
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS
Int. J. Numer. Meth. Fluids 0000; 00:1–23 Prepared using fldauth.cls [Version: 2002/09/18 v1.01]

Residual based artificial viscosity for simulation of turbulent
compressible flow using adaptive finite element methods

Murtazo Nazarova,∗,† and Johan Hoffmanb,‡

aDepartment of Mathematics, Texas A&M University 3368 TAMU, College Station, TX 77843, USA
bComputational Technology Laboratory, School of Computer Science and Communication, Royal Institute of

Technology KTH, SE-10044 Stockholm, Sweden.

SUMMARY

In this paper we present a finite element method with a residual based artificial viscosity for simulation
of turbulent compressible flow, with adaptive mesh refinement based on a posteriori error estimation
with sensitivity information from an associated dual problem. The artificial viscosity acts as a
numerical stabilization, as shock-capturing, and as turbulence capturing for large eddy simulation
(LES) of turbulent flow. The adaptive method resolves parts of the flow indicated by the a posteriori
error estimates, but leaves shocks and turbulence under-resolved in a LES. The method is tested for
examples in 2D and 3D, and is validated against experimental data. Copyright c© 0000 John Wiley
& Sons, Ltd.
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1. Introduction

We consider the problem of computational simulation of turbulent compressible flow, where we
seek a method that is numerically stable, computationally inexpensive and easy to implement,
and which is general enough to allow for reliable simulation of flow in complex geometry, and
over a range of Reynolds numbers and Mach numbers. We present an adaptive finite element
method with residual based artificial viscosity, to model the effect of scales not resolved by the
computational mesh, with the dual purpose of turbulence capturing and shock capturing. The
mesh is adaptively refined according to a posteriori error estimates in the form of residuals
weighted by the solution to an associated dual problem. The artificial viscosity is only active
where the residual is large, corresponding to the solution being non-smooth, e.g. in shocks
and turbulence. Stability of the finite element method is directly connected to the artificial
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2 M. NAZAROV, J. HOFFMAN

viscosity, which constitutes the only numerical stabilization of the method. Since the artificial
viscosity is proportional to the residual, minimal artificial viscosity is introduced in smooth
parts of the flow. This work is an extension of [1], in which a similar method was proposed
for unsteady compressible flow, but where an additional stabilization term was added in the
form of a least squares stabilization of the convective part of the equations. A space-time finite
element approximation was used, with continuous linear approximation in space and time,
but since the test functions were constant in time a fully consistent least squares stabilization
could not be constructed. Here we drop the least squares stabilization to improve accuracy in
smooth parts of the flow, since the present stabilization is fully consistent, as it is based on
the residuals of the equations.

Large eddy simulation (LES) can be interpreted as a form of turbulence capturing, where
only the largest scales of the flow are resolved, while the small scales are modeled in a so called
subgrid model. LES is based on a filter applied to the basic equations, which leads to new
equations for the filtered variables together with subgrid terms that need to be modeled, see e.g.
[2]. For compressible flow, the main focus for numerical methods has been to compute sharp and
monotone approximations of shocks, see e.g. [3, 4, 5]. Methods for turbulent compressible flow
either combine techniques separately developed for shock capturing and turbulence capturing,
see e.g. [6, 7], or try to develop a unified approach, see e.g. [8]. Typical techniques introduce
dissipation in the problem, modeling the effect of unresolved scales in the flow. Sources of
artificial dissipation can thus be subgrid modeling, shock capturing or numerical dissipation
(artificial viscosity, upwinding methods, stabilized finite element methods, etc.).

In [9, 10, 11] an approach to incompressible turbulent flow is developed, which we refer to
as a General Galerkin (G2) method, where we let a residual based numerical stabilization in
a finite element method play the role of a LES subgrid model, similar to a so called Implicit
LES [2, 12]. Related work in the finite element community include LES based on variational
multiscale methods [13, 14]. In our approach we avoid filtering of the equations and multiscale
decomposition of the solution, but instead interpret the numerical approximations as weak
solutions, where we adaptively refine the computational mesh with respect to an a posteriori
estimate of the error in chosen output functionals, see e.g. [15, 16].

In this paper we extend our work to compressible turbulent flow, where a residual based
artificial viscosity offers an unified approach to (i) numerical stabilization, (ii) turbulence and
(iii) shock capturing. That a unified approach is possible should not come as a surprise, since
artificial viscosities of various forms have been used for each of the three objectives (i)-(iii).
In particular, the residual based artificial viscosity takes the same basic form as the classical
Smagorinsky subgrid model [17], but with the rate of strain tensor replaced by the residual of
the equations. The method we propose is closely related to the entropy viscosity approach as
numerical stabilization [18, 19] (with a different choice of artificial viscosity), stabilized finite
element methods such as SUPG and SD [5, 20, 21] (shock capturing without the advective
stabilization), and hyperviscosity methods [22, 8, 23] (with a different artificial viscosity). Our
motivation for choosing a residual based artificial viscosity is that it is a consistent stabilization,
which is simple to implement for general finite element formulations, and which we find to be
numerically stable for a range of Reynolds numbers and Mach numbers.

To test the functionality of the method we present numerical tests, for which experimental
results are available, where we find that our method is numerically stable and that the
numerical approximations closely match the experimental reference values, with very few
degrees of freedom. We present a posteriori estimates of the error in output functionals of
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RESIDUAL BASED ARTIFICIAL VISCOSITY FOR COMPRESSIBLE FLOW 3

the solution, which are used as error indicators for local mesh refinement.
The outline of the paper is the following: in Section 2 we introduce the basic equations, and

in Section 3 we present the numerical method with the residual based artificial viscosity, and
comment on its relation to other methods. In Section 4 we review a posteriori error estimation
underlying the adaptive algorithm, and in Section 5 we present numerical results.

2. The basic equations

We consider fluid enclosed in a fixed (open) domain Ω in three-dimensional space R
3 with

boundary Γ over a time interval I = [0, t̂ ] with initial time zero and final time t̂.
We seek the density ρ, momentum m = ρu, with u = (u1,u2,u3) the velocity, and the total

energy E as functions of (x, t) ∈ Q = Ω × I, where x = (x1,x2,x3) denotes the coordinates
in R

3. The equations for û ≡ (ρ,m, E) read:

∂tρ+∇ · (ρu) = 0 in Q,
∂tm+∇ · (m⊗ u+ pI) = g +∇ · (2µε(u) + λ(∇ · u)I) in Q,

∂tE +∇ · (Eu+ pu) = ∇ · ((2µε(u) + λ(∇ · u)) · u+ κ∇T ) in Q,

û(·, 0) = û
0 in Ω,

(2.1)

where p = p(x, t) is the pressure of the fluid, ⊗ denotes the tensor product, I denotes the
identity matrix in R

3, ∂t = ∂/∂t and g = (g1, g2, g3) is a given volume force (like gravity)
acting on the fluid, û0 = û

0(x) represents initial conditions, and

ε(u) =
1

2
(∇u+∇uT ),

is the strain rate tensor and κ ≥ 0 the thermal conduction parameter. The viscosity parameters
are assumed to satisfy conditions µ > 0, λ + 2µ > 0. For simplicity in our approximation we
choose λ = 0.
Further, the total energy E = k + θ, where k = ρ|u|2/2 is the kinetic energy, with

|u|2 ≡ u2
1 + u2

2 + u2
3, and θ = ρT is the internal energy with T the temperature scaled so

that cv = 1, where cv is the heat capacity under constant volume.
For high Reynolds numbers we may approximate the Navier-Stokes equations by inviscid

flow, where the viscosity coefficients and thermal conductivity are zero, resulting in the Euler
equation (2.1):

∂tρ+∇ · (ρu) = 0 in Q,
∂tm+∇ · (m⊗ u+ pI) = g in Q,

∂tE +∇ · (Eu+ pu) = 0 in Q,

û(·, 0) = û
0 in Ω.

(2.2)

The number of unknowns including the pressure is six but there are only five equations in
(2.1)-(2.2), and so we close the systems with the state equation of a perfect gas ;

p = (γ − 1)θ = (γ − 1)ρT = (γ − 1)(E − ρ|u|2/2), (2.3)

expressing the pressure p as a function of density ρ and temperature T , where γ = cp is the
adiabatic index with cp the heat capacity under constant pressure, and (γ − 1) is the gas

constant.
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4 M. NAZAROV, J. HOFFMAN

For a perfect gas, the speed of sound c is given by c2 = γ(γ − 1)T , and the Mach number is
defined as M = |u|/c, with u the velocity of the gas.

3. Residual based artificial viscosity

Similar to shock capturing, we may use the term turbulence capturing, to mean computational
methods without full resolution of all physical scales in the problem. Large eddy simulation
(LES) is an example of turbulence capturing, where the flow is divided into resolved
and unresolved scales by filtering the equations [2], or for finite element methods, by a
decomposition of the approximation spaces into resolved and unresolved scales [13, 14].
A subgrid model is used to model the unresolved scales, typically by the introduction of
dissipation. Either the subgrid model is constructed from physics arguments, or it is considered
to be an effect of the numerical discretization, a so called Implicit LES [2]. In this paper we
extend to compressible flow our work on incompressible turbulent flow, where we avoid filtering
and scale decomposition, to instead interpret a finite element approximation as a weak solution
with error control in functional output [9, 10, 11]. For a discussion on weak solutions as a model
for high Reynolds number flow, see e.g. [9, 24, 25].

Residual based numerical stabilization of finite element methods for compressible flow was
developed already in the 1980s [26, 27, 20], and has received continuous interest since then,
see e.g. [28, 29]. The most well-known methods, such as SUPG, SD and GLS, take the form of
a least squares stabilization together with shock capturing. The fact that the stabilization is
based on the residual assures high accuracy in smooth parts of the flow. Various modifications
of the basic methods have been developed, where the high order character of the stabilization
is maintained. This includes multiscale approaches, where the stabilization is only active at the
finest scales [30, 31, 14]. In relation to this family of methods, what we propose in this paper
is simply to drop the least squares stabilization, and keep only the shock capturing terms.
This approach is inspired by the work of Guermond and co-workers [18, 19], where a similar
method is proposed, but with the artificial viscosity based on an entropy residual.

In the following sections we describe the finite element method we use in this paper,
together with the residual based artificial viscosity, with the combined purpose of numerical
stabilization, shock capturing and turbulence capturing.

Remark 3.1. The term of “shock-capturing” which is used in this paper is consistent with the
definition of the shock-capturing term proposed by Johnson, Szepessy and Hansbo [32, 33, 34],
it is not the same term used by Hughes and Mallet [35]. The discontinuity-capturing or shock-
capturing terms proposed by Hughes and Mallet adds diffusion only in the crosswind direction
of the flow close to discontinuities and shocks. However, according to our knowledge, there
is no theoretical analyses explaining the robustness and convergence of the method available
in the literature. Johnson and Szepessy modified this term such that it adds viscosity locally
in all directions close to discontinuities. With this modification they were able to prove some
important analytical results on the stabilized finite element methods. Dropping the streamline
diffusion terms results in a method which is very similar to many artificial viscosity methods
used in finite difference and finite volume communities. We have not tried to test the method
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RESIDUAL BASED ARTIFICIAL VISCOSITY FOR COMPRESSIBLE FLOW 5

used by Hughes and Mallet with only a discontinuity capturing term, therefore we do not
conclude that a similar approach works when only the shock-capturing in a crosswind direction
is used.

3.1. Finite element approximation

Let 0 = t0 < t1 < ... < tN = t̂, be a sequence of discrete time steps with associated time
intervals In = (tn−1, tn] of length ∆tn = tn − tn−1, and let Wh ⊂ H1(Ω) be a finite element
space consisting of continuous piecewise linear functions on a fixed mesh Th = {K} of mesh
size hK < 1, with elements K. We first discretize the equations in space by a finite element
method, and we then solve the resulting system in time with 3rd order explicit strong stability
preserving Runge-Kutta methods.
The finite element spatial discretization of the compressible Euler equations (2.2) reads: for

n = 1, 2, · · · , N find ûh ≡ uh(t) ≡ (ρh(t),mh(t), Eh(t)) with ûh(t) ∈ Xh ≡ Wh ×W d
h ×Wh,

such that

(∂tûh, v̂h) + (∇ · f(ûh),vh) + (∇ · fvisc(ûh),vh) = 0, (3.1)

for all test functions v̂h = (vρh, v
m

h , vEh ) ∈ Xh, where

(v,w) =
∑

K∈Th

∫

K

v ·w dx.

We denote by ûn the solution at the discrete time steps tn, that is ûn ≡ ûh(tn).
We define un, pn and Tn to be finite element functions in W d

h , Wh and Wh, respectively,
which are defined by their nodal values given by

un(N i) = mn(N i)/ρn(N i),

pn(N i) = (γ − 1)ρn(N i)Tn(N i),

Tn(N i) = En(N i)/ρn(N i)− |un(N i)|
2/2

(3.2)

for all nodes N i in the mesh Th.
The fluxes at t = tn are defined as follows:

f(ûh) =







ρun

mn ⊗ un + pnI

(E + p)un






, fvisc(ûh) =







−νn∇ρn

−µnε(un)

−µnε(un) · un − κn∇Tn






, (3.3)

where the strain rate tensor is defined as above.
The dynamic artificial viscosity µn ≡ µh(tn) is computed as follows: Let ∆t be a constant

time-step and ûn, ûn−1, ûn−2 are solutions at times tn, tn−1, tn−2 respectively, and ûn is
continuous piecewise linear in space. Then, for each cell K we compute the residuals

Rρ(ûn) =
1

2∆t
(3ρn − 4ρn−1 + ρn−2) +∇ · (ρnun),

Rm(ûn) =
1

2∆t
(3mn − 4mn−1 +mn−2) +∇ · (mn ⊗ un + pnI),

RE(ûn) =
1

2∆t
(3En − 4En−1 + En−2) +∇ · (Enun + pnun).

(3.4)
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6 M. NAZAROV, J. HOFFMAN

We then take the maximum of the absolute value of the residual in each cell to compute the
following residual based artificial viscosity:

µ1|K = C1h
2
K‖ρn − ρ̄n‖∞,Ω max

(

‖Rρ‖∞,K

‖ρn − ρ̄n‖∞,Ω

,

‖Rm‖∞,K

‖mn − m̄n‖∞,Ω

,
‖RE‖∞,K

‖En − Ēn‖∞,Ω

)

,

(3.5)

where ‖ρn − ρ̄n‖∞,Ω, ‖mn − m̄n‖∞,Ω, ‖En − Ēn‖∞,Ω are normalization terms, with ρ̄n, m̄n, Ē
denoting a space averaged values over Ω of the density, momentum and energy.

As in [18, 19] we compute the maximum artificial viscosity, µmax as

µmax|K = C2hK‖ρn‖∞,K‖|un|+
√

γTn‖∞,K , (3.6)

and

µn|K = min(µmax|K , µ1|K), κn|K =
P

γ − 1
µn|K , νn|K =

P

‖ρn‖∞,K

µn|K , (3.7)

where P ≈ 0.1 is an artificial Prandtl number, C1 = 1 typically and from simple 1D analyses
it is easy to show that C2 = 0.5.

3.2. Time-stepping

The time-stepping is done by explicit 3rd order Runge-Kutta methods. The r stage explicit
Runge-Kutta method for (3.1) is defined as follows:

ûn+1 = ûn +∆tn(b1k1 + b2k2 + · · ·+ brkr), (3.8)

where the coefficients bi are obtained from the Butcher tableau and ki is recursively computed
by solving a mass matrix linear system at each step.
The mass matrix is symmetric positive definite and is assembled once, while the right hand

side vector for computing ki is assembled at every stage. There are a number of iterative
solvers that can solve the system fast.
For a given CFL number the timestep is computed by

∆tn = CFL min
K∈Th

(hK/(|un|+ c))K ,

where hK is the cell diameter for element K in the mesh Th and the CFL number in the
numerical examples of this paper is typically chosen as 0.4.

3.3. Boundary conditions

In this paper we consider wind tunnel problems in two and three space dimensions. The
inflow and outflow boundary conditions are imposed according to characteristic variables on
the boundary nodes, see for example Löhner [36]. For the supersonic case, for instance, all
variables are imposed at inflow, while nothing is set at outflow.

We use a slip condition at the wall boundaries, where the normal velocity is set to be zero
at the boundary. This condition is also referred to as a reflecting boundary condition.

The details of the implementation of the different boundary conditions are given in [37].
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4. Adaptive method

A posteriori error estimation underlies our adaptive algorithm, in the form of a bound on the
error in a functional of the solution. For a turbulent solution, pointwise convergence of an
approximate solution to an exact solution cannot be expected, but mean value functionals of
the solution can still be well-posed, see e.g. [38].

4.1. A posteriori error estimation

To estimate the error in a target functional M(û), we introduce the following dual problem:
Find Φ = (φρ, φm, φE) such that

−∂tΦ− f ′(ûh)
T∇Φ = ΨQ in Q,

(n · f ′(ûh))
TΦ = ΨΓ on Γ× I,

Φ(·, t̂) = 0 in Ω,

(4.1)

where φρ is dual density, φm dual momentum and φE dual energy, f ′(ûh)
T is the transpose of

the Jacobian matrix f ′(ûh), and Ψ ≡ {ΨQ,ΨΓ} with ΨQ ∈ L2

(

I;L2(Ω)× [L2(Ω)]
d × L2(Ω)

)

and ΨΓ ∈ L2

(

I;L2(Γ)× [L2(Γ)]
d × L2(Γ)

)

are source terms, which define a target functional
by

M(û) =

∫

Q

û ·ΨQ dx dt+

∫

I

∫

Γ

û ·ΨΓ dS dt. (4.2)

The expression n · f ′(ûh) is referred to as the normal flux Jacobian, where n is an outward
unit normal to Γ. Boundary conditions for the dual problem depend on the target functional
and boundary conditions of the corresponding primal equation.
Since we cannot solve the continuous problem (4.1) analytically, we replace Φ by a finite

element approximation Φh. We use a similar finite element method to compute Φh, as we use
for the primal problem. With standard techniques, we can derive the following a posteriori
error estimate [39, 1, 40, 10]:

|M(û)−M(ûh)| ≤
∑

n

∑

K∈Tn

∫

In

ChhK |R(ûh)|K · |DΦ|K

+
∑

n

∑

K∈Tn

∫

In

|V is(ûh;πhΦ)K | dt+ h.o.t.

≡
∑

n,K

EK
n + h.o.t.,

(4.3)

where M(û) is a target functional, R(ûh) = (Rρ(ûh), Rm(ûh), RE(ûh)) is the residual of the
Euler equations (2.2), DΦ denotes a space-time derivative of Φ, Ch = 1/2 is an interpolation
constant and h.o.t. denotes higher order terms from the linearization of the system. The term

V is(ûh;πhΦ) := (∇ · fvisc(ûh), πhΦ)

denotes a contribution from the residual based artificial viscosity in the finite element
discretization.
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8 M. NAZAROV, J. HOFFMAN

4.2. Computation of the drag coefficient

We compute the drag coefficient of a body as:

Cpd =
Fpd

1/2ρ∞|u∞|2A
, (4.4)

where Fpd = 1

|I|

∫

I

∫

Γbody
p(n · epd) dS dt is the drag force, epd = (1, 0, 0)T is a unit vector in

the flow direction, Γbody is a surface of the body, ρ∞ is the free stream density and u∞ is the
free stream velocity of the fluid, and A is a reference area. In this paper we approximate high
Reynolds number flows by the Euler equations together with residual based artificial viscosity.
The pressure drag has most contribution to the total drag force for the bluff body problems
we consider here, and thus shear stress is neglected.
The dual problem is stabilized in the same way as the primal problem in Section 3 and is

solved backward in time. We choose the drag coefficient of a body as target functional, so
that M(û) = 1

|I|

∫

I

∫

Γbody
pn · epd dS dt. This corresponds to that ΨQ = 0, and we have the

following boundary condition for the dual problem (4.1):

φm · n =
1

|I|
edp on Γbody × I,

φm · n = 0 on Γwall \ Γbody × I,

Φ = 0 on Γoutflow × I.

(4.5)

We formulate the following adaptive algorithm:

Algorithm 1. Given a tolerance TOL, start from an initial coarse mesh T 0
h , with k = 0:

1 Compute an approximation to the primal solution on T k
h ;

2 Compute an approximation of the dual solution on the same mesh;

3 Compute the error indicator defined in (4.3), if
∑

n,K EK
n < TOL, then STOP;

4 Refine a fixed fraction of cells in T k
h with largest error indicators to get a new mesh T k+1

h ;

5 Set k = k + 1 and go to 1.

Further, the estimate of the error in the drag coefficient Ēdp is obtained by normalization of
the total error:

Ēdp =

∑

n,K EK
n

1/2ρ∞|u∞|2A
, (4.6)

and we define a stability factor as

S =

∫

I

∑

K

|DΦ|K dt. (4.7)

Remark 4.1. According to our previous experience an error bound of the type (4.3) appears
to be a good indicator for adaptive mesh refinement, see e.g. [1, 16, 11]. However, since (4.3) is
overestimating the true target error M(û)−M(ûh), there is no theoretical evidence available
at this moment to show convergence of Algorithm 1. In our computational results shown in this
paper we observe that, though the target functional converges to its reference values the error
bound (4.3) may not always get smaller with mesh refinement. We leave a detailed analysis of
this issue for the future research.
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5. Numerical results

To test our method we perform numerical experiments, in the form of external flow past a
body in a wind tunnel. In particular, we consider flow around a circular cylinder and a sphere.
The flow is complex, with compressibility effects such as shocks, contact discontinuities and
rarefaction waves, separation and turbulent wakes, see e.g. [41, 42, 43].

In the simulations we use dimensionless variables. If L is a characteristic length, then we
normalize the density ρ∗, the speed of sound c∗ and the temperature T ∗, by their free stream
values ρ∞, c∞ and T∞ as the following: ρ = ρ∗

ρ∞

, c = c∗

c∞
, T = T∗

T∞

, p = p∗

ρ∞c2
∞

, u = u∗

c∞
,

M∞ = u∗

c∞
, x = x

∗

L
, and we use non-dimensional time t = t∗c∞

L
.

Accurate computation of aerodynamic forces, such as drag and lift, is not trivial. For high
Mach numbers and Reynolds numbers, wave drag due to shocks is the main contribution to
drag force [44], and therefore the inviscid Euler equations are a reasonable approximation for
the transonic and supersonic flows we consider in this paper.

First we study two problems in two space dimensions where numerical reference results are
available: supersonic flow in a wind tunnel with forward-facing step, and flow past a circular
cylinder. The purpose of these test problems is to illustrate some basic features of the method.
We show that the residual based artificial viscosity presented in this paper gives accurate
results by adding small amounts of viscosity only in regions with sharp discontinuities, and
the wake. The adaptive algorithm is not used in these test cases, instead the computations
are done for given fixed meshes. We show that the artificial viscosity is localized for the fine
mesh, however the basic compressible flow features for the problems are still captured well for
the coarse mesh.

We then continue with benchmark problems in three space dimensions including turbulent,
where experimental data is available.

5.1. Mach 3 flow in a wing tunnel with a step

We consider Mach 3 flow in a wind tunnel with a step. This is a well known benchmark used
for testing new methods since [3].

The wind tunnel with length 3 and height 1 contains a step with height 0.2, situated at a
distance 0.6 from the inflow. The initial data for the problem is ρ = 1.4,m = (4.2, 0), e = 8.8.
The inflow boundary condition has the same values as the initial state, a slip boundary
condition is applied on the walls of the channel. We are in the supersonic regime, so all
characteristics of the Euler equations go out of the outflow boundary, therefore no physical
boundary conditions are needed at the outflow. To avoid an unphysical numerical boundary
layer created from the singular point of the step we round off the corner with a relatively
small fixed curvature. This approach removes any numerical errors from the singularity, and
there is no need to apply any special treatment of the boundary condition as it is suggested
by Woodward and Collela in [3]. Usually, for numerical tests this simulation is done until time
t = 4.

We use three different meshes: a coarse mesh with 6 939 nodes, 13 512 cells and h = 0.025;
a medium with 27 389 nodes, 54 048 cells and h = 0.0125; and a fine mesh with 153 864
nodes, 306 156 cells and h = 0.00763. We present our results in Figure 1. We plot 30 contours
of the density and the magnitude of the residual based artificial viscosity from the coarse,
medium and fine meshes. We observe that even for the coarsest mesh the method captures the
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10 M. NAZAROV, J. HOFFMAN

right locations of the strong shock and a contact discontinuity is clearly visible. The contact
discontinuity is resolved well in the finest mesh. The medium mesh corresponds approximately
to the same mesh of size 80 × 240 which is used in [3]. The approximation obtained by the
residual based viscosity used in this paper is comparable with the high order finite difference
schemes used in [3].

Figure 1. Wind-tunnel with forward-facing step: Colormap and 30 contours of density for the coarsest
mesh, h = 0.025, 0.1775 ≤ ρ ≤ 6.0906, 1.0e− 4 ≤ µ ≤ 0.0657, at the top, medium mesh, h = 0.0125,
0.1245 ≤ ρ ≤ 6.2552, 2.45e − 5 ≤ µ ≤ 0.0373, at the middle, and finest mesh, h = 0.00763,

0.1245 ≤ ρ ≤ 6.2552, 6.58e− 6 ≤ µ ≤ 0.0128, at the bottom.

5.2. Supersonic flow around a 2D circular cylinder

Consider a wind tunnel of size [0, 3] × [0, 2] with a circular cylinder of radius 0.2 located at
(0.8, 1). Inviscid supersonic flow with M = 2.52 enters the tunnel. The simulation is done for
two meshes: a coarse mesh of 5 992 nodes and 11 680 cells with mesh size hK ≈ 0.0395; and a
fine mesh of 94 048 nodes and 186 880 cells with mesh-size hK ≈ 0.00923.

We present results from the computation in Figure 2, where solutions from the coarse and
fine meshes are presented, at times t = 0.6 and t = 15. A detached strong bow shock develops
in front of the cylinder and gets reflected at the wall boundaries, creating a Mach stem, at
which a Rayleigh instability appears from the point of triple shocks. The Rayleigh instability
is difficult to capture, and high accuracy is needed in the numerical approximations [3]. We see
that even for the coarse mesh the instability pattern is here visible, and becomes more clear
for the fine mesh. At the earlier time the solution appears stable and symmetric, after which
the wake starts to oscillate, which is captured by the fine mesh.

The residual based artificial viscosity is plotted in the right column of Figure 2, where we
use a grayscale to show the magnitude of the artificial viscosity, which is found to be highly
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RESIDUAL BASED ARTIFICIAL VISCOSITY FOR COMPRESSIBLE FLOW 11

localized and becomes even sharper as the mesh is refined.

Figure 2. 2D supersonic flow: The color-map of the density and 30 isosurfaces of the Mach number
are plotted in the left column. The artificial viscosity is plotted at the right column. The first row:
coarse mesh t = 0.6, 0.12 ≤ ρ ≤ 5.04, 7.45e − 8 ≤ µn ≤ 0.0954 and 0.0135 ≤ M ≤ 3, 17; second row:
fine mesh t = 0.6, 0.036 ≤ ρ ≤ 5.28, 3.64e − 11 ≤ µn ≤ 0.0235 and 0.0031 ≤ M ≤ 4.078; third row:
coarse mesh t = 15, 0.66 ≤ ρ ≤ 5.23, 8.74e− 5 ≤ µn ≤ 0.120 and 0.0141 ≤ M ≤ 2.58; fourth row: fine

mesh t = 15, 0.157 ≤ ρ ≤ 5.354, 2.86e− 06 ≤ µn ≤ 0.0296 and 0.0126 ≤ M ≤ 3.463.

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 0000; 00:1–23
Prepared using fldauth.cls



12 M. NAZAROV, J. HOFFMAN

5.3. 3D compressible flow around a sphere

In this section we consider a wind tunnel in 3D with a sphere inside. The dimension of the
tunnel is [−3, 3]× [−0.5, 0.5]× [−0.5, 0.5], with a sphere of radius 0.037 located at the center of
origin. The initial mesh has 10 220 nodes and 55 492 tetrahedrons. We perform the adaptive
Algorithm 1 for different Mach numbers to compute the drag force as the target functional.

For this problem there are experimental data available for different Mach and Reynolds
numbers, see e.g. [45, 46, 47]. In our computations we consider three Mach numbers: a transonic
case M∞ = 0.98; and supersonic cases M∞ = 1.4, 3. The corresponding reference values for
drag is ∼ 0.84, ∼ 1 and ∼ 0.9, respectively [45, 46, 47]. The experimental analysis from the
given references show that the drag coefficient increases rapidly in the transonic regime, and
continues to increase up to M ∼ 1.65. Then, the value slowly decreases for further increase of
the Mach number.

Figure 3 shows drag coefficients from different adaptive iterations and Mach numbers. We
plot the corresponding experimental values with dashed lines. Figure 4 shows some more
computational results of the adaptive algorithm. The top-left figure presents the change of the
total error indicators Ēdp as a function of number of vertices. As we have mentioned earlier,
though this error indicator is good criterion for the mesh refinement, it is overestimating the
true error of the functional of interest. Since, the estimate (4.3) involves only absolute values,
we loose the advantage of cancellation in the integral of the error estimate and the approximate
solution of the dual problem also influence the accuracy of (4.3). The plot on the top-right
shows the value of the stability factor defined in (4.7). We then plot the mean value in time of
the drag coefficient for different adaptive iterations and Mach numbers in the lower-left plot of
Figure 4, and a quality indicator Cdp/Cdref in the lower-right plot. We note that the quality
of time averages for the case M = 0.98 would improve if we would use a longer time integral,
but that was computationally too expensive in this study.

The experimental data which we used in this paper have approximately 5 to 10% relative
errors. Therefore, the adaptive algorithm and the residual based viscosity gives good results
for the drag coefficient, with respect to the experimental data.

Figure 5 shows the computational approximations of the primal and dual solutions. In the
left column we plot the contours of the Mach numbers together with the velocity streamlines,
and in the right column we plot the contours of the first component of the dual momentum
φm1

together with the sonic line. The results are shown only for the finest meshes. For all
cases the separation of the flow starts from the attached shock waves. As the Mach number
increases the position of the attached shock moves towards the back of the sphere. Therefore,
the recirculation region behind the sphere shrinks. We see from the figures that the flow behaves
more steadily and has a symmetric flow pattern for higher Mach numbers. Moreover, the dual
solution is large in the wake for the transonic case, while it is not for the supersonic case; it
shows that the wake needs to be resolved accurately for lower Mach numbers, whereas the
upstream and the central parts of the bow shock is most important for the supersonic regime.

We plot the initial mesh with 10 220 vertices and 55 492 tetrahedrons in the first row of
Figure 6. After each iteration of the adaptive algorithm 5% of the cells with the highest error
contribution are marked for the refinement. The second row is the mesh which is obtained
after nine adaptive iterations for M∞ = 0.98, with 57 442 vertices and 308 600 cells. The
third and fourth rows describe the final mesh for M∞ = 1.4, with 61 097 vertices and 329 604
cells, and M∞ = 3, with 57 442 vertices and 308 600 cells, respectively. The left column of
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Figure 6 is the xz-plane at y = 0 and the right column is a zoomed view of the sphere and
the yz-plane at x = 0.037 just behind the sphere. In order to reduce the geometry error in
the approximation of the sphere surface, we project the new vertices of the refinement to the
exact boundary surface. For all Mach numbers the area close to the attached shock wave to
the sphere is finest resolved. The upstream flow has more effects on the drag coefficient than
the downstream flow.
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Figure 3. Sphere: The drag coefficient Cdp versus time for different Mach numbers and adaptive
iterations.

5.4. 3D compressible flow around a circular cylinder

We next consider flow past a 3D circular cylinder. A cylinder of diameter 0.0254 is located at
the origin of the channel of dimension −2 ≤ x ≤ 2, −0.305 ≤ y ≤ 0.305 and 0 ≤ z ≤ 0.12. The
initial mesh consists of 9 034 nodes and 43 323 tetrahedrons.
Experimental data is available by Murthy & Rose [42, 48] for different Mach numbers, at

high Reynolds numbers. According to the experimental data, there is a rapid increase in the
drag coefficient when M∞ increases toward 1, while it decreases slowly for further increase of
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Figure 4. Sphere: log 10 of number of nodes or vertices versus the sum of error indicators Ēdp, (top-left),
stability factor S, (top-right), drag coefficient Cdp, (bottom-left), and the quality indicator Cdp/Cdref ,

(bottom-right).

M∞. The experimental observations show almost steady and symmetric patterns of the flow for
M∞ > 0.9. Therefore, we show one computation with M∞ = 0.8, where we observe instability
in the wake, and two computations with M∞ = 2, 3 where the shock waves are dominant and
the flow is almost steady. The corresponding reference values for drag are ∼ 1.55, ∼ 1.37 and
∼ 1.25, respectively.

For the coarse meshes the instability of the turbulence wake in the transonic regime is absent.
For M∞ = 0.8 we solve the primal problem up to t = 10 and then solve the dual problem
back in time to t = 8. The first plot of Figure 7 shows the drag coefficient for M∞ = 0.8 from
different adaptive iterations. We observe that at the final time the drag increases as the mesh
is refined. The reason is that a turbulent wake develops for the fine meshes, but only after an
initial start-up phase. We performed a larger computation just for the finest mesh until t = 16.
The drag coefficient is plotted together with the experimental value at the top-right plot of
Figure 7. The second row of the figure shows the drag for the supersonic regimes M∞ = 2,
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Figure 5. Sphere: Contours of the Mach number with the velocity streamlines at the left column;
contours of the first component of the dual momentum at the right column. The first row: M∞ = 0.98,
contours: 0.0167267 ≤ M ≤ 2.14642, t = 10, mesh: 57 442 vertices and 308 600 cells, (left); contours:
−1.03707 ≤ φm1

≤ 7.60223, t = 8, mesh: 57 442 vertices and 308 600 cells, (right). The second row:
M∞ = 1.4, contours: 0.0114612 ≤ M ≤ 2.33017, t = 10, mesh: 61 097 vertices and 329 604 cells, (left);
contours: −0.798834 ≤ φm1

≤ 1.96303, t = 8, mesh: 48 248 vertices and 261 525 cells, (right). The
third row: M∞ = 3, contours: 0.00837154 ≤ M ≤ 5.34624, t = 10, mesh: 66 546 vertices and 361 139
cells, (left); contours: −0.734578 ≤ φm1

≤ 4.10885, t = 8, mesh: 52 003 vertices and 282 078 cells,
(right).
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Figure 6. Sphere: meshes. The first row: initial mesh with 10 220 vertices and 55 492 cells; The second
row: the final mesh for M = 0.98 with 57 442 vertices and 308 600 cells; The third row: the final
mesh for M = 1.4 with 61 097 vertices and 329 604 cells; The fourth row: the final mesh for M = 3
with 66 546 vertices and 361 139 cells. The left column describes the xz-plane at y = 0 and the right

column is a zoomed view of the sphere and the yz-plane at x = 0.037.
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(left), and M∞ = 3, (right). Figure 8 describes some computational details of the simulation:
the number of nodes versus the total error indicators, the stability factor, the drag coefficients,
and a quality indicator Cdp/Cdref . We observe that the computational values for the drag
are slowly converging towards their experimental values. We observe that the stability factors
increase slowly as function of number of nodes, whereas the error estimates decrease with mesh
refinement.

Figure 9 shows the results of the computations from the last adaptive iteration. The left
column of the figure describes the contours of the Mach number at the xy-plane at z = 0.6,
together with the streamlines of the velocity close to the cylinder. The flow separates at the
attached shock wave for all Mach numbers. The bow shock appears in the front of the cylinder
for the supersonic cases. As we mentioned earlier, the flow is unstable for the transonic case
M∞ = 0.8, whereas it is almost steady for M∞ = 2 and M∞ = 3. The right column of the
figure plots the contour of the first component of the dual solution φm1

at the xy-plane at
z = 0.6, together with the sonic line. For the transonic case, the dual solution is unstable in
the wake. The region where the sonic line attaches to the cylinder needs to be resolved for all
Mach numbers. The dual solution indicates that the part of the bow shock orthogonal to the
flow needs to be resolved for supersonic flows.

Figures 10 and 11 show the initial and adaptively refined meshes for each simulation. The
figures are in the xy-plane at z = 0.06 and in the xz-plane at y = 0 respectively. After each
iteration of the adaptive algorithm 5% of cells with the largest error contribution are marked
for refinement.

6. Summary and conclusions

We have considered the problem of simulation turbulent compressible flow, where our focus is
to develop a general method that is suitable for complex geometries, and which is robust and
easy to implement. An adaptive finite element method has been presented, with high order
stabilization in the form a residual based artificial viscosity, of the same general form as the
shock capturing terms in e.g. SUPG, GLS and streamline diffusion methods. Contrary to these
methods, for simplicity, we here drop the rest of the stabilizing terms, and we show that still
the method is stable and can be used to approximate high Reynolds number compressible flow.

To use artificial viscosity as the only numerical stabilization in a finite element method has
earlier been proposed in [18, 19], where a viscosity based on an entropy residual is used. The
novelty in this paper is to instead use the standard residual.

What we propose is to use residual based stabilization as a unified method for numerical
stabilization, shock capturing and turbulence capturing. The basic form of the shock-capturing
stabilization reminds of the classical Smagorinsky subgrid model for LES, but with the rate
of strain replaced by the residual, to assure consistency and high accuracy in smooth parts of
the flow.

The adaptive algorithm is based on a posteriori error estimation with sensitivity information
from the solution of a dual problem. This paper is an extension to compressible flow, of our
previous work on adaptive turbulence simulation for incompressible flow [9, 10, 11, 15, 16].
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Figure 7. 3D cylinder: The drag coefficient Cdp versus time for different Mach numbers and adaptive
iterations.
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cells, (left); contours: −0.6 ≤ φm1

≤ 2.284, t = 6, mesh: the same as primal, (right). The third row:
M∞ = 3, contours: 0.028 ≤ M ≤ 3.2, t = 8, mesh: 42 440 vertices and 220 216 cells, (left); contours:

−0.916 ≤ φm1
≤ 2.7897, t = 6, mesh: 33 742 vertices and 174 656 cells, (right).
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Figure 10. 3D cylinder: meshes. The first row: initial mesh with 9 034 vertices and 43 323 cells, (left),
the final mesh for M = 0.8 with 51 370 vertices and 265 344 cells, (right). The second row: the final
mesh for M = 2 with 56 304 vertices and 296 017 cells, (left), the final mesh for M = 3 with 33 742
vertices and 174 656 cells, (right). The figures are the xy-plane at z = 0.06, and the sonic line is

plotted in white.
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