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SUMMARY

We present an adaptive finite element method for the compressible Euler equations, based on a
posteriori error estimation of a quantity of interest in terms of a dual problem for the linearized
equations. Continuous piecewise linear approximation is used in space and time, with componentwise
weighted least squares stabilization of convection terms, and residual based shock-capturing. The
adaptive algorithm is demonstrated numerically for the quantity of interest being the drag force on a
body. Copyright c© 0000 John Wiley & Sons, Ltd.
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1. Introduction

In this paper we present an adaptive finite element method for 3D time dependent compressible
fluid flow. The Euler equations express conservation of mass, momentum and energy, and
describe the motion of a Newtonian fluid, in the limit of vanishing viscosity in the Navier-
Stokes equations. Past an object, flow with vanishing viscosity develop turbulence, shock
waves, rarefactions and discontinuities. These phenomena need to be well resolved by the
finite element method in order to get high accuracy in computations. Uniform refinement of
the finite element mesh is not an option due to the high cost, so instead efficient algorithms
for local adaptation of the mesh are needed. An ad hoc way of identifying regions for local
mesh adaptation can be to use the size of the gradient of the solution or the residual of the
system as an error indicator, with other possible error indicators in [1, 2].
The adaptive algorithm in this paper is based on a posteriori error estimation, where

the error is estimated from a computed solution. In most applications we are interested in
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2 M. NAZAROV AND J. HOFFMAN

controlling the error in some quantity of interest or output, rather than the error itself. The
quantity of interest can be fluid forces such as drag and lift, stresses or fluxes. Once an a
posteriori bound of the error in an output of interest is available, it is possible to improve the
approximation in order to reduce this error, which makes the method efficient and reliable. We
base our work on the general framework for a posteriori error estimation developed by Erikson
and Johnson, Becker and Rannacher, with co-workers, [3, 4, 5, 6, 7].
For systems of conservation laws, a posteriori error analysis was developed in [8, 9, 10],

adaptive discontinuous Galerkin methods for stationary compressible Euler equations in 2D
were developed in [11, 12, 13, 14], and in [15] a posteriori error estimation for the time-
dependent compressible Euler equations was analysed with numerical simulations in 2D.
In this paper we present a posteriori error estimates for the general problems of the time-

dependent compressible Euler equations in 3D, extending our previous work on incompressible
turbulent flow [16, 17, 18, 19]. For convenience, we use the variables density, velocity and
pressure in the a posteriori error analysis. Numerical tests of an adaptive algorithm are
presented for test problems in 2D and 3D, for computation of the drag force on different
bodies in a flow field. We use a simple finite element method with linear approximation in
space and time, and with streamline diffusion stabilization and residual based shock-capturing.
This choice of stabilization is a simplified version of GLS and SUPG formulations [20, 21, 22]
and shock-capturing [23, 24] of compressible flows. The focus here is the a posteriori error
estimation and the adaptive algorithm, which extends to general finite element methods, not
just the particular method shown in this paper.
We organize the paper as follows: first we recall the compressible Euler equations, for which

we derive an adjoint (dual) problem. We then present a stabilized finite element discretization
of both the primal and the dual equations, for which we derive an a posteriori error estimate
which forms the basis for an adaptive algorithm. We end with some numerical tests of the
adaptive method, and a conclusion and outlook.

2. The Euler equations

The compressible Euler equations express conservation of mass, momentum and total energy
for an inviscid fluid enclosed in a fixed (open) domain Ω in three-dimensional space R

3 with
boundary Γ over a time interval [0, t̂ ] with initial time zero and final time t̂.
We seek the density ρ, momentum m = ρu, with u = (u1, u2, u3) the velocity, and the total

energy e as functions of (x, t) ∈ Ω ∪ Γ× [0, t̂ ], where x = (x1, x2, x3) denotes the coordinates
in R

3 and ui is the velocity in the xi-direction. The Euler equations for û ≡ (ρ,m, e) read with
Q = Ω× I and I = (0, t̂ ]:

ρ̇+∇ · (ρu) = 0 in Q,
ṁi +∇ · (miu) + p,i = fi in Q, i = 1, 2, 3,

ė+∇ · (eu+ pu) = 0 in Q,
û(·, 0) = û0 in Ω,

(1)

where p = p(x, t) is the pressure of the fluid, p,i = ∂p/∂xi is the partial derivative with respect
to xi, the dot indicates differentiation with respect to time and f = (f1, f2, f3) is a given volume
force (like gravity) acting on the fluid, and û0 = û0(x) represents initial conditions. Further,
the total energy is e = k+ θ, where k = ρ|u|2/2 is the kinetic energy, with |u|2 ≡ u21+u

2
2+u

2
3,
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AN ADAPTIVE FINITE ELEMENT METHOD FOR THE EULER EQUATIONS 3

and θ = ρT is the internal energy with T the temperature scaled so that cv = 1, where cv is
the heat capacity under constant volume.
The number of unknowns including the pressure is six but there are only five equations in

the Euler system (1), and so we close the system with the state equation of a perfect gas ;

p = (γ − 1)ρT, (2)

expressing the pressure p as a function of density ρ and temperature T , where γ = cp is the
adiabatic index with cp the heat capacity under constant pressure, and (γ − 1) is the gas
constant.
For a perfect gas, the speed of sound c is given by c2 = γ(γ − 1)T , and the Mach number is

defined as M = |u|/c.
Here we use different boundary conditions for solving the equations (1): supersonic inflow,

subsonic inflow, subsonic outflow and solid wall boundary conditions. For the supersonic case
the characteristics of the corresponding quasilinear system of (1) are in the direction of flow,
so that the Dirichlet boundary conditions for all variables should be imposed at the inflow,
whereas no boundary condition is imposed on outflow. In this case all values on the outflow
boundary are determined by the interior points.
For the subsonic case we use non-reflecting boundary conditions using Riemann invariants

or characteristic variables, see [25]. The Riemann invariands discribe a variation along the
characteristic directions. The idea is that the amplitude of an incoming wave should remain
constant for the non-reflecting outflow conditions. This corresponds to putting the variation
of Riemann invariants corresponding to incoming waves to zero.

The slip boundary condition is imposed at solid wall boundaries, requiring the normal
velocity u·n̂ with n̂ an outward normal of the body, to vanish corresponding to an impenetrable
boundary with zero friction.

3. The adjoint operator for the Euler equations

In this section we derive an adjoint operator for the compressible Euler equations. To simplify
the derivation we rewrite the equations (1) in the variables: density ρ, velocity u = (u1, u2, u3),
and pressure p. Then we linearize the Euler equations with respect to the new variables, for
which we derive an adjoint operator. In the rest of this paper we use the Einstein summation
convention, where a repeated index indicates summation over that index.

3.1. The Euler equations in terms of density, velocity and pressure

By the relation mi = ρui and using mass conservation in (1), we can write the conservation
of momentum in the following form

ρ

(

u̇i + uj
∂ui
∂xj

)

+
∂p

∂xi
= fi in Q, i = 1, 2, 3. (3)

Next, we derive an equation for the pressure from the conservation of energy. For that, we
first formulate an equation for the internal energy, θ = ρT , by inserting e = k + θ into the

energy equation, and subtracting the equation for kinetic energy k = ρ
uiui
2

we get by taking
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4 M. NAZAROV AND J. HOFFMAN

the scalar product of the momentum equation with u,

θ̇ +
∂

∂xj
(ujθ) + p

∂uj
∂xj

= 0. (4)

Using the state equation for a perfect gas p = (γ − 1)ρT , and by the relation θ = ρT we
obtain the pressure equation

ṗ+
∂

∂xj
(ujp) + (γ − 1)p

∂uj
∂xj

= 0. (5)

Finally, by collecting the above equations in one system, we obtain a formulation of the
Euler equation in terms of density, velocity and pressure: find û = (ρ, ui, p) ∈ Q, such that

ρ̇+
∂

∂xj
(ρuj) = 0 in Q,

ρ

(

u̇i + uj
∂ui
∂xj

)

+
∂p

∂xi
= fi in Q, i = 1, 2, 3,

ṗ+
∂

∂xj
(ujp) + (γ − 1)p

∂uj
∂xj

= 0 in Q,

û(·, 0) = û0 in Ω.

(6)

3.2. The linearized Euler equation

Now, consider a linearization of the Euler equations, (6). For simplicity we assume there are
no source terms in the equations. Let

ρ(x, t) = ρh(x, t) + ρ̃(x, t),

p(x, t) = ph(x, t) + p̃(x, t),

u(x, t) = uh(x, t) + ũ(x, t),

(7)

where ûh = (ρh, ph, uh) is the background state, or approximate solution, we linearize at, and
˜̂u = (ρ̃, p̃, ũ) is the perturbation, or error. We insert (7) into (6), where we denote higher order
terms in ˜̂u by h.o.t., to get the following equations for the perturbation variables:

˙̃ρ+
∂

∂xj
(ρhũj + ρ̃uhj

) = −Rρ(ûh) + h.o.t. in Q,

ρh

(

˙̃ui + uhj

∂ũi
∂xj

+ ũj
∂uhi

∂xj

)

+

ρ̃

(

u̇hi
+ uhj

∂uhi

∂xj

)

+
∂p̃

∂xi
= −Rui

(ûh) + h.o.t. in Q, i = 1, 2, 3,

˙̃p+
∂

∂xj
(uhj

p̃+ ũjph)+

(γ − 1)

(

ph
∂ũj
∂xj

+ p̃
∂uhj

∂xj

)

= −Rp(ûh) + h.o.t. in Q,

ˆ̃u(·, 0) = ˆ̃u0 in Ω,

(8)

where R(ûh) = (Rρ(ûh), Rui
(ûh), Rp(ûh) are residuals of the Euler equations (6). The system

(8), when dropping higher order terms, we denote as the linearized Euler equations (LEE),
which models the evolution of small disturbances such as numerical errors.
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AN ADAPTIVE FINITE ELEMENT METHOD FOR THE EULER EQUATIONS 5

3.3. Dual problem for LEE

In this section we derive a dual problem for LEE, where we use the following notation for the
error:

eρ = ρ− ρh,

eui
= ui − uhi

, i = 1, 2, 3,

ep = p− ph.

(9)

We assume û = (ρ, ui, p) to be a function in L2(I;H
1(Ω) × [H1(Ω)]3 ×H1(Ω)) with its time

derivative in L2(I;L2(Ω) × [L2(Ω)]
3 × L2(Ω)), and ûh = (ρh, uhi

, ph) to be a finite element
approximation in the corresponding subspace, with standard notation from functional analysis,
see [26].
We can then write the LEE as:

ėρ +
∂

∂xj
(ρeuj

+ eρuj) = −Rρ(ûh) + h.o.t.,

ρ

(

ėui
+ uj

∂eui

∂xj
+ euj

∂ui
∂xj

)

+ eρ

(

u̇i + uj
∂ui
∂xj

)

+
∂ep
∂xi

= −Rui
(ûh) + h.o.t.,

ėp +
∂

∂xj
(ujep + euj

p) + (γ − 1)

(

p
∂euj

∂xj
+ ep

∂uj
∂xj

)

= −Rp(ûh) + h.o.t.,

(10)

for i = 1, 2, 3, where we have dropped the h-index on the approximate solution ûh for simplicity.
We can then derive the following dual problem for LEE:

Theorem 1. Let φ̂ = (φρ, φui
, φp) ∈ L2(I;H

1(Ω)× [H1(Ω)]3×H1(Ω)) denote a dual density,

velocity and pressure, with
˙̂
φ = (φ̇ρ, ˙φui

, φ̇p) ∈ L2(I;L2(Ω) × [L2(Ω)]
3 × L2(Ω)), and let

n̂ = (n1, n2, n3) be the outward unit normal to the boundary Γ. Assume that the normal
components of the primal velocity and dual velocity vanish on the boundary Γ: u·n̂ = φu ·n̂ = 0,
and that φ̂(·, t̂) = 0 in Ω. If we assume that the error in initial data is zero, i.e. e(·, 0) = 0,
then we can pose the following dual problem with the left hand side being the adjoint operator
of the linearized Euler equation:

−φ̇ρ − uj
∂φρ
∂xj

+

(

u̇i + uj
∂ui
∂xj

)

φui
= ψρ, in Q,

− ˙(φui
ρ)−

∂

∂xj
(ρujφui

) + ρφuj

∂uj
∂xi

− p
∂φp
∂xi

−(γ − 1)
∂

∂xi
(pφp)− ρ

∂φρ
∂xi

= ψui
, in Q

−φ̇p − uj
∂φp
∂xj

+ (γ − 1)φp
∂uj
∂xj

−
∂φui

∂xi
= ψp in Q,

φ̂(·, t̂) = 0 in Ω,

(11)

for i = 1, 2, 3, where ψ = (ψρ, ψui
, ψp) ∈ L2(I;L2(Ω)× [L2(Ω)]

3×L2(Ω)) is data which defines
a quantity of interest, and t̂ is the final time.

Proof: We multiply φ̂ = (φρ, φui
, φp) to the left hand side of the error equation (10), and

integrate every term by parts. Note that the boundary terms in time vanish by the assumptions

of the theorem. If we let (v, w) =
∫ t̂

0

∫

Ω
v · wdxdt denote the L2(Q)-inner product, we get the

following relations:
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6 M. NAZAROV AND J. HOFFMAN

The error equation for the density:

I =

(

ėρ +
∂

∂xj
(ρeuj

+ eρuj), φρ

)

=

− (eρ, φ̇ρ)−

(

euj
, ρ

∂

∂xj
φρ

)

+

∫ T

0

∫

Γ

ρeuj
njφρdSdt

−

(

eρ, uj
∂

∂xj
φρ

)

+

∫ T

0

∫

Γ

eρujnjφρdSdt.

(12)

The error equation for the velocity:

II =

[

ρ

(

ėui
+ uj

∂eui

∂xj
+ euj

∂ui
∂xj

)

+ eρ

(

u̇i + uj
∂ui
∂xj

)

+
∂ep
∂xi

, φui

]

=

− (eui
, ˙(φui

ρ))−

(

eui
,
∂

∂xj
(ρujφui

)

)

+

∫ T

0

∫

Γ

eui
njρujφui

dSdt

+

(

euj
, ρφui

∂ui
∂xj

)

+

(

eρ,

(

u̇i + uj
∂ui
∂xj

)

φui

)

−

(

ep,
∂φui

∂xi

)

+

∫ T

0

∫

Γ

φui
niepdSdt.

(13)

The error equation for the pressure:

III =

[

ėp +
∂

∂xj
(ujep + euj

p) + (γ − 1)

(

p
∂euj

∂xj
+ ep

∂uj
∂xj

)

, φp

]

=

− (ep, φ̇p)−

(

ep, uj
∂φp
∂xj

)

+

∫ T

0

∫

Γ

ujepnjφpdSdt

−

(

euj
, p
∂φp
∂xj

)

+

∫ T

0

∫

Γ

euj
pnjφpdSdt

− (γ − 1)

(

euj
,
∂

∂xj
(pφp)

)

+ (γ − 1)

∫ T

0

∫

Γ

euj
njpφpdSdt

+ (γ − 1)

(

ep, φp
∂uj
∂xj

)

.

(14)

By collecting terms for each error variable eρ, eui
, ep, we get the dual problem (11):

I + II + III = (eρ, A
∗
φρ
(φ̂)) + (eui

, A∗
φui

(φ̂)) + (ep, A
∗
φp
(φ̂)), (15)

where A∗(φ̂) =
(

A∗
φρ
(φ̂), A∗

φui
(φ̂), A∗

φp
(φ̂)
)

is the adjoint operator for the linearized Euler

equations (10). �

4. A General Galerkin (G2) finite element method

We now introduce a stabilized finite element method, which we here refer to as a General
Galerkin or G2 method.
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AN ADAPTIVE FINITE ELEMENT METHOD FOR THE EULER EQUATIONS 7

In time, the trial functions are continuous piecewise linear and the test functions are
piecewise constant, and in space both test functions and trial functions are continuous piecewise
linear.
Let 0 = t0 < t1 < ... < tN = t̂, be a sequence of discrete time steps with associated time

intervals In = (tn−1, tn] of length ∆tn = tn − tn−1 and space-time slabs Sn = Ω× In, and let
Wh ⊂ H1(Ω) be a finite element space consisting of continuous piecewise linear functions on
a fixed mesh Th = {K} of mesh size h(x) < 1, with elements K.

We solve the primal problem for density, momentum and energy, while we solve the dual
problem for the dual variables of density, velocity and pressure. The following subsections show
finite element discretizations of the equations (1) and (11) using G2.

4.1. G2 for the primal compressible Euler equations

We seek functions ûh = (ρh,mh, eh), continuous piecewise linear in space and time. The
G2 method for the compressible Euler equations, here without source terms for simplicity,
reads: For n = 1, ..., N , find ûnh = (ρn,mn, en) ≡ (ρh(tn),mh(tn), eh(tn)) with ûnh ∈ Vh ≡
Wh ×W 3

h ×Wh, such that

(ρ̇n, v
ρ
n)− (unρ̄n,∇v

ρ
n) +

∫

Γ

ρ̄nv
ρ
nun · n̂dS + SDρ(ρh; v

ρ
n) = 0, (16)

(ṁnj
, vmnj

)− (unm̄nj
,∇vmnj

)− (pn,∇ · vmnj
) +

∫

Γ

m̄nj
vmnj

un · n̂dS +

∫

Γ

pnv
m
nj
n̂jdS + SDmj

(mh; v
m
nj
) = 0, j = 1, 2, 3 (17)

(ėn, v
e
n)− (unēn,∇v

e
n) + (∇ · (unpn), v

e
n) +

∫

Γ

ēnv
e
nun · n̂dS + SDe(eh; v

e
n) = 0, (18)

for all test functions v̂n = (vρn, v
m
nj
, ven) ∈ Vh, where

(v, w) =
∑

K∈Th

∫

K

v · w dx,

with K the cells of the mesh Th, and

ρ̇n =
ρn − ρn−1

∆tn
, ṁn =

mn −mn−1

∆tn
, ėn =

en − en−1

∆tn
,

ρ̄n =
1

2
(ρn + ρn−1), m̄n =

1

2
(mn +mn−1), ēn =

1

2
(en + en−1),

where we define un, pn and Tn to be finite element functions in W 3
h , Wh and Wh respectively,

which are defined by their nodal values given by

un(Ni) = m̄n(Ni)/ρ̄n(Ni),

pn(Ni) = (γ − 1)ρ̄n(Ni)Tn(Ni),

Tn(Ni) = ēn(Ni)/ρ̄n(Ni)− |un(Ni)|
2/2

(19)

for all nodes Ni in the mesh Th.
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8 M. NAZAROV AND J. HOFFMAN

We define a componentwise stabilization in the form of a weighted least squares stabilization
of the convection terms together with residual based shock-capturing,

SDρ(ρh; v
ρ
n) = (δun · ∇ρ̄n, un · ∇vρn) + (ν̂ρ∇ρ̄n,∇v

ρ
n), (20)

SDmj
(mh; v

m
nj
) = (δun · ∇m̄nj

, un · ∇vmnj
) + (ν̂m∇m̄nj

,∇vmnj
), j = 1, 2, 3 (21)

SDe(eh; v
e
n) = (δun · ∇ēn, un · ∇ven) + (ν̂e∇ēn,∇v

e
n), (22)

where δ = Cδ(∆t
−2
n + |un|

2h−2)−1/2 and ν̂α = max(Cα
|Rα(û)|
|αh| h2, Chh

3/2), for α = ρ,m, e, and

αh = ρh,mh+ ǫ, eh, with ǫ > 0 a small safety factor, and with constants Cδ, Cα and Ch ∼ U√
L
,

where U and L are characteristic velocity and length scales of the problem, and we define the
residuals for t ∈ In by

Rρ(ûh) = ρ̇n +∇ · (ρ̄nun), (23)

Rmj
(ûh) = (ṁn)j +∇ · ((m̄n)jun) + ∂pn/∂xj , j = 1, 2, 3, (24)

Re(ûh) = ėn +∇ · (ēnun + pnun). (25)

The method (16) - (18) is a simple stabilized finite element method, with only a least
squares stabilization of the convection term and a shock capturing term based on the individual
residuals of each equation. The method conserves mass, momentum and energy, and results in
a symmetric stabilization matrix in the discrete system. As it has been mentioned, the method
with above stabilization and shock-capturing parameters is a simplified version of SUPG and
GLS methods. The choice of stabilization and shock-capturing parameters is an active focus
of research over the last decades. For an overview of the resent development of stabilized finite
element methods and the choice of stabilization parameters see e.g. [27, 28, 29, 30, 31].

We solve the discretized equations by a fixed-point iteration with velocity given from the
previous iteration, resulting in a linear system which we solve by GMRES. With this method
the time step ∆tn is given by a CFL-condition, with typically ∆tn ∼ minK∈Th

(h/|un|)K .

We remark that the a posteriori error analysis in this paper extends to general stabilized
finite element methods with small modifications.

4.2. G2 for the dual linearized Euler equations

The a posteriori error estimate in this paper is given in terms of the solution to a continuous
dual problem, but this dual solution is in general unavailable, and thus discrete approximations
are needed.

As for the primal problem, we seek functions φ̂h = (φρ, φui
, φp), continuous piecewise

linear in space and time, with n = 1, · · · , N and i = 1, 2, 3: find φ̂nh = (φρn
, φuni

, φpn
) =

(φρ(tn), φui
(tn), φp(tn)) ∈ Vh,g = {v : v ∈Wh ×W 3

h ×Wh, v|Γ = g}, such that

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 0000; 00:1–29
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AN ADAPTIVE FINITE ELEMENT METHOD FOR THE EULER EQUATIONS 9

−(φ̇ρn
, vρn)−

(

unj

∂φ̄ρn

∂xj
, vρn

)

+

((

u̇nj
+ unj

∂unj

∂xj

)

φ̄uni
, vρn

)

+νh

(
∂φ̄ρn

∂xj
,
∂vρn
∂xj

)

= (ψρn
, vρn), (26)

−
(

φ̇uni
ρn, v

u
ni

)

+

(

ρnunj
φ̄uni

,
∂vuni

∂xj

)

+

(

ρnφ̄unj

∂unj

∂xi
, vuni

)

−

(

pn
∂φ̄pn

∂xi
, vuni

)

−

(

ρn
∂φ̄ρn

∂xi
, vuni

)

+(γ − 1)

(

pnφ̄pn
,
∂vuni

∂xi

)

+ νh

(

∂φ̄uni

∂xj
,
∂vuni

∂xj

)

= (ψuni
, vuni

), (27)

−(φ̇pn
, vpn)−

(

unj

∂φ̄pn

∂xj
, vpn

)

+ (γ − 1)

(

φ̄pn

∂unj

∂xj
, vpn

)

+νh

(
∂φ̄pn

∂xj
,
∂vpn
∂xj

)

+

(

φuni
,
∂vpn
∂xi

)

= (ψpn
, vpn), (28)

for all test functions v̂n = (vρn, v
u
ni
, vpn) ∈ V̂h,0 = {v : v ∈ Wh ×W 3

h ×Wh, v|Γ = 0}, where

ψ̂n = (ψρ
n, ψ

u
ni
, ψp

n) ∈ L2(I;L2(Q) × L2(Q)3 × L2(Q)) defines a quantity of interest, and νh
is artificial viscosity. In the computations in this paper we use artificial viscosity νh = h. As
above, a dot denotes the time derivative in In, and a bar denotes the mean value.
The function ûn = (ρn, un, pn) ∈ Vh is a computational approximation of the primal solution

at time tn, where the corresponding time derivative is defined as u̇n ≡ (un − un−1)/∆tn.

5. An a posteriori error estimate

We introduce the following notation for the a posteriori error analysis:

(u,w)K =

∫

K

v · wdx, (u,w)∂K =

∫

∂K

v · wds, (u,w) =
∑

K

(u,w)K ,

‖v‖K = ‖v‖L2(K) = (v, v)
1/2
K , |v|K = (‖v1‖K , ‖v2‖K , ‖v3‖K),

I =
N⋃

n=1

In, Th =
⋃

K∈Th

K.

(29)

Assume ûh = (ρn, uni
, pn) ∈ Vh for i = 1, 2, 3 to be an approximate solution of the equation

(6), with corresponding residuals R(ûh) = (Rρ(ûh), Rui
(ûh), Rp(ûh)), defined by

Rρ(ûh) = ρ̇n +
∂

∂xj
(ρnunj

), (30)

Rui
(ûh) = ρn

(

u̇ni
+ unj

∂uni

∂xj

)

+
∂pn
∂xi

, (31)

Rp(ûh) = ṗn +
∂

∂xj
(unj

pn) + (γ − 1)p
∂unj

∂xj
, (32)
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10 M. NAZAROV AND J. HOFFMAN

where i = 1, 2, 3, and we define time derivatives of density, velocity and pressure as in section
4.2.
Then, the following theorem expresses an error representation for the compressible Euler

equations.

Theorem 2. Assume for i = 1, 2, 3, that φ̂ = (φρ, φui
, φp) is a solution of the dual

problem (11), let ψ = (ψρ, ψui
, ψp) be a quantity of interest M(û) = (û, ψ̂), and let πhφ̂ =

(πhφρ, πhφui
, πhφp) ∈ Vh denote an interpolant in the finite element space Vh. Then, for an

exact solution û satisfying (6) and an approximate solution ûh computed from (16)-(19), we
have the following error representation formula:

M(û)−M(ûh) =

∫

I

∑

K∈Tn

(

−R(ûh), φ̂− πhφ̂
)

K
dt

−

∫

I

∑

K∈Tn

SD([ρh,mh, eh];πhφ̂)Kdt+ h.o.t.,

(33)

where SD([ρh,mh, eh];w) = (SDρ(ρh;wρ), SDmi
(mh;wmi

), SDe(eh;we)), for w ∈ Vh and
i = 1, 2, 3.

Proof: Using (9) and (11), we get

M(û)−M(ûh) =

∫

I

(e, ψ̂)dt =

∫

I

(eρ, ψρ)dt+

∫

I

(eui
, ψui

)dt+

∫

I

(ep, ψp)dt

=

∫

I

(eρ, A
∗
φρ
(φ̂))dt+

∫

I

(eui
, A∗

φui
(φ̂))dt+

∫

I

(ep, A
∗
φp
(φ̂))dt,

(34)

which is nothing other than the relation (15) from the proof of Theorem 1, and by repeating
the same steps backwards (integration by parts) we get that

M(û)−M(ûh) =

∫

I

(Aρ(eρ), φρ)dt+

∫

I

(Aui
(eui

), φui
)dt+

∫

I

(Ap(ep), φp)dt, (35)

with A = (Aρ, Aui
, Ap) the linearized operator of the left hand side of (8). The relation of the

error and residual is expressed in (8) as A(e) = −R(ûh) + h.o.t.. Using this relation and the

G2 method for the primal problem with test function v̂ = πhφ̂ we finally get

M(û)−M(ûh) =

∫

I

(A(e), φ̂)dt =

∫

I

(−R(ûh) + h.o.t., φ̂)dt

=

∫

I

(−R(ûh), φ̂− πhφ̂)dt−

∫

I

(SD([ρh,mh, eh], πhφ̂)dt+ h.o.t.. �
(36)

Now we present the main theorem of the paper, an a posteriori error estimate of the
compressible Euler equation for the G2 method.

Theorem 3. Let û = (ρ, ui, p) be a solution of (6) and ûh = (ρh, uhi
, ph) an approximation

computed from (16)-(19), and let Dφ̂ denote first order derivatives of φ̂, with φ̂ = (φρ, φui
, φp)

the solution of the dual problem (11), then we have the following a posteriori error estimate:

|M(û)−M(ûh)| ≤
∫

I

∑

K∈Tn

Cnh|R(ûh)|K · |Dφ̂|Kdt+

∫

I

∑

K∈Tn

|SD([ρh,mh, eh];πhφ̂)|dt+ h.o.t.
(37)
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AN ADAPTIVE FINITE ELEMENT METHOD FOR THE EULER EQUATIONS 11

where SD([ρh,mh, eh];w) = (SDρ(ρh;w), SDmi
(mh;w), SDe(eh;w)), for w ∈ Vh, is the

stabilization term in (16).

Proof: We start from the result of Theorem 2. The by using a standard interpolation error
estimate of the form ‖h−1(φ̂− πφ̂)‖K ≤ Cn‖Dφ‖K , we get:

|M(û)−M(ûh)| =

|

∫

I

∑

K∈Tn

(−R(ûh), φ̂− πhφ̂)dt−

∫

I

∑

K∈Tn

SD([ρh,mh, eh];πhφ̂)dt|+ h.o.t.

≤ |

∫

I

∑

K∈Tn

(−R(ûh), φ̂− πhφ̂)dt|+ |

∫

I

∑

K∈Tn

SD([ρh,mh, eh]; φ̂h)dt|+ h.o.t.

≤

∫

I

∑

K∈Tn

|(−R(ûh), φ̂− πhφ̂)|dt+

∫

I

∑

K∈Tn

|SD([ρh,mh, eh];πhφ̂)|dt+ h.o.t.

≤

∫

I

∑

K∈Tn

Cnh|R(ûh)|K · |Dφ̂|K +

∫

I

∑

K∈Tn

|SD([ρh,mh, eh];πhφ̂)|dt+ h.o.t.

︸ ︷︷ ︸
∑

n,K

ηKn

. �

(38)

We denote ηKn an error indicator to element K in In, S =

∫

I

∑

K

|Dφ̂|Kdt a stability factor.

The stability factor measures output sensitivity of the quantity of interest for the problem.

6. An adaptive algorithm

In the adaptive algorithm of this paper the mesh, Th does not change in time, but remains the
same over the whole time interval. First we solve the approximate primal problem forward in
time, and then we solve the discretized dual equation backward in time. Based on the posteriori
error estimate (37) the mesh is then adaptively refined to reduce the error in the output of
interest. The local mesh refinement is based on the Rivara recursive bisection algorithm, see
[32]. First this algorithm bisects the longest edge, then recursively repeats the bisection of the
neighboring triangles of the edge containing the hanging node until this edge is a common
longest edge of a cell. To enhance the quality of the refined mesh we combine bisection with
Laplacian mesh smoothing.
The timestep is calculated from the smallest cell diameter, with typically ∆tn ∼

minK∈Th
(h/|un|)K , for all elements K in the mesh Th and the velocity un.

Algorithm 1. Given a tolerance TOL, start from an initial coarse mesh T 0
h , with k = 0:

1. Compute an approximation to the the primal solution ûh ∈ Vh, on the current mesh T k
h ;

2. Compute an approximation of the dual solution φ̂h ∈ Vh, on the same mesh;

3. Compute the error indicator defined in (37), if |
∑

n,K

ηKn | < TOL, then STOP;

4. Refine a fixed fraction of cells in T k
h with largest error indicator to get a new mesh T k+1

h ;
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12 M. NAZAROV AND J. HOFFMAN

5. Set k = k + 1 and go to 1.

Remark 1. In this paper we use an approximation of the error indication ηKn , where the dual

solution φ̂ is approximated using the G2 method and the stabilization and high order terms are
dropped.

7. Numerical Examples

We now illustrate Algorithm 1, for compressible fluid flow around an object in 2D and 3D for
different Mach numbers, where the quantity of interest is the drag force on the object.

In the simulations we use dimensionless variables: If L is a characteristic length for the
problem, then we normalize the density ρ∗, sound speed c∗ and the temperature T ∗, by their
free stream values ρ∗∞, c

∗
∞ and T ∗

∞, and we use non-dimensionalized time t = L/c∗∞, pressure

p = p∗

ρ∗

∞
c2
∞

, and velocity u = u∗

c∞
.

We use the following boundary conditions for the primal equations: for the supersonic case,
at the inlet all variables of the solution are given by Dirichlet boundary conditions, at the outlet
no boundary condition is imposed. For the transonic case momentum and energy boundary
conditions are imposed at the inlet, and after solving the corresponding linear system all
variables at the outlet and density at the inlet are corrected by the Riemann invariants for the
Euler equations, see e.g. [25]. A slip boundary condition is used in the rest of the computational
domain.
For the dual equations we use homogeneous Dirichlet boundary conditions for density and

pressure, and for the dual velocity we set φu1
(x, t) = −1 for all x ∈ Γbody, and φui

(x, t) = 0
elsewhere for i = 1, 2, 3.

7.1. Computation of drag

We compute the drag coefficient as:

Cpd =
Fpd

1/2ρ∞|u∞|2A
, (39)

with Fpd a drag force, ρ∞ the free stream density and u∞ the free stream velocity of the fluid,
and A is a reference area. Typically, the reference area A is a projected area perpendicular to
the direction of the fluid.
Since our model is an inviscid compressible fluid the drag force is computed only from the

pressure, whereas shear stress due to friction is not included.
The drag force Fpd is computed from a surface integral on the body Γbody of the pressure p

and an outward (from the fluid domain) unit normal vector n, projected in the direction epd
of the drag:

Fpd =

∫

Γbody

pn̂ · epdds. (40)

7.2. Supersonic 2D flow around a cylinder

We now consider a compressible supersonic flow around a cylinder with diameter d = 0.0254,
and with M = 1.4 at the inlet. We run the simulation until a time t = 0.5 to observe the
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AN ADAPTIVE FINITE ELEMENT METHOD FOR THE EULER EQUATIONS 13

behavior of the adaptive algorithm. Note, that this is not a stationary solution to the problem
at this time. We plot the solution which is obtained after eleven adaptive mesh refinements
with respect to the error in drag. In the a posteriori error estimate of Theorem 3, derivatives
of the dual solution act as weights for the local errors in the form of residuals, characterizing
sensitivities of the output of interest (here drag) with respect to local errors. Figure 1 shows
the solution of the dual problem at time t = 0.35 together with the sonic contour M = 1 at
time t = 0.5. The shock waves in the Euler equations develop along the sonic contour, and
we find that the dual solution indicates the upstream region, close to the supersonic region,
and the downstream region where the wake will develop, to be important for accuracy in drag.
However, the residuals of the primal equations are small close to the inlet, but large along the
shock wave and the wake.

In Algorithm 1 error indicators ηKn are computed for each cell Kn of the triangulation Th,
of which a certain fraction are marked for refinement based on the size of the error indicators.
Output from the adaptive algorithm is presented in Table I. Figure 2 shows the drag coefficient
Cdp for a set of adaptive iterations, together with a reference Cref

dp which is obtained from a
uniformly refined mesh with 115 718 vertices and 230 852 cells. After seven adaptive iterations

the drag oscillates about the reference value for drag, and the error estimate
∑

n,K

ηKn is steadily

decreasing, see Figure 3.

Table I. The convergence history of the drag coefficient. Here C̄dp is a mean value of Cdp over the

time interval [0, t], Cref

dp = 1.3970 is a reference drag coefficient obtained from a fine uniformly refined

mesh, and
∑

n,K
ηK
n denotes a sum of error indicators over the cells.

#iter #vertices #cells S C̄dp

∑

n,K

ηKn C̄dp/C̄
ref
dp

0 14660 28792 1.76 1.3217 2.3573 0.9461
1 16176 31824 1.9138 1.3056 1.9317 0.9346
2 17828 35115 2.3296 1.2681 0.9903 0.9077
3 19667 38793 2 1967 1.3742 0.7426 0.9837
4 21716 42888 3.1018 1.3672 0.5653 0.9786
5 24017 47482 3.5975 1.4238 0.3730 1.0191
6 26584 52600 4.2220 1.3640 0.2927 0.9764
7 29557 58530 4.7777 1.4453 0.1923 1.0345
8 32885 65154 5.4866 1.4090 0.1521 1.0086
9 36662 72676 6.0550 1.4438 0.1291 1.0335
10 40962 81213 6.6479 1.4378 0.0939 1.0292
11 46040 91312 7.2120 1.4507 0.0828 1.0385

7.3. Supersonic 2D flow around a wedge

In this example we simulate supersonic M = 3 flow around a wedge. Consider a sharp angle
wedge at zero angle of attack in Figure 5. One important feature of this flow is that the oblique
shock here is attached to the wedge, however for the cylinder there is a detached bow shock,
see Figure 1. Also, downstream of the wedge, the shock-expansion waves develops at the sharp
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14 M. NAZAROV AND J. HOFFMAN

Figure 1. Supersonic flow around a 2D cylinder: the pressure in the colors, density contours and
velocity arrow at time t = 0 together with the sonic contour M = 1 at time t = 0.5, (upper). The

Mach number at time t = 0.5, (lower).
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Figure 2. Supersonic flow around a 2D cylinder: the drag coefficient Cdp in different adaptive iterations
and the reference Cdp which is obtained from the reference mesh.
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Figure 3. Supersonic flow around a 2D cylinder (left) and 2D wedge (right): Log10 of number of cells

versus log10 of
∑

n

ηn.

edges.

The boundary conditions are chosen the same as for the cylinder above, with just a higher
Mach number at the inlet. There is no special treatment of the corners of the wedge, resulting
in a pollution effect close to the body and downstream. This effect vanishes with sufficient
mesh refinement, and we find that the adaptive algorithm focuses to these singularity points.

We compare the adaptively refined meshes to two reference drag coefficients from uniformly
refined meshes: Cref1

dp obtained from a mesh with 91 074 vertices and 181 844 cells, and Cref2
dp

obtained from a mesh with 144 086 vertices and 287 740 cells. However, we find that the
drag coefficients obtained from the two uniformly refined meshes are not close to each other,
probably due to insufficient mesh refinement near the singularity point at the tip of the wedge.
Figure 9 shows the triangulations close to the tip. The left plot is the result of the adaptive
algorithm after eight iterations with 41 067 vertices and 81 112 cells and the right plot is the
triangulation for the finest uniformly refined mesh. We see that the adaptive algorithm focuses
to resolve the singularity point, which makes the pollution effect smaller. Figure 6 shows the
drag coefficients from the adapted mesh together with the reference drag coefficients, where
we find that drag for the finest uniformly refined mesh is closer to the results from the adapted
mesh. We summarized the computational results in Table II, with drag for the adaptively
refined meshes quite close for the finer meshes.

Figure 7 shows the dual and primal solutions at time t = 0 and t = 0.5 respectively. The
upper figure shows the dual pressure in color, dual density contours and dual velocity arrows
together with 10 contours of the Mach number. We see that the oblique shock is attached to
the wedge, it starts from the tip and develops downstream. From the downstream edges, the
shock expansion appears. The dual density follows the oblique shock a while and then advects
upstream. All dual solutions are focused on the area close to the tip, and the wake which
develops after the wedge. The residual is typically high along the shock waves, however for the
regions far from the wedge the dual solution is almost zero. This indicates that for accurate
approximation the drag force, it is not important to resolve the parts of the domain with very
small dual solution. This significantly reduces the computational cost of the simulation. We
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AN ADAPTIVE FINITE ELEMENT METHOD FOR THE EULER EQUATIONS 17

Figure 4. Supersonic flow around a 2D cylinder with d = 0.0254: variation of the density (middle) and
Mach number (below) along the x-axis for several y-values from 14 times adaptively refined mesh with
46040 vertices and 91312 cells at time t = 0.5: y=0.508 (red); y=0.513 (black); y=0.520721 (blue);

y=0.525 (green); y=0.55 (purple).
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18 M. NAZAROV AND J. HOFFMAN

show the resulting meshes from the adaptive algorithm in Figure 10, both for the 2D cylinder
and the wedge. In both examples, the algorithm refines only the part of the shock region which
has significant effect on the drag force. Morover, the adaptive algorithm controls the formation
of spurious numerical oscillations in the solution. This can be observed in Figures 4 and 8,
where we plot the variation of the solution along the x-axis for several y-values from the finest
adaptivly refined meshes for both 2D examples.

Figure 5. The geometry of the two dimensional wedge.

Table II. The convergence history of a drag coefficient for the Mach 3 flow around a wedge. Here C̄dp

is a mean value of Cdp over the time interval [0, t], Cref1
dp = 0.2874 is a reference drag coefficient from

obtained from the fine mesh with 91 074 vertices and 181 844 cells, Cref2
dp = 0.2616 is a reference drag

coefficient from the finest mesh with 144 086 vertices and 287 740 cells, and
∑

n,K

ηK
n denotes a sum of

error indicators of cells.

#iter #vertices # cells S C̄dp

∑

n,K

ηKn C̄dp/C̄
ref1
dp C̄dp/C̄

ref2
dp

0 14632 28972 4.5182 0.4333 1.4614 1.5078 1.6565
1 16321 32334 4.9313 0.3838 1.2059 1.3355 1.4672
2 18194 36061 5.1899 0.3445 0.8651 1.1985 1.3167
3 20250 40141 6.0702 0.2576 0.7564 0.8962 0.9846
4 22579 44759 6.1874 0.2476 0.5094 0.8616 0.9466
5 25225 49989 7.1764 0.2490 0.4341 0.8663 0.9517
6 28356 56172 7.3092 0.2490 0.0316 0.8664 0.9518
7 32019 63380 8.3547 0.2495 0.0254 0.8680 0.9536
8 36312 71820 8.5274 0.2522 0.0177 0.8777 0.9643
9 41305 81621 9.7619 0.2524 0.0145 0.8784 0.9650
10 47345 93374 12.913 0.2542 0.0100 0.8844 0.9716

8. Supersonic 3D flow around a sphere

Experimental data for compressible flow around a sphere for different Mach numbers and
Reynolds numbers are available over the number of publications starting from the 18th century.
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Figure 6. Supersonic flow around a 2D wedge: the drag coefficient Cdp in different adaptive iterations

and two reference coefficients Cref1
dp and Cref2

dp .

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 0000; 00:1–29
Prepared using fldauth.cls



20 M. NAZAROV AND J. HOFFMAN

Figure 7. Supersonic flow around a 2D wedge: the dual pressure in the colors, dual density contours
and velocity arrow at time t = 0 together with 10 contour of Mach numbers at time t = 0.5, (upper).

The Mach number at time and primal velocity arrows t = 0.5, (lower).
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Figure 8. Supersonic flow around a 2D wedge with length 0.05 in the x direction: variation of the density
(middle) and Mach number (below) along the x-axis for several y-values from 10 times adaptively
refined mesh with 47345 vertices and 93374 cells at time t = 0.5: y=0.2 (red); y=0.204 (black);

y=0.208 (blue); y=0.217 (green); y=0.228 (purple).
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Figure 9. Supersonic flow around a 2D wedge: the mesh close to the tip of the wedge: after nine
adapted iteration (left), and the reference mesh (right) of the two dimensional wedge.

A review article by Miller & Bailey [33] studies the experiments of the 18th and 19th centuries
for different Mach numbers 0.2 ≤M ≤ 2.0 at Re ≈ 107. The analyses in the mentioned article
show that the experimental data obtained three centuries ago are in good agreement to the
modern data.

Sphere measurements obtained by [33] and [34] show that regardless of the diameter size of
the sphere, the drag coefficient increases rapidly in the transonic region and for M ≥ 1.6 and
Re ≥ 105 it stays to be constant with further increases in Reynolds number. Experimental
analyses in [34] and earlier in [35] show that the drag coefficient slowly decreases when the Mach
number increases above M ≥ 2 for the flow with Re ' 106. We leave a complete discussion
for different Mach numbers for future research, but in this paper we present results for only
one Mach number, in order to see if the G2 solution gives a correct result according to the
experiment.

We use Algorithm 1 for the supersonic flow around a sphere with diameter d = 0.074 at
Mach number M = 2. For this Mach number the flow characterized by a detached three
dimensional bow shock wave in front of the sphere and is in a mixed subsonic and supersonic
flow behind the sonic line M = 1. Here the pressure drag at the stagnation point is high
compared to the subsonic case. An attached shock wave develops in the rear of the sphere,
which is also counted as a substantial source of the pressure drag. Therefore, the area for the
pressure stagnation point and attached shock waves should be resolved by computation for
the correct drag coefficient. We observe from the results that the adaptive G2 method tries to
resolve these regions.

We present the results from the simulation in Table III. 10% of the largest cells are refined
during the adaptive algorithm. We start with an initial coarse mesh, which has 9 720 vertices
and 53 312 cells, which reaches 168 820 vertices and 918 605 cells after 9th adaptive iteration.

The error bound of the drag coefficient
∑

n,K

ηKn converge by the mesh refinement, as the drag

coefficient approximately stays around the experimental data Cdp ≈ 1. In Figure 13 the drag
coefficients are plotted after each adaptive iterations.

We plot the solution of the adaptive algorithm in Figure 11 after eight refinements. The right
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Figure 10. Adapted meshes for the 2D (above) cylinder after twelve, and wedge (below) after nine
adaptive iterations.
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column of the figure shows the primal solutions and the left column presents the corresponding
dual solutions. The magnitude of the dual solution is high in the areas with the significant
contribution to the pressure drag force. The plot of the primal pressure shows that already in
eight adaptive step the pressure structures are close to be resolved.

In Figure 12 we present the initial coarse mesh and the mesh after nine adaptive refinements.
After each refinement the boundary nodes, which appear from the Rivara algorithm are
projected to the surface of the sphere. Also, we notice that similar to the 2D result, the
algorithm focuses to resolve the pressure stagnation point, area of the sonic line and attached
shock wave, which is expected since they are the main source of pressure drag. With ad hoc
refinement, for instance residual based or gradient based adaptation, the region with strong
shocks are well resolved. However, we notice that the duality based adaptive algorithm does
not resolve a propagating bow shock and other strong discontinuities, it only refines the areas
with the largest error contribution. Consequently, it significantly decreases the computational
cost of the drag force computation.

Table III. The convergence history of the drag coefficient. Here C̄dp is a mean value of Cdp over the

time interval [t− ǫt, t], where ǫt is a small number, and
∑

n,K

ηK
n denotes a sum of error indicators.

#iter #vertices #cells S C̄dp

∑

n,K

ηKn

0 9720 53312 0.8218 0.8115 1.5018
1 17405 94572 0.9571 0.8360 1.3096
2 22915 124884 1.1586 0.8502 1.0234
3 29686 160313 1.4233 0.9085 0.8651
4 39328 212637 1.6683 0.9474 0.7352
5 51746 280031 1.8440 0.9705 0.6236
6 69418 376144 2.0050 0.9873 0.5429
7 93696 508209 2.0538 0.9982 0.4532
8 126012 685079 2.1038 1.0046 0.3844
9 168820 918605 2.0541 1.0081 0.3199

9. Conclusion

We have presented an adaptive finite element method for the 3D time dependent compressible
Euler equations, based on a posteriori error estimation of an output of interest, using sensitivity
information from an associated dual problem based on the variables density, velocity and
pressure, with the state law of a perfect gas. The a posteriori error estimation was based on a
finite element method with continuous linear approximation in space and time, and streamline
diffusion stabilization together with residual based shock-capturing, but the error estimation
results are straight forward to extend to other finite element methods.

This paper can be seen as an extension of our previous work on adaptive finite element
methods for turbulent incompressible flow [17, 16, 18, 19], to compressible flow. The basic
tools of a posteriori error estimation are now extended to compressible flow, and future work

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 0000; 00:1–29
Prepared using fldauth.cls



AN ADAPTIVE FINITE ELEMENT METHOD FOR THE EULER EQUATIONS 25

Figure 11. Supersonic flow around a sphere: the dual solution at time t = 0 of density (top-left),
pressure (middle-left) and magnitude of velocity (bottom-left); the primal solution at time t = 0.5 of
density (top-right), pressure (middle-right) and magnitude of velocity (bottom-right). The contours

are plotted in the collormap. The sonic line in red is plotted together with the dual solution.
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26 M. NAZAROV AND J. HOFFMAN

Figure 12. Supersonic flow around a sphere: the (x, y) - view of the mesh for the initial mesh (top-
left), four times (top-right) and nine times (middle-left) adaptive refinement according to the drag
force together, the sonic line is plotted in red, (y, z) - view of the mesh for x = xs of the initial
mesh (middle-right), where xs - is x coordinate of the center of sphere, the finest mesh close to the
stagnation point of pressure x = xs − d/2 (below-left), and the finest mesh at x = xs +0.02 from back

(below-right)
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Figure 13. Supersonic flow around a sphere: the drag coefficient Cdp in different adaptive iterations.
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will focus on studying the adaptive method for turbulence benchmarks problems, and to extend
the method to viscous compressible flow modeled by the Navier-Stokes equations. Future work
will also investigate the performance of different stabilized finite element methods, see e.g. [22],
for applications to turbulent compressible flow.
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