was calculated in the finite width - interface thickness. To have an accurate solution, the
interface thickness should be chosen small, which is very expensive in calculation. Therefore, the
modified method - semisharp much better for calculation and computation time, and it gives the
same results as a standard phase field method.

Then, convection effect to the dendrite was in our focus. In order to observe, the convective effect
simulations were done with different Peclet and Prandtl numbers. Obtained results showed, that
with the increase of Peclet number the flow effects the dendrite increases too.

Generally, affected by flow, the vertical tip of a dendrite tilts increasingly towards the upstream
direction, and the sidebranches on the vertical tip are also highly affected. The sidebranches on
the left side of the vertical tip are promoted and the distance from the tip to the first sidebranches
decreases as the Peclet number increases. However, the sidebranches on the right side of the vertical
tip are inhibited by the flow and the distance from the tip to the first sidebranch increases as the
Peclet number increases. Also, at sufficiently high Peclet number the tip of the vertical main stem
starts to split and this probably, finally, will resemble isotropic growth. We observe that when the
Prandtl number increases, the flow does not affect the dendrite.

Consequently, these results allow to conclude that, for Pe > 1 the flow controls the dendritic
growth, otherwise, the heat diffusion controls the growth.

The more interesting task was simulation of three dimensional dendritic growth using the semisharp
phase field method. Both isotropic and anisotropic cases were simulated, and one can say that
the results are perfect and are the same as the results of standard phase field method. Anisotropy
term in three dimensions was included in the model and gave the right solution.

All these results are obtained during the period allocated for the master thesis. We have other
ideas too, however, the restricted time did not allow to pursue them here. For instance, since
computation of the 3D code was too slow in a single computer, one can modify an existing parallel
code to run in parallel computers. Then, convection effect could be included to the semisharp
phase field method to study the differences, advantages, computational time and speed of the code
with standard phase field method, which would be interesting.

As mentioned above repeatedly, the toolbox FemLego was used in all simulations. It helps to solve
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several PDE’s and avoid errors in inputting the formulations, easy to change the source code in
C or FORTRAN according to certain problems. I would wish to see FemLego as a great software
which helps to research and solve many scientific and realistic problems.
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